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Abstract

We investigate efficient randomized methods for approximating the number of perfect match-
ings in bipartite graphs and general graphs. Our approach is based on assigning probabilities to
edges. We show an unbiased estimator and bound its second moment. We also present practical
experiments.

1 Introduction

We investigate efficient randomized methods for approximating the number of perfect matchings
in bipartite graphs and general graphs. Our main tool is a sparse matrix scaling algorithm which
we apply to the adjacency matrix of the given graph (bipartite or general) to assign probabilities
to the edges and base random choices to these probabilities.

Counting perfect matchings in a bipartite graph is equivalent to computing the permanent of
its adjacency matrix, which is defined as Per(A) =

∑
σ

∏
ai,σ(i), where the summation runs over

all permutations σ of 1, . . . , n, which is #P-Complete [12]. While we focus on the case where A is
a 0-1 matrix, our techniques are also applicable to matrices containing real values. Approximating
the permanent is a well-studied problem. Jerrum et al. [5] discuss a Markov Chain Monte Carlo
(MCMC) based approach which can provide a (1 + ε)-approximation for the permanent in fully
polynomial time, with Õ(n10) complexity. The MCMC based approach cannot be generalized
easily to the general graph case (Štefankovic et al. [11] highlight the difficulties). Gurvits and
Samorodnitsky [4] and Linial et al. [7] use matrix scaling to propose deterministic approximations
with exponential guarantees (2n and en respectively).

Our contribution is more on the practical side, as we describe an algorithm with significantly
reduced complexity. We propose an alternative selection mechanism to the original algorithm due
to Rasmussen [9]. The same approach is also studied by Beichl and Sullivan [1], but we offer some
new insights as well as a more detailed experimental analysis.

We omit proofs and refer the reader to the full version of the manuscript, available in Hal [2].

2 Notation and background

Matrices are shown in bold upper case letters, e.g., A. With Aij we denote the submatrix of matrix
A obtained by deleting the ith row and the jth column. The entries in the matrix are shown with
lower-case letters and subscripts, e.g., ai,j . Vectors are shown with bold, lower-case roman letters,
e.g., v. Components of a vector are shown with the same letter and subscripts, e.g., vi. We use
E[·] to denote expectation. The base of the natural logarithm is shown with e.

We say that X ′ for a quantity P achieves (ε, δ)-approximation whenever Pr(|X ′ − P | ≤ εP ) ≥

1 − δ. In general, an (ε, δ) approximation can be achieved by simulating O

(
E[X2]

E[X]2
· 1

ε2
· log(1δ )

)
trials. For this reason, the fraction E[X2]

E[X]2
is called the critical ratio.



An n×n matrix is said to have support if there is a perfect matching in the associated bipartite
graph. If all the non-zeros belong to at least one perfect matching then the matrix has total support.
Any nonnegative matrix A with total support can be scaled with two (unique) positive diagonal
matrices R and C such that RAC is doubly stochastic, that is each column and each row sums
to one. The Sinkhorn-Knopp algorithm [10] is a well-known method for this purpose. When A is
scaled with R and C to be doubly stochastic, g(x,y) = xTAy−

∑n
i=1 lnxi−

∑n
j=1 ln yj attains its

minimum value for positive xi and yi at x = diag(R) and y = diag(C) [6, Proposition 2].

Lemma 1. Let A be an n × n 0-1 matrix with total support. Consider R,C diagonal scaling
matrices such that S = RAC is a doubly stochastic. Then, Per(S) = Per(A) ·

∏n
i=1 ri · ci. In

addition, ri · cj =
Per(Aij)

Per(A)
· Per(S)

Per(Sij)
.

3 Algorithm and analysis

The proposed algorithm to estimate the permanent is shown in Algorithm 1. It takes an n × n,
0-1 matrix A (with nonzero permanent), and produces a random variable XA. The algorithm
proceeds in n steps. Initially XA is equal to one. At every step, the algorithm adds a nonzero entry
to a matching, thus obtaining a perfect matching at the end. At step i, a nonzero entry in the
ith row of A is chosen among those columns of A which have not been matched yet. That entry
defines the matching edge for the ith row. The nonzeros are selected according to the values of the
entries in the doubly stochastically scaled version of the remaining matrix. The random variable
XA is multiplied by the reciprocal of the value of the chosen nonzero. We discard the nonzeros in
A(i) that cannot be put into a perfect matching (with Dulmage-Mendelsohn decomposition [8]).
The worst case run time of the algorithm can be bound as Õ(mn3 lnn) with the Sinkhorn-Knopp
algorithm used for scaling, where the terms including the deviation of the row/column sums from
one are hidden, n is the size of the matrix and m is the number of nonzeros.

Algorithm 1 Permanent Estimation
Require: n× n, 0− 1 matrix A
Ensure: Permanent estimate XA

1: XA ← 1
2: A(1) ← A
3: for i = 1 to n do
4: Filter out those entries of A(i) that cannot be put into a perfect matching
5: [R(σ,i),C(σ,i)]← Scale(A(i))
6: Pick a nonzero column j in the first row of A(i) by using the probability density function pj =

s1,j
Σ

k∈A(i)(1,:)
s1,k

for all nonzeros a
(i)
1,j where S = R(σ,i)A(i)C(σ,i)

7: XA ← XA/pj

8: A(i+1) ← A
(i)
1j {delete the first row and the jth column of A(i)}

The algorithm identifies a perfect matching at the end. Let R(σ,i) and C(σ,i) denote the scaling

matrices at the ith step of the algorithm, where the perfect matching σ is returned. Let also σ
(i)
1

denote the column chosen for the first row at the ith step.

Theorem 1. Let XA be a random variable returned by Algorithm 1 for the estimate of the perma-
nent of an n× n, 0–1 matrix A. Then E[XA] = Per(A).



Lemma 2. Let A be n×n matrix such that a1,j = 1 and A1j be the minor after discarding entries
not in any permutation. Let R, C, D, and F be the positive diagonal matrices scaling A and A1j

respectively. Then,
∏n
i=2 ri ·

∏n
i=1,i 6=j ci ≤ er1cj−1 ·

∏n−1
i=1 di · fi

Theorem 2. Let A be n× n matrix with total support, and RAC be its doubly stochastic scaling.
Then

E[X2
A] ≤ Per(A)· ev−n∏

i ri · ci
with v ≤ n or E[X2

A] ≤ Per(A)·mean(
∑
σ

e

∑
j r1

(σ,j)c
(σ,j)

σ
(j)
1 )· e−n∏

i ri · ci
.

Rasmussen [9] investigates a simpler approach in which the selection probabilities are uniform,
and no edges are discarded (so that the estimator can return zero). Beichl and Sullivan [1] propose
the same algorithm and perform some analysis, where the E[X2

A] is bound using a notation to
denote the average value of 1∏n

i=1 r
(σ,i)
1 c

(σ,i)

σ
(i)
1

over all perfect matchings. This analysis is valuable to

show that scaling helps, but it does not yield computable bounds. Our analysis in Theorem 2 gives
efficiently computable bounds. The variant of the algorithm for graphs has the same properties.
In particular with XG showing the random variable and M(G) showing the number of perfect

matchings in G, we have E[X2
G] ≤ M(G) · 1∏

i si
, where sis are the diagonal entries of the scaling

factors of the adjacency matrix of G. Fürer and Kasiviswanathan [3] discuss three randomized
algorithms (Simple, REP, and Greedy) similar to ours. The one called Simple is a direct adaptation
of Rasmussen’s algorithm for graphs. REP extends Simple such that at certain points during the
execution, it creates k copies where each copy selects its own neighbor; the procedure continues
as before in each copy. The results of each copy are later combined. Greedy attempts to assign
probabilities in a better way by setting probabilities inversely proportional to the column degrees.

4 Experiments and conclusion

To see how the proposed heuristic fares in practice, we compare it against the original estimator of
Rasmussen as well as Greedy. Additionally for all three variants in this paper use a small heuristic
and select at each step the row with the least nonzeros remaining. For each test, we take 1000
samples and report their mean. Initially we consider random matrices of size 40 and sparsity 4

n .
Such matrices can have large permanents (e.g., around 107) and are among the largest an exact
algorithm can handle. The results which are summarized in Figure 1(a) showcase that our approach
always has good performance. In contrast, Rasmussen’s estimator often reports results that are
a lot worse than the other two approaches (even if modified to avoid returning zeros). Greedy
exhibits better performance than Rasmussen’s, while our approach has better performance than
Greedy (it has smaller and less frequent deviation from the value of the permanent).

To provide results with larger n, we focus on the class of matrices which represent grids and for
which an exact formula for the permanent is known. The results presented in Figure 1(b) concur
with the previous test, suggesting that the assignment of probabilities via scaling makes the overall
procedure more reliable.

We have proposed a technique for approximating the permanent based on matrix scaling. We
manage to prove loose yet computable upper bounds for E[X2

A]. The experimental analysis sug-
gests that an improvement over previous similar methodologies is possible. Future work involves
bounding the estimated factors for special graph classes.



(a) sparse 40× 40 matrices (b) grid graphs

Figure 1: The approximation ratio for the three approaches in 54 random graphs with n = 40 and
4/n sparsity factor (in increasing order of the approximation ratio of our estimator), and on square
grids of even length as the length increases.

References

[1] I. Beichl and F. Sullivan. Approximating the permanent via importance sampling with application to
the dimer covering problem. J. Comput. Phys., 149(1):128–147, 1999.
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