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Abstract

As usual, Pn (n ≥ 1) denotes the path on n vertices, and Cn (n ≥ 3) denotes the cycle on
n vertices. For a family H of graphs, we say that a graph G is H-free if no induced subgraph
of G is isomorphic to any graph in H. We present a decomposition theorem for the class of
(P7, C4, C5)-free graphs; in fact, we give a complete structural characterization of (P7, C4, C5)-
free graphs that do not admit a clique-cutset. We use this decomposition theorem to show that
the class of (P7, C4, C5)-free graphs is χ-bounded by a linear function (more precisely, every
(P7, C4, C5)-free graph G satisfies χ(G) ≤ 3

2ω(G)). We also use the decomposition theorem to
construct an O(n3) algorithm for the minimum coloring problem, an O(n2m) algorithm for the
maximum weight stable set problem, and an O(n3) algorithm for the maximum weight clique
problem for this class, where n denotes the number of vertices and m the number of edges of
the input graph.

The proofs of all our results can be found in [2]. In what follows, all graphs are finite, simple,
and nonnull.

Given graphs G and H, we say that G is H-free if no induced subgraph of G is isomoprhic to
H. Given a graph G and a family H of graphs, we say that G is H-free if G is H-free for all H ∈ H.

As usual, given a positive integer n, we denote the path on n vertices by Pn, and we denote the
complete graph on n vertices by Kn. For an integer n ≥ 3, Cn is the cycle on n vertices.

A clique in a graph G is a (possibly empty) set of pairwise adjacent vertices of G, and a stable set
inG is a (possibly empty) set of pairwise nonadjacent vertices ofG. The clique number ofG, denoted
by ω(G), is the maximum size of a clique in G, and the stability number of G, denoted by α(G),
is the maximum size of a stable set in G. A q-coloring of G is a function c : V (G) −→ {1, . . . , q},
such that c(u) 6= c(v) for every edge uv of G. The chromatic number of a graph G, denoted by
χ(G), is the minimum number q for which there exists a q-coloring of G.

A clique-cutset of a graph G is a (possibly empty) clique C of G such that G\C is disconnected.
Given a graph G and disjoint sets X,Y ⊆ V (G), we say that X is complete (respectively: anti-
complete) to Y in G if every vertex of X is adjacent (respectively: nonadjacent) to every vertex of
Y . The complement of a graph G is denoted by G. An anticomponent of a graph G is an induced
subgraph H of G such that H is a component of G. (Clearly, the vertex sets of the anticomponents
of G are pairwise disjoint and complete to each other.) A trivial anticomponent of a graph G is
one that has just one vertex; a nontrivial anticomponent of G is one that has at least two vertices.

Our main result is the following decomposition theorem for (P7, C4, C5)-free graphs (we remark
that not all terms that appear in the theorem have been defined yet).

Theorem 1. Let G be a graph. Then the following are equivalent:

• G is a (P7, C4, C5)-free graph that does not admit a clique-cutset;

• either G is a complete graph, or G contains exactly one nontrivial anticomponent, and this
anticomponent is either a 7-bracelet, a thickened emerald, a lantern, a 6-wreath, or a 6-crown.



7-Bracelets, thickened emeralds, lanterns, 6-wreaths, and 6-crowns will be defined later. For
now, we remark that Theorem 1 in fact gives a full structural description of (P7, C4, C5)-free graphs
that do not admit a clique-cutset. We note, however, that this is not quite a full structure theorem
for the class of (P7, C4, C5)-free graphs. This is because P7 admits a clique-cutset, and so the
operation of “gluing along a clique,” the operation that “reverses” the clique-cutset decomposition,
is not class-preserving.

We use Theorem 1, as well as a number of polynomial-time combinatorial algorithms previously
obtained by other researchers (including, notably, Tarjan’s tools for handling clique-cutsets [13]), to
construct an O(n3) time algorithm for the minimum coloring problem, an O(n2m) time algorithm
for the maximum weight stable set problem, and an O(n3) time algorithm for the maximum weight
clique problem for the class of (P7, C4, C5)-free graphs, where n denotes the number of vertices
and m the number of edges of the input graph. We also use Theorem 1 to prove that every
(P7, C4, C5)-free graph G satisfies χ(G) ≤ b32ω(G)c.

Minimum coloring is NP-hard for (C4, C5)-free graphs, and even 3-coloring is NP-complete on
this class [9]. Huang [8] proved that 4-coloring P7-free graphs is NP-complete. In [4], the authors
show that there is a polynomial-time algorithm for coloring (4K1, C4, C5)-free graphs; note that
(4K1, C4, C5)-free graphs form a proper subclass of the class of (P7, C4, C5)-free class.

The maximum weight stable set problem is NP-hard for (C4, C5)-free graphs; its complexity is
unknown for P7-free graphs but it can be solved in polynomial-time for P5-free graphs [10].

Any C4-free graph has O(n2) maximal cliques [1, 5]. Furthermore, if a graph G has K maximal
cliques, they can all be found in O(Kn3) time [11, 14]. Thus, all maximal cliques of a C4-free
graph can be found in O(n5) time, and it follows that a maximum weight clique of a C4-free graph
can be found in O(n5) time. As mentioned above, we show that a maximum weight clique of a
(P7, C4, C5)-free graph can be found in O(n3) time.

A class of graphs is hereditary if it is closed under isomorphism and induced subgraphs; it is not
hard to see that a class G is hereditary if and only if there exists a family H such that G is precisely
the class of H-free graphs. A hereditary class G is χ-bounded if there exists a function f : N → N
such that every graph G ∈ G satisfies χ(G) ≤ f(ω(G)). χ-Bounded classes were introduced by
Gyárfás [7] in the 1980s as a generalization of perfection (a graph G is perfect if all its induced
subgraphs H satisfy χ(H) = ω(H)). As mentioned above, we proved that all (P7, C4, C5)-free
graphs G satisfy χ(G) ≤ b32ω(G)c. Gyárfás [7] showed that for all positive integers n, the class of
Pn-free graphs is χ-bounded. It is well known that P4-free graphs are perfect [12]; however, for
n ≥ 5, the best χ-bounding function known for the class of Pn-free graphs is exponential [6]. On
the other hand, since there exist graphs of arbitrarily large girth and chromatic number [3], the
class of (C4, C5)-free graphs is not χ-bounded.

In the remainder of this document, we define 7-bracelets, thickened emeralds, lanterns, 6-
wreaths, and 6-crowns (these are graphs that appear in the statement of Theorem 1, but have not
yet been defined).

Given graphs G and H, we say that G is obtained by blowing up each vertex of H to a nonempty
clique provided that there exists a partition {Xv}v∈V (H) of V (G) into nonempty cliques such that
for all distinct u, v ∈ V (H), if uv ∈ E(H), then Xu is complete to Xv in G, and if uv /∈ E(H), then
Xu is anticomplete to Xv in G. A thickened emerald is any graph that can be obtained from the
emerald (see Figure 1) by blowing up each vertex to a nonempty clique. A 6-crown is any graph
that can be obtained from C3

6 or C4
6 (see Figure 2) by blowing up each vertex to a nonempty clique.

Let B be a graph, let {Ai}i∈Z7 be a partition of V (B), and let i∗ ∈ Z7. We say that B is a
7-bracelet with good pair ({Ai}i∈Z7 , i

∗) provided that the following hold:
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Figure 1: The emerald.
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Figure 2: Graphs C3
6 and C4
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(I) for all i ∈ Z7, Ai is a nonempty clique, complete to Ai−1 ∪Ai+1 and anticomplete to Ai−3 ∪
Ai+3;

(II) for all i ∈ Z7, there exists a partition of Ai into three (possibly empty) sets, call them
A∗i , A

+
i , A

−
i , such that all the following hold:

(a) A∗i is anticomplete to Ai−2 ∪Ai+2,

(b) A+
i is anticomplete to Ai−2, and every vertex in A+

i has a neighbor in Ai+2,

(c) A−i is anticomplete to Ai+2, and every vertex in A−i has a neighbor in Ai−2,

(d) if A+
i 6= ∅, then A+

i can be ordered as A+
i = {ai+1 , . . . , ai

+

|A+
i |
} so that NB[ai

+

|A+
i |

] ⊆ · · · ⊆

NB[ai
+

1 ],

(e) if A−i 6= ∅, then A−i can be ordered as A−i = {ai−1 , . . . , ai
−

|A−
i |
} so that NB[ai

−

|A−
i |

] ⊆ · · · ⊆

NB[ai
−
1 ],

(f) either A∗i 6= ∅, or A+
i is not complete to Ai+2, or A−i is not complete to Ai−2,

(III) Ai∗−3 = A∗i∗−3 and Ai∗+3 = A∗i∗+3;

(IV) Ai∗−2 = A∗i∗−2 ∪A
+
i∗−2 and Ai∗+2 = A∗i∗+2 ∪A

−
i∗+2;

(V) Ai∗−1 = A∗i∗−1 ∪A
+
i∗−1 and Ai∗+1 = A∗i∗+1 ∪A

−
i∗+1.

A lantern is a graph R whose vertex set can be partitioned into nonempty cliques A, B1, . . . , Br,
C1, . . . , Cr, D (with r ≥ 3) such that all the following hold:

• A is anticomplete to D;

• A is complete to
⋃r

i=1Bi and anticomplete to
⋃r

i=1Ci;



• D is complete to
⋃r

i=1Ci and anticomplete to
⋃r

i=1Bi;

• B1 and C1 can be ordered as B1 = {b11, . . . , b1|B1|} and C1 = {c11, . . . , c1|C1|} so that NR[b1|B1|]∩
C1 ⊆ · · · ⊆ NR[b11] ∩ C1 = C1 and NR[c1|C1|] ∩B1 ⊆ · · · ⊆ NR[c11] ∩B1 = B1;

• for all i ∈ {2, . . . , r}, Bi is complete to Ci;

• for all distinct i, j ∈ {1, . . . , r}, Bi ∪ Ci is anticomplete to Bj ∪ Cj .

A 6-wreath is a graph R whose vertex set can be partitioned into six nonempty sets, say
X0, . . . , X5 (with indices understood to be in Z6), that can be ordered asX0 = {u01, . . . , u0|X0|}, . . . , X5 =

{u51, . . . , u5|X5|} so that both the following hold:

• for all i ∈ Z6, Xi ⊆ NR[ui|Xi|] ⊆ · · · ⊆ NR[ui1] = Xi−1 ∪Xi ∪Xi+1;

• X0 is complete to X1, X2 is complete to X3, and X4 is complete to X5.

References

[1] V.E. Alekseev, On the number of maximal independence sets in graphs from hereditary classes, in: V.N.
Shevchenko (Ed.), Combinatorial-Algebraic Methods in Applied Mathematics, Gorkiy University Press,
Gorky, 1991, 5–8 (in Russian).

[2] K. Cameron, S. Huang, I. Penev, V. Sivaraman, The class of (P7, C4, C5)-free graphs: decomposition,
algorithms, and χ-boundedness arXiv:1803.03315.

[3] P. Erdös, Graph Theory and Probability, Canadian Journal of Mathematics, 11:34–38, 1959.
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