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Abstract

Given a graph G, let ve(G) and vet (G) be the sizes of a minimum and a maximum minimal
vertex covers, respectively. We say that G is well covered if ve(G) = ve™ (G) (that is, all minimal
vertex covers have the same size). Deciding if a graph is well covered is coNP-complete. In this

paper, we obtain O*(2V¢)-time and 0*(1.4656”C+ )-time FPT algorithms to decide well covered-
ness, parameterized by vc(G) e vet(G), respectively, improving results of 2015 by Boria et. al.
[4]. We also obtain an FPT algorithm parameterized by a(G) = n — vc(G) for d-degenerate
graphs, which include bounded genus graphs (as planar graphs) and graphs with bounded max-
imum degree. Finally, we use the primeval decomposition technique to obtain a linear time
algorithm for extended P,-laden graphs and (g, ¢ — 4)-graphs, which is FPT parameterized by
g, improving results of 2013 by Klein et al. [11].

1 Introduction

Let G = (V, E) be a graph and C,I C V. We say that C is a vertex cover if every edge of G has an
endpoint in C and that [ is an independent set if every pair of distinct vertices of I are not adjacent
in G. It is well known that C' is a vertex cover if and only if V' — C is an independent set. Let
ve(G) be the size of a minimum vertex cover and let the independence number o(G) = n — ve(G)
be the size of a largest independent set in G. A graph G is called well covered if all minimal vertex
covers of G are minimum (or equivalently if all maximal independent sets are maximum). The
concept of well covered graph was introduced by Plummer [12]. In well covered graphs, the greedy
algorithm for producing a maximal independent set (or a minimal vertex cover) always produces
a maximum independent set (and a minimum vertex cover). Unfortunately, deciding if a graph
is well covered is coNP-complete even on K 4-free graphs [5]. In this paper, we obtain O*(2"¢)-
time and O*(1.4656"" )-time FPT algorithms to decide well coveredness, parameterized by ve(G)
e veT (G), resp., improving results of 2015 by Boria et. al. [4]. We also obtain an FPT algorithm
parameterized by a(G) = n — ve(G) for d-degenerate graphs, which include bounded genus graphs
and graphs with bounded maximum degree. Finally, we use the primeval decomposition technique
to obtain a linear time algorithm for extended Pj-laden graphs and (g, q — 4)-graphs, which is FPT
parameterized by ¢, improving results of 2013 by Klein et al. [11].

2 Well coveredness of graphs with few P,’s

A cograph is a graph with no induced Py [6]. A graph G is Py-sparse if every set of five vertices
in G induces at most one Py [10]. A graph G is (¢,q — 4) for some integer ¢ > 4 if every subset
with at most ¢ vertices induces at most ¢ — 4 Py’s [2]. Cographs and Pj-sparse graphs are exactly
the (4,0)-graphs and the (5, 1)-graphs. In [2], polynomial time algorithms are obtained for several
optimization problems in (g, ¢ —4)-graphs. A graph is extended Pj-laden if every induced subgraph
with at most six vertices contains at most two induced Pj’s or is {2K5, Cy}-free. This graph
class was introduced in [9]. A motivation to develop algorithms for extended Pj-laden graphs and
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Figure 1: Hierarchy of graphs with few Py’s. In gray, the classes investigated in [11].

(¢, q — 4)-graphs lies on the fact that they are on the top of a widely studied hierarchy of classes
containing many graphs with few Pj’s, including cographs, Pj-sparse, Py-lite, Ps-laden and Pj-
tidy graphs. See Figure 1. In [11], Klein, Mello and Morgana obtained linear time algorithms
to determine well coveredness for Py-tidy graphs. Using the primeval decomposition of extended
Py-laden graphs and (g, q — 4)-graphs, we extended this result to the following:

Theorem 1. Let G be a graph and q > 4. If G is a (q,q — 4)-graph or extended Py-laden, we can
determine well coveredness in linear time O(29¢* - (m + n)).

3 FPT parameterized by vertex cover number vc(G) and ve' (G)

We say that the well coveredness problem in a graph class C is fized parameter tractable (FPT)
with some parameter &k = k(G) in time O(n®) (for a constant c) if deciding well coveredness is
O(f (k) -n°)-time solvable for any graph G of C, where f is a function depending only on k = k(G).
In this case, we say that the running time is O*(f(k)).

In 2015, Boria et al. [4] obtained an O*(1.5397%¢")-time FPT algorithm to compute vt (G)
(which can be used to decide well coveredness). The following theorem improves this results.

Theorem 2. Deciding well coveredness s O*(1.4656”C+)—time solvable.

In 2015, Boria et al. [4] also obtained an O*(2.8284"¢)-time FPT algorithm to compute the
maximum minimal vertex cover. In 2018, Alves et al. [1] proved explicitly that the well coveredness
problem is FPT parameterized by vc(G), by an FPT algorithm with time O*(2"4) = O*(2v¢+2™),
where nd(G) is the neighborhood diversity of G. In the following, we improve these results.

Theorem 3. It is possible to enumerate in time O(2V°-(m+n)) all minimal vertez covers of a graph.
Consequently, there exists an O*(2V¢)-time FPT algorithm to decide well coveredness parameterized

by ve = ve(G).

Sketch of the proof. Let C be a minimum vertex cover of G. Then all edges have an endpoint in C.
Therefore, for every partition of C' in two sets A and B (AUB=C, AnNB=10), (AUN(B))\ B



is a vertex cover of G if there are no edges with both endpoints in B. Moreover, for every minimal
vertex cover C’ of G, A = CNC’ and B = C\ ' form a partition of C such that ¢’ = (AUN(B))\ B,
since C'\ C C N(B) (because C’ is a vertex cover and is minimal). Thus, we can enumerate all
minimal vertex covers of G by checking for every partition (4, B) of C if (AU N(B)) \ B is a
minimal vertex cover of G. Notice that verifying if a set is a minimal vertex cover can be done
in time O(m + n). Since there are 2/¢! partitions of C, |C| = ve(G) and it is possible to obtain a
minimum vertex cover C' in time O(2"¢ - (m + n)), we are done. O

4 FPT parameterized by a(G) =n — ve(G)

The local-treewidth [7] of a graph G is the function ltwg : N — N which associates with any » € N
the maximum treewidth of an r-neighborhood in G. That is, ltwg(r) = max,cy () {tw(G[N-(v)]},
where N, (v) is the set of vertices at distance at most r from v. We say that a graph class C has
bounded local-treewidth if there is a function f¢ : N — N such that, for all G € C and r € N,
ltwa(r) < fe(r). Tt is known that graphs with bounded genus or bounded maximum degree have
bounded local-treewidth [7]. In particular, a graph with maximum degree A has ltwg(r) < A" and
a planar graph has ltwg(r) < 3r —1 [3].

Theorem 4. The well coveredness decision problem is FPT parameterized by o(G) = n — ve(G)
in time O(n?) for graphs with bounded local-treewidth.

Sketch of the proof. Let WellCouvy, the first order formula which is true if and only if the graph G
does not have two independent sets X and Y with |X| =k, |Y| =%k — 1 and Y being maximal:

WellCovy := Ya1,...,2 Yy1,..., Yp_1 /\ zi #xj | A Indep({z1,...,z1})

1<i<j<k

— _‘(Indep({ylw")yk—l}) A Mamimal({ylu'”7yk—l})7

where Indep(X) :=Vx,y(x € X ANy € X) = —FE(z,y) and Maximal(X) :=VyJz(y € X) — (z €
X) A E(z,y). Notice that, if G is not well covered, then there are independent sets X and Y with
2 <|X|<a Y| =]X|—-1and Y being maximal. So, let WellCov be the first order formula,
which is true if and only if G is well covered:

WellCov = /\ WellCouvy,.
2<k<a

Then the well covered decision problem is first order expressible. Moreover, WellC'ov contains
at most o variables and then the size of the expression WellCov is a function of a. We then can
apply the Frick-Grohe Theorem (see [8]) to prove that the well coveredness decision problem is
FPT with parameter a(G) in time O(n?) for graphs with bounded local treewidth. O

We can obtain specific FPT algorithms (parameterized by «(G)) for d-degenerate graphs, such
as planar graphs, bounded genus graphs and bounded maximum degree graphs. A graph is called d-
degenerate if every induced subgraph has a vertex with degree at most d. The degeneracy of a graph
G is the smallest d such that G is d-degenerate. For example, outerplanar graphs, planar graphs
and graphs with bounded maximum degree A have degeneracy at most 2, 5 and A, respectively.



Theorem 5. The well coveredness decision problem is FPT parameterized by « = a(G) = n—vc(Q)
in time O((d + 1)* - (m + n)) for d-degenerate graphs, for every d > 0. Moreover, the time is
O(7* - (m+n)), if G has bounded genus.

Sketch of the proof. Let G be a d-degenerate graph. The algorithm uses a search tree with height
a(@) where each node has an associated graph. The root graph is the original graph G. A leaf
is a node such that its height is a(G) or its associated graph is empty. Let h be a non-leaf node.
We branch h according to a vertex v with minimum degree in the associated graph of h. Let
N[v] = {u1,...,us}, where £ = |[N[v]| < d + 1. With this, the node h will have £+ 1 child nodes
hi,ha, ..., he in the search tree. In the child node h; (1 < ¢ < £), remove N[u;] from the associated
graph, which is also d-degenerate. If there are two leaf nodes with different heights, return NO
(since G has a maximal independent set which is not maximum and then G is not well covered).
Otherwise, return YES. Notice that the tree height is at most «(G) and each node has at most
d + 1 child nodes. Therefore, the search tree has at most (d + 1)® nodes and the total time is
O((d+1)*- (m + n)), since every node takes time O(m + n). O
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