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Abstract

Given a non-decreasing sequence S = (s1, s2, . . . , sk) of positive integers, an S-packing edge-
coloring of a graph G is a partition of the edge set of G into k subsets {X1, X2, . . . , Xk} such
that for each 1 ≤ i ≤ k, the distance between two distinct edges e, e′ ∈ Xi is at least si + 1.
This work studies S-packing edge-colorings of cubic graphs. Among other results, we prove that
cubic graphs having a 2-factor are (1, 1, 1, 3, 3)-packing edge-colorable.

1 Introduction

All the graphs considered in this extended abstract are simple and connected, unless stated other-
wise. A proper edge-coloring of a graph G is a mapping which associates a color (an integer) to each
edge such that adjacent edges get distinct colors. In such a coloring, each color class is a matching
(also called stable set of edges or 1-packing). According to Vizing’s famous theorem, every cubic
graph needs either 3 or 4 colors for a proper edge-coloring. The bridgeless cubic graphs (often with
other restrictions) which are not edge-colorable with three colors are called snarks [3, 9].

As an extension, a d-strong edge-coloring of G is a proper coloring such that edges at distance
at most d have distinct colors, i.e., a partition of E(G) into sets of edges at pairwise distance at
least d+ 1, also called d-packings. A 2-strong edge-coloring is simply called a strong edge-coloring
and a 2-packing of edges is an induced matching. Strong edge-colorings of cubic graphs retain a lot
of attention since decades [1, 4, 8].

The aim of this work is to study a mixing of these two types of edge-colorings, i.e., colorings
of (sub)cubic graphs in which some color classes are 1-packings while other are d-packings, d ≥ 2.
More formally, given a non-decreasing sequence S = (s1, s2, . . . , sk) of positive integers, an S-packing
edge-coloring of a graph G is a partition of the edge set of G into k subsets {X1, X2, . . . , Xk} such
that each Xi is an si-packing, 1 ≤ i ≤ k.

For an edge-coloring, a color for which the color class is an r-packing is said to be a color of radius
r. In order to avoid long subsequences of the same integer in sequences of colors, we sometimes use
the exponent to denote repetitions of an integer, e.g., (12, 25) = (1, 1, 2, 2, 2, 2, 2). Also, to simplify,
an S-packing edge-coloring will be simply called an S-coloring in the remainder of the paper. A
(1, 1, 1, 2)-coloring and a (1, 1, 2, 2, 2)-coloring of the Petersen graph are illustrated in Figure 1 (one
can check that the Petersen graph is not (1, 1, 2, 2)-colorable).

Let G be a graph and A ⊆ E(G). By Gk[A], we denote the graph with vertex set A and edge
set {ee′ ∈ E(G)| e ∈ A, e′ ∈ A, dG(e, e′) ≤ k}, where dG(e, e′) is the usual distance between the
two edges e and e′ in G. We recall that a 2-factor of G is a spanning subgraph of G that consists in
a disjoint union of cycles. For a cubic graph G having a 2-factor, the oddness of G is the minimum
number of odd cycle among all 2-factors of G. According to Petersen’s theorem, every bridgeless
cubic graph has a 2-factor.

Definition 1.1. For a graph G with a 2-factor F and a set A ⊆ E(F ), A is of type I if it contains
exactly one edge per odd cycle of F and no edge of any even cycle of F ;
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Figure 1: A (1, 1, 1, 2)-coloring (on the left) and a (1, 1, 2, 2, 2)-coloring (on the right) of the Petersen
graph.

Table 1: The minimum integer n = `+m for which all cubic graphs (and all 3-edge-colorable cubic
graphs) having a 2-factor are (1`, km)-colorable (the bold numbers represent the exact values of n
and a pair of two integers a-b represents a lower bound and an upper bound on n).

Class cubic graphs 3-edge-colorable
cubic graphs

k\` 1 2 3 1 2 3
2 8-10 6-7 4 [6] 6-9 5-6 3
3 15-21 9-13 5 15-19 9-11 3
4 31-48 17-28 5-8 31-43 17-23 3

As any subcubic graph H is the subgraph of a cubic graph G and as dH(e, e′) ≥ dG(e, e′) for any
two edges e, e′ ∈ E(H), then any S-coloring of G is also an S-coloring of H. Therefore, the results
of this extended abstract that are not concerned with oddness can be easily extended to subcubic
graphs.

Table 1 summarizes the main results proven in the extended version of this work [7]. In this
table, every non-referenced result of the five first column is new.

2 Sets of type I

The following result from Fouquet and Vanherpe is a structural property about non 3-edge-colorable
cubic graphs [6]. It will be used several times in the proofs of Section 3.

Proposition 2.1 ([6]). Let G be a cubic graph having a 2-factor. Let F be a 2-factor of G containing
a minimum number of odd cycles and let F ′ be the set of odd cycles from F . Then, no three edges
in different cycles of F ′ induce in G a subgraph containing a path of length 5.

Note that the previous proposition was not explicitly presented in the paper of Fouquet and
Vanherpe but can be easily obtained by combining Properties 3 and 6 of [6, Theorem 4]. Note also
that the proof of Theorem 4 is written in another paper [5] from the same authors.



Lemma 2.2 ([6]). Let G be a cubic graph having a 2-factor. Let F be a 2-factor of G containing
a minimum number of odd cycles and let F ′ be the set of odd cycles from F . There exists a set A
of type I in F ′ such that G2[A] is an empty graph, i.e., χ(G2[A]) ≤ 1.

As the previous proposition, Lemma 2.2 has not been explicitly presented in the paper of Fouquet
and Vanherpe but is an intermediate step to prove a Theorem [6, Theorem 8].

The following remark will allow to reduce the problem of finding an S-coloring to the one of
finding a set A of type I such that Gk[A] has small chromatic number (where 2 ≤ k ≤ 4 and k
appears in S).

Remark 2.3. Let G be a cubic graph having a 2-factor F and let ` be a positive integer. Let
A ⊆ E(F ) be of type I. If χ(Gk[A]) ≤ `, then G is (1, 1, 1, k`)-colorable.

3 (1, 1, 1, k, . . . , k)-coloring

For the case k = 2, Payan [10] has shown that one color of radius two is sufficient. Another proof
of this result has been given by Fouquet and Vanherpe [6] (Lemma 2.2 is an intermediate step of
the proof of this result).

Theorem 3.1 ([6, 10]). Every cubic graph is (1, 1, 1, 2)-colorable.

Notice that this result is tight since the Petersen graph is not (1, 1, 1, 3)-colorable (as it is not
3-edge-colorable and has diameter 2).

Theorem 3.2. Every cubic graph having a 2-factor is (1, 1, 1, 3, 3)-colorable.

Proof. Let G be a cubic graph. Let F be a 2-factor of G having a minimum number of odd cycles.
Let F ′ be the set of odd cycles from F . By Remark 2.3, if there exists a set A of type I in F ′ such
that ∆(G3[A]) ≤ 1, then G is (1, 1, 1, 3, 3)-colorable.

We give labels to the vertices of F ′ as follows. If a vertex belonging to an odd cycle C from
F ′ has a neighbor in a different cycle of F ′, we label it by +, otherwise we label it by −. By
Proposition 2.1, the two end vertices of any edge of any cycle C of F ′ have neighbors in only at
most one cycle of F ′ other than C. Thus, if consecutive vertices are labeled by + in an odd cycle C
from F ′, then there exists an unique cycle C ′ of F ′ such that all these vertices only have neighbors
in C ∪ C ′.

Observation 1. For each edge e ∈ E(G−F ) having an extremity u in a odd cycle C from F ′

the following is true:

i) if u is labeled by +, then all edges in F ′ at distance at most 2 from e are included in C ∪C ′,
for C ′ an odd cycle of F ′;

ii) if u is labeled by −, then all edges in F ′ at distance at most 2 from e are included in C.

The previous observation can be easily obtained using the fact that e is only adjacent with edges
of F , these edges being themselves adjacent with edges either in the same cycle than they or in
G−F .

We will construct A, starting from an empty set, as follows. Since each cycle C of F ′ has an
odd number of vertices there exist two consecutive vertices both labeled either by + or by − in



every cycle of F ′. Let u1 and u2 be these two adjacent vertices (both labeled either by + or −)
and suppose that u0, u1, u2, u3 and u4 are consecutive vertices of the cycle C (if C contains three
vertices then u3 = u0 and u4 = u1). For each cycle C of F ′, we add to A an edge of C depending
on the label of u1 and u2.

If u1 and u2 are both labeled by + in C, then we add the edge u1u2 into A. Note that u0, u1, u2, u3
are labeled either by +,+,+,+, by −,+,+,+, by +,+,+,− or by −,+,+,− (the labels are given
following the index of u). Consequently, by Observation 1, there exists a cycle C ′ from F ′ such
that all edges from F ′ at distance at most 3 from u1u2 are in C ∪ C ′.

If u1 and u2 are both labeled by −, then we add the edge u2u3 to A. Note that u1, u2, u3, u4
are labeled either by −,−,+,+, by −,−,−,+, by −,−,+,− or by −,−,−,−. Also in this case,
by Observation 1, there exists a cycle C ′ from F ′ such that all edges from F ′ at distance at most
3 from u1u2 are in C ∪ C ′.

Since there is one edge of A per cycle of F ′ we obtain, by construction, that ∆(G3[A]) ≤ 1 and
thus χ(G3[A]) ≤ 2. Finally, by Remark 2.3, G is (1, 1, 1, 3, 3)-colorable.

We finish this extended abstract by giving one result (without the proof) that come from the
extended version of this work [7]:

Proposition 3.3. Every cubic graph of oddness 2 having a 2-factor containing two odd cycles C1

and C2 is (1, 1, 1, 3)-colorable in the case C1 or C2 is a cycle of length at least 13. A consequence is
that the Petersen graph is the only generalized Petersen graph which is not (1, 1, 1, 3)-colorable and
the Tietze graph is the only flower snark which is not (1, 1, 1, 3)-colorable.
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