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Abstract

The forbidden induced subgraph characterization for the classes of graphs with Dilworth
number at most 1 and 2 are known. We give the forbidden induced subgraph characterization
for the class of graphs with Dilworth number at most 3. We conjecture that for any k ∈ N,
every forbidden induced subgraph for the class of graphs with Dilworth number at most k has
at most 3k + 1 vertices, and verify this for k ≤ 7.

All graphs in this article are finite, simple and undirected. For a graph G, we let G be its
complement. The disjoint union of two graphs G and H will be denoted by G + H. For n ≥ 1,
the disjoint union of n copies of G is written nG. For a vertex v, N(v) will denote the set of
neighbors of v and N [v] := {v} ∪N(v). Let M(v) be the set of non-neighbors of v. If U is a set of
vertices of G, then G[U ] denotes the subgraph of G induced by U . A class G of graphs is said to
be hereditary if for every graph G ∈ G and every induced subgraph H of G, we have H ∈ G. A set
U of vertices in a graph G is said to be Dilworth if for any distinct u, v ∈ U , N(u) \N [v] 6= ∅ and
N(v) \N [u] 6= ∅. Given u, v ∈ U , a pair of vertices {u′, v′} with the property that u′ ∈ N(u) \N [v]
and v′ ∈ N(v) \ N [u], is called a certifying pair for {u, v}. Hence U ⊂ V (G) is Dilworth if and
only if there is a certifying pair for each pair u, v ∈ U . The Dilworth number of a graph G, denoted
D(G), is the size of a largest Dilworth set. For more information, see Chapter X in [10].

The following three fundamental lemmas describe the behavior of the Dilworth number with respect
to induced subgraphs, complementation, and disjoint union.

Lemma 1 (Monotonicity). Let H be obtained from G by deleting a vertex v. Then

D(H) ≤ D(G) ≤ 2D(H) + 1.

Lemma 2 (Invariance under complementation). D(G) = D(G).

Lemma 3 (Additivity). The Dilworth number of a graph is the sum of the Dilworth number of its
non-trivial components.

By virtue of monotonicity and invariance under complementation, the class of graphs with Dilworth
number at most k is a self-complementary hereditary graph class. What can we say about the
forbidden induced subgraphs for such a class?

It is well known that graphs with Dilworth number 1 are precisely the threshold graphs (see [10]).
A theorem of Chvátal and Hammer ([4]) says that a graph is threshold if and only if it contains
none of 2K2, C4, P4 as an induced subgraph. Graphs with Dilworth number at most 2 have a
nice threshold characterization (see [2]) and coincide with what are called TS-graphs. Benzaken
et al. ([2]) also prove a forbidden induced subgraph characterization for the class: there are 21
such graphs. Hoang et al. ([8]) show that every graph with Dilworth number at most 3 contains
either a simplicial or co-simplicial vertex. (A vertex in a graph is simplicial if its neighborhood is



a clique, and it is co-simplicial if it is simplicial in the complement.) Payan ([12]) shows that every
graph with Dilworth number at most 4 is perfect. We further note that the Dilworth number of a
graph can be computed in time O(n3) (see for instance [10]). Nara [11] gives a forbidden induced
subgraph characterization for split graphs with Dilworth number at most 3. In this paper we give
the forbidden induced subgraph characterization for the class of graphs with Dilworth number at
most 3. The following is our main result.

Theorem 1. A graph has Dilworth number at most 3 if and only if it contains none of the 499
graphs shown in the figures in [9] as an induced subgraph.

We show below that, for any k ∈ N, the set of forbidden induced subgraphs for the class of
graphs with Dilworth number at most k is finite. For k ≥ 1, let us denote the class of graphs with
Dilworth number at most k by Gk. Let Forb(Gk) denote the set of forbidden induced subgraphs
for the class of graphs with Dilworth number at most k.

Theorem 2. Let k ∈ N. If G ∈ Forb(Gk), then G has at most (k + 1)2 vertices. In particular, the
set Forb(Gk) is finite.

Proof. Let G ∈ Forb(Gk). Since D(G) > k, there is a Dilworth set W in G with |W | = k + 1.
For any two distinct vertices u, v in W , there is a certifying pair {a, b} for {u, v}. (There might
be several certifying pairs, just choose one.) Let C be the union of all such certifying pairs.
Then |C| ≤ 2

(|W |
2

)
. The set W is still a Dilworth set in the subgraph induced by C ∪W . Thus

D(G[C ∪W ]) > k. Since every proper induced subgraph of G has Dilworth number at most k,
|V (G)| = |C ∪W | ≤ |W |+ 2

(|W |
2

)
= |W |2 ≤ (k + 1)2.

A vertex in a graph is pendant if it has degree 1. A vertex is dominating if it is adjacent to
all the other vertices. A vertex is isolated if its degree is 0. The domino is the graph obtained
from C6 by adding an edge between two antipodal points. Two vertices v, w are called twins if
N(v) \ {w} = N(w) \ {v}. Being twins defines an equivalence relation on the vertex set. The
partition of the vertex set in equivalence classes is called the twin partition. The size of the twin
partition is the number of equivalence classes. A preorder on a set S is a reflexive transitive
relation on S. Let G be a graph. The vicinal preorder of G is the preorder on V (G), where
u ≤ v if N(u) ⊆ N [v]. Thus the Dilworth number of G is the size of a largest antichain in the
vicinal preorder of G. This explains why this number is named after R. P. Dilworth who proved
his famous decomposition theorem [5] which states that the size of a largest antichain in a finite
partially ordered set P is equal to the smallest number of chains whose union is P .

We characterize graphs with Dilworth number at most 3 by giving the list of forbidden induced
subgraphs. First, we begin with a series of lemmas.

Lemma 4. If v is a dominating or isolated vertex in a non-trivial graph G, then D(G) = D(G\v).
In particular, graphs in Forb(G3) do not have any isolated or dominating vertices.

Lemma 5. A 3-vertex graph G has D(G) = 1. A 4-vertex graph G has D(G) ≤ 2.

Proposition 3. The graph C5 is the only 5-vertex graph in Forb(G3).

We need some lemmas before we can determine the graphs G ∈ Forb(G3) with |V (G)| = 6.

Lemma 6. There are 23 disconnected graphs in Forb(G3). They are obtained by taking the disjoint
union of K2 with a graph in Forb(G2) (other than C5) and C4 + P4, C4 + C4, P4 + P4.



Lemma 7. Let G be a connected graph with at least 3 vertices. If G has p pendant vertices, then
D(G) ≤ |V (G)| − p.

Lemma 8. Let G be a graph and let t be the size of the twin partition of G. Then D(G) ≤ t.

Proposition 4. The graphs P6, C6, the domino, and their complements are the only 6-vertex
graphs in Forb(G3).

Write D(k) for the maximum number of vertices in a graph in Forb(Gk).
Let D = (V,A) be a directed graph, with n := |V |. A cycle C in D is wrong if all arrows in C

are directed in one direction, except for exactly one arrow. If D contains no wrong cycles, then in
particular D has no loops and no parallel arcs.

Theorem 5. If D has no wrong cycles, then

|A| ≤ max {2n− 2,
n2

4
}. (1)

Corollary 6. We have

D(k) ≤ max {3k + 1,
(k + 1)2

4
+ k + 1} (2)

Proof. Let G = (V,E) ∈ Forb(Gk) with |V | maximal, so |V | = D(k). Let U ⊆ V be a Dilworth
set of size |U | = k + 1 and write W := V \ U . For every vertex x ∈ W , there is at least
one pair of vertices ax, bx ∈ U with the property that ax ∈ N(x), bx /∈ N(x) and such that all
other vertices y ∈ W with y 6= x have either ax /∈ N(y) or bx ∈ N(y). (So x is necessary for
distinguishing ax and bx). If this were not the case, one could remove x from G without reducing
the Dilworth number, which is in contradiction with the fact that G ∈ Forb(Gk).

Consider a digraph D = (U,A) with vertex set U and arc set A obtained as follows. For
each vertex x ∈ W choose one pair ax, bx ∈ U with the above property and we let (ax, bx) ∈ A.
So |A| = |W |. We claim that

D contains no wrong cycles. (3)

Suppose otherwise. Let C = (v0, v1, . . . , vk, v0) be a wrong cycle (here k > 0, as it is clear that D
does not contain loops), with arrows ai := (vi, vi+1) for i = 0, . . . , k−1 and one ‘wrong’ arrow w :=
(v0, vk). Arrow ai corresponds to a vertex si in W with neighbor vi and non-neighbor vi+1, and
furthermore si is the only vertex in W that simultaneously has vi as a neighbor and vi+1 as a
non-neighbor. Arrow w corresponds to a vertex t in W with neighbor v0 and nonneighbor vk. We
examine the neighbors of t. As v0 ∈ N(s0), v1 /∈ N(s0) and v0 ∈ N(t), we have v1 ∈ N(t). By the
same argument (where we now compare vertex s1 with t), also v2 is a neighbor of t. Continuing in
this way, we find that v1, . . . , vk are neighbors of t. This is a contradiction, as vk is not a neighbor
of t. So (3) holds.

By (3) and (1) we conclude that

|W | = |A| ≤ max {2(k + 1)− 2,
(k + 1)2

4
}, (4)

which implies (2), since D(k) = |V | = |W |+ |U | = |W |+ k + 1.



Finding the graphs in Forb(G3) on 7, 8, 9 and 10 vertices by the same means as in the proof
of Proposition 4 seems a tedious job. Therefore, we have used a simple computer program to
determine these graphs. On 7, 8, 9 and 10 vertices there are 19, 170, 236 and 48 graphs in Forb(G3),
respectively. By Corollary 6 every graph in Forb(G3) has at most 10 vertices. Lemmas 3 and 4
give the complete list of forbidden graphs up to 6 vertices. In total there are 499 graphs. These
are shown in the various diagrams of [9].

Proposition 7. D(k) ≥ 3k + 1.

Proof. Let G be the graph with vertex set X ∪ Y ∪ Z, where X = {x1, · · ·xk+1}, Y = {y1, · · · yk}
and Z = {z1, · · · zk}. The vertices in X form a clique and Y ∪ Z is a stable set. For 1 ≤ i ≤ k,
the vertex yi has only one neighbor, xi. The vertex zi (which has no neighbor in Y ) has only one
non-neighbor in X, namely xi. It is easy to check that G ∈ Forb(Gk). Thus D(k) ≥ 3k + 1.

Proposition 7 and Corollary 6 imply that D(k) = 3k + 1, for 1 ≤ k ≤ 6. For k = 7 we find
22 ≤ D(7) ≤ 24. We prove (see [9]) that D(7) equals the lower bound. We offer the reader the
following conjecture.

Conjecture 8. D(k) = 3k + 1.
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