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Abstract

We consider sufficient conditions for hamiltonian properties, namely, the well-known forbid-
den subgraph conditions for hamiltonicity and Hamilton-connectedness and degree conditions
for circumference and hamiltonicity in 3-connected claw-free graphs, and we show that these con-
ditions can be substantially strengthened under an additional assumption that the graph under
consideration is hourglass-free (where hourglass is the graph with degree sequence 4, 2, 2, 2, 2).

1 Introduction

By a graph we always mean a simple finite graph G = (V (G), E(G)). We use δ(G) to denote
the minimum degree of G, and, for a positive integer k, we set σk(G) = min{

∑
x∈I dG(x)| I ⊂

V (G) independent, |I| = k} if G contains an independent set of size k, and σk(G) =∞ otherwise.
If G is the line graph of a graph H, we denote G = L(H) and H = L−1(G).

Throughout the paper, c(G) denotes the circumference of G, i.e., the length of a longest cycle
in G. A graph G is hamiltonian if c(G) = |V (G)|, i.e., if G contains a hamiltonian cycle, Hamilton-
connected if, for any x, y ∈ V (G), G contains a hamiltonian (x, y)-path, i.e., an (x, y)-path containing
all vertices of G, and 1-Hamilton-connected if G− x is Hamilton-connected for any x ∈ V (G).

If F is a family of graphs, we say that G is F-free if G does not contain an induced subgraph
isomorphic to a member of F , and the graphs in F are called forbidden induced subgraphs in this
context. Specifically, for F = {K1,3}, we say that G is claw-free. Throughout, Pi denotes the path
on i vertices. Graphs often used as forbidden induced subgraphs are shown in Fig. 1; here the
graph Γ0 is called the hourglass, Bi,j the generalized bull and Ni,j,k the generalized net (i, j, k ≥ 1).
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Figure 1: The graphs Γ0, Zi, Bi,j and Ni,j,k

For a set X ⊂ E(G), an X-contraction of G is the graph G|X obtained from G by identifying
the vertices of each edge in X and removing the resulting loops. If F and G are graphs, we say
that G has a nontrivial contraction to F if there is X ⊂ E(G) such that G|X ' F and for every
v ∈ V (F ), at least two vertices of G are contracted to v.

For x ∈ V (G), the local completion of G at x is the graph G∗x = (V (G), E(G) ∪ {uv| u, v ∈
NG(x)}) (i.e., in G∗x, NG∗

x
(x) induces a complete graph). The closure of a claw-free graph G is the

graph cl(G) obtained from G by recursively performing the local completion operation at vertices
with connected noncomplete neighborhood, as long as this is possible (more precisely, there is a
sequence of graphs G1, . . . , Gk such that G1 = G, Gi+1 = (Gi)

∗
x for some vertex x ∈ V (Gi) with

connected noncomplete neighborhood, i = 1, . . . , k − 1, and Gk = cl(G)). The following result
summarizes basic properties of the closure operation.



Theorem A [10]. Let G be a claw-free graph. Then
(i) cl(G) is uniquely determined,

(ii) c(cl(G)) = c(G),
(iii) cl(G) is the line graph of a triangle-free graph.

There are many results on hamiltonian properties of graphs in classes defined in terms of
forbidden induced subgraphs. In this paper, we will consider these questions in 3-connected graphs.
We first summarize some known results.

Theorem B. Let G be a 3-connected claw-free graph.
(i) [9] If G is P11-free, then G is hamiltonian.

(ii) [6] If G is Z8-free, then G is hamiltonian.
(iii) [3] If G is Z9-free, then either G is hamiltonian, or G is isomorphic to the line graph of the

graph obtained from the Petersen graph by adding one pendant edge to each vertex.
(iv) [12, 4] If G is Ni,j,k-free with i+ j + k ≤ 9, then G is hamiltonian.

Theorem C [1]. Let G be a 3-connected {K1,3, P9}-free graph. Then G is Hamilton-connected.

We also list here the best known degree conditions for circumference and hamiltonicity.

Theorem D [8]. Let G be a 3-connected claw-free graph. Then c(G) ≥ min{6 δ(G)− 15, n}.

Theorem E [7]. Let G be a 3-connected claw-free graph of order n ≥ 363 such that δ(G) ≥ n+34
12 .

Then either G is hamiltonian or G ∈ F1 ∪ F2.

For a detailed description of the classes F1 and F2 of Theorem E we refer to [7]; here we only note
that for every graph G ∈ F1 ∪ F2, L

−1(cl(G)) has a nontrivial contraction to the Petersen graph.

There are results indicating that some conditions for hamiltonian properties can be improved
under an additional assumption that the graph under consideration is hourglass-free. For exam-
ple, it is a well-known fact, observed independently by several authors (see e.g. [2]), that the
Matthews-Sumner conjecture (every 4-connected claw-free graph is hamiltonian) is true in Γ0-free
graphs (and even for only 4-edge-connected graphs [11]); moreover, it was shown recently [5] that
every 4-connected {K1,3,Γ0}-free graph is 1-Hamilton-connected, and 1-Hamilton-connectedness is
polynomial in the class of {K1,3,Γ0}-free graphs.

In this paper, we show that Theorems B, C, D and E can be substantially strengthened under
an additional assumption that G is Γ0-free.

2 Results

Our first result strengthens Theorem B in the case of Γ0-free graphs.

Theorem 1. Let G be a 3-connected {K1,3,Γ0}-free graph. If G is
(i) P20-free, or

(ii) Z18-free, or
(iii) N2i,2j,2k-free with i+ j + k ≤ 9,

then G is hamiltonian.

We further have the following strengthening of Theorem C.

Theorem 2. Let G be a 3-connected {K1,3,Γ0, P12}-free graph. Then G is Hamilton-connected.



Our next result shows that the minimum degree bound on circumference given in Theorem D
can be also substantially strengthened in the case of Γ0-free graphs.

Theorem 3. Let G be a 3-connected {K1,3,Γ0}-free graph of order n. Then either

c(G) ≥ min{σ12(G), n},
or L−1(cl(G)) has a nontrivial contraction to the Petersen graph.

Theorem 3 immediately implies the following corollary.

Corollary 4. Let G be a 3-connected {K1,3,Γ0}-free graph of order n. Then either

c(G) ≥ min{12 δ(G), n},
or L−1(cl(G)) has a nontrivial contraction to the Petersen graph.

The following corollary gives a weaker bound, but without any exception class.

Corollary 5. Let G be a 3-connected {K1,3,Γ0}-free graph of order n. Then

c(G) ≥ min{σ9(G), n}.

Finally, we have the following strengthening of Theorem E.

Theorem 6. Let G be a 3-connected {K1,3,Γ0}-free graph of order n such that

σ13(G) ≥ n+ 1.

Then either G is hamiltonian, or L−1(cl(G)) has a nontrivial contraction to the Petersen graph.

Theorem 6 has the following immediate consequence.

Corollary 7. Let G be a 3-connected {K1,3,Γ0}-free graph of order n such that δ(G) ≥ n+1
13 .

Then either G is hamiltonian, or L−1(cl(G)) has a nontrivial contraction to the Petersen graph.

The following consequence of Theorem 6 has stronger assumptions, but no exception class.

Corollary 8. Let G be a 3-connected {K1,3,Γ0}-free graph of order n such that σ10(G) ≥ n+ 1.
Then G is hamiltonian.

3 Sharpness

Let H be the subdivision of the Petersen graph (see Fig. 2(a)), and let G = L(H). Then G is
a 3-connected {K1,3,Γ0}-free nonhamiltonian graph which is P21-free, Z19-free and Ni,j,k-free for
i + j + k ≥ 19. This example shows that parts (i), (ii) and (iii) of Theorem 1 are sharp. Note
that the sharpness example can be extended to an infinite family by adding arbitrary number of
pendant edges to vertices of degree 3 in H.

We think that Theorem 2 is not sharp, and we believe that the following is true.

Conjecture 9. Let G be a 3-connected {K1,3,Γ0, P16}-free graph. Then G is Hamilton-
connected.

Let H be the subdivision of the Wagner graph (see Fig. 2(b)), and let G = L(H). Then it
is easy to verify that G is 3-connected and {K1,3,Γ0, P17}-free, but not Hamilton-connected (the
graph G has no hamiltonian path joining the vertices that correspond to the edges e, f ∈ E(H)
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Figure 2: Subdivisions of the Petersen graph (a) and of the Wagner graph (b)

indicated in Fig. 2(b)). This example shows that Conjecture 9, if true, is sharp. Note that this
example can be also extended to an infinite family by adding pendant edges to vertices of degree 3.

Let again H be the subdivision of the Petersen graph, and let G = L(H). It is easy to check
that c(G) = 27, while n = 30. Since also σ9(G) = 27, we have c(G) = σ9(G) < n, which shows
that Corollary 5 is sharp. Similarly, σ10(G) = 30 = n and G is nonhamiltonian, which shows that
also Corollary 8 is sharp. Note that, in this case, adding pendant edges does not create an infinite
family of sharpness examples, and we admit that Corollaries 5 and 8 could be possibly improved
under an additional assumption that G is sufficiently large.
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[2] H.J. Broersma, M. Kriesell, Z. Ryjáček. On factors of 4-connected claw-free graphs J. Graph Theory 37
(2001), 125-136.

[3] J. Fujisawa. Forbidden subgraphs for hamiltonicity of 3-connected claw-free graphs. J. Graph Theory,
73 (2013), 146-160.

[4] Z. Hu, H. Lin. Two forbidden subgraph pairs for hamiltonicity of 3-connected graphs. Graphs and
Combinatorics, 29 (2013), 1755-1775.
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