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Abstract

Let µ2(G) be the second smallest Laplacian eigenvalue of a graph G. The vertex-connectivity
of G, written κ(G), is the minimum size of a vertex set S such that G − S is disconnected.
Fiedler proved that µ2(G) ≤ κ(G) for a non-complete simple graph G; for this reason µ2(G)
is called the “algebraic connectivity” of G. We extend his result to multigraphs. For a pair
of vertices u and v, let m(u, v) be the number of edges with endpoints u and v. For a vertex
v, let m(v) = maxu∈N(v)m(v, u), where N(v) is the set of neighbors of v, and let m(G) =
maxv∈V (G)m(v). We prove that for any multigraph G whose underlying graph is not a complete
graph, µ2(G) ≤ κ(G)m(G).

We also prove that for any d-regular multigraph G whose underlying graph is not the com-
plete graph with 2 vertices, if µ2(G) > d

4 , then G is 2-connected. For t ≥ 2 and infinitely many

d, we construct d-regular multigraphs H with µ2(H) = d, κ(H) = t, and m(H) = d
t . These

graphs show that the inequality µ2(G) ≤ κ(G)m(G) is sharp. In addition, we prove that if G
is a d-regular multigraph whose underlying graph is not a complete graph, then µ2(G) ≤ d;
equality holds for the graphs in the construction.

A simple graph is a graph without loops or multiple edges, and a multigraph is a graph that
may have multiple edges but does not contain loops. In this paper, we treat both a simple graph
and a multigraph. The adjacency matrix A(G) of G is the n-by-n matrix in which the entry ai,j is
the number of edges in G with endpoints {vi, vj}, where V (G) = {v1, ..., vn}. The eigenvalues of
G are the eigenvalues of its adjacency matrix A(G). Let λi(G) be the i-th largest eigenvalue of G.
The Laplacian matrix of G is D(G)−A(G), where D(G) is the diagonal matrix of vertex degrees.
Let µi(G) be the i-th smallest Laplacian eigenvalue of G. Note that µ1(G) = 0 for any graph G .
Also if G is d-regular, then λ1(G) = d, and λi(G) = d− µi(G), thus λ2(G) and µ2(G) are directly
related.

A multigraph G is k-vertex-connected if G has more than k vertices and every subgraph obtained
by deleting fewer than k vertices is connected; the vertex-connectivity of G, written κ(G), is the
maximum k such that G is k-vertex-connected. For undefined terms, see West [11] or Godsil and
Royle [5].

Fiedler [4] proved that
µ2(G) ≤ κ(G) (1)

for a non-complete simple graph G; for this reason µ2(G) is called the “algebraic connectivity” of G.
A lot of research in graph theory over the last 40 years was stimulated by Fiedler’s work. We can
also easily extend his work to multigraphs with the same idea of his proof for inequality (1). For
a pair of vertices u and v, let m(u, v) be the number of edges between u and v. For a vertex v, let
m(v) = maxu∈N(v)m(v, u), whereN(v) is the set of neighbors of v, and letm(G) = maxv∈V (G)m(v).
We call m(G) the multiplicity of the multigraph G. Thoerem 1 is an extension of Fiedler’s result
for multigraphs.

Theorem 1. For any multigraph G whose underlying graph is not a complete graph, we have

µ2(G) ≤ κ(G)m(G). (2)



Note that Theorem 1 implies Fielder’s inequality (1) by taking m(G) = 1 (when G is simple).
There are graphs showing the tightness of the bound in inequality (2). To prove Theorem 1, we
need the following theorem, which is a consequence of the well-known Courant-Fisher Theorem [4].

Theorem 2. [4] Let 0 be the null vector and let 1 be the all 1’s column vector. For any multigraph
G, since L(G)1 = 01, we have

µ2(G) = min
x6=0,x⊥1

xTL(G)x

xTx
. (3)

A multigraph G is t-edge-connected if every subgraph obtained by deleting fewer than t edges
is connected; the edge-connectivity of G, written κ′(G), is the maximum t such that G is t-edge-
connected. Since κ′(G) ≥ κ(G) for any multigraph G, we have the following.

Corollary 1. For any multigraph G whose underlying graph is not a complete graph, we have

µ2(G) ≤ κ′(G)m(G). (4)

We could not find any multigraph satisfying equality in inequality (4) when m(G) ≥ 2. However,
there exist infinitely many multigraphs whose algebraic connectivity is bigger than their edge-
connectivity. Of course, some of them are multigraphs whose underlying graphs are not complete
graphs. For example, consider the graph F obtained from the cycle on 4 vertices by duplicating d−1

2

times on two incident edges and d+1
2 times on the other two incident edges. Then µ2(F ) = 3d

2 −
√
d2+8
2

and κ′(F ) = d − 1, which means µ2(F ) > κ′(F ). We believe that there is no big gap between µ2
and κ′ unlike between µ2 and κ.

Question 1. Is there a constant c such that µ2(G) ≤ κ′(G) + c for any multigraph G?

Fiedler’s results have been improved and refined by various authors (See [2], [3], [6]). The
author ([8]) extended some of these results to multigraphs. A d-regular multigraph G is a multigraph
such that for any vertex v in V (G),

∑
u∈V (G)m(v, u) = d, which is the number of edges incident

to v.

Theorem 3. [7] If G is a d-regular multigraph with λ2(G) < d−1+
√
9d2−10d+17
4 , then κ′(G) ≥ 2.

Theorem 4. [8] For t ≥ 2, if G is a d-regular multigraph with λ2(G) < d− t, then κ′(G) ≥ t+ 1.
Furthermore, if t is odd and G is a d-regular multigraph with λ2(G) < d− t+ 1, then κ′(G) ≥ t+ 1.

Note that λ2(G) < d−1+
√
9d2−10d+17
4 in Theorem 3 and λ2(G) < d − t in Theorem 4 can be

replaced by µ2(G) > 3d+1−
√
9d2−10d+17
4 and µ2(G) > t, respectively, since µ2(G) = d−λ2(G). Also,

in Theorem 3 and 4, complete graphs are the exceptions although the author did not mention in
the theorems.

The author also characterized when a d-regular multigraph G has λ2(G) = θ(d, t) and κ′(G) = t
for every positive integer t ∈ [d− 1], where

θ(d, t) =


d−1+

√
9d2−10d+17
4 if t = 1

d− t if t is even

d− t+ 1 if t is odd.

Many researchers investigated relationships between λ2 (or µ2) and κ′ in a d-regular multigraph
as seen above. In this paper, we study a relationship between µ2 (or λ2) and κ in a d-regular
multigraph. This paper is the first one to contribute to such a relationship, which appears in
Theorem 5.



Theorem 5. If G is a d-regular multigraph with µ2(G) > d
4 , except for the 2-vertex d-regular

multigraph, then κ(G) ≥ 2.

Furthermore, for any fixed positive integer t ≥ 2 and infinitely many d, there exists a d-regular
multigraph Hd,t such that κ(Hd,t) = t and µ2(Hd,t) = d. This means that although µ2 is fixed
like d, the vertex-connectivity of a d-regular graph G might vary. This is a kind of evidence that
µ2 (or λ2) may not be closely related to the vertex-connectivity while it is deeply related to the
edge-connectivity. The existence of Hd,t says that the vertex connectivity of a d-regular graph may
not influence its algebraic connectivity.

Furthermore, by using the Interlacing Theorem, we observe that for any multigraph G, the
α(G)-th largest eigenvalue of G is non-negative, where α(G) is the maximum size of a vertex set
S such that no pair of vertices in S is adjacent. This fact implies that µ2(G) ≤ d when G is a
d-regular multigraph whose underlying graph is not a complete graph. Graphs Hd,t say that this
inequality µ2(G) ≤ d is tight for d-regular multigraphs G regardless of κ(G).
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