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Abstract

Generalizing Turán’s classical extremal problem, Alon and Shikhelman investigated the prob-
lem of maximizing the number of T copies in an H-free graph, for a pair of graphs T and H.
Whereas Alon and Shikhelman were primarily interested in determining the order of magnitude
for large classes of graphs H, we focus on the case when T and H are paths, where we find
asymptotic and in some cases exact results. We also consider other structures like stars and the
set of cycles of length at least k, where we derive asymptotically sharp estimates. Our results
generalize well-known extremal theorems of Erdős and Gallai.

For a graph G, we let e(G) denote the number of edges in G, and for a given graph H, we let
N (H,G) denote the number of (not necessarily induced) copies of H in G. If there is no copy of H
in G, we say that G is H-free. We denote the path with k edges by Pk and the cycle with k edges
by Ck. By C≥k we mean the set of all cycles of length at least k. Given a graph G containing a
vertex v, we denote the neighborhood of v by N(v). The vertex and edge sets of G are denoted
by V (G) and E(G), respectively. Finally, given a set S ⊆ V (G), we denote by G[S] the induced
subgraph of G with vertex set S.

Following the notation of Alon and Shikhelman [2], we let ex(n, T,H) be the maximum number
of (noninduced) copies of T in an H-free graph on n vertices. Observe that we have ex(n, P1, H) =
ex(n,H), the classical extremal number. If instead of a single graph a set of graphs H is forbidden,
then we define ex(n,H) (and similarly ex(n, T,H)), in the obvious way.

We begin by recalling the famous theorem of Erdős and Gallai on Pk-free graphs as well as
some recent generalizations due to Luo, where the number of cliques is considered.

Theorem 1 (Erdős–Gallai [7]). For all n ≥ k,

ex(n, Pk) ≤ (k − 1)n

2
,

and equality holds if and only if k divides n and G is the disjoint union of cliques of size k.

In their paper, Erdős and Gallai deduced Theorem 1 as a corollary of the following result about
graphs with no long cycles.

Theorem 2 (Erdős–Gallai [7]). For all n ≥ k,

ex(n,C≥k) ≤ (k − 1)(n− 1)

2
,

and equality holds if and only if k − 2 divides n − 1 and G is a connected graph such that every
block is a clique of size k − 1.
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Figure 1: The graph Gn,k,a is pictured on the left, and the special case of Gn,k,t is pictured on the
right. The dashed edge appears only when k is even.

As the extremal examples for Theorem 1 are disconnected, it is natural to consider a version of
the problem where the base graph is assumed to be connected. Kopylov [10] settled this problem,
and later Ballister, Győri, Lehel and Schelp [3] classified the extremal cases.

We denote by Gn,k,a the graph whose vertex set is partitioned into 3 classes, A,B and C with
|A| = a, |B| = n− k + a, |C| = k − 2a such that A ∪ C induces a clique, B is an independent set
and all possible edges are taken between vertices of A and B.

Throughout this paper we let t =
⌊
k−1
2

⌋
. In Gn,k,t, the class C has one vertex when k is odd or

two vertices when k is even. By grouping B and C together, we have that Gn,k,t is obtained from
a complete bipartite graph Kt,n−t by adding all edges in the color class of size t, and in the case
that k is even, adding one additional edge inside the color class of size n− t.

Theorem 3 (Kopylov [10], Ballister–Győri–Lehel–Schelp [3]). Let G be a connected n-vertex Pk-
free graph, with n ≥ k, then

e(G) ≤ max(e(Gn,k,t), e(Gn,k,1)).

Moreover, the extremal graph is either Gn,k,t or Gn,k,1.

Note that if n ≥ 5k/4, this maximum is achieved by Gn,k,t. Also observe that

e(Gn,k,t) = t(n− t) +

(
t

2

)
+ ηk,

where ηk is 1, if k is even, and 0 otherwise. Thus, Theorems 1 and 3 yield the same bound
asymptotically as n tends to infinity.

The following theorem was deduced by Luo [11] as a corollary of her main result but also follows
from Theorem 1 using a simple induction argument.

Theorem 4 (Luo [11]).

ex(n,Kr, Pk) ≤ n

k

(
k

r

)
.

For our results we will need only that ex(n,Kr, Pk) ≤ ck,rn for some constant ck,r depending
only on k and r.

If we impose the additional condition that the graph is connected, then the situation is more
complicated. Luo proved the following sharp bounds.

Theorem 5 (Luo [11]). Let n > k ≥ 3 and G be a connected n-vertex graph with no path of length
k, then

N (Kr, G) ≤ max (N (Kr, Gn,k,t),N (Kr, Gn,k,1)) .



Theorem 6 (Luo [11]). Let n ≥ k ≥ 4 and G be a connected n-vertex graph with no cycle of length
k or greater, then

N (Kr, G) ≤ n− 1

k − 2

(
k − 1

r

)
.

Some recent generalizations of the Erdős–Gallai theorem and Luo’s results can be found in [12].
In the present paper we focus on results where paths or all sufficiently long cycles are forbidden.
The general problem of enumerating cycles of a fixed length when a fixed cycle is forbidden has
also been considered recently (see [8] and [9] which generalize earlier results for special cases, e.g.,
[4], [5], [2]).

We write f(n, k, `) ∼ g(n, k, `) for limk→∞ limn→∞ f(n, k, `)/g(n, k, `) = 1. (All results for
which we use the ∼ notation involve parameters n, k and `.) The notation O is always defined in
terms of n and may hide constants dependent on k or `.

Alon and Shikhelman [2] considered the problem of maximizing the number of copies of a tree
T in a graph which is H-free, for another tree H. Given two trees T and H, they introduced an
integer parameter m(T,H) and proved that ex(n, T,H) = Θ(nm(T,H)), thereby determining the
correct order of magnitude for all pairs of trees. In the present paper, we are interested in the case
where the forbidden tree is a path, and we find find correct asymptotics and sometimes the exact
bound.

We have the following estimates on the number of path and cycle copies in a Pk-free graph.

Theorem 7.

ex(n, P2`, Pk) ∼ k`n`+1

2`+1
.

Theorem 8.

ex(n, P2`+1, Pk) ∼ (`+ 2)k`+1n`+1

2`+2
.

Theorem 9.

ex(n,C2`, Pk) ∼ k`n`

`2`+1
.

Theorem 10.

ex(n,C2`+1, Pk) ∼ k`+1n`

2`+2
.

The construction showing the lower bounds for Theorems 7 through 10 is the same as the
extremal construction for the connected version of the Erdős–Gallai theorem, Theorem 3. Because
we are interested in asymptotics, we will omit one edge from this construction which only occurs
when k is even. Our n-vertex graph G is defined by taking a clique on a set S of

⌊
k−1
2

⌋
vertices and

connecting every vertex in S to every vertex of an independent set U , defined on n−
⌊
k−1
2

⌋
vertices.

It is easy to see that this graph is Pk-free. In enumerating the P2` copies, the only paths which
contribute asymptotically alternate between S and U , starting and ending with U (the factor of 2
comes from counting the path in both directions).

When enumerating the P2`+1 copies, we have two kinds of paths which contribute asymptoti-
cally: those that start and end in U , using an edge in S at some step, and those that start in U
and end in S, never using an edge contained in S. For the first type, we condition on which step in
the path we use the edge in S (` possibilities). Each such path gets counted twice, hence we divide
by two. For the second type, each path is counted once and so we do not have to divide by 2.

We present several exact results such as the following.



Theorem 11. For every positive integer k ≥ 3, there exists n1 ∈ N such that if n ≥ n1

ex(n, P2, Pk) = N (P2, Gn,k,t) = t

(
n− 1

2

)
+ (n− t)

(
t

2

)
+ 2tηk,

where ηk = 1, if k is even, and 0 otherwise. Moreover the only extremal graph is Gn,k,t.

Theorem 12. For every positive integer k ≥ 5, there exists n1 ∈ N such that if n ≥ n1

ex(n, P3, Pk) = N (P3, Gn,k,t) =
3t(t− 1)

2
n2 +O(n).

Moreover the only extremal graph is Gn,k,t.

Theorem 13. For every positive integer k ≥ 5, there exists n1 ∈ N such that if n ≥ n1

ex(n, P4, Pk) = N (P4, Gn,k,t) =
t(t− 1)

2
n3 +O(n2).

Moreover the only extremal graph is Gn,k,t.
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