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Abstract

In this paper, we introduce a notion of VC-dimension VC-dim(G) of a subgraph G of a Carte-
sian product, generalizing the classical Vapnik-Chervonenkis dimension of set-families (viewed as
subgraphs of hypercubes). We then extend a result of Haussler, Littlestone and Warmuth about
the density of subgraphs of hypercubes to subgraphs G of Cartesian products G1 × · · · × Gm

of connected graphs. Namely, we prove that if G1, . . . , Gm belong to the class G(H) of all fi-
nite connected graphs not containing a given graph H as a minor, then for any subgraph G of

G1 × · · · ×Gm the inequality |E(G)|
|V (G)| ≤ µ(H)VC-dim(G) holds, where µ(H) is the density of the

graphs from G(H).

1 Introduction

A folklore result asserts that if G = (V,E) is an induced subgraph of the m-dimensional hypercube

Qm := K2 × · · · ×K2, then |E|
|V | ≤ log |V |. In [3, Lemma 2.4], Haussler et al. improve this result

by replacing log |V | by the VC-dimension of G (defined in Section 2). In this paper, we extend the

inequality |E||V | ≤ VC-dim(G) =: d to subgraphs G = (V,E) of Cartesian products Γ := G1×· · ·×Gm

of graphs G1, . . . , Gm from the class G(H) of connected graphs avoiding a fixed graph H as a minor.
To do so, we define a notion of VC-dimension of subgraphs G of arbitrary Cartesian products and
show that if all the factors of Γ belong to G(H), then the density of G is at most the VC-dimension
VC-dim(G) of G times µ(H), where µ(H) is a constant such that any graph not containing H as
a minor has density at most µ(H) (it is well known [2] that if r := |V (H)|, then µ(H) ≤ cr

√
log r

for a universal constant c). Namely, we show the following theorem

Theorem 1. Let H be a graph and let G be a subgraph of a Cartesian product Γ = G1 × · · · ×Gm

of connected graphs G1, . . . , Gm from G(H). Then

|E(G)|
|V (G)|

≤ µ(H) VC-dim(G) ≤ µ(H) log |V (G)|.

2 Preliminaries

All graphs G = (V,E) occurring in this note are finite, undirected, and simple. The density dens(G)
of G will be the maximal ratio |E(G′)|/|V (G′)| over all its subgraphs G′.

Let G1, . . . , Gm be a family of m connected graphs. The Cartesian product Γ :=
∏m

i=1Gi :=
G1 × · · · × Gm is a graph defined on the set of all m-tuples (x1, . . . , xm), xi ∈ V (Gi), where two
vertices x = (x1, . . . , xm) and y = (y1, . . . , ym) are adjacent if and only if there exists an index
1 ≤ j ≤ m such that xjyj ∈ E(Gj) and xi = yi for all i 6= j. The m-dimensional hypercube Qm is
the Cartesian product of m copies of K2.

A subproduct Γ′ of a Cartesian product Γ =
∏m

i=1Gi is a product such that Γ′ =
∏k

j=1G
′
ij

,

where each G′ij is a connected non-trivial (i.e., with at least one edge) subgraph of Gij (with



{i1, . . . , ik} ⊆ {1, . . . ,m}). If every Gij consists of a single edge, then Γ′ is called a cube-subproduct.
Given a vertex v′ = (v′i1 , . . . , v

′
ik

) of Γ′, we say that a vertex v = (v1, . . . , vm) of Γ is an extension of
v′ if vij = v′ij for all j ∈ {1, . . . , k}. We denote by F (v′) the set of all extensions v in Γ of a vertex

v′ of a subproduct
∏k

j=1G
′
ij

and call F (v′) the fiber of v′ in the product Γ. Let G be a subgraph

of a Cartesian product Γ and Γ′ be a subproduct of Γ. The trace of V (G) on V (Γ′) consists of all
vertices v′ of Γ′ such that F (v′) ∩ V (G) 6= ∅. The projection of G on Γ′ is the subgraph πΓ′(G) of
Γ′ induced by the trace of V (G) on V (Γ′).

The classical definition of VC-dimension (for set systems) can be stated in a graph-theoretical
way as follows. A cube-subproduct Γ′ of Qm is shattered by G if πΓ′(G) = Γ′. The VC-dimension
of G is the largest dimension of a cube-subproduct shattered by G. More generally, a subproduct
Γ′ :=

∏k
j=1G

′
ij

of a Cartesian product Γ =
∏m

i=1Gi is shattered by G if πΓ′(G) = Γ′. The VC-

dimension VC-dim(G) of G with respect to the Cartesian product Γ is the largest number of
non-trivial factors in a subproduct Γ′ of Γ shattered by G. Equivalently, VC-dim(G) is the largest
dimension of a cube-subproduct of Γ shattered by G.

3 Proof of Theorem 1

We start with a brief description of the proof of the inequality |E|/|V | ≤ d provided by Haussler et
al. [3] for subgraphs of hypercubes. We adapt this proof to our notations and we generalize it to
subgraphs of arbitrary Cartesian products. Let G = (V,E) be a subgraph of a Cartesian product
of m copies of K2 (i.e., of the hypercube Qm) and set d := VC-dim(G). Assume that the factors K2

of Qm are indexed by 1, . . . ,m and consider the ith K2, i ∈ {1, . . . ,m}. This K2 is an edge whose
extremities are denoted by u and v. Remark that every vertex of Qm has either u or v as its ith
coordinate and so do the vertices of G. Denote by Guv the graph obtained by projecting G on the
Cartesian product of the m−1 factors of Qm not indexed by i (i.e., by identifying the vertices having
u as ith coordinate with those having v). Denote by Guv the graph obtained from G by contracting
every edge of G of the form (x1, . . . , u, . . . , xm)(x1, . . . , v, . . . , xm). Then VC-dim(Guv) ≤ d and
VC-dim(Guv) ≤ d− 1 hold. We now do the following induction hypothesis: |E(Guv)| ≤ d|V (Guv)|
and |E(Guv)| ≤ (d− 1)|V (Guv)|. The proof of the required density inequality follows by induction
from the equality |V | = |V (Guv)|+|V (Guv)| and the inequality |E| ≤ |E(Guv)|+|E(Guv)|+|V (Guv)|.

We continue by defining the graphs Guv and Guv for subgraphs of arbitrary Cartesian products.
In case of the hypercube

∏m
i=1K2, the edge uv corresponds to a factor of this product and Guv can

be viewed as the image of G in the product of K2’s where the whole factor corresponding to uv
was contracted. When the factors are arbitrary graphs, contracting a whole factor of the product
would be too rough. So, let u and v be two adjacent vertices of some factor Gi. Let N denote the
set of common neighbors of u and v in Gi. Let Ĝi be the graph obtained from Gi by contracting
the edge uv, namely, the graph in which the edge uv is replaced by a vertex w and every edge xu
and/or xv of Gi is replaced by a single new edge xw; thus Ĝi does not contain loops and multiple
edges. Let G̃i be the graph which is a star having as the central vertex a vertex w̃ corresponding
to the edge uv and as the set Ñ of leaves the vertices x̃ corresponding to vertices x of N (i.e., such

that xuv is a triangle of Gi); the edges of G̃i are all pairs of the form w̃x̃.
Let Guv be the subgraph of Γ̂ := G1 × · · · ×Gi−1 × Ĝi ×Gi+1 × · · · ×Gm obtained from G by

identifying every vertex (v1, . . . , vi−1, u, vi+1, . . . , vm) with its neighbor (v1, . . . , vi−1, v, vi+1, . . . , vm)
and by removing multiple edges. Let Guv be the subgraph of Γ̃ := G1 × · · · × Gi−1 × G̃i ×
Gi+1 × · · · × Gm obtained from G by applying the transformation of Gi to G̃i. Namely, Guv is
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Figure 1: Examples of graphs Guv, Guv and Guv
c .

the subgraph of Γ̃ induced by the following set of vertices: (1) (v1, . . . , vi−1, w̃, vi+1, . . . , vm) is a
vertex of Guv if (v1, . . . , vi−1, u, vi+1, . . . , vm) and (v1, . . . , vi−1, v, vi+1, . . . , vm) are vertices of G and
(2) (v1, . . . , vi−1, x̃, vi+1, . . . , vm) is a vertex of Guv if (v1, . . . , vi−1, x, vi+1, . . . , vm) is a vertex of G,
x ∈ N , and (v1, . . . , u, . . . , vm) and (v1, . . . , v, . . . , vm) are vertices of G.

Notice that Guv plays the same role in the Cartesian product of arbitrary graphs than in
hypercubes (i.e., a vertex (v1, . . . , w, . . . , vm) is in V (Guv) if (v1, . . . , u, . . . , vm) or (v1, . . . , v, . . . , vm)
belong to G). However, this is not exactly the case for Guv. We define the graph Guv

c which is the
subgraph of Guv induced by the vertices that have a central node w̃ of G̃i as their ith coordinate
(see Fig. 1). If Gi is a K2 (or, more generally, the edge uv does not belong to a triangle), then
Guv coincides with Guv

c . The remaining vertices of Guv, those having a leaf x̃ of G̃i as their ith
coordinate, will be called tip vertices. We denote by Vl(G

uv) the set of tip vertices.
Let Γ be a Cartesian product of connected graphs G1, . . . , Gm from G(H) and let G be an

induced subgraph of Γ. Let Gi be any factor of Γ (i ∈ {1, . . . ,m}) and let uv be any edge of Gi.
The four following lemmas are the key ingredients to an inductive proof of Theorem 1. For the
proofs of these results and some applications to adjacency labeling schemes, see [1].

Lemma 1. VC-dim(G) ≤ log n.

Lemma 2. Respectively computing the VC-dimension of Guv and Guv
c with respect to Γ̂ and Γ̃ leads

to the following inequalities

VC-dim(Guv) ≤ VC-dim(G) and VC-dim(Guv
c ) ≤ VC-dim(G)− 1.

Lemma 3. The graphs G, Guv, Guv
c , and Guv satisfy the following relations:{

|V (G)| = |V (Guv)|+ |V (Guv)| − |Vl(Guv)| = |V (Guv)|+ |V (Guv
c )|,

|E(G)| ≤ |E(Guv)|+ |E(Guv)|+ |V (Guv
c )|.

Lemma 4. |V (Guv)|
|V (Guv

c )| ≤ |N |, where N is the set of the common neighbors of u and v.



We have to prove that |E(G)|
|V (G)| ≤ µ(H) · VC-dim(G) ≤ µ(H) · log |V (G)|. The second inequality

follows from Lemma 1. We will prove the inequality |E(G)|
|V (G)| ≤ µ(H) VC-dim(G) by induction on the

number of vertices in the factors of Γ. Since each factor Gi of Γ belongs to G(H), Gi and any its
subgraph contain a vertex v of degree at most µ(H). Let u be any neighbor of v in Gi. Then the set
N of common neighbors of u and v has size at most µ(H)− 1. Consider the graphs Guv, Guv, and
Guv

c obtained from G by performing the previously described operations with respect to the edge uv
of Gi. Then Guv is a subgraph of the product Γ̂ = G1×· · ·×Gi−1× Ĝi×Gi+1 · · ·×Gm. Since Ĝi is
a minor of Gi, all factors of Γ̂ belong to G(H). Moreover, since Ĝi contains less vertices than Gi, we
can apply the induction assumption to subgraphs of Γ̂, in particular to Guv. Analogously, Guv and
Guv

c are subgraphs of the product Γ̃ = G1×· · ·×Gi−1× G̃i×Gi+1×· · ·×Gm and since G̃i is a star
isomorphic to a subgraph of Gi, all factors of Γ̃ also belong to G(H). Since G̃i contains less vertices

than Gi, also do the graphs Guv and Guv
c . Consequently, we have |E(Guv)|

|V (Guv)| ≤ µ(H) · VC-dim(Guv)

and |E(Guv
c )|

|V (Guv
c )| ≤ µ(H) VC-dim(Guv

c ). Using the inequality a1+a2
b1+b2

≤ max{a1b1 ,
a2
b2
} and Lemma 3, we

obtain
|E(G)|
|V (G)|

≤ |E(Guv)|+ |E(Guv)|+ |V (Guv
c )|

|V (Guv)|+ |V (Guv
c )|

≤ max

{
|E(Guv)|
|V (Guv)|

,
|E(Guv)|+ |V (Guv

c )|
|V (Guv

c )|

}
.

By Lemma 2, VC-dim(Guv) ≤ VC-dim(G), whence

|E(Guv)|
|V (Guv)|

≤ µ(H) VC-dim(Guv) ≤ µ(H) VC-dim(G).

Thus it remains to provide a similar upper bound for |E(Guv)|+|V (Guv
c )|

|V (Guv
c )| . Since |E(Guv)|+ |V (Guv

c )| =
|E(Guv

c )|+|Vl(Guv)|+|V (Guv
c )| = |E(Guv

c )|+|V (Guv)| and |N | ≤ µ(H), from Lemma 2 we conclude:

|E(Guv)|+ |V (Guv
c )|

|V (Guv
c )|

=
|E(Guv

c )|+ |V (Guv)|
|V (Guv

c )|
≤ µ(H) VC-dim(Guv

c ) + µ(H)

≤ µ(H)(VC-dim(G)− 1) + µ(H)

= µ(H) VC-dim(G).

This establishes the inequality |E(G)|
|V (G)| ≤ µ(H) VC-dim(G) and concludes the proof of the theorem.
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