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Abstract

A graph G is n-ordered if its vertices can be enumerated so each vertex has no more than n
neighbours appearing earlier in the enumeration. Consider the following process for generating
an infinite n-ordered graph. Let G0 be a finite n-ordered graph. Form Gi+1 from Gi as follows:
For each S ⊆ V (Gi) of cardinality at most n, add a new vertex adjacent to every vertex in S.
Taking the limit of this process gives a n-ordered infinite graph with countably many vertices.
This construction method is reminiscent of the deterministic construction of the Rado graph.
In this work we use universal adjacency properties to study the class of all infinite graphs that
admit such a construction. For these graphs, we provide a probabilistic construction and also
show that these universal adjacency properties imply the existence of independent distinguishing
sets.

Unless otherwise stated, all graphs are assumed to be simple. For a graphG and a pair of disjoint
of subsets A,B ⊆ V (G) a vertex of V (G) \ (A ∪B) is correctly joined to A and B if it adjacent to
every vertex in A and no vertex in B. A graph is n-existentially closed (n-e.c.) if for every pair of
disjoint subsets A,B ⊆ V (G) so that |A ∪ B| ≤ n there is a vertex correctly joined to A and B.
Though for any fixed n, nearly every graph is n-e.c., constructing explicit examples of n-e.c. graphs
and graph families is a non-trivial task utilizing a wide variety of combinatorial tools [1]. The Rado
graph, denoted R, is the graph with a countably infinite set of vertices, where each pair of vertices is
adjacent with some fixed probability p ∈ (0, 1). Surprisingly for any p ∈ (0, 1), the graph resulting
from this process is the same [4]. The infinite graph R is characterized as being the unique infinite
graph that is n-e.c. for all n. Using this characterization, a number of other construction methods
have been shown to generate R. We are interested in the following deterministic construction: Let
G0 = K1. In step t = i + 1, form Gi+1 from Gi as follows. For each S ⊆ V (Gi) add a vertex
adjacent to every vertex in S. The infinite graph formed as t→∞ is n-e.c. for all n ≥ 1, and thus
is isomorphic to R. We direct the reader to a comprehensive resource on various aspects of R [4].
In this work we study graphs formed by the process above when we vary the input graph, G0, and
put an upper bound on the cardinality of S.

In [2] the authors consider a variation of the deterministic construction of R. Let n be a positive
integer. Let G0 = Kn. In step t = i+ 1, form Gi+1 from Gi as follows. For each S ⊆ V (Gi) so that
|S| = n add a vertex adjacent to every vertex in S. The graph formed by considering the limit as
t→∞ is denoted R(n). Following this, we denote by R(≤n) the graph formed analogously to R(n)

by considering in each step S ⊆ V (Gi) so that |S| ≤ n.
The infinite graphs R, R(n) and R(≤n) satisfy a stronger existential closure property: A graph

G is strongly n-existentially closed when for every pair of finite disjoint subsets A,B ⊆ V (G) so
that |A| ≤ n, there is a vertex correctly joined to A and B. That there is no restriction on the
cardinality of B implies for every n that every strongly n-existentially closed graph is infinite.

Following [2], for fixed n, G is n-ordered if there exists a well-ordering of its vertices (xi : i ∈ I),
where I is finite or I has the order-type N, so that each xj has at most n neighbours xi with i < j.

Theorem 1. Let n be a fixed positive integer. Let G be a finite n-ordered graph.

1. Every induced subgraph of R(n) and R(≤n) is n-ordered.



2. There are countably infinitely many induced subgraphs of R(n) isomorphic to G.

3. There are countably infinitely many induced subgraphs of R(≤n) isomorphic to G.

Results for R(n) in Theorem 1 appear in [2]. We include them here for completeness. Theorem
1 suggests, perhaps, that R(n) and R(≤n) are isomorphic. This is not the case.

Theorem 2. Let n1 and n2 be positive integers. R(n1) 6∼= R(≤n2).

In the deterministic construction of R given above, letting G0 = G for any finite graph G
yields a graph isomorphic to R. However, in the construction of R(n) and R(≤n) this is not the
case. Consider, for example, the infinite graph constructed as R(≤n) by letting G0 = Kn+2. The
resulting infinite graph contains Kn+2 as an induced subgraph. By Theorem 1 R(≤n) has no
subgraph isomorphic to Kn+2.

Let H be a finite graph. Let R(H,≤n) be the infinite graph generated as R(≤n) by letting G0 = H.
Analogously define R(H,n). In [2] the authors introduce R(H,n). They leave open the question of
determining when R(H,n) ∼= R(H′,n) for H 6∼= H ′. We answer this question in Lemma 1.

It is easily checked that both R(H,≤n) and R(H,n) are strongly n′-e.c., for all 1 ≤ n′ ≤ n, but
not strongly n′-e.c. for any n′ > n. Parts 2 and 3 of Theorem 1 hold for R(H,n) and R(H,≤n). Part
1 of Theorem 1 holds for R(H,n) and R(H,≤n) if and only if H is n-ordered.

For the remainder of this work, we are interested in infinite graphs that are members of the
following families:

Γn = {R(H,n) | H is a finite graph and |V (H)| ≥ n}

Γ≤n = {R(H,≤n) | H is a finite graph}

These two families are not only distinct, but also non-intersecting.

Theorem 3. Let n1 and n2 be fixed positive integers. A countably infinite graph G is contained in
at most one of Γn1 and Γ≤n2.

For a pair of graphs H and H ′ we write H ≺n H ′ when H ′ can be formed from H by iteratively
adding vertices of degree n. We write H ≺≤n H ′ when H ′ can be formed from H by iteratively
adding vertices of degree at most n. By definition we have H ≺n R(H,n) and H ≺≤n R(H,≤n).

Lemma 1. Let G and H be finite graphs.

1. R(G,n) ∼= R(H,n) if and only if there exists a finite graph Z such that G ≺n Z and H ≺n Z.

2. R(G,≤n) ∼= R(H,≤n) if and only if there exists a finite graph Z such that G ≺≤n Z and
H ≺≤n Z.

Lemma 1 re-frames the question of isomorphism of a pair of infinite graphs as a question
regarding properties of finite graphs. For Γn, necessary and sufficient conditions for the existence
of such a finite graph Z remain elusive. Further, it is not immediately clear that the associated
decision problem is a member of NP. For Γ≤n such necessary and sufficient conditions are given in
Theorem 4.

For a graph G, the k-core of G is the maximum induced subgraph of minimum degree k
contained in G. If G has no such subgraph, then the k-core of G is defined to be K1. In this case



we say that G has a trivial k-core. The k-core of a graph is unique up to isomorphism [7]. Observe
that if H0 is the smallest induced subgraph of H such that H0 ≺≤n H, then H0 is the n + 1-core
of H. Thus H is n-ordered if and only if the n+ 1-core of H is trivial. The concept of k-core plays
an important role in the study of Γ≤n.

Theorem 4. R(G,≤n) ∼= R(H,≤n) if and only if G and H have the same n+ 1-core.

Corollary 1. For fixed n ≥ 1, there is a one-to-one correspondence between n + 1-cores and
elements of Γ≤n.

The k-core of a finite graph can be computed efficiently by iteratively removing vertices of degree
at most k − 1 [7]. As such for fixed n ≥ 1, given G and H, the decision problem of determining if
R(G,≤n) ∼= R(H,≤n) is contained in P .

Graphs contained in Γn or Γ≤n admit a deterministic construction reminiscent of that of the
Rado Graph. And so it is natural to wonder whether graphs contained in these families also admit
a probabilistic construction.

Consider the following process, which we name Model (≤ n). Let n be a fixed positive integer.
Let H be a non-trivial finite graph with vertex set u01, u

0
2, . . . u

0
|VH |. Let H0 = H. For fixed t > 0

let n(t) = min{n, |V (Ht−1)|}. We form Ht from Ht−1 by adding new vertices {xt1, xt2, . . . , xtn(t)} so

that xti is adjacent to exactly i vertices of Ht−1. Let NHt(x
t
i) denote the neighbour set of xti in Ht.

For fixed i, and each S = {uj1 , uj2 , . . . uji}, let µ(S) = 2−(j1+j2+···+ji). Let

Cti =
∑

S⊂V (Ht−1),|S|=i

µ(S)

and let

P(NHt(x
t
i) = S) =

µ(S)

Cti
.

Model (n), defined analogously, first appears in [2] with the restriction H0 = Kn. Here we lift
this restriction and require only that H0 has at least n vertices.

Theorem 5. Let G = limt→∞Ht, where Ht was generated with Model (≤ n). With probability 1,
G ∼= R(H0,≤n).

Theorem 6. Let G = limt→∞Ht, where Ht was generated with Model (n). With probability 1,
G ∼= R(H0,n).

We close our discussion with an application of the strong 1-e.c. property to the study of graph
distinguishing. Since every infinite graph of the form R(H,n) or R(H,≤n) is strongly 1-e.c., our results
allow us to compute the distinguishing number of any infinite graph contained in either Γn or Γ≤n
for any n ≥ 1.

Let G be a graph and c : V (G)→ {1, 2, 3, . . . , k}. Let Autc(G) be the set of automorphisms f
of G with the property that for all v ∈ V (G) we have c(f(v)) = c(v). That is, Autc(G) is the set
of automorphisms of G that preserve c. Let ε denote the trivial automorphism. If Autc(G) = ε, we
say that c is k-distinguishing. Informally, c “breaks” all non-trivial automorphisms of G.

Distinguishing may be re-framed in the language of graph homomorphism. We say a homo-
morphism φ : G→ H is distinguishing when Autφ(G) = ε. If H is a reflexive complete graph on k
vertices, then a distinguishing homomorphism to H is exactly a k-distinguishing function.



For a graph G, the distinguishing number of G, denoted D(G), is the least integer k such that
there exists a distinguishing homomorphism of G to a reflexive target on k vertices. If we restrict
the target of such a homomorphism to be an irreflexive graph, then we arrive at the distinguishing
chromatic number of G, denoted Dχ(G). See [3] and [6] for more on graph distinguishing and the
distinguishing chromatic number.

Let Di(G) be the independent distinguishing number of G. That is, Di(G) is the least k such
that there exists a distinguishing homomorphism to a target H on k vertices so that H is not
reflexive. We have the following inequalities for all graphs on n ≥ 2 vertices whose automorphism
groups are non-trivial.

n ≥ Dχ(G) ≥ χ(G) ≥ Di(G) ≥ D(G) ≥ 2 (1)

When Di(G) = 2, G contains an independent set I so that the function:

c(v) =

{
1 v ∈ I
2 otherwise

is 2-distinguishing. Call such an independent set an independent distinguishing set.

Theorem 7. If G is strongly 1-e.c. and has countably many vertices, then G has an independent
distinguishing set.

Corollary 2. The Rado graph contains an independent distinguishing set.

Corollary 3. For all n ≥ 1, if G ∈ Γn or G ∈ Γ≤n, then G contains an independent distinguishing
set.

Corollary 3 together with Equation 1 imply that any graph G for which D(G) > 2 is not a
member of Γn or Γ≤n. As the distinguishing number of infinite graphs is well studied (for example,
see [5]), the distinguishing number of an infinite graph G can be used to determine if it is a candidate
element of Γn or Γ≤n.
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