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Cláudio L. Lucchesi — University of Campinas

Abstract

Lovász (1987) proved that every matching covered graph may be uniquely decomposed into
a list of bricks (nonbipartite) and braces (bipartite). Carvalho, Lucchesi and Murty (2002)
proved a conjecture of Lovász which states that every brick G, distinct from K4, the triangular
prism C6 and the Petersen graph, has a b-invariant edge e — that is, an edge e such that G− e
is a matching covered graph with exactly one brick.

A cubic graph is essentially 4-edge-connected if it is 3-edge-connected and if the only 3-cuts
are the trivial ones. A brick G is near-bipartite if it has a pair of edges {e, f} such that G−e−f
is bipartite matching covered; for instance, K4 and C6. We prove that every essentially 4-edge-
connected cubic graph G is either a brick or a brace; furthermore, if G is a brick that is not

near-bipartite and is not the Petersen graph, then G has at least |V (G)|
2 b-invariant edges.

1 Motivation

A connected graph, on at least two vertices, is matching covered if each edge lies in some perfect
matching. In his seminal paper characterizing the matching lattice, Lovász [1] proved that every
matching covered graph may be “decomposed” uniquely into a list of special matching covered
graphs called bricks (nonbipartite) and braces (bipartite). This “decomposition” is known as the
tight cut decomposition.

When investigating problems in matching theory, often one may restrict attention to matching
covered graphs; furthermore, in several cases, it suffices to solve the problem for bricks and for
braces. A classical example is the problem of characterizing, or of recognizing, Pfaffian graphs. A
matching covered graph is Pfaffian if and only if each of its bricks and braces is Pfaffian; see [2, 3].

An edge e of a brick G is b-invariant if G − e is a matching covered graph whose tight cut
decomposition results in precisely one brick. Confirming a conjecture of Lovász, the following was
proved by Carvalho, Lucchesi and Murty [6].

Theorem 1. Every brick, distinct from K4, the triangular prism C6 and the Petersen graph, has
a b-invariant edge.

As an application of the above theorem, Carvalho, Lucchesi and Murty [7] gave an alternative
proof for the characterization of the matching lattice, and proved other deep results concerning ear
decompositions of matching covered graphs. Since then, the existence of b-invariant edges in bricks,
as well as the existence of special types of b-invariant edges (such as thin and strictly thin edges),
have found many applications in matching theory; see [9, 11, 12].

In certain applications, it is helpful to have the presence of “many” b-invariant edges — for
instance, one incident with each vertex. A graph is solid if its perfect matching polytope is described
by non-negativity and degree constraints; see [8]. The notion of solid graphs is a generalization
of bipartite graphs that has played an important role in many works of Carvalho, Lucchesi and
Murty[9, 11]. An immediate consequence of Theorem 3.3 and Corollary 6.12 in [11] is the following.



Theorem 2. In a solid brick G, distinct from K4, each vertex is incident with at least one
b-invariant edge; consequently, G has at least |V (G)|

2 b-invariant edges.

In this paper, we prove similar results for another rich class of bricks, namely the class of
essentially 4-edge-connected cubic bricks. See Theorem 5 and Corollary 1. This paper is part of an
on-going project wherein we hope to characterize the Pfaffian cubic graphs.

2 Tight Cut Decomposition

For a nonempty proper subset X of the vertices of a graph G, we denote by ∂(X) the cut associated
with X. We refer to X and X := V (G) − X as the shores of ∂(X). A cut is trivial if any of its
shores is a singleton. We say that ∂(X) is a k-cut if |∂(X)| = k. For a cut ∂(X), we use G/X to
denote the graph obtained by contracting the shore X to a single vertex; the graph G/X is defined
analogously. The two graphs G/X and G/X are called the ∂(X)-contractions of G.

Let G be a matching covered graph. A cut ∂(X) is tight if |M ∩ ∂(X)| = 1 for every perfect
matching M of G. It is easily verified that if ∂(X) is a nontrivial tight cut of G, then each
∂(X)-contraction is a matching covered graph that has strictly fewer vertices than G. We can
repeat this procedure recursively until we obtain a list of matching covered graphs — each of which
is free of nontrivial tight cuts — these are called bricks (nonbipartite), and braces (bipartite). This
procedure is known as a tight cut decomposition of G. In Figure 1 (left), the three edges crossing the
bold line constitute a nontrivial tight cut, say ∂(X); the two ∂(X)-contractions are K4 and K3,3.

In general, a matching covered graph may admit several tight cut decompositions. However,
Lovász [1] proved the remarkable result that any two tight cut decompositions of a matching
covered graph yield the same list of bricks and braces (except possibly for multiplicities of edges).
In particular, any two tight cut decompositions of a matching covered graph G yield the same
number of bricks; this number is denoted by b(G). Note that b(G) = 0 if and only if G is bipartite.

e

Figure 1: (left) A nontrivial tight cut; (center) The Tricorn has exactly three removable edges and
no removable doubletons; (right) The removable edge e is neither b-invariant nor quasi b-invariant

It is easily shown, using Tutte’s 1-factor Theorem, that every 2-edge-connected cubic graph is
matching covered. However, in general, such a graph need not be a brick or a brace; see Figure 1
(left). We say that a graph is essentially 4-edge-connected if it is 3-edge-connected and if it is free
of nontrivial 3-cuts. Our first result is the following.

Theorem 3. Every essentially 4-edge-connected cubic graph is either a brick or a brace.



The proof is straightforward, and was known to C. N. Campos and C. L. Lucchesi in 1999.
Braces are bipartite, and are relatively well-understood. In the rest of this paper, we investigate
essentially 4-edge-connected cubic bricks — a few popular examples are nonbipartite Möbius ladders
(including K4), nonbipartite prisms (except C6), and the Petersen graph; see [12] for definitions.

3 Removable classes

Let G be a brick. An edge e is removable if G − e is matching covered; it is easily shown that
G− e is nonbipartite; in particular, b(G− e) ≥ 1. A pair of edges {e, f} is a removable doubleton
if G− e− f is bipartite and matching covered; clearly, in this case, neither e nor f is removable.

A brick G is near-bipartite if it has a removable doubleton; otherwise G is non-near-bipartite.
For instance, the Petersen graph is non-near-bipartite. On the other hand, each of K4 and C6

has three distinct removable doubletons; furthermore, each of them is devoid of removable edges.
Lovász [1] proved that every brick distinct from K4 and C6 has a removable edge.

A removable class of a brick is either a removable edge or a removable doubleton — each of
which is a specialization of the more general notion of a removable ear or double ear in matching
covered graphs. For an in-depth treatment of this topic, we refer the reader to Carvalho, Lucchesi
and Murty [4] wherein they prove that each brick G has at least ∆(G) removable classes, and at
least ∆(G)− 2 removable edges. (Here, ∆(G) denotes the maximum degree of G.)

For a removable edge e of a brick G, the quantity b(G − e) may be arbitrarily large. Recall
that e is b-invariant if b(G− e) = 1. We say that e is quasi-b-invariant if b(G− e) = 2. It is easily
verified that each edge of the Petersen graph is quasi-b-invariant. Our next result is the following.

Theorem 4. Let G be an essentially 4-edge-connected cubic brick and let e be any edge of G. Then
exactly one of the following holds:

(i) either e participates in a removable doubleton,

(ii) or e is b-invariant,

(iii) or otherwise e is quasi-b-invariant.

It is worth noting that the conclusion of Theorem 4 does not hold for all cubic bricks; essentially
4-edge-connectedness is crucial. A cubic brick G may have an edge e that is neither removable nor
participates in a removable doubleton; see Figure 1(center). Furthermore, a cubic brick G may
have a removable edge e such that b(G− e) ≥ 3; see Figure 1(right).

As mentioned in Section 1, it is often helpful to have the presence of “many” b-invariant edges.
On a related note, a brick being near-bipartite is most likely “good” news. For example, while
there has been no significant progress in characterizing Pfaffian bricks; Fischer and Little [5] were
able to characterize Pfaffian near-bipartite bricks. In this sense, the only “unpleasant” outcome for
any particular edge e of an essentially 4-edge-connected cubic brick G is outcome (iii) as stated in
Theorem 4. With this in mind, we started wondering whether we could prove an upper bound on
the number of quasi-b-invariant edges in an essentially 4-edge-connected cubic brick.

The Petersen graph has the property that if v is any vertex then v is incident with three
edges — each of which is quasi-b-invariant. We were able to prove that, among the essentially
4-edge-connected cubic bricks, the Petersen graph is unique with respect to this property. In fact,
we prove a stronger result.



Theorem 5 (Main Theorem). Let G be an essentially 4-edge-connected cubic brick, let v be
any vertex of G and let e1, e2, e3 be the three distinct edges incident with v. If e1 and e2 are both
quasi-b-invariant then exactly one of the following holds:

(i) either e3 participates in a removable doubleton and G is the Cubeplex,

(ii) or e3 is quasi-b-invariant and G is the Petersen graph,

(iii) or otherwise e3 is b-invariant.

The Cubeplex is a graph on 12 vertices that first appeared in the works of Fischer and Little [5]
where they showed that it is one of two minimally non-Pfaffian near-bipartite bricks; they referred
to the two graphs as Γ1 and Γ2. The name Cubeplex for Γ1 is due to Norine and Thomas [10]. The
following is an immediate consequence of Theorem 5.

Corollary 1. In an essentially 4-edge-connected cubic non-near-bipartite brick G, distinct from
the Petersen graph, each vertex is incident with at least one b-invariant edge; consequently, G has
at least |V (G)|

2 b-invariant edges.

We conjecture that the lower bound of |V (G)|
2 holds for all essentially 4-edge-connected cubic

bricks, even those that are near-bipartite except K4.

The proofs of Theorems 3, 4 and 5 are available here [13].
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