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Abstract

A classical theorem of Erdős, Gyárfás and Pyber states that any r-edge-colouring of the
complete graph Kn admits a partition into O(r2 log r) monochromatic cycles. Here we extend
this result by showing that for large n any r-edge-colouring of a graph on n vertices with
minimum degree n/2 + 400r log n admits a partition into O(r2) monochromatic cycles.

A classical theorem of Erdős, Gyárfás and Pyber states that any r-edge-colouring of the complete
graph Kn admits a partition into 25r2 log r monochromatic cycles [6].1 The same authors also
conjectured that r cycles should always be sufficient. For r = 2 this was an old conjecture of
Lehel, which was verified by Bessy and Thomassé after preliminary work of  Luzcak, Rödl and
Szemerédi [4, 12]. For r = 3, Gyárfás, Ruszinkó, Sárközy and Szemerédi proved the conjecture
approximately, by partitioning all but o(n) vertices into three cycles. However, the conjecture
turned out to be false for all r ≥ 3. Pokrovskiy constructed colourings that required r cycles and
one vertex. Nevertheless, he believed that the original conjecture is not too far off the mark and r
cycles and a constant number of c(r) vertices should suffice. In support of this, Pokrovskiy showed
that c(3) ≤ 43000, which was improved, independently, to c(3) ≤ 60 by Letzter [11, 13]. For larger
r the best known upper bound of 100r log r cycles is due to Gyárfás et. al [7].

The problem of monochromatic cycle partitioning is closely related to the study of Ramsey
numbers of cycles and paths. In 2012 Schelp raised the general problem of determining whether
Ramsey type results for paths and cycles that hold for the complete graph, are still valid for
graphs with sufficiently large minimum degree [14]. This question has received a fair amount of
attention in the last years [3, 8]. Motivated by these results, Balogh, Barát, Gerbner, Gyárfás,
and Sárközy proposed a strengthening of the Bessy-Thomassé theorem and conjectured that every
2-edge-coloured n-vertex graph G of minimum degree at least δ(G) ≥ 3n/4 has a partition into
two monochromatic cycles. An easy construction shows that the degree of 3n/4 is essentially best
possible. This was verified in a series of contributions by Balogh et. al, DeBiasio and Nelsen and
Letzter for large n [2, 5, 10]. Based on these advances, Pokrovskiy conjectured that any 2-edge-
coloured graph G can be partitioned into three monochromatic cycles, provided that δ(G) ≥ 2n/3.
As before, a construction shows that the degree is essentially best possible. This conjecture was
resolved asymptotically by Allen, Böttcher, Lang, Skokan and Stein by showing that a graph G of
minimum degree δ(G) ≥ (2/3 + ε)n can be partitioned into three monochromatic cycles [1].

It is a natural question to ask, up to which minimum degree of a host graph G any colouring
of the edges of G with two (or more general r ≥ 2) colours allows for a partition into few cycles,
i.e. a number of cycles independent of the order of G. A reasonable candidate for this threshold
would be n/2. This is because a complete bipartite graph on n vertices, whose bipartition classes
differ by εn vertices, requires at least εn cycles even without colouring the edges. However, a
more involved construction shows that there are 2-edge-coloured graphs of minimum degree roughly
n/2+log n/ log logn that require Ω(log n/ log log n) monochromatic cycles for a cover (Theorem 2).

1Here we count edges and single vertices as cycles too.



Our main contribution is the following upper bound for the degree, which attains the lower bound
up to a factor of log log n in the error term for all r ≥ 1.

Theorem 1. Let r ≥ 2 and n be sufficiently large. Then any r-edge colouring of a graph G on
n vertices with minimum degree δ(G) ≥ n/2 + 400r log n admits a partition into f(r) = 106r2

monochromatic cycles.

We also construct graphs and colourings showing that the number of cycles f(r) is bounded from
below by Ω(r2) even when G is almost complete (Theorem 3). In particular our results determine
the minimal number of cycles necessary for cycle partitioning graphs with δ(G) ≥ n/2 + 400r log n
up to a constant factor. This stands in contrast to the situation for the complete graph, where the
optimal number has only been determined up to a factor of log r and closing this gap is a major
open problem.

Upper bound

In what follows we give a short outline of the proof of Theorem 1. The proofs in the field of
monochromatic cycle partitioning are largely based on an absorption approach introduced by Erdős,
Gyárfás and Pyber [6]. Let us give a short sketch of this method. Suppose the complete graph Kn

is r-edge-coloured and we are asked to find a partition into O(r2 log r) monochromatic cycles. In a
first step we fix a monochromatic subgraph H ⊂ Kn and a subset A ⊂ V (H) with the property that
H −X is Hamiltonian for any X ⊂ A. We call (H,A) an absorbing structure. Next, we cover the
majority of the vertices of Kn−V (H) with disjoint monochromatic cycles C1, C2, . . . by repeatedly
applying the Erdős-Gallai theorem to the densest colour among the uncovered vertices. Calculations
yield that after O(r2 log r) iterations the set of uncovered vertices, denoted by B, satisfies |A| � |B|.
We then apply an absorbing lemma to cover the vertices of B with r2 monochromatic cycles
F1, F2, . . . that alternate between A and B. At this point it is crucial that every vertex of B has
many neighbours in A, which is guaranteed by the completeness of Kn. By design H − V (

⋃
Fi)

contains a spanning cycle and thus presents, together with the Fi’s and Ci’s, a partition into
O(r2 log r) monochromatic cycles as desired.

Now let us turn to our setting and suppose that G is an r-edge-coloured graph on n vertices with
minimum degree n/2 + 400r log n. We aim to find a partition G into O(r2) monochromatic cycles
by following a similar absorption approach as above. There are, however, several obstacles to this.
Firstly, removing large cycles without further precautions may leave the graph of the uncovered
vertices sparse (or empty). Thus we can not simply use the Erdős-Gallai theorem repeatedly to
cover the majority of the graph. We overcome this obstacle through a regularity-based approach,
which reduces the task of finding a monochromatic cycle to finding a matching in a monochromatic
component of the reduced graph. This allows us to partition all but o(n) vertices of G by selecting
a set of O(r2) disjoint monochromatic cycles at the same time, instead of picking them one after
another as before.

Now suppose that we are able cover all vertices but a set B of size o(n) with the union of O(r2)
monochromatic disjoint cycles C =

⋃
Ci. We would like to use an absorption argument as above

to cover the vertices of B with few cycles. To this end we need to find a monochromatic absorbing
structure (H,A) in G (and reserve it before selecting C). However, using conventional arguments
any such structure would have very small size, i.e. |A| � n/r2. Thus we can not guarantee that
every vertex of G has many neighbours in A, which in turn is necessary to apply an absorbing



lemma. We resolve this problem by letting the cycles of C play the role of the absorbing structure
as well, i.e. (H,A) = (C, V (C)). More precisely, we ensure that V (C) is covered robustly by O(r2)
cycles, i.e. for any subset X ⊂ V (C) of size at most |B|, the graph G[V (C−X)] has a partition into
O(r2) monochromatic cycles C ′

1, C
′
2, . . . (possibly different from the Ci’s). We show the existence of

the absorbing structure (C, V (C)) by using an old characterization of Tutte that connects fractional
matchings with a convenient-to-use expander property. Since |B| = o(n) it follows by the minimum
degree that every vertex of B has many neighbours in V (C) \B. Hence we can apply an absorbing
lemma similar as in the complete case to obtain a partition of G into O(r2) monochromatic cycles.

To finish, let us note that the details of this approach involve a distinction between a general
case and the situation when G is very similar to the graphs constructed in Theorem 2.

Lower bounds

In the following we will give a short sketch of our constructions for the lower bounds of the degree
threshold and the optimal number of cycles. We start with the former:

Theorem 2. There is a 2-edge-coloured graph G on n vertices with minimum degree at least n/2+
(1/16) log n/ log logn such that at least (1/16) log n/ log logn monochromatic cycles are required for
a partition into monochromatic cycles.

We shall use the following lemma, which can be proved by removing short cycles from a suitable
generated random graph G ∼ G(n, p).

Lemma 1. For every sufficiently large n there is a graph on n vertices with minimum degree at
least log n and no proper cycles of length less than (1/4) log n/ log logn (edges and vertices are
allowed).

We construct the graph and the colouring of Theorem 2 as follows. Let A and B be vertex
classes such that |A| + |B| = n and |A| − |B| ≈ log n/ log logn. We obtain G by adding all edges
between A and B in colour red and placing a blue copy of the graph of Lemma 1 into A. An easy
calculation shows that G has the desired minimum degree. Since the red cycles lie all between A
and B, we can not cover A entirely with red cycles. On the other hand, by construction, the blue
cycles are too large to balance the small difference between the sizes of A and B. Hence a cover of
G with monochromatic cycles must necessarily use Ω(log n/ log log n) single edges and vertices.

The next results shows that Theorem 1 gives the optimal number of cycles up to a constant
factor.

Theorem 3. For any ε > 0 and sufficiently large r, there is an r-edge-coloured graph G on n
vertices with δ(G) ≥ (1 − 4ε)n and whose vertices cannot be covered by less than ε2(r − 1)2/4
monochromatic components.

The construction of Theorem 3 uses rainbow matchings. A rainbow matching is a matching in
an edge-coloured graph, whose edges have pairwise distinct colours. Let Y be a set of r vertices.
Let KY be an auxiliary properly r-edge-coloured complete graph on vertex set V (KY ) = Y . Let
X be the set of rainbow matchings in KY of size (1− 3ε)r/2. We define a graph H as follows: For
any x ∈ X and y ∈ Y , we let xy be a colour i edge in H if the rainbow matching x of KY contains
a colour i edge through y. If the rainbow matching x does not contain an edge through y, then xy
is not present in H. By construction we have that deg(x) ≥ (1− 3ε)|Y | for every x ∈ X. A more



involved argument, which relies on results of Gyárfás and Sárközy [9], shows that the vertices of X
cannot be covered by less than ε2r2/4 monochromatic components in H. We then obtain the graph
G of Theorem 3 by blowing up each vertex of Y by a lot and adding all edges in Y in some new
colour. (So G is in fact (r+ 1)-edge-coloured.) A straightforward calculation shows that G has the
desired minimum degree. Moreover, since any covering of G with monochromatic cycles must use
cycles between X and Y to cover X, it follows that at least ε2r2/4 of these cycles are necessary for
such a cover.
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[6] P. Erdős, A. Gyárfás, and L. Pyber, Vertex coverings by monochromatic cycles and trees, J. Combin.
Theory Ser. B 51 (1991), 90–95.
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