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Abstract

In this note we asymptotically determine the maximum number of hyperedges possible in an
r-uniform, connected n-vertex hypergraph without a Berge path of length k, as n and k tend
to infinity. We show that, unlike in the graph case, the multiplicative constant is smaller with
the assumption of connectivity.

1 Introduction

Let Pk denote a path consisting of k edges in a graph G. There are several notions of paths in
hypergraphs the most basic of which is due to Berge. A Berge path of length k is a set of k + 1
distinct vertices v1, v2, . . . , vk+1 and k distinct hyperedges h1, h2, . . . , hk such that for 1 ≤ i ≤ k,
vi, vi+1 ∈ hi. A Berge path is also denoted simply as Pk, and the vertices vi are called basic vertices.
If v1 = v and vk+1 = w, then we call the Berge path a Berge v-w-path. A hypergraph H is called
connected if for any v ∈ V (H) and w ∈ V (H) there is a Berge v-w-path. Let Ns(G) denote the
number of s-vertex cliques in the graph G.

A classical result of Erdős and Gallai [6] asserts that

Theorem 1 (Erdős-Gallai). Let G be a graph on n vertices not containing Pk as a subgraph, then

|E(G)| ≤ (k − 1)n

2
.

In fact, Erdős and Gallai deduced this result as a corollary of the following stronger result about
cycles,

Theorem 2 (Erdős-Gallai). Let G be a graph on n vertices with no cycle of length at least k, then

|E(G)| ≤ (k − 1)(n− 1)

2
.

Kopylov [4] and later Balister, Győri, Lehel and Schelp [3] determined the maximum number of
edges possible in a connected Pk-free graph.

Theorem 3. Let G be a connected n-vertex graph with no Pk, n > k ≥ 3. Then |E(G)| is bounded
above by

max{
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)
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Observe that, although the upper bound is lower in the connected case, it is nonetheless the
same asymptotically. Balister, Győri, Lehel and Schelp also determined the extremal cases.

Definition 1. The graph Hn,k,a consists of 3 disjoint vertex sets A,B,C with |A| = a, |B| = n−k+a
and |C| = k− 2a. Hn,k,a contains all edges in A∪C and all edges between A and B. B is taken to
be an independent set. The number of s-cliques in this graph is

fs(n, k, a) =

(
k − a

s

)
+ (n− k + a)

(
a

s− 1

)
.

The upper bound of Theorem 3 is attained for the graph Hn,k,1 or Hn,k,b k−1
2 c.

We now mention some recent results of Luo [5] which will be essential in our proof.

Theorem 4 (Luo). Let n − 1 ≥ k ≥ 4. Let G be a connected n-vertex graph with no Pk, then the
number of s-cliques in G is at most

max{fs(n, k, b(k − 1)/2c), fs(n, k, 1)}.

As a corollary, she also showed

Corollary 1 (Luo). Let n ≥ k ≥ 3. Assume that G is an n-vertex graph with no cycle of length k
or more, then

Ns(G) ≤ n− 1

k − 2

(
k − 1

s

)
.

Győri, Katona and Lemons [2] initiated the study of Berge Pk-free hypergraphs. They proved

Theorem 5 (Győri-Katona-Lemons). Let H be an r-uniform hypergraph with no Berge path of
length k. If k > r + 1 > 3, we have

|E(H)| ≤ n

k

(
k

r

)
.

If r ≥ k > 2, we have

|E(H)| ≤ n(k − 1)

r + 1
.

The case when k = r + 1 was settled later [1]:

Theorem 6 (Davoodi-Győri-Methuku-Tompkins). Let H be an n-vertex r-uniform hypergraph. If
|E(H)| > n, then H contains a Berge path of length at least r + 1.

Our main result is the asymptotic upper bound for the connected version of Theorem 5, as n
and k tend to infinity.

Theorem 7. Let Hn,k be a largest r-uniform connected n-vertex hypergraph with no Berge path of
length k, then

lim
k→∞

lim
n→∞

|E(Hn,k)|
kr−1n

=
1

2r−1(r − 1)!
.

A construction yielding the bound in Theorem 7 is given by partitioning an n-vertex set into
two classes A, of size

⌊
k−1
2

⌋
, and B, of size n−

⌊
k−1
2

⌋
and taking X ∪ {y} as a hyperedge for every

(r − 1)-element subset X of A and every element y ∈ B. This hypergraph has no Berge Pk as we
could have at most

⌊
k−1
2

⌋
basic vertices in A and

⌊
k−1
2

⌋
+ 1 basic vertices in B, thus yielding less

than the required k + 1 basic vertices.
Observe that in Theorem 5 the corresponding limiting value of the constant factor is 1

r! which
is 2r−1

r times larger than in the connected case. Note that the ideas of the proof of Theorem 7 can
be used to prove that the limiting value of the constant factor in Theorem 5 is 1

r! .



2 Proof of Theorem 7

We will use the following simple corollary of Theorem 4.

Corollary 2. 4 Let G be a connected graph on n vertices with no Pk, then G has at most

kr−1n

2r−1(r − 1)!

r-cliques if n ≥ ck,r for some constant ck,r depending only on k and r.

Given an r-uniform hypergraph H we define the shadow graph of H, denoted ∂H to be the
graph on the same vertex set with edge set:

E(∂H) := {{x, y} : {x, y} ⊂ e ∈ E(H)}.

Definition 2. If r = 3, then we call an edge e ∈ E(∂H) fat if there are at least 2 distinct hyperedges
h1, h2 with e ⊂ h1, h2. If r > 3, then we call an edge e ∈ E(∂H) fat if there are at least k distinct
hyperedges h1, h2, . . . , hk in H with e ⊂ hi for 1 ≤ i ≤ k.
We call an edge e ∈ E(∂H) thin if it is not fat.

Thus, the set E(∂H) decomposes into the set of fat edges and the set of thin edges. We will
refer to the graph whose edges consist of all fat edges in ∂H as the fat graph and denote it by F .

Due to space constraintes we omit the proofs of the following three lemmas, full proofs can be
found in the article [7].

Lemma 1. There is no Pk in the fat graph F of the hypergraph H.

We call a hyperedge h ∈ E(H) fat if h contains no thin edge. Let F denote the hypergraph on
the same set of vertices as H consisting of the fat hyperedges, then

Lemma 2. If r = 3, then

|E(H \ F)| ≤ (k − 1)n

2
.

If r > 3, then

|E(H \ F)| ≤ (k − 1)2n

2
.

Any hyperedge of F contains only fat edges, so it corresponds to a unique r-clique in F . This
implies the following.

Observation 1. The number of hyperedges in E(F) is at most the number of r-cliques in the fat
graph F .

Lemma 3. There are no two disjoint cycles of length at least k/2 + 1 in the fat graph F .

Assume that F has connected components C1, C2, . . . , Ct. Trivially, Nr(F ) =
∑t

i=1Nr(Ci)
If |V (Ci)| ≤ k/2, then trivially

Nr(Ci) ≤
(
|V (Ci)|

r

)
≤ |V (Ci)|r

r!
≤ kr−1 |V (Ci)|

2r−1(r − 1)!
.



So we can assume |V (Ci)| ≥ k/2. By Lemma 3, we have that for all but at most one i, Ci does not
contain a cycle of length at least k/2 + 1. So by Corollary 1, for all but at most one i, say i0, we
have

Nr(Ci) ≤
|V (Ci)| − 1

k/2− 2

(
k/2− 1

r

)
≤ kr−1 |V (Ci)|

2r−1(r − 1)!
+O(kr−2).

If |V (Ci0)| ≥ ck,r, then by Lemma 1 and by Corollary 2 we have

Nr(Ci0) ≤
kr−1 |V (Ci)|
2r−1(r − 1)!

.

Otherwise, Nr(Ci0) ≤
(|V (Ci0

)|
r

)
= o(n). Therefore, we have

Nr(F ) =

t∑
i=1

Nr(Ci) ≤
t∑

i=1

(
kr−1 |V (Ci)|
2r−1(r − 1)!

+O(kr−2)

)
+ o(n) ≤ kr−1n

2r−1(r − 1)!
+O(kr−2)n+ o(n).

Therefore, by Observation 1,

|E(F)| ≤ Nr(F ) ≤ kr−1n

2r−1(r − 1)!
+O(kr−2)n+ o(n). (1)

Since |E(H)| = |E(H \ F)| + |E(F)|, adding up the upper bounds in (1) and Lemma 2, we
obtain the desired upper bound on |E(H)|.
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