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Abstract

The strong chromatic number x4(G) of a graph G on n vertices is the least number r with
the following property: after adding r[n/r] —n isolated vertices to G and taking the union with
any collection of spanning disjoint copies of K, in the same vertex set, the resulting graph has
a proper vertex-colouring with r colours. We show that for every ¢ > 0 and every graph G on
n vertices with A(G) > cn, xs(G) < (2 + 0o(1))A(G), which is asymptotically best possible.

1 Introduction

Let r be a positive integer. Let G be a graph on n vertices, where r divides n. We say that G is
strongly r-colourable if it can be properly r-coloured after taking the union of G with any collection
of spanning disjoint copies of K, in the same vertex set. Equivalently, G is strongly r-colourable if
for every partition {V,...,V;} of V(G) with classes of size r, there is a proper vertex colouring of
G using r colours with the additional property that every V; receives all of the r colours. If r does
not divide n, we say that G is strongly r-colourable if the graph obtained by adding r[n/r| —n
isolated vertices to G is r-strongly colourable. The strong chromatic number x4(G) of G is the
minimum 7 such that G is r-strongly colourable. This notion was introduced independently by
Alon [2] and Fellows [5].

1.1 Strong chromatic number versus maximum degree

It is an open problem to find the best bound on xs(G) in terms of A(G). Alon [3] proved that
Xs(G) < cA(Q) for some constant ¢ > 0. Haxell [7] showed that ¢ = 3 suffices and later [8] that
¢ < 11/4 + ¢ suffices given A(G) is large enough with respect to e.

On the other hand, there are examples showing ¢ > 2 is necessary. For any A > 1, consider the
graph G on A; U By U Ay U By where all these sets are pairwise disjoint, |A;| = A and |B;| = A —1
for all i € {1,2}, and add every possible edge between A; and As. Then A(G) = A, but the
partition {A; U By, A2 U By} shows that G is not strongly (2A — 1)-colourable (see also, e.g., [4]).

It is conjectured (first explicitly stated by Aharoni, Berger and Ziv [1, Conjecture 5.4]) that
this lower bound is also tight.

Conjecture 1. For every graph G, xs(G) < 2A(G).

Conjecture 1 is known to be true for graphs G on n vertices with A(G) > n/6, proven by
Axenovich and Martin [4] and independently by Johansson, Johansson and Markstrém [10].

A fractional version of Conjecture 1 was proven by Aharoni, Berger and Ziv [1]. We say that a
graph on n vertices is fractionally strongly r-colourable if after adding r[n/r| — n isolated vertices
and taking the union with any collection of disjoint spanning copies of K, in the same vertex set,
the graph is fractionally r-colourable.

Theorem 2 (Aharoni, Berger and Ziv [1]). Every graph G is fractionally strongly r-colourable, for
every r > 2A(G).



2 Main results

We prove that Conjecture 1 is asymptotically true if A(G) is linear in |G].

Theorem 3 (Lo and S. [12]). For all ¢,e > 0, there exists ng = ng(c,e) such that the following
holds: if G is a graph on n > ng vertices with A(G) > cn, then x5(G) < (24 ¢)A(G).

Given a graph G and a partition P = {Vi,..., Vi } of V(G), we make the following definitions.
A subset S C V(G) is P-legal if |[SNV;| <1 for every i € [k]. A transversal of P is a P-legal set of
cardinality |P|. An independent transversal of P is a transversal of P which is also an independent
set in G. We will write transversal and independent transversal if G and P are clear from the
context.

To prove Theorem 3 it suffices to show that given any partition P of V(G) with classes of size
r > (2+¢)A(G), V(G) can be partitioned into independent transversals of P. Moreover, since
Conjecture 1 is known to be true for graphs on n vertices with A(G) > n/6, we might restrict
ourselves to study graphs with A(G) < n/6, and in such graphs any partition P of V(G) with
parts of size r = (2 +¢)A(G) < 3A(G) will have at least 3 classes. Thus Theorem 3 is implied by
the following theorem.

Theorem 4. For all integers k > 3 and e > 0, there exists ro = ro(k, €) such that the following holds
for allr > ro: if G is a graph and P is a partition of V(G) with k classes of size v > (2+¢)A(G),
then there exists a partition of V(G) into independent transversals of P.

By considering the complement graph, Theorem 4 easily yields the following corollary. A perfect
Kj-tiling of a graph G is a spanning subgraph of G with components which are complete graphs
on k vertices.

Corollary 5. For all integers k > 3 and € > 0, there exists ng = ng(k,e) such that the following
holds: if n > ng and G is a k-partite graph with classes of size n and §(G) > (k — 3/2 + €)n, then
G has a perfect Ky-tiling.

3 Proof sketch

Theorem 3 and Corollary 5 are implied by Theorem 4. To prove Theorem 4 we use the absorption
method, first used in a systematic way by Rodl, Rucinski and Szemerédi [13] (although similar ideas
were used previously, e.g. by Krivelevich [11]). This method has been used since to tackle a lot of
problems in extremal combinatorics regarding the existence of spanning graphs or hypergraphs.
To prove Theorem 4, the absorbing method works in two steps: finding an absorbing set and
finding an almost-perfect partial strong colouring. These can be summarised in the following way.

1. Finding an absorbing set. Given a partition P we find a small vertex set A C V(G)
which is balanced (i.e. it intersects each class of P in the same number of vertices) with
the property that for every small balanced set S C V(G), AU S can be partitioned into
independent transversals.

2. Finding an almost-perfect partial strong colouring We find a collection of disjoint
independent transversals of P covering almost all vertices.



Given that we can find an absorbing set and an almost-perfect partial strong colouring, the
proof of Theorem 4 can be sketched as follows. First, find a balanced absorbing set A C V(G) of
small size. Remove it to get the graph G \ A, which has a natural induced partition P’. For this
partition, find an almost-perfect partial strong colouring, i.e. a collection 7" of disjoint independent
transversals of P’, which covers almost all vertices of G \ A, except for a set S which is balanced
and small. Then, by the property of the absorbing set A, there exists a collection 7" of disjoint
independent transversals which partitions AU S. Then 7 = 7' U 7" is a collection of disjoint
independent transversals which covers the whole graph, as desired.

In the following subsections we sketch how to find an absorbing set and an almost-perfect partial
strong colouring.

3.1 Existence of an absorbing set

Given a graph G and a vertex partition P = {V1,..., Vi }, aset S is P-balanced if |SNV;| = |SNV}]
for all 4, j € [k]; or just balanced if there is no possible ambiguity. This is the absorbing lemma we
prove.

Lemma 6 (Absorbing lemma). For all integers k > 3 and € > 0, there exist 0 < f < a < € and
ro = 1o(g, k) such that the following holds for all r > ro. Let G be a graph and let P = {Vi,...,Vi}
be a partition of V(G) with classes of size r > (2 + ¢)A(G). Then there exists a P-balanced set
A C V(Q) of size at most an such that for every P-balanced set S C V(G) of size at most n,
AUS can be partitioned in independent transversals of P.

We sketch the proof of this lemma. To prove this, we proceed in three steps. First, using a
lemma of Haxell [9], we can show the following: for every two vertices x;, «; belonging to the same
class V;, there is a set T such that both TU{z;} and TU{x}} are independent transversals. That is,
every two vertices in the same class V; are contained in two independent transversals which differ
only in V;. Using this lemma and applying the standard ‘supersaturation’ trick, we can show that
for every pair not only one set T' as before exists, but Q(r¥~1) of them.

Secondly, using the previous results, for each transversal S (not necessarily independent) we
construct ‘many’ balanced sets A of size k? such that AU S can be partitioned into independent
transversals. We call this an absorbing set for S. Finally, form a set A by selecting every possible
balanced set of size k? independently at random. Almost surely, for every transversal S it will
contain ‘many’ absorbing sets for S. So for a small balanced set S C V(G), we can partition it
into transversals and then select for each one of them disjoint absorbing sets in A. This gives the
desired partition of AU S into independent transversals.

3.2 Existence of an almost-perfect partial strong colouring

Let G be a graph and P = {Vi,...,V;} a partition of V(G) with classes of size r. A t-partial
strong colouring of G with respect to P is a collection of ¢ disjoint independent transversals of P.
If xs(G) = r, then G has a r-partial strong colouring with respect to P. We show the existence of
(1 — §)r-partial strong colourings of P.

Lemma 7. For all integers k > 3 and 0, > 0, there exists ro = ro(k,0,¢) such that the following
holds for all r > ro: Let G be a graph and P be a partition of V(G) with k classes of size r >
(2 +e)A(G). Then there erxists a (1 — §)r-partial strong colouring of G with respect to P.



To see this, it is convenient to work in the k-uniform hypergraph H given by the independent
transversals of G. First we use Theorem 2 which implies that given the conditions of Lemma 7, there
always exists a perfect fractional strong colouring. In terms of the hypergraph H, this is equivalent
to the existence of a perfect fractional matching in H, i.e. an assignment of non-negative weights
to E(H) such that for every vertex v € V(H), the sum of weights of every edge incident with v is
equal to 1.

Now, we select a random subgraph H' C H guided by the perfect fractional matching. Using
concentration inequalities we can show that H' can be selected such that every vertex z € V(G)
is contained in almost the same number of edges of H' and every pair x,y € V(G) is contained in
a bounded number of edges of H’'. It turns out these two conditions are enough to apply a result
of Frankl and Rodl [6] which guarantees the existence of a matching M in H’ (i.e. a collection of
disjoint edges of H') covering almost all vertices. We are done since we can select M C H' C H as
our desired collection of independent transversals covering almost all vertices.
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