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Abstract

The 1-2-3 Conjecture is one of the most popular open problems in graph distinguishing la-
bellings. It claims that we can weight the edges of any graph G with no isolated edge with
weights in {1, 2, 3} in such a way that every two adjacent vertices of G get different sums of
their respective incident weights. The 1-2-3 Conjecture has recently been investigated from a
decomposition angle, via so-called locally irregular decompositions, which are edge-partitions
into locally irregular subgraphs. Through several recent studies, it was shown that this concept
is quite related to the 1-2-3 Conjecture. However, the full connection between all these concepts
was not clear.

In this work, we propose an approach that generalizes all concepts above, involving coloured
weights and sums. As a consequence, we get another interpretation of several existing results
related to the 1-2-3 Conjecture. We also come up with new conjectures, to which we give some
support.

1 Introduction

Given a k-edge-weighting ω of a graph G, for a positive integer k, the incident sum σω(u) of a
vertex u of G, induced by ω, is defined by:

σω(u) =
∑

e∈E(G),e3u

ω(e).

If σω is a proper vertex-colouring of G, then w is a neighbour-sum-distinguishing (nsd for short)
edge-weighting of G. The smallest integer k such that G has an nsd k-edge-weighting (if any)
is denoted by χΣ(G). For two graphs G and H, we say that G has no isolated H, if G has no
component isomorphic to H. In the study of nsd edge-weightings, we obviously have to consider
graphs with no isolated K2. These graphs are referred to as nice graphs.

Nsd edge-weightings were introduced in 2004 by Karoński,  Luczak and Thomason in [4] as a
weaker version of the irregularity strength. In the same paper, they asked a question which later
became the famous 1-2-3 Conjecture:

Question (1-2-3 Conjecture). Is it true that χΣ(G) ≤ 3, for every nice graph G?

1A full version of the paper is available at https://hal.archives-ouvertes.fr/hal-01690222



Despite many active investigations in the last decade (see [7]), the 1-2-3 Conjecture is still wide
open to date. These investigations have been mainly focused on proving the 1-2-3 Conjecture for
new classes of nice graphs, proving general constant upper bounds on χΣ and studying side aspects
of the 1-2-3 Conjecture. Up to now, the best result towards the 1-2-3 Conjecture was given by
Kalkowski, Karoński and Pfender in [3], where they proved that χΣ(G) ≤ 5 holds for every nice
graph G.

The current work is also related to locally irregular decompositions, which were considered
as a decomposition approach towards understanding some aspects behind the 1-2-3 Conjecture.
Locally irregular graphs are graphs where, for every edge uv, the degrees of u and v are different.
Hence locally irregular graphs are exactly the graphs that admit an nsd 1-edge-weighting. A locally
irregular decomposition of a graph G is a partition of E(G) into classes inducing locally irregular
subgraphs. Similarly as for nsd edge-weightings, there exist graphs which do not admit any locally
irregular decomposition; but, this time, the class of exceptional graphs is much wider (consider,
for instance, any path of odd length). An exceptional graph (with respect to locally irregular
decompositions) is also called an exception, for short. Conversely, a graph that is not exceptional is
said decomposable. In their first work on this topic [2], Baudon, Bensmail, Przyby lo and Woźniak
completely characterized all connected exceptions. Namely, connected exceptions include odd-
length paths, odd-length cycles, and a family T defined recursively from paths and triangles. The
smallest integer k such that a decomposable graph G admits a locally irregular k-decomposition is
denoted by χ′

irr(G).
Similarly to the 1-2-3 Conjecture, Baudon, Bensmail, Przyby lo and Woźniak proposed the

following conjecture in 2015:

Conjecture 1 ([2]). For every decomposable graph G, χ′
irr(G) ≤ 3.

The best known result toward Conjecture 1 is due to Lužar, Przyby lo and Soták in [5], where
they proved that χ′

irr(G) ≤ 220 holds for every decomposable graph G, and refined the bound to
χ′
irr(G) ≤ 7 for every decomposable bipartite graph G and to χ′

irr(G) ≤ 4 for every decomposable
subcubic graph G. Meanwhile, Conjecture 1 was verified for several classes of graphs, including
decomposable trees (i.e. trees not being an odd-length path), complete graphs on more than 4
vertices and some classes of decomposable bipartite graphs and Cartesian products [2]. Using
probabilistic methods, Conjecture 1 has also been verified for regular graphs with degree at least
107 [2], and for graphs with minimum degree at least 1010 [6].

2 A unified terminology

2.1 Coloured weights and sums

In this work we introduce a new notion of edge-weighting generalising both nsd edge-weightings
and locally irregular decompositions. The idea is to assign a colour to each edge in addition of a
weight. This allows us to calculate for each vertex a tuple of induced coloured sums. Formally, if
`, k ≥ 1 are two integers, and G is a graph, then to each edge of G, we assign, via an edge-colouring
ω, a pair (α, β), where α ∈ {1, . . . , `} and β ∈ {1, . . . , k}, which can be regarded as a coloured
weight (with value β and colour α). Now, for every vertex v of G, and every colour α ∈ {1, . . . , `},
one can compute the weighted α-degree σα(v) of v, being the sum of weights with colour α incident
to v. So, with every vertex v is associated a palette (σ1(v), . . . , σ`(v)) of ` coloured sums.
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Figure 1: Three (2, 2)-edge-colourings of K4.

When dealing with these new notions, there are many ways for asking for distinction, as several
coloured sums are available. In this work, we focus on the following three distinction variants. Every
two adjacent vertices u and v of G are considered weakly distinguished if there is an α ∈ {1, . . . , `}
such that σα(u) 6= σα(v). Vertices u and v are considered standardly distinguished if, assuming
ω(uv) = (α, β), we have σα(u) 6= σα(v). Finally u and v are considered strongly distinguished if,
for every α ∈ {1, . . . , `}, we have σα(u) = σα(v) = 0, or σα(u) 6= σα(v). Assuming ω verifies one of
the weak, standard or strong distinction condition for every pair of adjacent vertices, we say that
ω is a weak, standard or strong (`, k)-edge-colouring, respectively. We also say that G is weakly,
standardly or strongly (`, k)-edge-coloured, respectively. Finally, we say that G is weakly, standardly
or strongly (`, k)-edge-colourable, if there are `′, k′ ≥ 1 with `′ ≤ ` and k′ ≤ k such that G can be
weakly, standardly or strongly (`′, k′)-edge-coloured, respectively.

We provide, in Figure 1, an illustration of these concepts on K4, the complete graph on 4
vertices, where the two colours are represented by solid and dashed edges. Note that a strong
edge-colouring is also a standard edge-colouring which is also a weak edge-colouring. The converse
is not always true, however.

2.2 Connecting nsd edge-weightings and locally irregular decompositions

As mentioned earlier, (`, k)-edge-colourings are a generalization of nsd edge-weightings and of lo-
cally irregular decompositions. Indeed observe that a weak, standard or strong (1, k)-edge-colouring
is an nsd edge-weighting, and that a standard (`, 1)-edge-colouring is a locally irregular decompo-
sition. Moreover, a weak (`, 1)-edge-colouring is equivalent to a neighbour-multiset-distinguishing
`-edge-weighting (where adjacent vertices require distinct multisets of incident weights, see [1]).
Using these observations we reformulate the best known results on nsd edge-weightings and locally
irregular decompositions in the following theorems:

Theorem 1 ([3]). Every nice graph is strongly (1, 5)-edge-colourable.

Theorem 2 ([5]). Every decomposable graph is standardly (220, 1)-edge-colourable.

Theorem 3 ([1]). Every nice graph is weakly (4, 1)-edge-colourable.

Rephrased differently, the 1-2-3 Conjecture asks whether every nice graph is strongly (1, 3)-
edge-colourable. Similarly, Conjecture 1 asks whether every decomposable graph is standardly
(3, 1)-edge-colourable. As a leading objective, we consider the following conjecture, which has
flavour of both problems:

Conjecture 2. Every graph with no isolated edge or triangle is strongly (2, 2)-edge-colourable.



3 Our results

While keeping proving Conjecture 2 as our main objective, we also study its standard and weak ver-
sions (where the standard and weak distinction conditions are considered). We prove Conjecture 2
for nice complete graphs and bipartite graphs, and we characterize the bipartite graphs that do not
admit strong (1, 1)-, (1, 2)- or (2, 1)-edge-colourings, using results proved by Thomassen, Wu and
Zhang in [8], which characterize nice bipartite graphs that do not admit an nsd 2-edge-weighting.

Then we explore the standard version of Conjecture 2. We prove it for the following graph
families:

Theorem 4. Every 2-degenerate graph with no isolated edge or triangle is standardly (2, 2)-edge-
colourable.

Theorem 5. Every graph with maximum degree 3 with no isolated edge or triangle is standardly
(2, 2)-edge-colourable.

We also prove constant upper bounds for general graphs and for 9-colourable graphs:

Theorem 6. Every nice graph G is standardly (40, 3)-edge-colourable.

Theorem 7. Every nice 9-colourable graph G is standardly (2, 3)-edge-colourable.

Finally we study the weak version of Conjecture 2, proving more general results:

Theorem 8. Every nice graph G is weakly (3, 2)-edge-colourable.

Theorem 9. Every nice graph G is weakly (2, 4)-edge-colourable.

Theorem 10. Every graph G with δ(G) ≥ 59 is weakly (2, 3)-edge-colourable.
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[5] B. Lužar, J. Przyby lo, R. Soták. New bounds for locally irregular chromatic index of bipartite and
subcubic graphs. Preprint arXiv:1611.02341.

[6] J. Przyby lo. On decomposing graphs of large minimum degree into locally irregular subgraphs. Electronic
Journal of Combinatorics, 23(2):#P2.31, 2016.

[7] B. Seamone. The 1-2-3 Conjecture and related problems: a survey. Technical report, available online at
http://arxiv.org/abs/1211.5122, 2012

[8] C. Thomassen, Y. Wu, C.-Q. Zhang. The 3-flow conjecture, factors modulo k, and the 1-2-3-conjecture.
Journal of Combinatorial Theory, Series B, 121:308-325, 2016.


