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Abstract

Two important examples of permutation arrays for the study of M (n,d) are the Affine General
Linear Group AGL(1, q) acting on the finite field GF(q) of size ¢, and the Projective Linear Group
PGL(2,q) acting on the set GF(q) U {oo} of size ¢ + 1. Lower bounds for M(q — 1,4 — 3) and
M (q,q — 3) have been shown when ¢ # 1(mod 3). Here we consider the case when ¢ = 1(mod 3)
We give lower bounds for M(q — 1,q — 3) if ¢ > 7, and when ¢ is odd for M(q,q — 3) if ¢ > 13.

1 Introduction

We consider permutations on a set {2 of size n. Given two such permutations 7 and o, we let hd(m,0) =
{x € Q:m(x) # o(x)}], so hd(m, o) is the number of elements of Q2 at which 7 and o disagree. When
hd(m, o) = d, we say that m and o and are at Hamming distance d. A permutation array A is a set of
permutations on 2. We say that hd(A) = d if d = min{hd(m,0) : 7,0 € A}. For positive integers n
and d with d < n we let M (n,d) be the maximum number of permutations in any array A satisfying
hd(A) > d.

The study of permutation arrays began (to our knowledge) with the papers [6] and [9]. In recent
years there has been renewed interest in permutation arrays, motivated by applications in power line
transmission [§], [14], [I7], and [10], block ciphers [16], and in multilevel flash memories [12] and [13].
Some elementary exact values and bounds on M (n,d) are shown in [5]). More sophisticated bounds
were proved in [6] and [9], with a recent improvement in [I8]. The smallest interesting case for d is
d = 4, where non-elementary bounds for M (n,4) were developed in [7].

There are various construction methods for permutation arrays. If there are m mutually orthogonal
Latin squares (MOLS) of order n, then M (n,n—1) > mn [4]. Computational approaches for bounding
M (n,d) include clique search, and the use of automorphisms, for small n and d, are described in [5],
[11], [15], permutation polynomials [5], coset search [2], and partition and extension [3].

In this paper we obtain new lower bounds on M (n,d) for n and d near a prime power. Previous
results of this kind are given in [5] where it is shown that for n = 2¥ with n # 1(mod 3) we have
M(n,n—3) > (n+2)n(n—1) and M(n,n —4) > tn(n —1)(n*+ 3n +8).

Our method is to apply a contraction operation to the groups AGL(1,q) and PGL(2,q). We obtain
the following lower bounds, assuming that ¢ is prime power satisfying ¢ = 1 (mod 3);

1. for ¢ >7, M(q—1,qg—3) > (¢* —1)/2 for ¢ odd and M(q—1,q—3) > (¢ —1)(q+2)/3 for q even,
and

2. for ¢ > 13, M(q,q — 3) > Kq?log(q) for some constant K if ¢ is odd, and

3. bounds for M (n,d) for a finite number of exceptional pairs n,d using the Mathieu groups.
Consider a permutation array A acting on a set Q = {z1, 22, -+ , 2, } of size n, where the elements
of Q are ordered by their subscripts. We distinguish some element, say x,, by renaming it F'. Thus
the image string of any element o € A will be o(x1)o(x2)---o(F), and we say that o(z;) occurs in
position or coordinate x; of the string. Now for any 7 € A, define the permutation 72 on § by
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w(F) if m(z) = F,
2 (x)={ F if v = F,

m(x) otherwise.

Thus the image string of 7 is obtained from the image string of = by interchanging the symbols
F and 7(F) if 7(F) # F, while 72 = 7 if and only if 7(F) = F. In either case, 7° has F as its
final symbol. We let 72 be the permutation on n — 1 symbols obtained from 72 by dropping the last
symbol F from 72. As an example, if 7 = aFbed, then 72 = adbcF, and 72 = adbe. Further, for any

subset R C A, let R® = {n® : 7w € R}, and RS = {ﬂ'é :m € R}. So R%isa permutation array on the
n — 1 symbols acting on the set Q@ — {F'}, and is called the contraction of R.

Lemma 1 Let G be a permutation group acting on the set Q of sizen, and w,0 € G. (a) hd(7®,0%) >
hd(r,0) — 3. b) Assume hd(n®,0%) = hd(r,0) — 3. Then mo~ ' contains a 3-cycle in its disjoint cycle
factorization, and |G| is divisible by 3. ¢) Let S C G. Then |S®| = \Sf| and hd(S®) = hd(Sf). If
also hd(S) > 3, then |S| = |S2|.

2 The contraction graph for AGL(1,q)

Recall the Affine General Linear Group AGL(1, ¢) acting as permutation group on the finite field GF(q)
of size ¢, as the set of transformations {z — ax+0b: z,a # 0,b € GF(q)} under the binary operation of
composition. Clearly |AGL(1,q)| = q(q—1). It is straightforward to show that hd(AGL(1,q)) = q— 1.

For brevity set H = AGL(1,q). We have previously proved that if ¢ # 1(mod 3), then hd(H*) >
q— 3. Here we investigate the case where ¢ = 1(mod 3). The key idea is to find a subset I C AGL(1,q)
such that hd(I®) > g — 3. Once we have such an I, then I®isa permutation array on ¢ — 1 symbols,
and by Lemma satisfies hd([f) > ¢ — 3. This implies the lower bound M (¢ —1,q—3) > |If] = |1],
since ¢ > 7 implies hd(I) > g — 1 > 3. The actual size of I will then yield our precise lower bound.

Consider the contraction graph Ca(q) defined by V(Ca(q)) = AGL(1,q), and E(Ca(q)) = {mo :
hd(n®,0%) = q—4}. Now recall that hd(AGL(1,q)) = q—1, so that by Lemmawe have hd(n®, %) >
q — 4 for all 7,0 € AGL(1,q). So if I is an independent set in C4(q), then hd(I®) > ¢ — 3. We are
thus reduced to finding a large independent set I in C'4(q).

Lemma 2 Let m and o be vertices of the graph Ca(q), ¢ = 1(mod 3), say with o(x) = ax + r and
w(x) = bxr 4+ s. Then, (a) if a # b, hd(w,0) =q—1, (b) if 7(F) = F, then 7 is an isolated point in
Ca(q), (c) if © and o are neighbors in Ca(q), then (1) hd(w,0) = ¢—1, and hd(x®,>) = hd(r,0) -3,
and (2) § and g are the distinct roots of the quadratic t> +t+1 =0 over GF(q).

We now define a graph H(q) on the same vertex set as that of C'4(¢) which contains C4(q) as a
subgraph. Then any independent set in H(q) is also independent in C'4(q), and thus it suffices to find
a suitably large independent set in H(q). The equation ¢* + ¢+ 1 = 0 has two distinct roots in GF(q)
for g =1 (mod 3). Also direct substitution shows that if ¢ is a root of this equation, then so is % So
with Lemma |2 as motivation, let us call two permutations m,0 € AGL(1, q), say with o(z) = ax + r
and 7(r) = bx + s, associates if § and g are the distinct roots of the quadratic t? + ¢ + 1 = 0 over
GF(q). We then let V(H(q)) = AGL(1,q) and E(H(q)) = {mo : m and o are associates}.

Theorem 3 Let g be a prime power with ¢ = 1 (mod 3). Then, (a) H(q) is reqular of degree 2, (b)
Every connected component of H(q) is a cycle of length a multiple of 3, (c) Fach connected component
D of H(q) contains an independent set of vertices in Ca(q) of size at least: if q is odd, [@L and
if q is even, \\/(731))|'

Corollary 4 Let q be a prime power with ¢ = 1 (mod 3). Then M(q—1,q —3) > (¢> —1)/2 if q is
odd, and M(q—1,q—3) > (¢ —1)(q+2)/3 if q is even.



3 The contraction graph for PGL(2,q)

Let ¢ be power of a prime. The permutation group PGL(2,q) is defined as the set of one to one
functions o : GF(q) U{oo} — GF(q) U{oo}, under the binary operation of composition, given by

{ o(z) = Zjis | a,b,¢,d € GF(q),ad  be,x € GF(q) U {0} }. (1)

Here o(x) is computed by the rules: (1) if z € GF(q) and = # —(d/c), then o(z) = Z:fj_rg, (2) if
x € GF(q) and x = —(d/c), then o(z) = oo, (3) if x = o0, and ¢ # 0, then o(z) = a/c, and (4) if
x =00, and ¢ = 0, then o(x) = co. It is known that |[PGL(2,q)| = (¢ + 1)g(q¢ — 1).

If ¢ # 1(mod 3), then hd(PGL(2,q)*) > q — 3. Thus, we restrict ourselves to the case ¢ = 1(mod
3), ¢ an odd prime power. The plan will be similar to the one we used in the previous section. That
is, for a certain set I C PGL(2,q) we will find a permutation array 1 ¢ PGL(2, q)f on ¢ symbols
with hd(I_A) > g — 3, thus obtaining the lower bound on M (q,q — 3) > \I§|.

Define the contraction graph Cp(q) by V(Cp(q)) = PGL(2,q), and E(Cp(q)) = {xo : hd(n®,c>) =
q —4}. So edges of Cp(q) correspond to pairs 7, o for which hd(r®,0?) achieves its least possible
value of ¢ — 4, occurring when 72 and o2 agree in 5 postions. Thus any independent set I in Cp(q)
satisfies hd(I*) > ¢ — 3. By Lemma , we get hd(I_A) > q — 3, while |I_A] = |I?| = |1).

Consider m € PGL(2,q), say with n(z) = ‘Cfig, where x € GF(q) U{oo}. If ¢ = 0, then 7(o0) = 0.
Thus 7 is an isolated point in C'p(gq). Suppose then that ¢ # 0. Then some manipulation shows that

m(z) = % = K + ==, for suitable elements K,r,i € GF(q), r # 0, which depend on 7.

Lemma 5 Let g = p™, where p is an odd prime, with ¢ = 1(mod 3), ¢ > 13. Let 7,0 € PGL(2,q), say
with ©(x) = a+ -, o(x) = b+ 7. 1s#0. Thenmo € E(Cp(q)) = r=sand (b—a)(j—1i)=r.
For any S C CG(q), we let [S] be the subgraph of Cp(g) induced by S; that is, V([S]) = S and
E([S]) = {mo : 7,0 € S,m0 € E(Cp(q))}. When r is fixed by context, we denote a vertex v =a + -~
by the abbreviation (i,a).
Consider the partition of PGL(2,q) given by PGL(2,q) = U,xoP, where for r € GF(q) with
r#0, P ={a+ - :a,9 € GF(q)}, so |P,| = ¢*>. Further consider the partition of P, given by

r—1

Py = Ujcar(qBi(r), where, Bi(r) ={a+ ;5 :a € GF(q)}.

Theorem 6 Let ¢ = p™, where p is an odd prime, with ¢ = 1(mod 3). Then the following hold in
the graph Cp(q). (a) For any r # s, r,s # 0, we have [P;] = [Ps]. (b) For any r # 0 and i # j,
[Bi(r) U Bj(r)] is a perfect matching, which matches Bi(r) to Bj(r]. (¢) Cp(q) is reqular of degree
q— 1. (d) For any nonisolated vertex v € Cp(q), [N(v)] is a disjoint union of cycles, where N(v) is
the set of neighbors of v in Cp(q).

Theorem 7 Let g = p™, where p is an odd prime, ¢ > 13. Then the connected components of Cp(q)
are: (1) the isolated points - these are of the form m = ax + b, a # 0, and there are q(q — 1) of them,
and (2) the graphs [P,] induced by the sets P,.

We can now obtain our independent set by a theorem of Alon [1].

Theorem 8 [1] Let G = (V,E) be a graph on N wvertices with average degree t > 1 in which for every
vertex v € V' the induced subgraph on the set of all neighbors of v is r-colorable. Then the mazimum
size a(G) of an independent set in G satisfies a(G) > m% log(t), for some absolute constant c.
Corollary 9 Let ¢ be a power of an odd prime p, with ¢ = 1(mod 3), a) a(Cp(q)) > Kq*log(q) for
some constant K. b) M(q,q — 3) > Kq*log(q) for some constant K.

Note: A more complete version of this research is available at
http://www.utdallas.edu/~besp/contraction.pdf
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