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Abstract

In this paper, we introduce a notion of VC-dimension VC-dim(G) of a subgraph G of a Carte-
sian product, generalizing the classical Vapnik-Chervonenkis dimension of set-families (viewed as
subgraphs of hypercubes). We then extend a result of Haussler, Littlestone and Warmuth about
the density of subgraphs of hypercubes to subgraphs G of Cartesian products G; X -+ X G,
of connected graphs. Namely, we prove that if Gi,...,G,, belong to the class G(H) of all fi-
nite connected graphs not containing a given graph H as a minor, then for any subgraph G of

G1 X -+ - X Gy, the inequality :‘b;gggl‘ < u(H)VC-dim(G) holds, where u(H) is the density of the

graphs from G(H).

1 Introduction

A folklore result asserts that if G = (V, E) is an induced subgraph of the m-dimensional hypercube
Qm = Ko X -+ X Ky, then 1Bl < log|V]. In [3, Lemma 2.4], Haussler et al. improve this result

VI
by replacing log |V'| by the VC-dimension of G (defined in Section 2). In this paper, we extend the
inequality % < VC-dim(G) =: d to subgraphs G = (V, E) of Cartesian products I := G x -+ - X Gy,

of graphs Gy, ..., Gy, from the class G(H) of connected graphs avoiding a fixed graph H as a minor.
To do so, we define a notion of VC-dimension of subgraphs G of arbitrary Cartesian products and
show that if all the factors of " belong to G(H ), then the density of G is at most the VC-dimension
VC-dim(G) of G times pu(H), where u(H) is a constant such that any graph not containing H as
a minor has density at most p(H) (it is well known [2] that if r := |V (H)|, then u(H) < cry/logr
for a universal constant ¢). Namely, we show the following theorem

Theorem 1. Let H be a graph and let G be a subgraph of a Cartesian product I' = Gy X -+ X Gy
of connected graphs G1,...,Gy, from G(H). Then

< p(H) VC-dim(G) < u(H) log [V (G)|.

2 Preliminaries

All graphs G = (V, E) occurring in this note are finite, undirected, and simple. The density dens(G)
of G will be the maximal ratio |E(G")|/|V (G’)| over all its subgraphs G'.

Let Gi,...,Gy, be a family of m connected graphs. The Cartesian product T' := [[", G; :=
G1 X -+ X Gy, is a graph defined on the set of all m-tuples (z1,...,2y), z; € V(G;), where two
vertices © = (x1,...,2y) and y = (y1,...,ym) are adjacent if and only if there exists an index
1 < j < m such that z;y; € E(G;) and z; = y; for all i # j. The m-dimensional hypercube Q, is
the Cartesian product of m copies of K.

A subproduct T" of a Cartesian product I' = [[;*| G; is a product such that I = H?:l G’ij,
where each G;j is a connected non-trivial (i.e., with at least one edge) subgraph of G;; (with



{i1,... ik} € {1,...,m}). If every Gy, consists of a single edge, then I" is called a cube-subproduct.
Given a vertex v = (v; ,...,v; ) of I, we say that a vertex v = (v1,...,vn) of I is an extension of
v if vy, = véj for all j € {1,...,k}. We denote by F(v’) the set of all extensions v in T" of a vertex
v" of a subproduct H§:1 G;-j and call F(v') the fiber of v’ in the product I'. Let G be a subgraph
of a Cartesian product I" and I be a subproduct of I'. The trace of V(G) on V(I") consists of all
vertices v' of T such that F(v') N V(G) # (). The projection of G on I is the subgraph 7/ (G) of
I' induced by the trace of V(G) on V(IV).

The classical definition of VC-dimension (for set systems) can be stated in a graph-theoretical
way as follows. A cube-subproduct IV of @, is shattered by G if 7p(G) = I'. The VC-dimension
of G is the largest dimension of a cube-subproduct shattered by G. More generally, a subproduct
= H?Zl G, of a Cartesian product I' = [[;; G is shattered by G if mp/(G) = I". The VC-
dimension VC-dim(G) of G with respect to the Cartesian product I' is the largest number of
non-trivial factors in a subproduct I of I shattered by G. Equivalently, VC-dim(G) is the largest
dimension of a cube-subproduct of I' shattered by G.

3 Proof of Theorem 1

We start with a brief description of the proof of the inequality |E|/|V| < d provided by Haussler et
al. [3] for subgraphs of hypercubes. We adapt this proof to our notations and we generalize it to
subgraphs of arbitrary Cartesian products. Let G = (V, E) be a subgraph of a Cartesian product
of m copies of K (i.e., of the hypercube @Q,,) and set d := VC-dim(G). Assume that the factors Ko
of @, are indexed by 1,...,m and consider the ith Ko, i € {1,...,m}. This K5 is an edge whose
extremities are denoted by v and v. Remark that every vertex of (),, has either v or v as its ith
coordinate and so do the vertices of G. Denote by G, the graph obtained by projecting GG on the
Cartesian product of the m—1 factors of Q,, not indexed by i (i.e., by identifying the vertices having
u as ith coordinate with those having v). Denote by G** the graph obtained from G by contracting
every edge of G of the form (z1,...,u,...,zn)(21,...,0,...,2Zp). Then VC-dim(G,,) < d and
VC-dim(G"") < d — 1 hold. We now do the following induction hypothesis: |E(Gyy)| < d|V(Guy)|
and |E(G"™)| < (d —1)|V(G"")|. The proof of the required density inequality follows by induction
from the equality |V| = |V (Gu)|+|V (G"?)| and the inequality |E| < |E(Guy)|+|E(G*™)|+|V (G*)].

We continue by defining the graphs G,, and G** for subgraphs of arbitrary Cartesian products.
In case of the hypercube []" | K», the edge uv corresponds to a factor of this product and Gy, can
be viewed as the image of G in the product of K3’s where the whole factor corresponding to wv
was contracted. When the factors are arbitrary graphs, contracting a whole factor of the product
would be too rough. So, let u and v be two adjacent vertices of some factor G;. Let IV denote the
set of common neighbors of u and v in G;. Let G, be the graph obtained from G; by contracting
the edge uv, namely, the graph in which the edge uv is replaced by a vertex w and every edge xu
and/or zv of G; is replaced by a single new edge zw; thus @1 does not contain loops and multiple
edges. Let G; be the graph which is a star having as the central vertex a vertex w corresponding
to the edge uv and as the set N of leaves the vertices = corresponding to vertices x of N (i.e., such
that zuv is a triangle of G;); the edges of (71 are all pairs of the form wz.

Let G, be the subgraph of T.= Gy X+ xGi_q X @Z X Git1 X -+ X Gy, obtained from G by
identifying every vertex (vi,...,vi—1, U, Vit1,- . ., Upy) With its neighbor (v1, ..., v;-1,v,vi11,. .., Um)
and by removing multiple edges. Let G"” be the subgraph of I' := G1 x --+ X Gi—1 X G; X
Git1 X -+ X Gy, obtained from G by applying the transformation of G; to G;. Namely, G*¥ is



Figure 1: Examples of graphs G, G*Y and G¢°.

the subgraph of ' induced by the following set of vertices: (1) (v1,...,0i—1,W,Vit1,...,Um) IS a
vertex of G* if (v1, ..., 01, U, Vit1,...,Um) and (vi,...,0i—1,V,Vit1,...,VUy) are vertices of G and
(2) (V15 s V=1, T, Vit1,---,Um) is a vertex of G* if (v1,...,0i—1,%,Vit1,...,Vm) is a vertex of G,
x € N,and (vi,...,u,...,0p) and (vi,...,v,...,0,,) are vertices of G.

Notice that Gy, plays the same role in the Cartesian product of arbitrary graphs than in
hypercubes (i.e., a vertex (vi,...,w, ..., vy) isin V(Gyyp) if (v1,. .., Uy ..., 0m) OF (U1, ..., Uy ..oy Ury)

belong to G). However, this is not exactly the case for G*¥. We define the graph G which is the
subgraph of G*¥ induced by the vertices that have a central node w of éz as their ¢th coordinate
(see Fig. 1). If G; is a Ko (or, more generally, the edge uv does not belong to a triangle), then
G"" coincides with G¥. The remaining vertices of G*V, those having a leaf = of G; as their ith
coordinate, will be called tip vertices. We denote by V;(G"V) the set of tip vertices.

Let T" be a Cartesian product of connected graphs Gfi,...,G,, from G(H) and let G be an
induced subgraph of I'. Let G; be any factor of ' (i € {1,...,m}) and let uv be any edge of G;.
The four following lemmas are the key ingredients to an inductive proof of Theorem 1. For the
proofs of these results and some applications to adjacency labeling schemes, see [1].

Lemma 1. VC-dim(G) < logn.

Lemma 2. Respectively computing the VC-dimension of Gy, and G2 with respect to T andT leads
to the following inequalities

VC-dim(Gyy) < VC-dim(G) and VC-dim(G:Y) < VC-dim(G) — 1.

Lemma 3. The graphs G, Gy, G¥¥, and G* satisfy the following relations:

c

V(Guo)| + [V(G™)[ = [VI(G*™)[ = [V (Guo)| + [V(GE)],
< E(Guo)| + [E(G™)| + [V(GE7)]-



We have to prove that Eg%g;} < p(H) - VC-dim(G) < pu(H) -log |[V(G)|. The second inequality

follows from Lemma 1. We will prove the inequality ‘I‘%g;" < u(H) VC-dim(G) by induction on the
number of vertices in the factors of I'. Since each factor G; of I" belongs to G(H), G; and any its
subgraph contain a vertex v of degree at most p(H). Let u be any neighbor of v in G;. Then the set
N of common neighbors of u and v has size at most pu(H) — 1. Consider the graphs G, G*”, and
GY obtained from G by performing the previously described operations with respect to the edge uv
of G;. Then G, is a subgraph of the product T = Gy x--xGi_1x (A;, X Giq1 -+ X Gy Since CA}'Z is
a minor of G, all factors of r belong to G(H ). Moreover, since G, contains less vertices than G;, we
can apply the induction assumption to subgraphs of f, in particular to G,,. Analogously, G*¥ and
GYY are subgraphs of the product I = G x- X Gi_1 X éz X Giy1 X+ X GZ?J and since C~}’Z is a star
isomorphic to a subgraph of G;, all factors of I' also belong to G(H). Since G; contains less vertices

than G;, also do the graphs G"* and G*¥. Consequently, we have 1B(Guo)l < w(H) - VC-dim(Gyy)

[V (Guv)l
ag(tzl ;ggggzgi < u(H) VC-dim(GY’). Using the inequality %11222 < max{3", {2} and Lemma 3, we
obtain
[E@G)] _ [E(Guo)| +[E(G™)] + [V(GE")]
V&)~ V(Guw)| + [V(GE)]

{ [E(Guw)| [E(G™)]+ [V(GE)] }
V(Guw)l’ V(GE)] '

By Lemma 2, VC-dim(Gy,) < VC-dim(G), whence

< u(H) VC-dim(Gyy) < p(H) VC-dim(G).

Thus it remains to provide a similar upper bound for |E(GT‘U/)(‘2,L‘;)(‘G2U)|. Since |E(G")|+|V(G¥)| =

|E(GY) |+ |VI(G"™) |+ |V (GY)| = |[E(GYY)|+|V (G*™)| and |N| < p(H), from Lemma 2 we conclude:
[E(G")| + [V(Ge)] _ [E(G)|+ [V(G™)]

V(G| B V(G|

p(H) VO-dim(G™) + u(H)
W(H)(VC-dim(G) — 1) + p(H)
n

(H) VC-dim(G).

<
<

This establishes the inequality }figg;" < u(H) VC-dim(G) and concludes the proof of the theorem.
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