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Abstract

For a given graph search algorithm and a graph G, a vertex v is said to be an end-vertex
if there exists a corresponding search ordering of the vertices such that v is the last vertex
in this ordering. It is known that the complexity of recognizing the end-vertices in general
graphs is NP-hard for several search algorithms, such as Breadth First search, Depth First
Search, and their lexicographic variants. This motivated the study of end-vertices with respect
to some other search algorithms. In this work we consider Maximum Cardinality Search (MCS)
and Maximum Neiborhood Search (MNS) and present results concerning the complexity of the
end-vertex problem with respect to these search methods.

1 Introduction

Graph algorithms frequently use various graph traversal algorithms as an important part of their
execution. In general, a graph search represents a method of ordering vertices of a graph, and
depending on the way our method picks the next visited vertex, various search methods are defined.
Arguably the two most known methods are Depth-First Search (DFS) and Breath-First Search
(BFS). Since every search method produces some ordering of the vertices, it is desired to understand
the structure of that ordering – the correctness of algorithms that are based on some search method
can be proved using the structural characterization of the ordering. In 1976 Rose, Tarjan and Lueker
introduced Lexicographic Breadth-First Search (LBFS) [6] which, unlike BFS and DFS, admits a
characterization that was used to obtain a linear-time algorithm for recognition of chordal graphs
[6]. This algorithm was further simplified in 1984, by the introduction of yet another graph search
method, called Maximal Cardinality Search (MCS), see Tarjan [7]. At an arbitrary step of iteration,
this method chooses a non-visited vertex with the largest number of its visited neighbors.

The above-mentioned notion of LBFS was naturally extended to Lexicographic Depth First
Search (LDFS), which was introduced as well as characterized with forbidden structures by Corneil
et al. [5]. The authors identified the core common property of both lexicographic search methods,
which led to the definition of a new graph search called Maximal Neighborhood Search (MNS),
where each vertex is assumed to be uniquely labeled, and in the process it maintains a subset of
its visited neighboring labels, see [5]. At an arbitrary step of iteration, this method chooses a
non-visited vertex with the maximal label under set inclusion, and then appends its (unique) label
to the lists of its non-visited neighbors.

In 2010, Corneil et al. [4] described a related end-vertex problem, which asks whether a certain
vertex can correspond to the last visited vertex in a chosen graph search algorithm. The authors
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showed that the LBFS end-vertex problem is NP-complete for general graphs. A few years later,
Charbit et al. proved a similar result for DFS, BFS and LDFS [3]. The end-vertex problem
remained unsolved for MNS and MCS. We give a proof that it is NP-complete in both cases,
obtaining a complete overview of the problems’ complexities. Moreover, we present polynomial
algorithms for certain classes of graphs. For a more specific overview of the mentioned results, see
Table 1.

Search algorithm BFS LBFS DFS LDFS MCS MNS

All Graphs NPC NPC NPC NPC NPC NPC
Weakly Chordal NPC [3] NPC [4] NPC NPC [3] ? NPC
Chordal ? ? NPC ? ? P [1]
Interval ? P [4] ? ? P P
Split P [3] P [3] NPC [3] P [3] P P

Table 1: Complexity of the end-vertex problem. Bold results are ours.

The rest of this extended abstract is structured into two parts concerning MNS and MCS,
respectively. In Section 2 we describe a reduction from 3-SAT to the MNS end-vertex problem,
for the class of weakly chordal graphs. In Section 3, we show a reduction from 3-SAT to the MCS
end-vertex problem as well as some additional polynomial results for certain graph familes. For
graph-theoretic notions used throughout the paper we refer the reader to [2].

2 Maximum Neighborhood Search

In this section we describe an NP-completeness proof for the end-vertex-problem of MNS in weakly
chordal graphs, by using a reduction from 3-SAT. Let I be an instance of 3-SAT. We construct the
corresponding graph G(I) as follows (see Fig. 1 for an example). The variables (together with their
negations) are represented by the complement of a matching. Non-adjacent vertices correspond
to the two literals of the same variable. Each clause is represented by one vertex. All the clause
vertices correspond to an independent set. Furthermore the clause vertices are connected to all
literal vertices, except to the literals that are elements of the clause. Additionally, we have a vertex
b that is connected to all literal vertices, a vertex s connected to all literal vertices and all clause
vertices , as well as a vertex t, which is connected to all vertices but s.

Lemma 1. For an instance I of 3-SAT and graph G(I) as above, the following holds:

i) If MNS chooses a clause vertex before vertex b or b before s, then t is not the end vertex.

ii) If t is the end vertex of MNS, then the algorithm has to choose s and an assignment at the
beginning of the search. Any of these choices can be made.

iii) For each instance I of 3-SAT, the graph G(I) is weakly chordal.

From the above statements, it clearly follows that the 3-SAT instance I has a satisfying assign-
ment if and only if t can be the end-vertex of a MNS-search on G(I). We state the main theorem
concerning the end-vertex problem for the Maximum Neighborhood Search.

Theorem 2. The MNS end-vertex-problem is NP-complete for weakly chordal graphs.
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Figure 1: The NP-completeness construction for the MNS end-vertex-problem. The depicted
graph is G(I) for I = (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x3 ∨ x4). In both boxes only non-edges
are displayed by dashed lines. The connection of a vertex with a box means that the vertex is
connected to all vertices in this box.

3 Maximum Cardinality Search

In this section we show NP-completeness of the end-vertex problem for the MCS, where we con-
struct a polynomial reduction from 3-SAT. Let I be an arbitrary instance of 3-SAT, with x1, . . . , x`
being literals of I, respectively. We construct a corresponding graph G(I) as follows (see Fig. 2
for an example). Each literal xi of I is represented by two disjoint copies of K2, where the first
edge aibi represents a literal, the second edge cidi represents its negation, while each clause is
represented by a triangle. Vertices belonging to consecutive literals are fully adjacent and each
edge connecting two vertices of consecutive literals is subdivided. For each literal xi one of the two
vertices ci or di (resp. ai or bi) is adjacent to the three vertices of any clause which contains the
literal xi (resp. the negation of xi). We add the vertices s and s′, where N(s) = {a1, b1, c1, d1}
and N(s′) = {s}. Additionally, the graph contains an “almost” clique C with 3(4l + 8(l − 1)) + 4
vertices: three vertices for each literal and auxiliary vertex and 4 connector vertices (inducing a
subgraph isomorphic to 2K2 which are each completely connected to the vertices al, bl, cl, dl) – thus
all but 4 connector vertices form a clique. Finally, we add the vertex t which is adjacent to all
clause vertices.
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Figure 2: The NP-completeness construction for the end-vertex-problem of MCS with I = (x1 ∨
x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4).



By inspecting the construction of G(I), observe the following properties.

Lemma 3. For an instance I of 3-SAT and graph G(I) as above, the following holds.

i) If I has a satisfying assignment A, then there is an MCS on G(I) that ends in t.

ii) Any maximum cardinality search that ends in t must begin in s or s′.

iii) If I does not admit a satisfying assignment, then t can not be an end-vertex of G(I).

The statements from the above lemma clearly imply that any instance I of 3-SAT has a satis-
fying assignment if and only if t is a possible MCS end-vertex of G(I), concluding our reduction.

Theorem 4. The MCS end-vertex problem is NP-complete.

For the families of split graphs and interval graphs, we give the following characterization of
the possible end-vertices.

Theorem 5. Let G = (V,E) be a split graph. Then t ∈ V is the last vertex of some MCS-ordering
σ of G if and only if t is simplicial and the neighborhoods of the vertices with smaller degree than
t are totally ordered by the set inclusion.

Theorem 6. Let G = (V,E) be an interval graph and let C1, C2, . . . , Ck be a linear order of the
maximal cliques of G. Then t ∈ V is the last vertex of some MCS-ordering σ of G if and only if

i) t is simplicial, and

ii) If Ci is the unique clique containing t, then either i = 1, i = k or Ci−1 ∩Ci ⊆ Ci ∩Ci+1, and

|Ci ∩ Ci+1| ≤ |Cj ∩ Cj+1| for all j > i,

or the same holds for the reverse order Ck, Ck−1, . . . , C1.

Corollary 7. The MCS end-vertex problem is solvable in polynomial time for split graphs and for
interval graphs.
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