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Abstract

We study the eternal dominating number and the m-eternal dominating number on digraphs.
We generalize known results on graphs to digraphs. We also consider the problem ”oriented
(m-)eternal domination”, consisting in finding an orientation of a graph that minimizes its
eternal dominating number. We prove that computing the oriented eternal dominating number
is NP-hard and characterize the graphs for which its value is 2. We also study these two
parameters on trees, cycles, cliques, bicliques and different kinds of grids.

1 Introduction

The problem of eternal domination on undirected graphs, while being a rather recent problem, has
been widely studied (see [5] for a survey). It has initially been motivated by problems in military
defense.

The eternal domination on a graph G can be seen as an infinite game between two players: the
defender and the attacker. First, the defender chooses a set D0 of k vertices, with k fixed, called
guards. At turn i, the attacker chooses a vertex ri called attack in V \Di−1 and the defender must
defend the attack by moving to vi exactly one guard along one edge, from a vertex vi adjacent to
ri. The new guards configuration is Di = Di−1 ∪ {ri} \ {vi}. The defender wins the game if he can
defend any infinite sequence of attacks. The eternal domination number, denoted by γ∞(G), is the
minimum number of guards necessary for the defender to win. An eternal dominating set is a set
that can initially be chosen by the defender in a winning strategy.

The m-eternal domination is similar to the eternal domination but the defender is authorized
to move as many guards as he wants among the k guards at each turn. The m-eternal dominating
number is denoted by γ∞m (G).

In general graphs, the two following results compare the values of both the eternal domination
number and the m-eternal domination number to the values of other well known graph parameters.

Theorem 1. [1, 3, 4] Given a graph G, we have

γ(G) ≤ γ∞m (G) ≤ α(G) ≤ γ∞(G) ≤
(
α(G) + 1

2

)
where γ(G) is the domination number of G, and α(G) is the independent set number of G.

Theorem 2. [1] Given a graph G, we have

γ∞(G) ≤ θ(G)

where θ(G) is the clique covering number of G.

The values of γ∞ and γ∞m have been studied for many classes of graphs and, in particular, grids.
To our knowledge, the eternal domination problem has only been studied on undirected graphs.

In this paper, we consider eternal domination on directed graphs where the guards must follow



the direction of the arcs, both when they defend a vertex and when they move to another vertex.
Additionally, as it has been done for many digraph parameters such as diameter, chromatic number,
domination number or maximum outgoing degree, we consider the problem consisting in orientating
an undirected graph to minimize γ∞ or γ∞m .

2 Eternal domination on digraphs

The main result of this section is the generalization of Theorem 1 to directed graphs. We first
define the parameter α for digraphs:

Definition 1. For G a digraph, α(G) denotes the order of the greatest induced acyclic subgraph of
G.

Notice that this parameter is a generalization of α(G) for graphs since α(G) = α(
←→
G ) for any

graph G where
←→
G denotes the symmetrical orientation of G. The analogue of Theorem 1 gives:

Theorem 3. Given a digraph G, we have

γ(G) ≤ γ∞m (G) ≤ α(G) ≤ γ∞(G) ≤
(
α(G) + 1

2

)
.

3 Eternal domination on orientations of graphs

3.1 Definitions

We now orientate undirected graphs in order to minimize their eternal or m-eternal domination
numbers. An orientation of an undirected graph G is an assignment of exactly one direction to each
of the edges of G. This leads to the introduction of three new parameters for undirected graphs:

Definition 2.
−→
γ∞(G) = min{γ∞(H) : H is an orientation of G}

−→
γ∞m (G) = min{γ∞m (H) : H is an orientation of G}
−→α (G) = min{α(H) : H is an orientation of G}

3.2 General results

We first give general results for undirected graphs, such as the inequality linking −→α (G) to
−→
γ∞(G).

Lemma 1. −→α (G) ≤ −→γ∞(G).

Let G be an undirected graph. We define C(G) by starting from G, adding one vertex per edge
of G and connecting each new vertex to the extremities of the associated edge. This definition
allows us to present the following result:

Lemma 2. Let G be an undirected graph with m edges. Then

• −→γ∞(C(G)) = γ∞(G) +m

• −→α (C(G)) = α(G) +m

The consequences of this lemma are particularly interesting, leading to complexity results:

Corollary 1. For every k > 0, there exists a graph G such that
−→
γ∞(G) ≥ −→α (G) + k.

Corollary 2. Computing
−→
γ∞(G) is NP-hard.

Corollary 3. Computing −→α (G) is NP-hard.



3.3 Results on some classes of graphs

We are now interested in the value of
−→
γ∞ and

−→
γ∞m for particular classes of graphs.

The first graphs to be studied are the forests. Since they are acyclic for any orientation, we
obtain the following result:

Theorem 4. Let G be a graph with order n. Then,
−→
γ∞(G) = n iff

−→
γ∞m (G) = n iff G is a forest.

The case of cycle is also quite straightforward for both parameters.

Theorem 5.
−→
γ∞(Cn) = n− 1 and

−→
γ∞m (Cn) =

⌈
n
2

⌉
for every n ≥ 3.

Studying the value of
−→
γ∞m for complete graphs led to a full characterization of graphs G for

which
−→
γ∞m (G) = 2.

Theorem 6. Let G be a graph of order n ≥ 3. Then,
−→
γ∞m (G) = 2 iff either:

• n = 2k and G is a complete graph from which at most k disjoint edges are removed

• n = 2k + 1 and G is a complete graph from which at most k − 1 disjoint edges are removed.

The exact value of
−→
γ∞ for complete graphs seems hard to find and we could only obtain bounds

by combining Theorem 3 and a result from Erdős and Moser concerning −→α [2].

Theorem 7. blog2 nc+ 1 ≤ −→γ∞(Kn) ≤
(
2blog2 nc+2

2

)
.

The case of bicliques, on the other hand, has been fully covered for both parameters.

Theorem 8.
−→
γ∞(Kn,m) = max{n,m}+ 1 for every n,m ≥ 1.

Theorem 9.
−→
γ∞m (K2,2) = 2

−→
γ∞m (K2,3) =

−→
γ∞m (K3,3) = 3

−→
γ∞m (Kn,m) = 4 for every n ≥ 2 and m ≥ 4.

We have considered
−→
γ∞ on square grids and have obtained the following results:

Theorem 10. ⌈
2mn

3

⌉
≤
−→
γ∞(Pn�Pm) ≤

⌈
7mn+ 2m+ 2n

9

⌉
.

When m and n are both multiples of 3, we have:

−→
γ∞(Pn�Pm) ≤ 7mn

9
.

For square grids of size 2× n, 3× n and 4× n, we have the exact value of
−→
γ∞.

Theorem 11. Let n ≥ 2. Then,
−→
γ∞(P2�Pn) =

⌈
3n
2

⌉
,

−→
γ∞(P3�Pn) =

⌈
7n
3

⌉
,

−→
γ∞(P4�Pn) = 3n.

−→
γ∞m has been considered on square grids, toric grids, toric king grids and toric hypergrids.



Theorem 12. ⌈mn
4

⌉
≤
−→
γ∞m (Pn�Pm) ≤

⌈nm
2

⌉
.

Theorem 13. ⌈mn
4

⌉
≤
−→
γ∞m (Cn�Cm) ≤

⌈
nm+ 4m+ 4n− 8

3

⌉
.

When m and n are both multiples of 3, we have:
−→
γ∞m (Cn�Cm) ≤ nm

3
.

For toric king grids, we have the following result.

Theorem 14. −→
γ∞m (Cn � Cm) ≤

⌈nm
5

⌉
+O(n+m).

When m and n are both multiples of 5, we have:
−→
γ∞m (Cn � Cm) ≤ nm

5
.

We also generalize Theorem 13 to toric hypergrids.

Theorem 15.
−→
γ∞m (Cn1� . . .�Cnk

) ≤ n
k+1 where n is the order of the graph and all ni are multiples

of k + 1.

4 Conjectures and open questions

We now enumerate some future works and open questions.
Is there a natural parameter for digraphs that is an upper bound of γ∞ as the clique covering

number is for graphs?
Give better bounds for

−→
γ∞ on complete graphs, and in particular, determine if

−→
γ∞(Kn) =

−→α (Kn) for any n.
We conjecture that the upper bounds in Theorem 15 and in special cases of Theorem 13 and

14 correspond to the exact value of
−→
γ∞m .

Study the complexity of deciding whether
−→
γ∞m ≤ k in the general case and when k is fixed.

We conjecture that
−→
γ∞m (G) ≤

⌈
n
2

⌉
for every strongly connected digraph G.
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