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Abstract

We discuss the relationship between graph searches and graph convexities. Nearly every graph search
produces a convex geometry, i.e. every set of visited vertices is convex for some convex geometry. Many
convex geometries have been defined on graphs using an interval definition: geodesic, monophonic . . . .
We recall that the Lexicographic Breadth First Search (LexBFS) captures these convex geometries on
many graph classes and we finish with some new properties on AT-free graphs.

1 Introduction

It is well-known that for various special graph classes, lexicographic breadth first search, LexBFS for short,
always ends on an extreme point for a given convex geometry defined on these classes of graphs. For
example on chordal graphs, LexBFS always ends at a simplicial vertex which is extreme for the monophonic
convexity [10]. Indeed, in an attempt to understand why the orderings produced by this graph search and
others (MNS, LexDFS, etc) have been so successful, one quickly notices that the orderings produced by
these traversals are precisely words of some antimatroids or convex geometries. The notion of antimatroids
and convex geometries have appeared in the literature under various settings; in this work, we focus on the
graph searching setting, where we discuss some known geometries on cocomparability graphs, and then
present new structural properties on AT-free graphs, a superclass of cocomparability graphs.

A convexity space is a tuple (V,N ), where V is a finite ground set, and N is a collection of subsets of
V such that ∅ ∈ N , V ∈ N , and N is closed under intersection. The elements of N are called convex sets.
One can define a convex hull of a subset S ⊆ V in the natural way as τ(S) being the intersection of all the
convex sets that contain S. With every closure operator, it is natural to talk of extreme points as the set of
points one can delete and still maintain a convex set. If a convexity space satisfies the following condition,
known as the anti-exchange property, then it is called a convex geometry.

The Anti-Exchange Property: Let S ⊆ V and a, b,∈ V such that a, b /∈ τ(S). Then a ∈ τ(S ∪
{b}) =⇒ b /∈ τ(S ∪ {a}).

Introduced first by Edelman and Jamison in 1985 [8], convex geometries have appeared in the literature
under different names and aspects, the most famous one being antimatroids. Given a convex geometry
(V,N ), then the set system (V,F) where F = {X : X = V \Y, Y ∈ N ) is an antimatroid. We call the
sets X ∈ F feasible sets. Antimatroids capture various eliminations orderings on graph classes, which are
the basis of a number of efficient algorithms. There is a close relationship between convexity spaces and
the notion of abstract betweenness defined by Menger [11]. Betweenness is a ternary relation, that relates
the “placement” of a point z between two other points a and b. We say (and write) z belongs to the interval
I[a, b] when z is between a and b. The notion of what an interval is varies with every betweennesses. As
noticed by Chvátal [2], several abstract betweennesses can be defined on graphs. Given a betweenness
relation, one can deduce a convexity as follows: C ⊆ V (G) is convex if ∀a, b ∈ C and ∀z ∈ I[a, b], z ∈ C.

A well studied antimatroid is the one that rises from chordal graphs. These are graphs where the largest
induced cycle is a triangle. Chordal graphs are characterized by a vertex ordering known as a perfect
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elimination ordering, or PEO. An ordering σ = v1, v2, . . . , vn is a PEO if for all i ∈ [n], vi is simplicial in
σ[v1, . . . , vi−1]; Meaning the neighbourhood of vi to its left in σ induces a clique. Thus vn is a simplicial
vertex in G. The set system (V,F) whose ground set are the vertices of a chordal graph, and its feasible sets
are the suffixes of PEOs form an antimatroid [10]. Given such an antimatroid, the corresponding convex
geometry is the tuple (V,N ) where S ⊆ V is convex if for all chordless paths between the vertices in S are
also in S. That is, for all a, c ∈ S, if b lies in a chordless ac path in G, then b ∈ S. This is known as the
monophonic convexity. Indeed the set system (V,N ) is a convex geometry if and only if G is chordal [9].

A second well studied antimatroid is the double shelling antimatroid of posets. Let P (V,≺) be a poset.
The double shelling antimatroid on P is the set system whose feasible sets are unions of ideals and filters of
P . It is easy to see that the corresponding convex geometry is a set system (V,N ), where a set S ∈ N is
convex if for all a, c ∈ V , every b that satisfies a ≺ b ≺ c or c ≺ b ≺ a is also in S.

For a more comprehensive survey on this topic, we refer the reader to the monograph Greedoids by
Korte, Lovász, and Schrader [10], and to [7, 9] for more on convexities in graph.

In this work we study convex geometries that rise from graph searches, in particular on graph searches
when applied to cocomparability and AT-free graphs, using the following two convexities below. By con-
vention, an extreme vertex for V , will be called an extreme vertex of G.
cc-convexity: Cocomparability convexity : Icc[x, y] = {z|x, y, z is an independent triple and ∀σ cocompa-
rability ordering of G, either x ≺σ z ≺σ y or y ≺σ z ≺σ x}.
2p-convexity: 2-paths convexity: I2p[x, y] = {z|x, y, z is an independent triple and ∃P,Q two induced
paths, such that P from z to x avoids N [y], and Q from z to y avoids N [x]}.
We present the following theorem, without proof, which connects these two type of convexities. Notice
however, that the converse of the theorem is not true as can be seen with any long chain.

Theorem 1.1. If G is a cocomparability graphs, then z ∈ I2p[x, y] =⇒ z ∈ Icc[x, y].

2 Graph searches and convexities

A graph search is a mechanism to traverse a graph one vertex at a time. Some well known graph searches
are BFS and DFS. In this section we use the terminology defined in [4] for usual graph searches.

In this section, we focus on two graph classes: cocomparability graphs and asteroidal triple free graphs
(or AT-free). This latter graph class contains cocomparability graphs. An asteroidal triple in a graph G is an
independent triple of vertices x, y, z, where every pair of the triple is connected via a path that avoids the
neighbourhood of the third vertex. An AT-free graph is a graph with no asteroidal triples.

Let G(V,E) be an AT-free graph and σ a LexBFS of G. An ordering τ of G is an AT-free order of V
if for all z ∈ [x, y], z ≺τ x or z ≺τ y. Two vertices u, v are unrelated with respect to a third vertex w if
there exists a path Puw that v does not see and a path Pvw that u does not see. A vertex w is admissible if
no two vertices u, v are unrelated with respect to w. An ordering σ = v1 . . . vn is an admissible elimination
ordering (AEO for short) of G if for all i ∈ [n], vi is admissible in G[vi . . . vn].

Definition 2.1. For a given graph property P , we say that a vertex ordering τ = v1, v2, . . . , vn is P-perfect
if ∀vi,P(vi) is true for vi in G[vi, . . . , vn]. We say that P is hereditary if it satisfies the property that
∀v ∈ V (G), and ∀H subgraph of G, if P(v) holds in G, then if v ∈ V (H), P(v) holds in H as well.

Using the above definition, we observe the following simple but key theorem, which generalizes the
classical antimatroid of simplicial elimination schemes.

Theorem 2.2. If P is a hereditary property of a graph class, then the set S of prefixes of P-perfect orderings
form an antimatroid (V,S).



Examples of Theorem 2.2 include property P (x) = {d(x) ≤ k} for instance, or P (x) = {x is not the
middle vertex of a P4}, or P (x) = {x is a, true or false, twin}. Let us consider a graph search S, if we
consider the sequence of visited vertices as follows: V0 = {x0}, V1 = {x0, x1}, . . . Vn = {V }. It yields a
S-convexity on V (G) by defining ∀A ⊆ V , conv(A) = Vi, where i is the smallest index for which A ⊆ Vi.

Lemma 2.3. If G is connected and S a generic search then its S-convexity is a convex geometry.

As a consequence, since complements of convex geometries are antimatroids, the suffixes of generic graph
searches considered as sets form an antimatroid. Thus, the very natural question we are faced with is:

For which graph searches and graph classes is this S-convexity an interesting convexity in graphs?

Lemma 2.4. If at each step, the set of visited vertices V of a graph search S is a C convex set, then at each
step the next vertex to be visited is an extreme vertex for V with respect to the convexity C.

There is no equivalence between these two above properties, but if the graph searches are restricted we have:

Theorem 2.5. Let S be a generic search and G an hereditary class of graphs. The three following properties
are equivalent for a graph convexity C:

(i) At each step of the search S the set of visited vertices is a C-convex set

(ii) The last vertex visited by S is extreme for the C convexity.

(iii) The suffixes of the search S considered as sets form an antimatroid.

In this case, we say that S is compatible with the C convexity. As a consequence, for a hereditary class
of graphs, to check the compatibility of a given graph search with a convexity, it is enough to test whether
the last vertex is always extreme for this convexity. Let us now examine some properties for the graph
convexities described above.

Lemma 2.6. [5] If G is an AT-free graph, every LexBFS ends at an admissible vertex of G.

Although there are non-AT-free graphs where LexBFS produces an AEO, Corneil and Köhler noticed that:

Theorem 2.7. [3] Every LexBFS search is compatible with the 2p-convexity iff G is AT-free.

Notice that the existence of one single admissible elimination ordering does not characterize AT-free
graphs –as can be shown in Fig. 2. Both graphs contain an asteroidal triple, but both admit an admissible
elimination scheme. Moreover for the rocket graph, its unique extreme point cannot be the end of a LexBFS.
So if we want to use this theorem to build a recognition algorithm for AT-free graphs, we need to check for
all LexBFSs.
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Figure 1: A sun+ and a rocket



2.1 New Properties on AT-free graphs

We next give a few properties on AT-free graphs by looking at the underlying convex geometry structure of
this class. Consider the set family F of sets of vertices that are prefixes of AEOs of G AT-free. We have the
following obvious property:
Property 1. The set system (V,F) forms an antimatroid.

Independently, Chang et al. proved a stronger result that shows that the 2p-convexity is a convex geom-
etry on AT-free graphs [1]. This is stronger than Property 1 since it exhibits the type of convexity of AT-free
graphs, and in particular the type of betweenness of this graph class.

Lemma 2.8. Let x be a LexBFS end vertex of G, thn there exists an AT-free ordering τ of G where x is the
end vertex of τ .

Theorem 2.9. G is AT-free iff every induced subgraph H has ≥ 2 extreme vertices for the 2p-convexity
which are ends of LexBFS.

Theorem 2.10. Every AT-free graph is either a clique or has ≥ 3 admissible vertices

This latter theorem is reminiscent of the classical property on chordal graphs by Dirac, which states that
every chordal graph is either a clique or has at least two non-adjacent simplicial vertices [6].

Conclusion: Can we use the antimatroid structure of AT-free graphs to lift some algorithms from cocompa-
rability graphs to AT-free graphs?
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