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Abstract

Topologically, a hypermap is a cellular embedding of a connected hypergraph into a closed
connected surface. A more algebraic approach can also be followed. For instance, an oriented
regular hypermap can be regarded as a triple H = (∆+/H, x, y), with ∆+ being the subgroup
of index 2 in the triangle group ∆, and ∆+/H = 〈x, y〉 being the monodromy group of the
oriented regular hypermap. The duality group of H is defined as the the minimal subgroup
D(H) E Mon(H) such that H/D(H) is a self-dual hypermap (a hypermap isomorphic to its
dual). In this talk, we will try to show some relationships between the duality index (the order
of D(H)) and the genus of a hypermap.

If G is the monodromy group of an oriented regular hypermap, then we can easily calculate its
genus g using the formula:

−X = 2g − 2 = |G| − V − E − F,

where V , E and F are the number of hypervertices, hyperedges and hyperfaces, respectively and X
is the Euler characteristic. In an oriented regular hypermap of type (l,m, n) we have |G| = mE =
lV = nF ; therefore, the previous formula can be written in the following way:

−X = 2g − 2 = |G|(1− 1
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Hence:

g = |G|(1

2
− 1

2l
− 1

2m
− 1

2n
) + 1.

For each integer g there is a self dual oriented regular (hyper)map with genus g. It is well
known that we can find a map of genus g of type {4g, 4g} for every g > 0. Following a popular
example (see, for instance, Group Actions on Graphs, Maps and Surfaces, a summary of a short
course of lectures given by Marston Conder at the Group St Andrews conference in 2001), let G
be the dihedral group of order 8g with generators u, v of order 2 and 4g:

G =< u, v|u2 = v4g = (uv)2 = 1 > .

If r0 = u, r1 = uv and r2 = uv2g we have: r0r1 = v and r1r2 = v2g−1 of order 4g and r2r0 = v2g

of order 2. The map M = (G, r0, r1, r2) is a g-sheeted covering of the torus map branched over
its single vertex and its single face-center and is orientable since 〈r0r1, r1r2〉 = 〈v〉 has index 2 in
G = D8g. The hypermap is chiral and its genus is equal to:
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M is then a map of type {4g, 4g} and of genus g. The same can be said for the associated oriented
hypermap:

M = (G, ror1, r1r2) = (〈v〉, v, v2g−1).

This oriented regular map is self dual, since (4g, 2g − 1) = 1, and has also genus g.



If g = 0 (the sphere) the only oriented regular hypermaps are the Platonic solids and the two
infinite families of types (2, 2, n), (n, 1, n) and their duals. Some of these are self-dual and others
totally dual (if D(H) = Mon(H), or equivalently H∆ = ∆, we say that the hypermap is totally
dual) or with intermediate duality index.

The tetrahedron (with A4 as monodromy group) is a self-dual map on the sphere. On the
other hand, the cube and the octahedron (its dual) are examples of platonic solids that give rise
to totally dual (hyper)maps of types (3, 2, 4) and (4, 2, 3), respectively. The same can be said
about the icosahedron and dodecahedron, of types (3, 2, 5) and (5, 2, 3), respectively. These are
just examples associated to the platonic solids but, on the sphere, it is possible to find an infinite
number of totally dual hypermaps:

H = (Zn = 〈t〉, t, 0).

These having a single hypervertex of valency n, n hyperfaces of valency 1 and one hyperedge of
valency n. An infinite number of self-dual hypermaps on the sphere can also be obtained by using
only dihedral groups as monodromy groups:

H = (D2m, x, y) with

D2m = 〈x, y|x2, y2, (xy)m = 1〉.

The same can be said for hypermaps of intermediate index (again, we have an infinite number
of these) but a stronger statement can be made:

Theorem 1. In the sphere we can find a non totally dual (hyper)map of each duality index d.

A hypermap H = (G, x, y) of type (l,m, n) that has genus 1 (hypermap on the torus) must
satisfy:
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Which is the same as saying that:
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Therefore, on the torus, there are only three (infinite) families of oriented regular hypermaps (and
their duals), whose types are (2, 3, 6), (2, 4, 4) and (3, 3, 3).

A self-dual hypermap on the torus is (Z4, 1, 1) of type (4, 2, 4). Another example would be the
hypermap (A3, (123), (123)) of type (3, 3, 3). If

G = ∆(3, 3, 3) = 〈x, y|x3 = y3 = (xy)3 = 1〉

then the finite quotients of this group, by torsion-free normal subgroups, will give hypermaps of
type (3, 3, 3) and of genus 1. In fact, an infinite number of self-dual hypermaps can be constructed
on the torus.

Totally dual hypermaps can also be found on the torus. For instance, (Z4, 2, 1) is a totally dual
hypermap of type (2, 4, 4). Or we might take the group Gn = 〈α, β〉 ≤ S5+3n, for n ∈ N with

α = (1, 2),



β = (3, 4, 5)(6, 7, 8)...(3 + 3n, 4 + 3n, 5 + 3n).

Then ord(α) = 2, ord(β) = 3 and ord(αβ) = 6. It follows that the hypermap H = (Gn, α, β)
is totally dual of type (2, 6, 3). We can easily obtain other totally dual hypermaps on the torus
by taking finite quotients, by torsion-free normal subgroups, of the universal hypermap of type
(2, 6, 3).

However, not all hypermaps on the torus are self-dual or totally dual. Examples of hypermaps
with intermediate duality index can also be found: (Z6, 1, 3) of type (6, 2, 3) has duality index 3.

For genus 2, one example of a totally dual hypermap is the hypermap of type (3, 3, 4), described
in [3], with SL2(3) as monodromy group (and that is obviously totally dual since 3 and 4 are co-
prime). Another one is the map of type {3, 8} listed by Conder (http://www.math.auckland.ac.nz/
conder/).

For every g ∈ N we can get an infinite number of totally dual hypermaps of genus greater than
g by using, for instance, Hurwitz maps (hypermaps of type (3, 2, 7)). Higman proved that almost
all alternating groups are quotients of the triangle group ∆(2, 3, 7). Because the genus is given by
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we can make it as big as we want. Some other examples of totally dual Hurwitz maps can be
obtained using Luchini’s result in [2] but in this case with SLn(q) as monodromy group. Since
explicit generators are given in [2], not only can we obtain a sequence of hypermaps of growing
genus but also the description of those hypermaps.

We have already proved that we can always find a self-dual hypermap for every genus. But we
can also find, for each integer g > 1, a non self-dual hypermap of that genus g. In fact, we can do
this using only hypermaps of a certain type:

Theorem 2. For each integer g > 1 there is a non self-dual (and non chiral) hypermap of genus
g with vertices, edges and faces of the same order.
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