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Abstract

Identifying codes were introduced by Karpovsky et al. (1998) and have been widely stud-
ied since then. Goddard and Wash (2013) studied them in the Cartesian products of complete
graphs and provided a conjecture for three equal complete graphs stating that γID(Kq�Kq�Kq) =
q2. In this article, we present an infinite family of counterexamples to this conjecture show-
ing that γID(Kq�Kq�Kq) ≤ q2 − q/4 when q is a power of four. Goddard and Wash also
showed a lower bound γID(Kq�Kq�Kq) ≥ q2 − q

√
q. We improve this lower bound to

γID(Kq�Kq�Kq) ≥ q2 − 3
2q. Moreover, we also show that γID(Kn

q ) ≤ qn−k for n = 3 qk−1
q−1

improving the previous upper bound γID(Kn
q ) ≤ qn−1 by Goddard and Wash.

Let us assume that the graph G = (V,E) is undirected, simple and finite. The set of vertices
adjacent to a vertex v is called the open neighbourhood of v, denoted by N(v), and the set N(v) ∪
{v} = N [v] is called the closed neighbourhood of v. A nonempty subset C of the vertex set V is
called a code and its elements are called codewords. We define the identifying set or the I-set of a
vertex u as

I(G,C;u) = I(C;u) = I(u) = N [u] ∩ C

depending on whether the code or the graph is clear from the context. The set of vertices C is
called a dominating set if I(v) 6= ∅ for each vertex v ∈ V and the minimum size of a dominating set
in a graph G is called the domination number γ(G). Karpovsky, Chakrabarty and Levitin defined
identifying codes in [5]— for other articles on the subject, see the site [6]. For the complete proofs
of the theorems and lemmas of this paper and some additional results, see [4].

Definition 1. A code C ⊆ V is identifying in a graph G = (V,E) if C is a dominating set and

I(u) 6= I(v)

for each pair of distinct vertices u, v ∈ V . An identifying code C of minimum cardinality in a finite
graph G is called optimal and its cardinality is denote by γID(G).

A graph is called the complete graph on q vertices, denoted by Kq, if each pair of vertices of
the graph is adjacent. The Cartesian product of two graphs K1 = (V1, E1) and K2 = (V2, E2) is
defined as K1�K2 = (V1 × V2, E), where E is a set of vertices such that (u1, u2)(v1, v2) ∈ E if and
only if u1 = v1 and u2v2 ∈ E2, or u2 = v2 and u1v1 ∈ E1. The Cartesian product of n copies of
Kq is denoted by Kn

q . Moreover, we denote V (K3
q ) = {(x, y, z) | (x, y, z) ∈ Z3, 1 ≤ x, y, z ≤ q} and

(x, y, z)(x′, y′, z′) ∈ E(K3
q ) if exactly one of the three coordinates differ. Furthermore, we say that

P ⊆ V (K3
q ) is a pipe if it is fixes two out of three coordinates. For example, {(1, 1, z) | 1 ≤ z ≤ q}

is a pipe.
Previously, identifying codes have been studied in Kq�Km in [2] and [3]. Goddard and Wash

(in [2]) studied identification also in Kq�Km�Kl and gave a conjecture for the cardinality of an
optimal identifying code in K3

q .

Conjecture 2 ([2]). For all q ≥ 1, γID(Kq�Kq�Kq) = q2.
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Figure 1: Identifying code C1 in K3
4 .
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Figure 2: Identifying code CL in K3
4 [V (K3

4 )\Di].

In [2], Goddard and Wash prove that γID(K3
q ) ≤ q2 for all q ≥ 1. Moreover, by an exhaustive

computer search, they show that γID(K3
q ) = q2 when q = 3. Furthermore, they provide a lower

bound stating that γID(K3
q ) ≥ q2− q√q. Recall that for the domination number we have γ(K3

q ) =⌈
q2

2

⌉
(see [1]).

Lemma 3. Let C be a code in K3
q and v be a vertex of K3

q .

(i) If a vertex v has two codewords in its I-set and they do not locate within a single pipe, then
there is exactly one other vertex which has those two codewords in its I-set.

(ii) The I-set I(v) is not a subset of any other I-set if and only if there are at least three codewords
in I(v) and they do not locate within a single pipe.

Goddard and Wash [2] gave the following construction for identifying codes of cardinality q2.

Lemma 4. The code Cq = {(a, b, c) | a+b+c ≡ 0 (mod q)} is identifying in K3
q with the additional

property that each pipe in K3
q has exactly one codeword.

Proof. There is exactly one codeword in each pipe since if we fix two of the three coordinates, then
for exactly one value of the third coordinate the equation a+ b+ c ≡ 0 (mod q) is satisfied.

The identifying code in K3
4 of the following theorem is of cardinality 15. The code is presented

in Figure 1; for example, (2, 1, 3) corresponds to the number 3 in the top row and second column.

Theorem 5. The code C1 = {(2, 1, 3), (2, 1, 4), (3, 1, 1), (4, 1, 2), (1, 2, 2), (1, 2, 4), (2, 2, 4), (3, 2, 2),
(1, 3, 1), (2, 3, 2), (3, 3, 3), (4, 3, 3), (2, 4, 4), (4, 4, 1), (4, 4, 3)} is identifying in K4�K4�K4.

In what follows, we call the set Di = {(j, j, j) | 1 ≤ j ≤ 4} as a diagonal. We also need another
code, CL, to produce the infinite family of codes. The code is represented in Figure 2 for the graph
K3

4 [V (K3
4 ) \Di], that is, for the graph K3

4 with its diagonal vertices Di deleted.

Lemma 6. The code CL = {(2, 1, 3), (3, 1, 4), (4, 1, 2), (1, 2, 4), (3, 2, 1), (4, 2, 3), (1, 3, 2), (2, 3, 4),
(4, 3, 1), (1, 4, 3), (2, 4, 1), (3, 4, 2)} is identifying in K3

4 [V (K3
4 ) \Di] and for each codeword c ∈ CL

we have I(c) = {c}.

Due to the recursive nature of our construction we define an operation which combines two
codes in K3

q and K3
m into a code in K3

qm.

Definition 7. Let C1 ⊆ {(x, y, z) | 1 ≤ x, y, z ≤ q} and C2 ⊆ {(x, y, z) | 1 ≤ x, y, z ≤ m} be codes
in K3

q and K3
m, respectively. Define Ext(C1, C2) = {(x, y, z, a, b, c) | (x, y, z) ∈ C1, (a, b, c) ∈ C2}.



The sextuple of coordinates can be interpreted in the following way.

Observation 8. We can interpret each vertex (v, u, w) ∈ K3
qm = {(x′, y′, z′) | 1 ≤ x′, y′, z′ ≤ qm} as

(x, y, z, a, b, c) where 1 ≤ x, y, z ≤ q and 1 ≤ a, b, c ≤ m by having v = x+ q(a−1), u = y+ q(b−1)
and w = z + q(c − 1). Hence, we can consider the graph K3

qm consisting of m3 subcubes each
consisting of q3 vertices. Moreover, the three latter coordinates, (a, b, c), inform the location of the
subcube and the three former coordinates tell the location of the vertex within the subcube.

Theorem 9. The code Ct = Ext(Cq/4, CL) ∪ Ext(Ct−1, Di) is identifying in Kq�Kq�Kq, where

q = 4t and t ≥ 2. This gives γID(Kq�Kq�Kq) ≤ q2 − q
4 .

Proof. By induction, we get |Ct| = |CL| · |Cq/4| + |Di| · |Ct−1| = 3
4q

2 + 4|Ct−1| = q2 − q
4 . The

basic idea behind the code is dividing K3
q into 64 subcubes and then identifying the location of the

subcube with the codes Di and CL and the location within the subcube with the codes Cq/4 and
Ct−1. This is possible due to the property shown in Lemma 4. Moreover, Ext(Ct−1, Di) identifies
vertices locating in the diagonal subcubes and Ext(Cq/4, CL) identifies vertices locating in the other
subcubes.

So far, we have given constructions for identifying codes in K3
q with q = 4t. However, we can

further use these codes to construct new identifying codes for other values of q.

Theorem 10. If 2 · 4t ≤ q ≤ 2 · 4t+1 − 1, then we have

γID(Kq�Kq�Kq) ≤ q2 − 4t−1.

Goddard and Wash have shown that γID(K3
q ) ≥ q2 − q√q for q ∈ Z. In what follows, we show

a new lower bound: γID(K3
q ) ≥ q2 − 3

2q for q ∈ Z.

Definition 11. Let C be a code in K3
q and i and j be integers such that 1 ≤ i ≤ q and 1 ≤ j ≤ 3.

Define a layer of the graph K3
q , denoted by Dj

i , as the set of vertices which fixes the jth coordinate

as i, i.e., D2
i = {(x, i, z) | 1 ≤ x, z ≤ q}. Define also Cj

i = C ∩Dj
i , X

j
i = {v ∈ Dj

i | I(Cj
i ; v) = ∅}

and X =
⋃3

j=1

⋃q
i=1X

j
i .

We say that a codeword c is a corner if it has at least two other codewords in its I-set not
belonging to a same subcube. Moreover, if those codewords are in the layer Dj

i , then we say that c

is a corner of the layer Dj
i and denote with kji the number of corners of the layer Dj

i . A codeword

which is not a corner or an isolated codeword is a fellow. Let M j
i ⊆ D

j
i be a minimum dominating

set of Dj
i such that Cj

i ⊆ M j
i . Then we denote f ji = |M j

i | − q and aji = q − |Cj
i |. Note that

γ(Kq�Kq) = q.

Lemma 12. If C is an identifying code in K3
q , then we have

3∑
j=1

q∑
i=1

(aji + f ji )2 ≤ 6

3∑
j=1

q∑
i=1

f ji .

Proof. Note that we need q + f ji codewords to dominate the layer Dj
i . Hence, the value f ji can

be understood as a measurement of how much the structure of the code within a layer increases
the cardinality of Xj

i . Indeed, observe that if a non-codeword in the layer Dj
i is not dominated

by Cj
i , then it belongs to Xj

i and there is a row and a column in the layer Dj
i without codewords.



Moreover, observe that we have only q − aji codewords in the layer Dj
i . Hence, there are at least

q + f ji − (q − aji ) = f ji + aji rows and columns which do not have a codeword when f ji + aji ≥ 0.

Thus, we have (aji + f ji )2 ≤ |Xj
i | and hence,

∑3
j=1

∑q
i=1(a

j
i + f ji )2 ≤ |X|.

For each vertex v ∈ X we have c ∈ I(v) for some c ∈ C. Moreover, we have c′ ∈ I(c)
since otherwise I(v) = I(c). Hence, c is a corner or a fellow. Moreover, we can show that if c
is a fellow then there is a corner in its I-set. Thus, each vertex of X is associated to a corner.
Furthermore, it can be shown that each corner can be associated to at most three vertices of
X. Each corner is a corner of at least one layer and hence, the number of corners is at most∑3

j=1

∑q
i=1 k

j
i . Thus, we get |X| ≤

∑3
j=1

∑q
i=1 k

j
i . Furthermore, we can show that kji ≤ 2f ji and

hence, we get |X| ≤ 6
∑3

j=1

∑q
i=1 f

j
i which gives the claim.

Theorem 13. We have γID(Kq�Kq�Kq) ≥ q2 − 3
2q.

Proof. We obtain

|C| =1

3

3∑
j=1

q∑
i=1

(q − aji ) = q2 − 1

3

 3∑
j=1

q∑
i=1

(aji + f ji )−
3∑

j=1

q∑
i=1

f ji


≥q2 − 1

3

 3∑
j=1

q∑
i=1

(aji + f ji )− 1

6

3∑
j=1

q∑
i=1

(f ji + aji )
2

 ≥ q2 − 3

2
q.

The first inequality is due to Lemma 12 and the second one is gained using Lagrange’s method and
then finding the minimum of the resulting polynomial.

Previously, Goddard and Wash also showed that γID(Kn
q ) ≤ qn−1 for n, q ∈ Z ([2]). We improve

this significantly in the next theorem. Recall that, by [5], we get γID(K3n
q ) ≥ 2

3q
3n−k for n = qk−1

q−1
(compare this lower bound to the second upper bound given in the following theorem).

Theorem 14. Let n = qk−1
q−1 for some prime power q and k ≥ 1. Then

γID(Kn
q ) ≤ 3qn−k and γID(K3n

q ) ≤ q3n−k.
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