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Abstract

For a digraph D, we define the dichromatic number, x 4(D), of D as the minimum k for which
D admits a k-coloring of its vertices such that each color class induces an acyclic subdigraph
in D. This number is related to de chromatic number of an undirected graph as follows: Let
G be a graph and let D be digraph obtained from G by replacing each edge uv of G by a pair
of symmetric arcs, (u,v) and (v,u); an acyclic coloring of D is a proper coloring of G, since
each pair of adjacent vertices in G belong to a common 2-cycle in D and thus they must have
different colors.

Determine the dichromatic number of a digraph is a difficult task. In fact, the authors in [2]
proved that the problem of deciding if a given digraph D has dichromatic number equal to 2 is
N P-complete, this is even true when D is a tournament. Therefore, a more reasonable task is
to give bounds for these number. In this talk we will give four of these bounds.

In this talk D = (V(D), A(D)) will denote a loopless digraph. Two vertices u and v are adjacent
if (u,v) or (v,u) is in A(D). The underlying graph of D is the graph G obtained from D by replacing
each arc (u,v) for the undirected edge uv. Given a subset S of V(D) the induced subdigraph of D
by S, denoted by D(S), is the subdigraph of D with vertex set S and (u,v) € A(D(S)) if and only
if (u,v) € A(D).

Here the walks, paths and cycles are always directed. The girth (resp. circumference) of D is
the shortest (resp. longest) cycle. A proper k-coloring of a graph G is an assignment of k colors, 1,
2, ..., k, to the vertices of GG such that each pair of adjacent vertices have different colors. A proper
k-coloring of D is a proper k-coloring its underlying graph G. The chromatic number of a graph G
(resp. digraph D), denoted by x(G) (resp. x(D)) is the minimum k such that G (resp. D) admits a
proper k-coloring. An acyclic k-coloring of D is a function ¢ : V(D) — [k] such that ¢~1(i) induces
an acyclic subdigraph in D for all ¢ € [k], where [k] denotes the set of positive integers {1,2...,k}.
The dichromatic number of D, denoted by x4(D), is the minimum & such that D admits an acyclic
k-coloring.

For a strongly connected digraph D, we call a DFS tree to a subdigraph T with V(D) = V(7))
obtained by the DFS algorithm, which is an out-branching rooted at a vertex r, the root. The time
a vertex v € V(T) is explored by the algorithm, f(v), is the DFS label of v. Notice that each vertex
has a unique DFS label and any two different vertices have different DFS labels. * Whenever there
is a wv-path in T, v is a descendant of u and u is an ancestor of v. Recall that an arc (u,v) € A(D)
is: (i) a tree arc if (u,v) € A(T), (ii) a backward arc if u is a descendant of v, (iii) a forward arc
if u is an ancestor of v and (iv) a cross arc if u is neither an ancestor nor a descendant of v. For
further details we refer the reader to [1] pages 26-29.

It is clear that if D is an acyclic digraph then x4(D) = 1 and if D contains a cycle then
xA(D) > 2, therefore we look for upper bounds for y4(D).

In [5] Neumann-Lara, proved for a digraph D that the dichromatic number of D, x 4(D), equals
the maximum of the dichromatic numbers of the strong components of D. Thanks to this, we can
focus our attention only on strongly connected digraphs.

In [6] Tuza used a depth first search (DFS) tree of a graph to study its proper colorings, now
we will use the directed version of a DFS tree to study the dichromatic number of a digraph.



Henceforth, D will be a strongly connected digraph and T will be a DFS tree of D rooted at a
vertex r and V' will denote V(D) = V(7).

Remark 1. Tt follows from the definitions that in D there are four types of arcs: tree arcs, forward
arcs, backward arcs and cross arcs. If (u,v) is: (i) a tree arc then f(u) < f(v), (ii) a forward arc
then f(u) < f(v), (ili) a backward arc then f(u) > f(v) and (iv) a cross arc then f(u) > f(v),
which means that each cross arc goes from a branch explored later to a branch explored earlier
(this assertion was proved in [4] page 524).

Remark 2. If f(u) < f(v) and v is an out-neighbor of u in D, then there is a uv-path in 7. Even
more, if f(u) < f(v) and v is a descendant of u, then for each w such that f(u) < f(w) < f(v)
we have w is also a descendant of w. This is due to the definition of the DFS algorithm, since all
vertices explored between the time a vertex w is visited for the first time, namely f(u), and before
u is completely processed are descendants of u ([4], page 524).

Remark 3. Whenever there is a uv-path in 7', this is unique in 7', u must be an ancestor of v in T’
and f(u) < f(v); moreover, every walk in T is a path.

Let D be a strongly connected digraph, 17" be a DF'S tree of D rooted at r and t be the length of
a longest path in T'. As a consequence of the three Remarks, the i-th generation of T defined as the
set V; = {u € V| the length of the (unique) ru—path is i} is well defined for each i, 0 < i < ¢, and
these sets form a partition of V(D) into acyclic subsets, i.e. D(V;) is acyclic for each i, 0 < i <.
Then, when we look for acyclic colorings of V(D), we can color all vertices in V; with the same
color.

We address the problem of coloring the vertices of D in two different ways to give upper bounds
for the dichromatic number of D, by means of a DFS tree: one of them is based on the lengths of
cycles and paths in D giving colorings to the generations of T'; and the other one is based on the
behavior of the backward arcs of D.

Let’s start with the results relating x 4(D) with the lengths of cycles and paths. Consider the
girth, circumference and the lengths of longest paths in D, we have two bounds:

Proposition 1. Let D be a strongly connected digraph with small diameter and large out-degree.
Set | = minyey{j | J is the length of a longest path starting at u} and let g be the girth of D.

Then xa(D) < {%w

Proposition 2. Let D be a digraph with at least one cycle and let ¢ and g be its circumference and

: , —1
girth, respectively. Then xa(D) < {;71—‘ + 1.

In [3], authors proved for two integers r and k with £ > 2 and k > r > 1 that if a digraph D
contains no cycle of length r modulo k, then x4(D) < k (Theorem 1). We will consider the case
where every cycle has length r modulo k.

Theorem 1. [3] Let r and k be two integers with k > 2 and k > r > 1. If a digraph D contains
no cycle of length r modulo k, then xa(D) < k.

Observe that this result allows us to relate the dichromatic number with the girth and circum-
ference in a different way as follows:

Corollary 1. Let D be a digraph with girth g and circumference ¢ with g—1 < c—g+2 (g < %)
Then xa(D) <c—g+2.



The bound proposed in corollary 1 is sharp. If we take a digraph D such that all its cycles
have length 3, then 2 < y4(D) as D has cycles and x4(D) < 3 —3+ 2 =2 by Corollary 1. Thus,
xA(D) =2 and the bound is reached.

The third bound is the result we promised for digraphs that have all cycles of the same length
modulo k.

Theorem 2. Let k and r be two integers such that k > r > 0 and let D be a strongly connected
digraph such that every cycle in D has length congruent with r modulo k. If r # 1 then xa(D) < 3.

If we restrict the parity of k/ ged(r — 1, k), the bound can be improved.

Corollary 2. Let k and r be two integers such that k > r > 0 and let D be a strongly connected
digraph such that every cycle in D has length congruent with v modulo k. If r # 1 and s s even,
where d = ged(r — 1, k), then xa(D) < 2.

Now, let’s forget the lengths of cycles and paths and recall backward arcs.

We noticed that, as a consequence of the DFS algorithm, every cycle in D have at least one
backward arc. Remember that our goal is to color the vertices of D in such a way that no cycle is
monochromatic, so it is sufficient to give different colors to the ends of each backward arc.

Consider a digraph D and a DFS tree T of D. Given a connected subdigraph H of T define
the undirected graph Gy with vertex set V(Gg) = V(H) and wv € E(Gy) whenever there is a
backward arc between v and v in D. We will call G the underlying backward graph of H relative
to T. Notice that G is always a subgraph of the underlying graph G of D, and it is a proper
subgraph whenever there is a tree arc (u,v) such that (v,u) ¢ A(D) or whenever there is a cross
arc in D. The fourth bound for x4(D) is in terms of x(Gr).

Lemma 1. Let D be a strongly connected digraph and T a DFS tree rooted at r. Let H be a con-
nected subdigraph of T and Gg its underlying backward graph relative to T'. Then xa(D(V(H))) <
X(GH).

Observe that T' is itself a connected subdigraph of T' and thus xa(D(V(T))) < x(Gr). As
V(T) =V (D), we have D = D(V(T)), hence xa(D) < x(Gr).

There are many results on the chromatic number of a graph, to be able to use them, we must
ask: what can we say about the structure of Gp?

We started with these four upper bounds for the dichromatic number of a digraph, but there is
still work to be done using the DFS tree tool.
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