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Abstract

Given a graph G = (V,E) and for each vertex v a subset B(v) of the set {0,1, . . . , dG(v)},
where dG(v) denotes the degree of vertex v, a B-matching of G is any set F ⊆ E such that
dF (v) ∈ B(v) for each vertex v. The general matching problem asks the existence of a B-
matching in a given graph. A set B(v) is said to have a gap of length p if there exists a number
k ∈ B(v) such that k + 1, . . . , k + p ∉ B(v) and k + p + 1 ∈ B(v). Without any restrictions the
general matching problem is NP-complete. However, if no set B(v) contains a gap greater than
1, then the problem can be solved in polynomial time[5]. In this paper we consider a problem
of finding maximum cardinality general matching.

We present the first polynomial time algorithm for the maximum B-matching for the case
when no set B(v) contains a gap greater than 1. This also yields the first pseudopolynomial
algorithm for the weighted version of the problem.

Given a graph G = (V,E) and for each vertex v ∈ V a subset B(v) of the set {0,1, . . . , dG(v)},
where dG(v) denotes the degree of vertex v in the graph G, a B-matching of G is any set F ⊆ E
such that dF (v) ∈ B(v) for each vertex v, where dF (v) denotes the number of edges of F incident
to v. The general matching problem asks the existence of a B-matching in a given graph. A
set B(v) is said to have a gap of length p if there exists a natural number k ∈ B(v) such that
k + 1, . . . , k + p ∉ B(v) and k + p+ 1 ∈ B(v). Without any restrictions the general matching problem
is NP-complete [13]. However, for the case when no set B(v) contains a gap of length greater than
1, Lovasz [13] developed a structural description and Cornuejols [5] presented a polynomial time
algorithm for finding a B-matching, if it exists. It is then one of the strongest generalizations of
matchings which is polynomially solvable, unless P = NP. In the maximum/minimum cardinality
variant the goal is to find a B-matching having a maximum/minimum number of edges. In the
weighted version of the problem a weight function w ∶ E → R is given and the aim is to find a
B-matching that maximizes or minimizes the sum of the weights of the edges.

Previous work If B(v) = {0,1} for each vertex v, then a B-matching is in fact a matching,
i.e., a set of vertex-disjoint edges. A perfect matching is a B-matching such that B(v) = 1 for
each vertex v. Given a function b ∶ V → N, a b-matching is any set F ⊆ E such that dF (v) ≤ b(v)
for each vertex v and a perfect b-matching or a b-factor is any set F ⊆ E such that dF (v) = b(v)
for each vertex v. If in addition to a function b we are also given a function a ∶ V → N, then an
(a, b)-matching is any set F ⊆ E such that a(v) ≤ dF (v) ≤ b(v) for each vertex v.

All these special cases of the general matching problem are well-solved, both in unweighted
and weighted versions. For instance, for the maximum weight b-matching there exist algorithms
with the following running times: O(n2B) by Pulleyblank [18], O(n2m logB) by Marsh [15],
O(m2 logn logB) by Gabow [6], O(n2m + n logB(m + n logn)) and O(n2 logn(m + n logn)) by
Anstee [1], and Õ(Wφω) by Gabow and Sankowski [7], where n = ∣V ∣, m = ∣E∣, B = max b(v),
φ = ∑ b(v) and nω is the time required to multiply two n × n matrices. For a good survey on these
problems see [21].

In the antifactor problem for each vertex v we have ∣{0,1, . . . , dG(v)} ∖ B(v)∣ = 1, meaning
that for each vertex there is exactly one degree excluded from the set B(v). Graphs that have an
antifactor have been characterized by Lovasz in [12].



For the more general case when no set B(v) contains a gap of length greater than 1, Cornuejols
[5] in 1988 presented two solutions to the problem of finding such B-matching, if it exists. One
uses a reduction to the edge-and-triangle partitioning problem, in which we are given a graph
G = (V,E) and a set T of triangles (cycles of length 3) of G and are to decide if the set of vertices
V can be partitioned into sets of cardinality of 2 and 3 so that each set of cardinality 2 is an edge
of E and each set of cardinality 3 is a triangle of T . The other is based on an augmenting path
approach applied in the modified graph G′ = (V ∪ V ′,E′) in which each edge e of G is split with
two new vertices into three edges. For each new vertex v′ the set B(v′) is defined to be {1} and
we start from the set F ⊆ E′ such that all requirements regarding vertices of G are satisfied, i.e.,
dF (v) ∈ B(v) for each vertex v ∈ V and for each vertex v′ ∈ V ′ it is dF (v′) ≤ 1. Next we aim
to gradually augment F so that it also satisfies the requirements regarding new vertices V ′ and
dF (v′) = 1 for each v′ ∈ V ′. In either case, the computed B-matching is not guaranteed to be of
maximum or minimum cardinality. A good characterization of graphs that have a B-matching [22]
was provided in 1993 by Sebő [22].

General matchings in bipartite graphs were also studied in terms of their parametrized com-
plexity. Gutin et al. showed that for graphs G = (U ⊍ V,E), such that ∣B(u)∣ = 1 for every u ∈ U ,
there exists a fixed-parameter tractable algorithm parametrized by the size of V [8].

For the optimization variant of the general matching with no gap greater than 1 Carr and
Parekh provided a linear relaxation which is 1

2 -integral [4].
A B-matching is said to be uniform if each B(v) is either an interval, i.e., has the form

{a(v), a(v) + 1, . . . , b(v)} for some nonnegative integers a(v) ≤ b(v) or an interval intersected with
either even or odd numbers, i.e., has the form {a(v), a(v)+2, . . . , b(v)} for two nonnegative integers
a(v) ≤ b(v) such that b(v)−a(v) is even. A maximum/minimum weight uniform B-matching prob-
lem was shown to be solvable in polynomial time by Szabó [24]. In the solution to the weighted
uniform B-matching Szabó uses the following result of Pap [17]. Let F be an arbitrary set of
odd length cycles of graph G, where a single vertex is considered a cycle of length 1. A perfect
F-matching is any set of cycles and edges of G such that each vertex belongs to exactly one edge
or cycle from F . Pap gave a polynomial time algorithm which minimizes a linear function over the
convex hull of perfect F-matchings.

Our results We give the first polynomial time algorithm for the maximum/minimum B-
matching and B(v) for the case when no set contains a gap of length greater than 1. Our solution
yields also the first pseudopolynomial algorithm for the maximum/minimum weight B-matching
for the case when no set B(v) contains a gap of length greater than 1.

We provide a structural result for both cardinality and weighted variants, which states that
given two B-matchings M and N , their symmetric difference M ⊕N = (M ∖N) ∪ (N ∖M) can be
decomposed into a set of canonical paths, a notion which we define precisely later and which plays
an analogous role as that of an alternating path in the context of standard matchings. A path P
is alternating with respect to a matching M if its edges alternate between edges of M and edges
not belonging to M . Roughly speaking, a canonical path (with respect to a given B-matching M)
consists of a meta-path, that is a sequence of alternating paths, and possibly some number of meta-
cycles attached to the endpoints of this meta-path. A meta-cycle is a sequence of alternating paths
such that the beginning of the first alternating path coincides with the end of the last alternating
path in the sequence. After the application of a canonical path P to a B-matching M we obtain
another B-matching M ′ = M ⊕ P such that only the parities of the degrees in M and M ′ of the
endpoints of P are different.

Equipped with this structural result we show how finding a maximum/minimum B-matching



can be reduced to a series of computations of a maximum/minimum weight uniform B-matching.
In fact we prove that in order to verify if a given B-matching M has maximum/minimum weight
it suffices to check if there exists a uniform B-matching of so called neighbouring type to M , whose
weight is greater/smaller than that of M .

Additionally, we show a very simple reduction of a weighted uniform B-matching to a weighted
(a, b)-matching, which yields a more efficient and simpler algorithm than the one by Szabó.

The remaining open problem is whether there exists a polynomial time algorithm for a maximum
weight B-matching for the case when no set contains a gap of length greater than 1. It is also
possible that our algorithm runs in polynomial time.

Motivation Matchings, b-matchings and factors are basic combinatorial notions that lie at
the foundation of combinatorial optimization. The general matching problem restricted to gaps of
at most 1 is one of the strongest generalizations of matching, that was not proven NP-hard. As
such it is of theoretical importance to find a polynomial time algorithm for a maximum/minimum
cardinality/weight B-matching with gaps at most 1 or in the case of a maximum weight B-matching,
to prove that it is NP-hard.

As for practical applications, the general matching is related to the extended global cardinality
constraint problem (EGCC). Given a set of variables X, a set of values D, a domain for each
variable D(x) ⊆ D and a cardinality set K(d) for each d ∈ D, the goal is to find a valuation of
variables, such that the number of variables with value d belongs to K(d). Algorithms for general
matchings were used to solve some restricted variants of EGCC [8, 20], while the general EGCC
is NP-hard. The EGCC problem was used for, among others, staff scheduling in healthcare [3],
optical network design [23] or car sequencing [19]. For empirical survey on EGCC see [16].

Related work In the deficiency problems the task consists in finding a matching that is as close
as possible to given sets B(v). Hell and Kirkpatrick [9] gave an algorithm for finding a minimum
deficiency (a, b)-matching among all (0, b)-matchings, where the deficiency is measured as the sum
of differences a(v) − d(v) over all vertices whose degree is not between a(v) and b(v). They also
proved that for another measure of deficiency, namely number of vertices whose degree is outside
(a(v), b(v)), the problem is NP-hard.

Another related problem consists in decomposing a graph into (a, b)-matchings - a graph that
can be decomposed into (a, b)-matchings is called (a, b)-factorable. In [11] Kano gave a sufficient
condition for a graph to be (2a,2b)-factorable. Cai [14] generalized this result to (2a − 1,2b),
(2a,2b + 1) and (2a − 1,2b + 1) -factorable graphs. Hilton and Wojciechowski showed another
sufficient condition for an (r, r + 1)-factorization of graphs [10].
(a, b)-matchings were also studied in the stable framework - Biro et al. proved that checking

whether a stable (a, b)-matching exists is NP-hard [2].
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[5] Gérard Cornuéjols. General factors of graphs. Journal of Combinatorial Theory, Series B, 45(2):185 –
198, 1988.

[6] Harold N. Gabow. An efficient reduction technique for degree-constrained subgraph and bidirected net-
work flow problems. In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing,
STOC ’83, pages 448–456, New York, NY, USA, 1983. ACM.

[7] Harold N. Gabow and Piotr Sankowski. Algebraic algorithms for b-matching, shortest undirected paths,
and f-factors. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-
29 October, 2013, Berkeley, CA, USA, pages 137–146, 2013.

[8] Gregory Gutin, Eun Jung Kim, Arezou Soleimanfallah, Stefan Szeider, and Anders Yeo. Parameterized
complexity results for general factors in bipartite graphs with an application to constraint programming.
Algorithmica, 64(1):112–125, 2012.

[9] Pavol Hell and David G. Kirkpatrick. Algorithms for degree constrained graph factors of minimum
deficiency. J. Algorithms, 14(1):115–138, 1993.

[10] A. J. W. Hilton and Jerzy Wojciechowski. Semiregular factorization of simple graphs. AKCE Int. J.
Graphs Comb, 2(1):57–62, 2005.

[11] Mikio Kano. [a,b]-factorization of a graph. Journal of Graph Theory, 9(1):129–146, 1985.
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