
Simultaneous Dominating Sets for Spanning Tree Factorings

Sebastian S. Johann — Technische Universität Kaiserslautern
Sven O. Krumke — Technische Universität Kaiserslautern
Manuel Streicher — Technische Universität Kaiserslautern

Abstract

A factoring F is a set of graphs on the same vertex set V . A subset S ⊆ V is a simultaneous
dominating set if for every F ∈ F each vertex not in S is adjacent to a vertex in S, i.e., the set S
is simultaneously a dominating set in every graph in the factoring F . We call F a spanning
tree factoring if it contains all spanning trees of a connected graph G. We consider the problem
of finding a minimum size simultaneous dominating set for spanning tree factorings. We show
that this problem is NP-complete and present a way to solve it in polynomial time on special
graph classes like bipartite or chordal graphs.

1 Introduction

Given a collection of graphs F on the same vertex set V we look at those subsets of V that dominate
all the graphs simultaneously. This was first considered by Brigham and Dutton [1] who termed this
a factor dominating set and Sampathkumar [2] who named this a global dominating set. The natural
question is what is the minimum size of a simultaneous dominating set. For general factorings this
question has been studied in [3] and [4]. Here we use the term “simultaneous domination” rather
than “factor domination” or “global domination” since they are slightly different.

For a graph G = (V,E) a dominating set is a subset S ⊆ V such that every vertex that is not
in S has a neighbour in S. A vertex cover is a subset C ⊆ V such that for every edge e ∈ E at
least one of the endpoints of e is in C or equivalently for every v ∈ V we have v ∈ C or N(v) ⊆ C.

A factoring is a finite collection F of (not necessarily edge-disjoint) graphs with common vertex
set V . The combined graph G(F) has vertex set V and edge set

⋃
F∈F E(F ) (not necessarily the

complete graph). For a connected graph G we call the factoring F = {T : T is a spanning tree of G}
a spanning tree factoring. The combined graph of a spanning tree factoring of G is again G.

A subset S ⊆ V is a simultaneous dominating set or SD-set of F if S is a dominating set in
each graph of F . Since we only consider spanning tree factorings of connected graphs the factoring
is clear and we say S is an SD-set in a graph G instead. The simultaneous dominating set problem
or SDS-problem consists of finding an SD-set of minimum size.

In this article we investigate the simultaneous dominating set problem for spanning tree factor-
ings. We show that the SDS-problem is NP-hard, give an alternative definition and present a way
of solving the problem by using vertex cover. We also present how to solve the SDS-problem on
bipartite or chordal graphs in polynomial time.

2 Complexity and Solution Approach of the SDS-problem

Initially it is not even clear if the problem is contained in NP since a graph can have an exponential
number of spanning trees. We will see that it is possible to find another way to verify if a set S ⊆ V
is a feasible SD-set in G.

Let v ∈ V be a vertex that is not an articulation point in G. Since G− v is connected there is
a spanning tree T of G − v. We obtain a spanning tree of G by adding v and any outgoing edge



of v in G. Since v needs to be dominated in every spanning tree of G the vertex v itself or all the
neighbours of v must be in the SD-set.

If v is an articulation point in G, then G−v has more than one connected component. But any
spanning tree of G contains v and at least one outgoing edge from v to every connected component
of G − v. This shows that to dominate v in every spanning tree of G it is enough if the vertex v
itself is in the SD-set or it is simultaneously dominated by at least one connected component H
of G − v. Since v is not an articulation point in G[V (H) ∪ {v}] simultaneously dominated by H
means that all neighbours of v in G[V (H)∪{v}] are in the SD-set. This shows the following lemma:

Lemma 1. Let G = (V,E) be a connected graph and F a spanning tree factoring. Then a sub-
set S ⊆ V is a simultaneous dominating set if and only if for every v ∈ V it holds true that:

• If v is not an articulation point in G, then v ∈ S or N(v) ⊆ S

• If v is an articulation point in G, then v ∈ S or for at least one connected component of G−v
all the vertices that are neighbours of v in G are in S.

This shows that we can verify if a set S is a feasible SD-set in G in polynomial time. If we take
a closer look at the condition for non-articulation points we notice that we have the same condition
for every vertex in a vertex cover. Hence we get:

Corollary 2. If G = (V,E) is a biconnected graph and F a spanning tree factoring, then a
subset S ⊆ V is a simultaneous dominating set if and only if S is a vertex cover.

And since vertex cover is NP-hard on biconnected graphs [5] we obtain:

Corollary 3. For a connected graph the SDS-problem is NP-hard.

Now we present how to solve the SDS-problem on graphs that are not biconnected by decom-
posing them in biconnected components. To this end we need the following lemma:

Lemma 4. [6] Let G be a connected but not biconnected graph. Then there is an articulation
point v in G and a connected component H in G− v such that G[V (H) ∪ {v}] is biconnected, i.e.,
H does not contain an articulation point in G. We call H a leaf-component.

The idea of the algorithm is to take v and H as in Lemma 4, use a minimum size vertex cover
to find a solution, delete H to obtain a smaller graph and from now on only v matters for the rest
of the algorithm. But there may be conditions on some vertices of H since they could have been
articulation points in earlier iterations of the algorithm.

For easier notation we define colours that we assign to the vertices during the algorithm:

• colour 1, meaning that the vertex is in the SD-set,

• colour 0, meaning that the vertex is simultaneously dominated by its neighbours and

• colour 0̂, meaning that the vertex is not simultaneously dominated at the current stage of the
algorithm.

We say that colour 1 is better than colour 0 or 0̂ since if a vertex has colour 1, then there are
no further conditions for its neighbours. Colour 0̂ is only assigned to articulation points and means
that it has to be simultaneously dominated in another iteration of the algorithm. Therefore we
say that colour 0 is better than colour 0̂ since if an articulation point has colour 0 it is already
simultaneously dominated.

Now we can define the subproblem that we have to solve on v and H as in Lemma 4:



Definition 5 (SDS-subproblem). Let G = (V,E) be a biconnected graph with v ∈ V and
H := G− v. Some vertices in H may have colours assigned but v has none. The SDS-subproblem
for v and H consists of finding a subset S ⊆ V (H) ∪ {v} with the least amount of 1-assignments
and if there are more than one, then the one with the best colour for v, where it holds true that:

• all vertices in V (H) have colour 0 or 1,

• vertices that had assigned colour 1 at the start still have colour 1 at the end and

• vertices that had no colour or colour 0̂ have colour 1 or all their neighbours have colour 1.

Note that for a solution of the SDS-subproblem, where colour 0 or 0̂ is assigned to v, the
best set that fulfills the last three conditions above and v has assigned colour 1 has exactly one
more 1-assignment than the solution of the SDS-subproblem.

Now we can solve the SDS-problem on a connected graph G and a spanning tree factoring F :

Algorithm 1: Computing an SD-set of a spanning tree factoring

Input: A connected graph G = (V,E)
Output: A minimum SD-set for the spanning tree factoring of G

1 S = ∅;
2 if G is biconnected then return S = minimum vertex cover;
3 while G is not biconnected do
4 Find an articulation point v and a leaf-component H as in Lemma 4;
5 Solve the SDS-subproblem for v and H as if v has no colour and add the solution to S;
6 Save the colour for v, if there is already one take the better one;
7 Delete H from G;

8 Solve the SDS-subproblem for any vertex v and G− v and add the solution to S;
9 if v has colour 1 or 0 then return S;

10 else return S ∪ {v};

Theorem 6. The algorithm computes a simultaneous dominating set of minimum size.

Next we show how we can solve an SDS-subproblem by using vertex cover. Therefore we have
to compute three sets, one for each colour assigned to v. For a solution, where v has colour

• 1 in the end, we assign colour 1 to v at the start,

• 0 in the end, we assign colour 0 to v and 1 to all neighbours of v,

• 0̂ in the end, we remove v and assign colour 1 to all neighbours of v in H with no colour or
colour 0̂.

Then we continue with:

• every vertex with colour 1 gets deleted from G[V (H) ∪ {v}] and

• all edges between vertices with colour 0 get deleted.

Now we compute a minimum vertex cover in the obtained graph, where colour 1 means in the vertex
cover and 0 not in the vertex cover. We choose the solution with the least amount of 1-assignments
and if there are more than one, then the one with the best colour for v. Tedious calculations show
that this yields a solution of the SDS-subproblem.



Now we show that we can solve the SDS-problem on bipartite graphs in polynomial time.
Bipartite graphs are hereditary, that means every induced subgraph is again bipartite. For every
SDS-subproblem this means that G[V (H)∪{v}] is bipartite. When we delete vertices the obtained
graph is still an induced subgraph and even if we delete edges in the graph the graph stays bipartite.
Therefore the preprocessed graphs for the SDS-subproblem are bipartite. With the help of König’s
theorem and for example the Hopcroft-Karp algorithm [7] we can compute a minimum vertex cover
for bipartite graphs and hence solve the SDS-subproblem in polynomial time. Thus the algorithm
solves the SDS-problem on bipartite graphs and spanning tree factorings in polynomial time.

Next we consider chordal graphs which are also hereditary. But if we delete edges in a chordal
graph, then it may be not chordal anymore. However, with the help of the strong perfect graph
theorem [8] we can show that the preprocessed graph is perfect. In perfect graphs we can compute
a minimum vertex cover in polynomial time [9]. This leads to a polynomial-time algorithm to solve
the SDS-subproblem and hence the SDS-problem on chordal graphs and spanning tree factorings.

It also follows from our results that the SDS-problem is solvable in polynomial time on graphs
with bounded tree width since in this case we can solve the vertex cover problem in polynomial time.

3 Conclusion

We considered the simultaneous dominating set problem for spanning tree factorings of connected
graphs. First we showed that this problem is NP-hard. Then we presented an algorithm that solves
the SDS-problem by decomposing it in SDS-subproblems which we can solve by using vertex cover.
The advantage of this algorithm over solving an integer program for the SDS-problem is that in
general the SDS-subproblems are solved on smaller graphs. Hence for large graphs a solution is
obtained immensely faster when using the presented algorithm, where the integer programs for the
SDS-problem or for a minimum vertex cover are solved by using, for example, Gurobi. We also
showed that the SDS-problem is solvable in polynomial time on bipartite and on chordal graphs.

For further research we want to consider the SDS-problem on other factorings or even on
collection of graphs, where each graph has only a subset of V as its vertex set.

References

[1] R. Brigham, R. Dutton. Factor domination in graphs. Discrete Math. 86 (1990) 127-136

[2] E. Sampathkumar. The global domination number of a graph. J. Math. Phys. Sci. 23 (1989), 377-385

[3] P. Dankelmann, W. Goddard, M. Henning, R. Laskar. Simultaneous graph parameters: Factor domina-
tion and factor total domination. Discrete Math. 306 (2006), 2229-2233

[4] Y. Caro, M. Henning. Simultaneous Domination in Graphs. Graphs and Comb. 30 (2014) 1399-1416

[5] B. Mohar. Face Covers and the Genus Problem for Apex Graphs. Journal of Combinatorial Theory,
Series B 86 (2001) 102-117

[6] F. Harary. Graph Theory. Addison-Wesley Series in Mathematics, 1969

[7] J. Hopcroft, R. Karp. An n
5
2 algorithm for maximum matchings in bipartite graphs. SIAM J. Comput,

2(4) (1973) 225-231.

[8] M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas. The strong perfect graph theorem. Annals of
Mathematics. Second Series, Princeton University, 2006

[9] M. Grötschel, L. Lovász, A. Schrijver. Geometric Algorithms and Combinatorial Optimization, 1988


