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Abstract

Given a multigraph G and a positive integer t, the distance-t chromatic index of G is the
least number of colours needed for a colouring of the edges so that every pair of distinct edges
connected by a path of fewer than t edges must receive different colours. Let π′

t(d) and τ ′t(d) be
the largest values of this parameter over the class of planar multigraphs and of (simple) trees,
respectively, of maximum degree d. We have that π′

t(d) is at most and at least a non-trivial
constant multiple larger than τ ′t(d). We prove for odd t the existence of a quantity g depending
only on t such that the distance-t chromatic index of any planar multigraph of maximum degree
d and girth at least g is at most τ ′t(d) if d is sufficiently large. Such a quantity does not exist
for even t. We also show a related, similar phenomenon for distance vertex-colouring.

Two classic theorems set a basis for our work.
The first is a result of Vizing from 1965 [19]: every (simple) planar graph of maximum degree

d has chromatic index at most d, provided d ≥ 8. (This statement was extended to d = 7 by
Sanders and Zhao [17] but remains open for d = 6.) On the other hand, the Shannon multigraphs,
i.e. triangles with edges of balanced multiplicity, are planar and have chromatic index a non-trivial
factor (of 3/2) greater than d. Since the tree consisting of a single vertex with d neighbours has
chromatic index d, a rough way to view this is as follows: with respect to edge-colouring, planar
multigraphs resemble trees if cycles of length 2 are forbidden (for large enough maximum degree).

The second is a result of Grötzsch from 1959 [8]: every triangle-free planar graph has chromatic
number at most 3. This is sharp due to the odd cycles. And so, even though there is a reduction
by one in the number of colours required when the girth (the smallest cycle length) is at least 4,
there is no fixed set of cycle lengths one could forbid to achieve a bound of 2, the optimal chromatic
number over all trees.

We are curious how the above narrative extends when like-coloured elements must be at some
minimum distance, and contemplate the following.

For distance colouring of planar (multi)graphs, when does some finite girth constraint
ensure the problem resembles that of trees?

As noted, a girth constraint of 3 suffices (and is optimal) for ordinary edge-colouring, while for
ordinary vertex-colouring no such constraint is possible.

More formally, we study the following parameters. Fix a positive integer t. Let G = (V,E) be
a multigraph. The distance-t chromatic index (number) χ′t(G) (χt(G)) of G is the least number of
colours needed for a colouring of the edges (vertices) so that every pair of distinct edges (vertices)
connected by a path of fewer than t (t + 1) edges must receive different colours. For t = 1 these
correspond to the usual chromatic index χ′(G) and chromatic number χ(G) of G. Moreover, if Ht

represents the graph whose adjacency matrix is the t-th power of the adjacency matrix of H, then
χt(G) = χ(Gt) and χ′t(G) = χ(L(G)t), where L(G) denotes the line graph of G.

These natural strengthened colouring parameters have been studied for almost half a cen-
tury [11]. They have attracted much attention particularly in the cases of χ′2, also called the strong
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chromatic index, cf. e.g. [15], and χ2, cf. e.g. [20, 9]. That is not only because of their obvious
mathematical appeal, but also because of their applicability in various other domains, such as
the approximation of sparse Hessian matrices [14], link and broadcast scheduling in wireless net-
works [13, 16], algorithmic hardness of approximation [12]. Our results offer basic insights into
fundamental characteristics of these important graph parameters.

The low waterline for our study is when G is of highest possible girth, i.e. it is a tree. Although
the structure of Gt or L(G)t can be difficult to comprehend for general G, it is easy to characterise
the extremal behaviour of χ′t(G) or χt(G) if G has no cycles. For t ≥ 1 and d ≥ 3, define

τ ′t(d) :=

{
1

d−2(2(d− 1)t/2+1 − d) 2 | t
1

d−2(d(d− 1)(t+1)/2 − d) 2 - t
and

τt(d) :=

{
1

d−2(d(d− 1)t/2 − 2) 2 | t
1

d−2(2(d− 1)(t+1)/2 − 2) 2 - t
.

Proposition 1. Let t ≥ 1 and d ≥ 3. There is a tree G of maximum degree d with τ ′t(d) edges (τt(d)
vertices) such that L(G)t (Gt) is a clique. If G is a tree of maximum degree d, then χ′t(G) ≤ τ ′t(d)
and χt(G) ≤ τt(d).

The examples in Proposition 1 are merely subgraphs of the infinite d-regular tree formed by in-
cluding all vertices or edges within a suitable fixed distance of some root vertex or edge, depending
on the parity of t.

The high waterline for us is when G is a planar (multi)graph of maximum degree d. In this
case χ′t(G) or χt(G) is still at most a constant factor greater than τ ′t(d) or τt(d), but it can well be
a non-trivial factor greater.

Proposition 2. Let t ≥ 1. Let π′t(d) (πt(d)) be the largest value of χ′t(G) (χt(G)) over the
class of planar multigraphs of maximum degree d. Then lim supd→∞ π

′
t(d)/τ ′t(d) ∈ [3/2,∞) and

lim supd→∞ πt(d)/τt(d) ∈ [3/2,∞).

Bounds in Proposition 2 for distance vertex-colouring were established generally for all t in [1]
(upper bounds) and [7] (lower bounds). It is difficult to determine the precise values in Propo-
sition 2, especially for distance vertex-colouring: lim supd→∞ π1(d)/τ1(d) = 2 is the Four Colour
Theorem [2, 3], while lim supd→∞ π2(d)/τ2(d) = 3/2 is the asymptotic confirmation of Wegner’s
Conjecture [9]. Also lim supd→∞ π

′
1(d)/τ ′1(d) = 3/2 is Shannon’s Theorem [18]. No precise value is

known for any t ≥ 3.
Our main result resolves the question displayed earlier and says that χ′t(G) or χt(G) for planar

graphs G of maximum degree d and large enough girth must be at most τ ′t(d) or τt(d), respectively,
provided t is of the correct parity. Informally, planar distance colouring becomes tree-like for high
enough girth, in the right parities of distance.

Theorem 3. For odd (even) t ≥ 1, there exists g′t (gt) such that, provided d is large enough, every
planar graph G of maximum degree d and girth at least g′t (gt) has χ′t(G) ≤ τ ′t(d) (χt(G) ≤ τt(d)).
For the other parity of t, such a quantity does not exist.

By Proposition 1, the bounds are sharp. As mentioned, g′1 is optimally at most 3. It has also been
shown that g2 is optimally at most 7 [4]. For larger t, we have explicit bounds on g′t and gt, but
we made little attempt to optimise them. On the contrary, we opted for short, clean proofs that



apply in general. We use the discharging method. Due to space considerations we have omitted
proof details here.

We largely disregarded what happens in the “other” distance parities. Are there natural ana-
logues to Grötzsch’s Theorem in those cases?

Problem 4. For even (odd) t ≥ 1, what is the least c′t ≥ 1 (ct ≥ 1) such that there exists some
fixed g for which the following holds? For every ε > 0, provided d is large enough, every planar
graph G of maximum degree d and girth at least g has χ′t(G) ≤ (c′t +ε)τ ′t(d) (χt(G) ≤ (ct +ε)τt(d)).

By Proposition 2, the constants c′t and ct are well-defined, but we do not know yet if c′t <
lim supd→∞ π

′
t(d)/τ ′t(d) or ct < lim supd→∞ πt(d)/τt(d) in general. Grötzsch’s Theorem says c1 ≤

3/2 < lim supd→∞ π1(d)/τ1(d), and it also implies that c′2 ≤ 3/2 < lim supd→∞ π
′
2(d)/τ ′2(d) [6].

Moreover, there remains the possibility that, for even t, there is a function g′t(d) (so with a
dependence upon d) such that every planar graph G of maximum degree d and girth at least g′t(d)
has χ′t(G) ≤ τ ′t(d), provided d is large enough. The existence of g′2(d) and it being at most linear in
d was proven in [5]. For odd t and distance-t vertex-colouring the existence of an analogous gt(d)
is impossible. Moreover, g′t(d) for even t, if it exists, is at least of order τ ′t(d).

Proposition 5. For even t ≥ 2, there exists a planar graph G of maximum degree d and girth
at least (τ ′t(d) − 1)/2 such that χ′t(G) > τ ′t(d), provided d is large enough. For odd t ≥ 1 and
d ≥ 3, there exists a planar graph G of maximum degree d and arbitrarily large girth such that
χt(G) > τt(d).

The reader is referred to the full version [10] for further details.
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