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Abstract

We introduce an online coloring algorithm for intersection graphs of various geometrical
shapes such as disks, parallelograms, triangles, general convex shapes. We consider intersection
graphs of congruent geometrical shapes and we assume the ratio between largest and smallest
shape is bounded (say by a real number σ). The competitive ratio of our algorithms is O(log σ).
Our algorithm uses a Hadwiger-Nelson type coloring of the plane specific to each shape.

Intersection graphs of families of geometric objects attracted much attention both for their
theoretical properties and practical applications (c.f. McKee and McMorris [8]). For example
intersection graphs of families of disks, and in particular disks of unit diameter (called unit disk
intersection graphs), play a crucial role in modeling radio networks. We say that a graph coloring
algorithm is online if the input graph is not known a priori, but is given vertex by vertex (along
with all edges adjacent to already revealed vertices). Each vertex is colored at the moment when it
is presented and its color cannot be changed later. On the other hand, offline coloring algorithms
know the whole graph before they start assigning colors. The online coloring can be much harder
than offline coloring, even for paths. For an online coloring algorithm by the competitive ratio we
mean the worst-case ratio of the number of colors used by this algorithm to the chromatic number
of the graph. For unit disk intersection graphs First-Fit algorithm has competitive ratio 5 [1, 9, 10].

Fiala, Fishkin and Fomin [3] presented a polynomial-time online algorithm that finds an L(2, 1)-
labeling of an intersection graph of disks of bounded diameter. L(2, 1)-labeling is an assignment of
integers to the vertices in such a way that labels of adjacent vertices differ by at least 2, and vertices
at distance two get different labels. The algorithm is based on a special coloring of the plane, that
resembles colorings studied by Exoo [2], inspired by the classical Hadwiger-Nelson problem [5]. A
similar idea of reserving a set of colors for upcoming vertices can be found in a paper by Kierstead
and Trotter [7]. The paper [6] presents an algorithm for coloring unit disk intersection graph. It is
inspired by [3], however, a b-fold coloring of the plane (see [4]) is used instead of a classical coloring,
what allowed obtaining competitive ratio smaller than 5.

In this paper we generalize results from [6] for intersection graphs of disks with bounded diameter
and other geometrical convex shapes. The competitive ratio of our algorithms is O(log σ), improving
O(σ2) from [3]. Throughout the paper we always assume that the input intersection graph is given
along with its geometric representation.

We present our algorithm for intersection graphs of disks with a bounded diameter, namely
with a diameter in the interval [ρ, σ]. Our algorithm uses a special coloring of the plane. By G[ρ,σ]

we denote an infinite graph with R2 as the vertex set and edges between pairs of points at euclidean
distance within [ρ, σ]. A function ϕ : R2 −→ [k] is called a coloring of G[ρ,σ] with colors [k] if for
any two points p1, p2 ∈ R2 at euclidean distance within [ρ, σ] holds ϕ(p1) 6= ϕ(p2). A coloring ϕ
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of G[ρ,σ] is called solid if there exists a tiling such that each tile is monochromatic and tiles in the
same color are at distance greater than σ. An example of a solid 1-fold 7-coloring of the plane (by
John Isbell [11]) is presented in Figure 1.
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Figure 1: 7-coloring of the plane for σ =
√

7/2 ≈ 1.32

Now we are ready to introduce the online algorithm for coloring disk intersection graphs pre-
sented by Fiala, Fishkin and Fomin [3]. The input of the algorithm is a solid coloring of G[1,σ] and
a sequence of the disks of diameters within [1, σ]. The algorithm is online so it colors the vertex vi
corresponding to the disk Di knowing only disks D1, . . . , Di and the color cannot be changed later
on. The idea of the algorithm is the following: find the tile containing the center of Di. The color
of a vertex corresponding to Di is the smallest available color equal modulo k to the color of the
tile containing the center of Di.

Algorithm 1: Colorϕ((Di)i∈[n])

1 foreach i ∈ [n] do
2 Read Di, let vi be the center of Di

3 let T (vi) be the tile containing vi
4 t(vi)← |{v1, . . . vi−1} ∩ T (vi)|
5 c(vi)← ϕ(vi) + k · t(vi)
6 return c

The algorithm Colorϕ uses at most kω(G) colors, where k is the number of colors used by
coloring ϕ so its competitive ratio is at most k [3]. Desired colorings of the plane are given in
papers [3, 4]. The numbers of used colors by these colorings are proportional to the square of the
parameter σ, so competitive ratio of the above algorithm Colorϕ is O(σ2).

Now we present how to reduce the competitive ratio to O(log σ). For p ∈ N+ we divide the
interval [1, σ] into p intervals: [1, σ1/p), [σ1/p, σ2/p), [σ2/p, σ3/p), . . . , , [σ(p−1)/p, σ]. Notice that for
disks with diameter in [σi/p, σ(i+1)/p] the ratio between their diameters does not exceed σ1/p. Our
modification of the algorithm is as follows: take a solid coloring ϕ of G[1,σ1/p]. Such coloring is given
in [4]. By scaling ϕ we can obtain a coloring ϕi of G[σi/p,σ(i+1)/p] with the same number of colors say
k. We reserve different set of colors for ϕi for every ∈ {1, . . . , p} (so we reserved p ·k colors). When
the new disk D is revealed, say of diameter d, we find i ∈ {1, . . . , p} such that d ∈ [σi/p, σ(i+1)/p).



We color D with the algorithm Colorϕi (based on the i-coloring ϕi). The modified algorithm uses
at most p · k · ω(G) colors where k is the number of colors used by the coloring ϕ. There exists a
constant C such that k = C · σ2/p. We choose p to minimize p · k = p ·C · σ2/p (see [3, 4]). Taking
p = dlog σe the number of colors used by modified algorithm is O((log σ) · ω(G)) and as the result
we get:

Theorem 1. There exists an online algorithm coloring intersection graphs of disks with diameters
in the interval [1, σ] with competitive ratio O(log σ).

The modified algorithm can be adopted to intersection graphs of different geometrical shapes.
It is enough to use adequate coloring of the plane. For intersection graph of homothetic copies of
parallelograms the coloring on the figure 2 can be used, and for intersection graphs of homothetic
copies of triangles the coloring on the figure 3. We say that a shape T ′ is a homothetic copy of a
shape T if it can be obtained from T by scaling and traversing (but without rotation).
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Figure 2: 16-coloring of the plane for parallelogram
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Figure 3: 32-coloring of the plane for triangles

Now consider any convex shape T and an intersection graph of homothetic copies of T . Let P be
the smallest parallelogram containing T . Let A1, A2, A3, A4 be points on each side of P belonging



also to T . If there are more than one point common of T and a side of P then choose among
such points the one closes to the middle of the side of P . Let T d a be a convex hull of the points
A1, A2, A3, A4. Let C(T ) be an intersection of segments A1, A3 and A2, A4. It is easy to prove that
T d is a parallelogram and T d ⊆ T . We can define a solid coloring ϕ of the plane (analogous to
the one on the figure 2) such that for any two homothetic copies T1, T2 of the shape T (with ratio
bounded by sigma) if C(T1) and C(T2) lie in the same tile then T1, T2 intersect and if C(T1) and
C(T2) lie in different tiles of the same color then T1 and T2 are disjoint. For such ϕ we obtain online
coloring algorithm for interesection graph of homothetic copies of the shape T , assuming that the
ration between diameters of any two copies is bounded by σ, with competitive ration O(log σ).

We may also consider an intersection graph of similar copies of a convex shape T (scaling,
transformation and rotation are allowed). To adapt our method we consider two disks D1 and D2

with common center.We choose radii of D1 and D2 in such a way that when we scale T to the
extremes of the given graph D1 is contained in T and D2 contains T (we do not scale D1 and
D2). Now we find a coloring of a plane such that each tile has diameter equal to the diameter
of D1 and tiles of the same color are at distance greater than the diameter of D2. The number
of colors required for such coloring strongly relies on the shape of T and on the ratio of scaling.
Nevertheless for a fixed T and the ratio between diameters of any two copies bounded by σ, the
coloring algorithm has competitive ratio O(log σ).

Our approach can also be applied for different models of coloring e.g. L(2, 1)-labeling. For
L(2, 1)-labeling of σ-disks or other convex shapes the competitive ratio of O(log σ) is yet the best,
up to our knowledge.
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