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Abstract

While investigating odd-cycle free hypergraphs, Győri and Lemons introduced a colored
version of the classical theorem of Erdős and Gallai on Pk-free graphs. They proved that any
graph G with a proper vertex coloring and no path of length 2k + 1 with endpoints of different
colors has at most 2kn edges. We show that Erdős and Gallai’s original sharp upper bound of
kn holds for their problem as well. We also introduce a version of this problem for trees and
present a generalization of the Erdős-Sós conjecture.

We denote by P` the path of length `. For a graph G, we denote by E(G) and V (G) the edge
and vertex set of G, respectively. We begin by recalling the theorems of Erdős and Gallai about
graphs without long paths and cycles.

Theorem 1 (Erdős-Gallai [2]). Let ` be a positive integer and G an n-vertex graph with no P`,
then

|E(G)| ≤ `− 1

2
n,

and equality holds if and only if ` divides n and G is the disjoint union of n
` cliques of size `.

Theorem 2 (Erdős-Gallai [2]). Let ` be a positive integer and G an n-vertex graph with no Cm for
all m ≥ `, then

|E(G)| ≤ (`− 1)(n− 1)

2
.

and equality holds if and only if `−2 divides n−1 and G is a connected graph such that every block
of G is a clique of size `− 1.

In a more recent paper, Győri and Lemons [4] investigated the extremal number of hypergraphs
avoiding so-called Berge-cycles. To this end, they introduced a generalization of the theorem of
Erdős and Gallai about paths. By a proper vertex coloring of a graph G, we mean a coloring of
the vertices of G such that no two adjacent vertices are the same color. Győri and Lemons proved
the following.

Theorem 3 (Győri-Lemons [4]). Let k be a positive integer and G be an n-vertex graph with a
proper vertex coloring such that G contains no P2k+1 with endpoints of different colors, then

|E(G)| ≤ 2kn.

We show that the factor of 2 in Theorem 3 is not needed and, thus, recover the original upper
bound from the Erdős-Gallai theorem. We also determine which graphs achieve this upper bound.

Theorem 4. Let k be a positive integer and G be an n-vertex graph with a proper vertex coloring
such that G contains no P2k+1 with endpoints of different colors, then

|E(G)| ≤ kn,

and equality holds if and only if 2k+ 1 divides n and G is the union of n
2k+1 disjoint cliques of size

2k + 1.
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Proof of Theorem 4. By induction on the number of vertices, we may assume that G is connected
and has minimum degree δ(G) ≥ k.

If G is C`-free for all ` ≥ 2k + 1, then by Theorem 2 we have |E(G)| ≤ (n− 1)2k

2
< kn.

Thus, assume there is a cycle of length at least 2k+1, and let C be the smallest such cycle. Let ` be
its length. Let the vertices of C be v0, v1, v2, . . . , v`−1, v0, consecutively. Addition and subtraction
in subscripts will always be taken modulo `. We say that an edge e is outgoing if it has one vertex
in V (C) and the other in V (G) \ V (C). We say a vertex v ∈ V (C) is outgoing if it is contained in
an outgoing edge. We will consider cases based on the value of `.

Note that G cannot contain a cycle of length 2k + 2 since any two consecutive vertices of such
cycle would also be the endpoints of a path of length 2k + 1.
Case 1. Suppose ` ≥ 2k + 4. Since we have chosen ` to be the length of the smallest C` with
` ≥ 2k+ 1, we have v0 cannot be adjacent to any of v2, v3, . . . , v`−2k nor any of v2k, v2k+1, . . . , v`−2,
for otherwise we would have a shorter cycle of length at least 2k+ 1. Also note that v0 is adjacent
to v1 and v`−1.

Observe that v0 cannot have two consecutive neighbors in the `-cycle. Indeed, if vi and vi+1 are
neighbors of v0, then we have the following (2k + 1)-paths starting at v1: v1, v2, . . . , v2k+1, v2k+2

and v1, v2, . . . , vi, v0, vi+1, vi+2, . . . , v2k, v2k+1. Thus, v2k+1 and v2k+2 would have to be colored the
same, but this is impossible since they are neighbors.

If v0 has a neighbor outside of C, say u0, then we have two paths of length 2k+1: u0, v0, v1, . . . , v2k
and v2k, v2k−1, . . . , v0, v`−1. It follows that u0 and v`−1 have the same color. Similarly, u0 and v1
have the same color. Thus, v`−1 and v1 also have the same color, and similarly, for every i such
that vi is outgoing, we can conclude vi−1 and vi+1 have the same color.

If ` = 2k + 4 and there is an outgoing vertex, say v0, then v1 and v2k+3 have the same color
(from the previous paragraph), a contradiction since v1 and v2k+2 also have the same color (they
are endpoints of a length 2k + 1 path along the cycle C). If there is no outgoing vertex in V (C),
then C uses all vertices of the graph. Since no vertex of the cycle has two consecutive neighbors,
it follows that each degree is bounded by 2 + d2k−52 e ≤ k and so the number of edges is at most
(2k+4)k

2 = nk
2 < nk.

If ` ≥ 2k+ 5, we will show that v0 has an outgoing edge from the `-cycle C. Suppose not, then
since v0 does not have consecutive neighbors, it follows that v0 has at most

2 +

⌈
2k − (`− 2k + 1)

2

⌉
≤ k − 1 neighbors, a contradiction. Thus, v0 and similarly every other vi

has an outgoing neighbor, and it follows that for every i, the vertices vi and vi+2 have the same
color. Hence v0 and v2k have the same color, contradicting that v0 and v2k+1 have the same color,
since they are endpoints of a P2k+1.
Case 2. Suppose ` = 2k + 3. For all 0 ≤ i ≤ ` − 1, vi+2, vi+1, . . . , v`−1, v0, . . . , vi is a path of

length 2`+ 1, and so vi and vi+2 have the same color. Thus, v0 and v2k+2 have the same color, but
they are adjacent, contradiction.
Case 3. Finally, suppose ` = 2k + 1. If no edge is outgoing, then we are done, since by

connectivity the total number of edges in the graph is at most
(
2k+1
2

)
= kn. If indeed the total

number of edges is kn, then G is a clique. This is the only case when equality holds. From here
on, we will assume there is an outgoing edge.

Observe that if u is not a vertex of C, then u cannot have two consecutive neighbors in C,
for otherwise we would have a cycle of length 2k + 2, and we are done. Moreover, u cannot be
connected to vi and vi+3, since there would be two paths of length 2k+ 1 from u to vi+1 and vi+2.

2



It follows that u can have at most k− 1 neighbors in C and, thus, must have a neighbor outside C.
If there are some two consecutive non outgoing vertices in C, then we may take two such vertices

vi and vi+1, for some index i, so that the next vertex vi+2 is outgoing. Suppose {vi+2, u} is an
outgoing edge. By the previous observation, there is an edge {u,w} where w 6∈ C. So we have a
2k + 1 length path from vi to w, then vi+1 cannot have two consecutive neighbors from C, since
that would also imply that there is also 2k+ 1 length path from w to vi−1, similarly vi cannot have
two consecutive neighbors in C, hence vi and vi+1 have degree at most k. By removing these two
vertices, we remove 2k − 1 edges, and by the induction hypothesis the resulting graph has at most
k(n− 2) edges. So e(G) < kn.

For every i, either vi+1 or vi+2 is an outgoing vertex. Hence the vertex vi has either the same
color as vi+2, if vi+1 is an outgoing vertex, or the same color as vi+4, if vi+2 is an outgoing vertex.
Hence we obtain that v0 has the same color as v2k or v1, contradiction.

Recall that the extremal number ex(n,H) of a graph H is defined to be the largest number of
edges an n-vertex graph may have if it does not contain H as a subgraph. We introduce a variation
of the extremal function ex(n, T ) in the case of trees. Let exc(n, T ) denote the maximum number
of edges possible in an n-vertex graph G with a proper vertex coloring, such that in every copy of
T in G the leaves of T are all the same color. In the following we determine the value of exc(n, T )
for every tree T such that every pair of leaves is at even distance.

Theorem 5. Let ` be a positive integer and T a tree with k edges such that in the proper vertex

2-coloring of T all leaves are the same color, then exc(n, T ) =
⌊
n2

4

⌋
, provided n is sufficiently large.

Proof. The fact that all leaves are colored the same by a 2-coloring implies that all paths between
a pair of leaves have even length. We add an edge e to T connecting an arbitrary pair of leaves,
and let G be the resulting graph. Since G has an odd cycle, its chromatic number is clearly 3,
and the deletion of e yields a 2-chromatic graph. It follows from a theorem of Simonovits [6] that

if n is sufficiently large, the extremal number of G is precisely ex(n,G) =
⌊
n2

4

⌋
. Thus, in any

n-vertex graph with more than
⌊
n2

4

⌋
edges we have a copy T with two adjacent leaves, and so in

any proper coloring of this graph we have a copy of T with leaves of at least 2 colors. It follows

that exc(n, T ) ≤
⌊
n2

4

⌋
, and this bound is realized by the complete bipartite graph Kbn2 c,dn2 e.

Remark 1. The paths of even length P2k are a special case of Theorem 5. Here better bounds on
n are known to exist. For example, the result of Füredi [3] on the extremal number of odd cycles
implies that n ≥ 4k is sufficient.

For the family of trees without this property we have the following bound.

Theorem 6. Let k be a positive integer and T be a tree with k edges such that in the (unique)
proper vertex 2-coloring of T all leaves are not the same color, then exc(n, T ) ≤ (k − 1)n.

Proof. There is a path of odd length in T with endpoints which are leaves. Let G be an n-vertex
graph with more than (k − 1)n edges with a proper vertex coloring. We may find a subgraph G′

of G with average degree at least that of G and minimum degree greater than k − 1. The proper
coloring of G induces a proper coloring of G′ and so applying Theorem 3 we may find a copy of
P2`+1 in G′ with endpoints of distinct colors. We may now build up the rest of the tree in a greedy
fashion as every degree in G′ is at least k and T has k+ 1 vertices. Thus, we have found a copy of
T in the graph G with leaves of at least two colors.
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Erdős and Sós made the following famous conjecture about the extremal number of trees.

Conjecture 1 (Erdős-Sós [1]). Let k be a positive integer and T be a tree with k edges, then

ex(n, T ) ≤ (k−1)n
2 .

Similarly as Conjecture 1, we believe that a strengthening of Theorem 6 should hold for trees
whose 2-coloring yields two leaves of different colors.

Conjecture 2. Let k be a positive integer and T be a tree with k edges such that in the proper
vertex 2-coloring of T all leaves are not the same color, then exc(n, T ) ≤ (k−1)n

2 .

Conjecture 2 holds for paths of even length by Theorem 4. We take another step towards this
conjecture by proving it in the case of double stars.

Theorem 7. For positive integers a and b, let Sa,b denote the tree on a+ b+ 2 vertices consisting
of an edge {u, v} where |N(u) \ v| = a, |N(v) \ u| = b and N(u) ∩N(v) = ∅.
We have exc(n, Sa,b) ≤ a+b

2 n.

Proof. Let G be a vertex colored graph with |E(G)| > |V (G)| a+b
2 . Without loss of generality,

suppose a ≤ b. We may assume by induction that δ(G) > a+b
2 ≥ a. Since ex(m,Sa,b) = ma+b

2 (see,
for example [5]), it follows that G contains a copy of Sa,b. Suppose this copy is defined by the edge
{u, v} together with the disjoint sets A ⊆ N(u), B ⊆ N(v) with |A|= a, |B|= b. Now, if there is
more than one color in A ∪ B, then we are done. So suppose the color of all vertices in A ∪ B is
the same. Hence A ∪B is an independent set.

If u is not adjacent to some w ∈ B, since |N(w)| ≥ a+ 1, we can pick C ⊆ N(w) \ {u, v} of size
a. So the edge {v, w} together with the sets B′ = (B ∪ {u})\{w} and C define a Sa,b where the
colors of all vertices in C are different from the colors of B′\{u}.

If u is adjacent to all w ∈ B, then fix x ∈ B. Since |N(x)| ≥ a+ 1, we can pick C ⊆ N(x) \ {u}
of size a. Let y ∈ A and define B′ = (B ∪ {y})\{x}. Observe that B′ ⊆ N(u), and the edge {u, x}
together with the sets B′ and C defines a Sa,b, where again the color of the vertices in C is different
from the color of vertices in B′.
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