
A rainbow blow-up lemma

Stefan Glock — University of Birmingham, UK
Felix Joos — University of Birmingham, UK

Abstract

We prove a rainbow version of the blow-up lemma of Komlós, Sárközy and Szemerédi for µn-
bounded edge colourings. This enables the systematic study of rainbow embeddings of bounded
degree spanning subgraphs. As one application, we show how our blow-up lemma can be used
to transfer the bandwidth theorem of Böttcher, Schacht and Taraz to the rainbow setting. Our
proof methods include the strategy of an alternative proof of the blow-up lemma given by Rödl
and Ruciński, the switching method, and the partial resampling algorithm developed by Harris
and Srinivasan.

A subgraph H of an edge-coloured graph G is called rainbow if all its edges have different colours.
Rainbow colourings appear for example in canonical Ramsey theory, and many open problems in
combinatorics such as the Ryser–Brualdi–Stein conjecture on partial transversals in Latin squares
and the graceful labelling conjecture can be phrased as rainbow subgraph problems. The central
question is under which conditions on G and its edge colouring a rainbow copy of H is guaranteed.
Here, H is usually a spanning subgraph such as a perfect matching [8, 12, 14, 21], Hamilton
cycle [1, 2, 4, 7, 9, 11], spanning tree [3, 10, 22], or a general bounded degree graph [5, 13, 23].

Clearly, a necessary condition for the existence of a rainbow copy of H in G is that H is at least
a subgraph of G. Thus, the best one can hope for is to find a rainbow copy of H in G ‘whenever’
H is a subgraph of G. The blow-up lemma of Komlós, Sárközy and Szemerédi is a powerful tool to
find spanning subgraphs, which, since its invention roughly 20 years ago, has significantly shaped
the landscape of extremal combinatorics [6, 15, 16, 17, 18, 19]. It is tailored to be used after an
application of Szemerédi’s regularity lemma and roughly says that super-regular pairs behave like
complete bipartite graphs in terms of embedding bounded degree subgraphs. In the present paper,
we prove a rainbow blow-up lemma. As one application, we transfer the bandwidth theorem of
Böttcher, Schacht and Taraz [6] to the rainbow setting. It would be interesting to find out whether
other results can be transferred in a similar way.

In many of the classical rainbow problems, the host graph G is complete. For instance, Erdős
and Stein asked for the maximal k such that any k-bounded edge colouring of Kn contains a rainbow
Hamilton cycle (cf. [9]). Here, an edge colouring is k-bounded if each colour appears on at most k
edges. After several subsequent improvements, Albert, Frieze, and Reed [1] showed that k = Ω(n),
i.e. there exists a constant µ > 0 such that for any µn-bounded edge colouring of Kn, there exists
a rainbow Hamilton cycle. Note that this is best possible up to the value of the constant µ. A
natural generalization is to ask for general rainbow (spanning) subgraphs. For example, Frieze and
Krivelevich [10] showed that there exists some µ > 0 such that any almost spanning tree with
bounded degree is contained as a rainbow copy in Kn for any µn-bounded edge colouring of Kn.
This was greatly improved by Böttcher, Kohayakawa, and Procacci [5], who showed the following
very general result. Given any n/(51∆2)-bounded edge colouring of Kn and any graph H on n
vertices with ∆(H) ≤ ∆, one can find a rainbow copy of H. Their proof is based on the Lopsided
Lovász local lemma as well as the framework of Lu and Székely [20] for random injections. Using
these tools, they show that a random injection V (H) → V (Kn) yields with positive probability a
rainbow copy of H. Kamčev, Sudakov, and Volec [13] recently extended this result to the setting



where G is complete multipartite, and Sudakov and Volec [23] considered the case when the number
of cherries in H is restricted (instead of the maximum degree).

There is a major stumbling stone if one wants to consider the above problem for incomplete
host graphs, say, for example quasi-random graphs with density d for some arbitrarily small (fixed)
d > 0. If G is complete, then any injection V (H)→ V (G) yields a valid embedding of H (similarly
for the multipartite setting). However, this is not the case for general host graphs G, where a
random injection yields a valid embedding with exponentially small probability. Restricting the
probability space to the ‘valid’ injections does not seem to work with the Lu–Székely framework,
as the latter relies on the perfect symmetry of the setup.

Some recent results on rainbow subgraphs in incomplete host graphs with µn-bounded edge
colourings were obtained using the so-called ‘switching method’. For example, Coulson and Per-
arnau [8] found rainbow perfect matchings in Dirac bipartite graphs, improving an approximate
result of [7]. The crucial property is that given a perfect matching M and an edge e ∈ M (which
is in conflict with another edge in M), there are many ways of ‘switching e out of M ’ to obtain
a new perfect matching which does not contain e. As another example, in an upcoming paper,
Coulson, Keevash, Perarnau, and Yepremyan show the existence of a rainbow F -factor in a graph
G whenever δ(G) ≥ (δF + o(1))n, where δF is the minimum degree threshold for the existence of
an F -factor (cf. [18]). (Here F is an arbitrary fixed graph.) However, the switching method seems
to be limited to ‘simply structured’ spanning graphs H with rich symmetry properties.

We are motivated by the following question:

Given a (dense) graph G on n vertices with a µn-bounded edge colouring and a (bounded
degree) graph H on n vertices, is there a rainbow copy of H in G?

By proving a rainbow blow-up lemma, we provide a tool which allows for the systematic study
of this question, profiting from various techniques and methods which have been developed in
the non-coloured setting. In particular, we give affirmative answers to the above question if G is
quasi-random or has sufficiently high minimum degree.

We remark that the constant µ > 0 we obtain is very small. Nevertheless, our rainbow blow-up
lemma can also serve as a useful tool to study problems where the edge colouring is only proper, say,
but not globally bounded. To appreciate this, note that if one chooses a random subset U of vertices
of size µn, then with high probability, the colouring restricted to this subset is µ|U |-bounded, and
the blow-up lemma could be applied to U to complete a partial embedding (constructed outside U
using different methods).

We will discuss the blow-up lemma in more detail in the next subsection. As mentioned above,
commonly used techniques like the Lu–Székely framework and the switching method do not seem
capable of dealing with quasi-random host graphsG and/or general graphsH. (Here, the idea would
have been to use the original blow-up lemma as a ‘blackbox’ result.) Another natural question is
whether the proof of the blow-up lemma can be adapted to work in the rainbow setting. In the
original proof due to Komlós, Sárközy and Szemerédi, the vertices of H are embedded one by one
using a randomized algorithm, until all but a small fraction of the vertices are embedded, and the
embedding is then completed using the König-Hall theorem. Note that this approach is extremely
vulnerable in the rainbow setting, as already a constant number of choices can render the algorithm
unsuccessful (as a vertex may be incident to only a constant number of different colours), which
seems rather hopeless.

To overcome these obstacles, several new ideas are needed. As an underlying strategy, we
employ the alternative proof of the blow-up lemma given by Rödl and Ruciński, and combine it



with various techniques such as the partial resampling algorithm, the switching method, and a
parallelization of the embedding procedure.

In order to state a simplified version of our rainbow blow-up lemma, we need some more termi-
nology. For k ∈ N, we write [k]0 := [k]∪{0} = {0, 1, . . . , k}. We say that (H,G,R, (Xi)i∈[r]0 , (Vi)i∈[r]0)
is a blow-up instance if the following hold:

• H and G are graphs, (Xi)i∈[r]0 is a partition of V (H) into independent sets, (Vi)i∈[r]0 is a
partition of V (G), and |Xi| = |Vi| for all i ∈ [r]0;

• R is a graph on [r] such that for all distinct i, j ∈ [r], the graph H[Xi, Xj ] is empty if
ij /∈ E(R).

Here, X0 and V0 are so-called ‘exceptional sets’. For simplicity, we assume in this subsection that
they are empty.

For a graph G and two disjoint subsets S, T ⊆ V (G), denote by eG(S, T ) the number of edges
of G with one endpoint in S and the other one in T , and define

dG(S, T ) :=
eG(S, T )

|S||T |

as the density of the pair S, T in G. We say that the bipartite graph G[V1, V2] is lower (ε, d)-super-
regular if

• for all S ⊆ V1 and T ⊆ V2 with |S| ≥ ε|V1|, |T | ≥ ε|V2|, we have dG(S, T ) ≥ d− ε;

• for all i ∈ [2] and v ∈ Vi, we have |NG(v) ∩ V3−i| ≥ (d− ε)|V3−i|.

We say that the blow-up instance (H,G,R, (Xi)i∈[r]0 , (Vi)i∈[r]0) is lower (ε, d)-super-regular if
for all ij ∈ E(R), the bipartite graph G[Vi, Vj ] is lower (ε, d)-super-regular.

We now state a simplified version of the rainbow blow-up lemma. The full statement also allows
exceptional vertices and candidate sets. Moreover, it does not only apply to rainbow embeddings,
but to slightly more general conflict-free embeddings.

Lemma 1 (Rainbow blow-up lemma—simplified). For all d,∆, r, there exist ε = ε(d,∆), µ =
µ(d,∆, r) > 0 and an n0 ∈ N such that the following holds for all n ≥ n0.

Let (H,G,R, (Xi)i∈[r], (Vi)i∈[r]) be a lower (ε, d)-super-regular blow-up instance. Assume further
that

(i) ∆(H) ≤ ∆,

(ii) |Vi| = (1± ε)n/r for all i ∈ [r].

Then, given any µn-bounded edge colouring of G, there exists a rainbow embedding of H into G
(where Xi is mapped to Vi for all i ∈ [r]).

Observe that ε does not depend on r, which is crucial in applications. Originally the blow-up
lemma was formulated with R being the clique on at most ∆ vertices. In essentially all applications
it is applied to many clique blow-ups iteratively. However, in order to have a useful rainbow blow-
up lemma, we cannot apply it independently to two or more clique blow-ups as in both parts the
blow-up lemma may use the same colour.
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