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Abstract

Classical questions in extremal graph theory concern the asymptotics of ex(G,H) where H
is a fixed family of graphs and G = Gn is taken from a “standard” increasing sequence of host
graphs (G1, G2, . . . ), most often Kn or Kn,n. Inverting the question, we can instead ask how
large |E(G)| can be with respect to ex(G,H). We show that the standard sequences indeed
maximize |E(G)| for some choices of H, but not for others. Many interesting questions and
previous results arise very naturally in this context, which also, unusually, gives rise to sensible
extremal questions concerning multigraphs and non-uniform hypergraphs.

For a graph G and a family of graphs H, the extremal number of H in G is defined to be

ex(G,H) = max{|E(F )| : F ⊆ G and H 6⊆ F for any H ∈ H}.

When the family consists only of a single graph, ex(G,H) is used in place of ex(G, {H}).
A typical example of this is when H = {C3, C4, C5, . . . } is the collection of all cycles, in which

case the extremal number is simply the graphic matroid rank of G, an important graph parameter
in its own right.

The Turán problem, one of the cornerstones of extremal graph theory, concerns the behavior
of ex(Kn, H) for a fixed H when n is large. The first result along these lines is a theorem of
Mantel which states that ex(Kn,K3) = bn2/4c. Turán obtained a version for Kt in place of K3,

in particular obtaining ex(Kn,Kt) =
(
1 − 1

t−1 + o(1)
)
n2

2 where o(1) → 0 as n → ∞. In a similar
spirit, the Erdős–Stone Theorem states that if χ = χ(H) is the chromatic number of H, then

ex(Kn, H) =
(
1 − 1

χ−1 + o(1)
)
n2

2 . The Erdős–Stone Theorem asymptotically answers the Turán

problem, except when H is bipartite, in which case the bound becomes o(n2). In this situation,
known as the degenerate case, the asymptotic behavior of very few graphs is known and is an active
area of research.

Most approaches in the case of a bipartite graph instead ask about ex(Kn,n, H), which is known
as the Zarankiewicz problem. This is often seen as a more natural question and provides bounds on
the Turán problem as 1

2 ex(Kn, H) ≤ ex(Kn/2,n/2, H) ≤ ex(Kn, H) for bipartite H. In the special
case of H = C4, the incidence graphs showing tightness for the Zarankiewicz problem were spotted
a few years before polarity graphs showing tightness for the Turán problem.

With this in mind, we set out to explore a framework in which to ask: what is the most “natural”
or “best” host graph for a fixed family of graphs? This suggests optimizing a particular monotone
graph parameter over all host graphs G where ex(G,H) is bounded, the simplest of which is just
the edge count. Thus we define the following extremal function for H:

Ek(H) := sup{|E(G)| : ex(G,H) < k}.

In other words, for a family H, we would like to determine the host graph G with the most edges
such that any k edges from G contain some copy of H ∈ H. In other words, G is best at “forcing”
a copy of some H ∈ H. When the family consists only of a single graph, we write Ek(H) in place
of Ek({H}). Note that it is necessary to consider the supremum here as Ek(H) may be infinite. In



particular, Ek(K1,t) = Ek(tK2) =∞ for k ≥ t as for any s ≥ t, ex(K1,s,K1,t) = t−1 = ex(sK2, tK2),
despite both host graphs having s edges. However, we will later show that stars and matchings
classify all families having Ek(H) =∞.

In a similar fashion to the original Turán problem, this paper considers two questions:

• What are the asymptotics of Ek(H)?

• When Ek(H) can be determined precisely, which host graphs G attain |E(G)| = Ek(H)?

On the one hand, we will show that for non-bipartite H, this parameter behaves more or less
as one might expect. For example, the following theorem is close in spirit to the Erdős–Stone
Theorem:

Theorem 1. If H is a family of graphs with ρ = min{χ(H) : H ∈ H} ≥ 3, then

Ek(H) =

(
1 +

1

ρ− 2
+ o(1)

)
k.

Recalling our motivation from the Zarankiewicz problem, we show that complete bipartite
graphs are optimal hosts for at least one natural family, namely the collection Ce := {C4, C6, . . . }
of even cycles:

Theorem 2. For k ≥ 4, Ek(Ce) =
⌊
k2

4

⌋
, with Kbk/2c,dk/2e being the unique extremal graph for k ≥ 6.

On the other hand, this is already a challenge for the case H = K2,2:

Question. What is Ek(C4) and what is the optimal host graph?

One peculiar feature of our question is that it is sensible even for multigraphs or nonuniform
hypergraphs. We let E∗k (H) denote the maximum number of edges among host multigraphs G with
ex(G,H) < k. The parameter E∗k (H) will be important in proving bounds on Ek(H) when H is a
family of simple graphs. However, we do not even know the following:

Conjecture. If H consists only of simple graphs, then Ek(H) = E∗k (H).

Curiously, for non-uniform graphs H without parallel edges, the above conjecture fails:

Theorem 3. Let O2 be the graph with a single edge and a loop at each end. Then Ek(O2) = 3k
2 ,

whereas E∗k (O2) ∼ φk, where φ is the golden ratio.

In our study of Ek(H) and optimal host graphs, we will show also that:

1. Cliques are best at forcing cliques,

2. Cliques are best at forcing a cycle,

3. Complements of matchings are best at forcing {P3,K3},

4. Cliques with pendant edges are best at forcing P3,

5. Two disjoint cliques or a modified power of a cycle are best at forcing P1 ∪ P2,

6. For uniform hypergraphs, Ek(H) is only infinite for sunflowers,

7. For 1-uniform multigraphs, E∗k (H) is quadratic in k.


