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Abstract

For a digraph D, we define the dichromatic number, χA(D), of D as the minimum k for which
D admits a k-coloring of its vertices such that each color class induces an acyclic subdigraph
in D. This number is related to de chromatic number of an undirected graph as follows: Let
G be a graph and let D be digraph obtained from G by replacing each edge uv of G by a pair
of symmetric arcs, (u, v) and (v, u); an acyclic coloring of D is a proper coloring of G, since
each pair of adjacent vertices in G belong to a common 2-cycle in D and thus they must have
different colors.

Determine the dichromatic number of a digraph is a difficult task. In fact, the authors in [2]
proved that the problem of deciding if a given digraph D has dichromatic number equal to 2 is
NP -complete, this is even true when D is a tournament. Therefore, a more reasonable task is
to give bounds for these number. In this talk we will give four of these bounds.

In this talk D = (V (D), A(D)) will denote a loopless digraph. Two vertices u and v are adjacent
if (u, v) or (v, u) is in A(D). The underlying graph of D is the graph G obtained from D by replacing
each arc (u, v) for the undirected edge uv. Given a subset S of V (D) the induced subdigraph of D
by S, denoted by D〈S〉, is the subdigraph of D with vertex set S and (u, v) ∈ A(D〈S〉) if and only
if (u, v) ∈ A(D).

Here the walks, paths and cycles are always directed. The girth (resp. circumference) of D is
the shortest (resp. longest) cycle. A proper k-coloring of a graph G is an assignment of k colors, 1,
2, . . . , k, to the vertices of G such that each pair of adjacent vertices have different colors. A proper
k-coloring of D is a proper k-coloring its underlying graph G. The chromatic number of a graph G
(resp. digraph D), denoted by χ(G) (resp. χ(D)) is the minimum k such that G (resp. D) admits a
proper k-coloring. An acyclic k-coloring of D is a function c : V (D)→ [k] such that c−1(i) induces
an acyclic subdigraph in D for all i ∈ [k], where [k] denotes the set of positive integers {1, 2 . . . , k}.
The dichromatic number of D, denoted by χA(D), is the minimum k such that D admits an acyclic
k-coloring.

For a strongly connected digraph D, we call a DFS tree to a subdigraph T with V (D) = V (T )
obtained by the DFS algorithm, which is an out-branching rooted at a vertex r, the root. The time
a vertex v ∈ V (T ) is explored by the algorithm, f(v), is the DFS label of v. Notice that each vertex
has a unique DFS label and any two different vertices have different DFS labels. * Whenever there
is a uv-path in T , v is a descendant of u and u is an ancestor of v. Recall that an arc (u, v) ∈ A(D)
is: (i) a tree arc if (u, v) ∈ A(T ), (ii) a backward arc if u is a descendant of v, (iii) a forward arc
if u is an ancestor of v and (iv) a cross arc if u is neither an ancestor nor a descendant of v. For
further details we refer the reader to [1] pages 26-29.

It is clear that if D is an acyclic digraph then χA(D) = 1 and if D contains a cycle then
χA(D) ≥ 2, therefore we look for upper bounds for χA(D).

In [5] Neumann-Lara, proved for a digraph D that the dichromatic number of D, χA(D), equals
the maximum of the dichromatic numbers of the strong components of D. Thanks to this, we can
focus our attention only on strongly connected digraphs.

In [6] Tuza used a depth first search (DFS) tree of a graph to study its proper colorings, now
we will use the directed version of a DFS tree to study the dichromatic number of a digraph.



Henceforth, D will be a strongly connected digraph and T will be a DFS tree of D rooted at a
vertex r and V will denote V (D) = V (T ).

Remark 1. It follows from the definitions that in D there are four types of arcs: tree arcs, forward
arcs, backward arcs and cross arcs. If (u, v) is: (i) a tree arc then f(u) < f(v), (ii) a forward arc
then f(u) < f(v), (iii) a backward arc then f(u) > f(v) and (iv) a cross arc then f(u) > f(v),
which means that each cross arc goes from a branch explored later to a branch explored earlier
(this assertion was proved in [4] page 524).

Remark 2. If f(u) < f(v) and v is an out-neighbor of u in D, then there is a uv-path in T . Even
more, if f(u) < f(v) and v is a descendant of u, then for each w such that f(u) < f(w) < f(v)
we have w is also a descendant of u. This is due to the definition of the DFS algorithm, since all
vertices explored between the time a vertex u is visited for the first time, namely f(u), and before
u is completely processed are descendants of u ([4], page 524).

Remark 3. Whenever there is a uv-path in T , this is unique in T , u must be an ancestor of v in T
and f(u) < f(v); moreover, every walk in T is a path.

Let D be a strongly connected digraph, T be a DFS tree of D rooted at r and t be the length of
a longest path in T . As a consequence of the three Remarks, the i-th generation of T defined as the
set Vi = {u ∈ V | the length of the (unique) ru−path is i} is well defined for each i, 0 ≤ i ≤ t, and
these sets form a partition of V (D) into acyclic subsets, i.e. D〈Vi〉 is acyclic for each i, 0 ≤ i ≤ t.
Then, when we look for acyclic colorings of V (D), we can color all vertices in Vi with the same
color.

We address the problem of coloring the vertices of D in two different ways to give upper bounds
for the dichromatic number of D, by means of a DFS tree: one of them is based on the lengths of
cycles and paths in D giving colorings to the generations of T ; and the other one is based on the
behavior of the backward arcs of D.

Let’s start with the results relating χA(D) with the lengths of cycles and paths. Consider the
girth, circumference and the lengths of longest paths in D, we have two bounds:

Proposition 1. Let D be a strongly connected digraph with small diameter and large out-degree.
Set l = minu∈V {j | j is the length of a longest path starting at u} and let g be the girth of D.

Then χA(D) ≤
⌈
l+1
g−1

⌉
.

Proposition 2. Let D be a digraph with at least one cycle and let c and g be its circumference and

girth, respectively. Then χA(D) ≤
⌈
c−1
g−1

⌉
+ 1.

In [3], authors proved for two integers r and k with k ≥ 2 and k ≥ r ≥ 1 that if a digraph D
contains no cycle of length r modulo k, then χA(D) ≤ k (Theorem 1). We will consider the case
where every cycle has length r modulo k.

Theorem 1. [3] Let r and k be two integers with k ≥ 2 and k ≥ r ≥ 1. If a digraph D contains
no cycle of length r modulo k, then χA(D) ≤ k.

Observe that this result allows us to relate the dichromatic number with the girth and circum-
ference in a different way as follows:

Corollary 1. Let D be a digraph with girth g and circumference c with g−1 ≤ c−g+2 (g ≤ c+3
2 ).

Then χA(D) ≤ c− g + 2.



The bound proposed in corollary 1 is sharp. If we take a digraph D such that all its cycles
have length 3, then 2 ≤ χA(D) as D has cycles and χA(D) ≤ 3− 3 + 2 = 2 by Corollary 1. Thus,
χA(D) = 2 and the bound is reached.

The third bound is the result we promised for digraphs that have all cycles of the same length
modulo k.

Theorem 2. Let k and r be two integers such that k ≥ r ≥ 0 and let D be a strongly connected
digraph such that every cycle in D has length congruent with r modulo k. If r 6= 1 then χA(D) ≤ 3.

If we restrict the parity of k/ gcd(r − 1, k), the bound can be improved.

Corollary 2. Let k and r be two integers such that k ≥ r ≥ 0 and let D be a strongly connected
digraph such that every cycle in D has length congruent with r modulo k. If r 6= 1 and k

d is even,
where d = gcd(r − 1, k), then χA(D) ≤ 2.

Now, let’s forget the lengths of cycles and paths and recall backward arcs.
We noticed that, as a consequence of the DFS algorithm, every cycle in D have at least one

backward arc. Remember that our goal is to color the vertices of D in such a way that no cycle is
monochromatic, so it is sufficient to give different colors to the ends of each backward arc.

Consider a digraph D and a DFS tree T of D. Given a connected subdigraph H of T define
the undirected graph GH with vertex set V (GH) = V (H) and uv ∈ E(GH) whenever there is a
backward arc between u and v in D. We will call GH the underlying backward graph of H relative
to T . Notice that GH is always a subgraph of the underlying graph G of D, and it is a proper
subgraph whenever there is a tree arc (u, v) such that (v, u) /∈ A(D) or whenever there is a cross
arc in D. The fourth bound for χA(D) is in terms of χ(GT ).

Lemma 1. Let D be a strongly connected digraph and T a DFS tree rooted at r. Let H be a con-
nected subdigraph of T and GH its underlying backward graph relative to T . Then χA(D〈V (H)〉) ≤
χ(GH).

Observe that T is itself a connected subdigraph of T and thus χA(D〈V (T )〉) ≤ χ(GT ). As
V (T ) = V (D), we have D = D〈V (T )〉, hence χA(D) ≤ χ(GT ).

There are many results on the chromatic number of a graph, to be able to use them, we must
ask: what can we say about the structure of GT ?

We started with these four upper bounds for the dichromatic number of a digraph, but there is
still work to be done using the DFS tree tool.
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