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Abstract

A metric graph is a pair (G, d), where G = (V,E) is a graph and d : E → R≥0 is a distance
function on E. An isometric embedding of the metric graph (G, d) in `n∞ = (Rn, d∞) is a set
of vectors {qv}v∈V ⊆ Rn such that d∞(qv, qw) = d(vw) for all vw ∈ E. The graph parameter
f∞(G) is the least integer n such that there exists an isometric embedding of (G, d) in `n∞ for
all distance functions d.

The property f∞(G) ≤ n is closed under taking minors. By the Graph Minor Theorem of
Robertson and Seymour, there exists a finite list of excluded minors for the property f∞(G) ≤ n.

We present four graph families of unbounded f∞-value and show that they are unavoidable
in any graph with large f∞-value. This can be viewed as an approximate characterization of
graphs with large f∞-value in the same vein as the grid theorem for graphs of large treewidth.

1 Introduction

In this paper, we consider isometric embeddings of graphs in metric spaces. Recall that a metric
space (X, d) consists of a set of points X and a metric d : X×X → R≥0. That is, for all x, y, z ∈ X,
(i) d(x, y) = d(y, x), (ii) d(x, y) = 0 if and only if x = y, and (iii) d(x, y) ≤ d(x, z) + d(z, y). We
only consider the metric spaces `np = (Rn, dp). Recall that ‖x‖p = (

∑n
i=1|x|p)1/p if p ∈ [1,∞) and

‖x‖∞ = maxi=1,...,n |xi|. We set dp(x, y) = ‖y − x‖p for all p ∈ [1,∞].
Comparing different metric spaces has been the subject of various theories in mathematics.

One way to do so is by means of isometric embeddings, i.e. functions φ : X → X ′ such that
d(x, y) = d′(φ(x), φ(y)) for all x, y ∈ X. As these are quite restrictive, other approaches have been
developped. For instance, in the theory of distortion we require that the distances are preserved
up to a given factor. Bourgain [3] has shown that any finite n-point metric space can be embedded

into an `
O(log2 n)
p space with O(log n) distortion.

Another point of view is to require only a subset of distances to be preserved, which leads to a
graph theoretical approach which we will pursue in this paper. All graphs we discuss are finite and
do not contain loops or parallel edges. A graph H is a minor of a graph G if H can be obtained
from G by deleting edges or vertices, or contracting edges in any order. When taking minors we
remove parallel edges and loops.

A metric graph (G, d) is a pair consting of a graph G = (V,E) and a distance function
d : E → R≥0 satisfying d(vw) ≤ d(P ) =

∑m
i=1 d(vi−1vi) for all vw ∈ E(G) and all paths P =

v0v1 . . . vk with v0 = v and vk = w. An isometric embedding of a metric graph in `np is a set of
vectors {qv}v∈V ⊆ Rn such that dp(qv, qw) = d(vw) for all edges vw ∈ E.

For each p ∈ [1,∞] and graph G = (V,E), a distance function d : E → R≥0 is `p-realizable if
it comes from an isometric embedding in `mp (m can be arbitrarily large). If d is `p-realizable, we
define the parameter fp(G, d) to be the least integer n such that (G, d) can be embedded in `np .
Furthermore we set fp(G) = maxd fp(G, d), where the maximum is over all `p-realizable distance
functions. By the conic version of Carathéodory’s theorem this parameter is always finite.



It is easy to see that a minor H of G satisfies fp(H) ≤ fp(G) for all p ∈ [1,∞]. Hence the
property fp(G) ≤ n is closed under taking minors. By the Graph Minor Theorem of Robertson
and Seymour, for each n, there exists a finite list of excluded minors for the property fp(G) ≤ n.
Formally, an excluded minor for fp(G) ≤ n is a graph H such that fp(H) > n and every proper
minor H ′ of H satisfies fp(H

′) ≤ n.
The complete lists of excluded minors are known in the Eucledian case `n2 for the dimensions

n = 1, 2, 3. Belk and Connelly [1, 2] have shown that {K3}, {K4}, {K5,K2,2,2} are the respective
sets of excluded minors. Furthermore, it is easy to see that the only excluded minor for fp(G) ≤ 1
is K3 for all p ∈ [1,∞] by setting the same distance on each edge.

Fiorini, Joret, Huynh and Varvitsiotis [4] studied `2∞. The excluded minors are W4, the wheel
on 5 vertices, and the graph K4 +e K4, which is obtained by gluing two K4-graphs on a common
edge and deleting that edge.

We will present some general results about `n∞-spaces with n ≥ 3.

2 Alternative views of f∞

We now introduce alternative views of the parameter f∞ using potentials and a variant of edge
coloring.

Let D be a directed edge-weighted graph and l : A(D)→ R. A potential on (D, l) is a function
p : V (D)→ R such that p(w)− p(v) ≤ l(a) for all a = (v, w) ∈ A(D). Recall that in `n∞ we define
d∞(x, y) = maxi=1,...,n|xi− yi|. Hence |xi− yi| ≤ d∞(x, y) for all i = 1, . . . , n and there exists some
index j for which |xj − yj | = d∞(x, y).

Let (D, l) be the directed edge-weighted graph obtained from (G, d) by bidirecting all edges and
setting l(−→vw) = l(−→wv) = d(vw) for all vw ∈ E(G). Note that p : V (D)→ R is a potential if and only
if |p(w)−p(v)| ≤ d(vw) for all vw ∈ E(G). We say that an edge vw is tight if |p(w)−p(v)| = d(vw).

Notice that in `n∞-spaces, a set {qv}v∈V is an embedding of some (G, d) if and only if there exist
n potentials pi : V → R on (D, l) such that each edge is tight in some potential. We can define pi
such that pi(v) corresponds to the i-th coordinate of qv in Rn. Hence f∞(G) corresponds to the
least integer n such that for each metric graph (G, d) there exists a family of n potentials on (D, l)
such that each edge of G is tight in at least one potential.

Given a set of edges F ⊆ E(G) we say that F is feasible if there exists a potential p : V → R
on (D, l) such that |p(w)− p(v)| = d(vw) for all vw ∈ F , otherwise F is unfeasible. If F is feasible,

then there exists a feasible orientation
−→
F of the edges of F such that p(w) − p(v) = −d(vw) if

−→vw ∈
−→
F and p(w) − p(v) = d(vw) otherwise. Notice that all edges which are tight for some fixed

pi form a feasible set, and each feasible set F gives rise to a potential p such that the edges of F
are tight. Hence f∞(G) is the least integer n such that for each (G, d) there exists a collection of
n feasible sets F1, . . . , Fn such that E(G) ⊆

⋃n
i=1 Fi.

An n-coloring of the edges of G is a partition of E(G) into sets F1, . . . , Fn called color classes.
If all color classes are feasible sets, we say that the coloring is feasible.

Given a feasible orientation
−→
F , we can modify the length function l = l(

−→
F ) on D such that

l(−→vw) =

{
d(vw) if −→vw /∈

−→
F

−d(vw) if −→vw ∈
−→
F
.

By a well-known result characterizing the existence of a potential, the weighted digraph (D, l(
−→
F ))

admits a potential if and only if it does not contain a negative weight directed cycle. We say that



the color class F does not have a negative cycle if there exists an orientation
−→
F of F , such that

(D, l(
−→
F )) has no negative cycle.

Given an n-coloring of G, we can define (D, l(
−→
Fi)) for each color class Fi. Hence, f∞(G) = n

if and only if for all (G, d) there exists a feasible n-coloring of E(G), i.e. such that each color class
has no negative cycle.

3 New results

For all n ≥ 2, it is known that the excluded minors for f∞(G) ≤ n have minimum degree at least
3. Fiorini et al. [4] proved that deleting a degree-2 vertex v and adding a new edge between the
neighbours of v (if there was none) does not change f∞(G).

We now mention a useful lemma about gluing two graphs on an edge. We write G = G1⊕vwG2

if G = G1 ∪ G2 with V (G1) ∩ V (G2) = {v, w} and vw ∈ E(G1), E(G2). Also, we denote by
G1 +vw G2 the graph G1 ⊕vw G2 minus the edge vw.

Lemma 1. Let G1, G2 be two graphs with V (G1)∩V (G2) = {v, w} and vw ∈ E(G1), E(G2). Then

f∞(G1 +vw G2) ≤ f∞(G1 ⊕vw G2) ≤ f∞(G1) + f∞(G2)− 1.

The first inequality is trivial since G1 +vw G2 is a minor of G1 ⊕vw G2. The key idea for the
second inequality is to see that we can color G1 and G2 independently using f∞(G1) + f∞(G2)
colors in total (the color classes of each Gi are still feasible in the whole graph). After this, we can
merge the two color classes which are used for vw in G1 and G2 respectively. The new color class is
feasible because we can add −→vw,−→wv to any cycle C using edges of both G1 and G2 and decompose
C into two cycles C1, C2 which are respectively contained in E(G1), E(G2).

Another important observation is that we can sometimes find sets of edges of G that cannot
pairwise share a color for some distance function d. For two edges v1v2, w1w2, they cannot share a
color if there exist viwj-paths Pi,j such that d(P1,1) + d(P2,2) > d(v1v2) + d(w1w2) and d(P1,2) +
d(P1,2) > d(v1v2) + d(w1w2). This gives a lower bound on f∞(G).

Combining these two results, we can provide upper and lower bounds for some graph families.
The n-K4-star is obtained from n K4 graphs by gluing them on one common edge and deleting that
edge. The n-K4-fan is obtained by gluing n K4-graphs on adjacent edges which share a common
vertex and deleting these edges. The n-K4-path is obtained from n K4 graphs by gluing them on
opposite edges which are deleted afterwards. These graphs are illustrated in Figure 1.

Notice that if n = 2, then the three graphs are the graph K4 +eK4 which is one of the excluded
minors for f∞(G) ≤ 2 identified in [4]. By applying Lemma 1 and using f∞(K4) = 2, it follows by
induction that these graphs satisfy f∞(G) ≤ n+ 1. There exist distance functions for each of these
graphs such that there exist n + 1 edges that need distinct colors in every feasible coloring. The
corresponding edges are highlighted in Figure 1. Hence these graphs satisfy f∞(G) = n+ 1.

We will now introduce a family of 3-connected graphs with unbounded f∞-value. The n-necklace
Nn is the graph obtained from the n-ladder by adding the vertex v and the edges vv1, vw1, vvn, vwn.
This graph is the last one in Figure 1. By adding the vertex v to the ladder we create a 3-connected
graph with f∞(Nn) ≥ dn/2e. Indeed, it is possible to construct a distance function d on Nn such
that every other of the matching edges viwi requires distinct colors as shown in Figure 1.

These four families provide simple constructions of graphs with large f∞-value. Furthermore,
our main theorem shows that they are unavoidable in any graph with large f∞-value:



Figure 1: From left to right: 4-K4-star, 6-K4-fan, 5-K4-path, 5-necklace. For each graph, there is
a distance function such that the red edges must all receive distinct colors.

Theorem 1. Let n ≥ 2. The graphs n-K4-star, n-K4-fan, n-K4-path satisfy f∞(G) = n + 1 and
are excluded minors for f∞(G) ≤ n. The n-necklace Nn satisfies f∞(Nn) ≥ dn/2e.

On the other hand, if G is a graph containing none of n-K4-star, n-K4-fan, n-K4-path and
n-necklace as a minor, then f∞(G) is bounded by a function of n.

To conclude this extended abstract, we also mention that we studied the case n = 3 in depth
in [5]. Motivated by the problem of identifying the corresponding excluded minors, we identified a
list of 38 graphs that satisfy f∞(G) = 4 and are pairwise incomparable w.r.t. the minor relation.
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