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Abstract

We define general reduction tools for (a, b)-coloring of graphs where 2 ≤ a/b ≤ 3. The utility
of these tools is exemplified on finite triangle-free induced subgraphs of the triangular lattice.
Computations on millions of such graphs generated randomly show that our tools allow to find
(in linear time) a (9, 4)-coloring for each of them.

A (a, b)-coloring of a graph G is a mapping which associates to each vertex a set of b colors
from a set of a colors in such a way that adjacent vertices get disjoints sets of colors. Such type
of coloring is in relation with weighted colorings (in which the number of colors to assign to each
vertex is variable) which have application for frequency allocation in cellular networks [3].

In this paper, we define reducible configurations for (a, b)-coloring when 2 ≤ a/b ≤ 3, that may
allow to prove that some graphs are (a, b)-colorable. In particular, we apply our reduction tools on
finite induced subgraphs of the triangular lattice, called hexagonal graphs in this paper, in order to
try to solve the following conjecture due to McDiarmid and Reed:

Conjecture 1 (McDiarmid-Reed [1]). Every hexagonal graph is (9, 4)-colorable.

1 Handle reductions

A handle P (n) of length n in a graph G is a path of length n that is an induced subgraph of G with
vertices of degree two in P (n) having the same degree in G. The interior int(H) of a handle H is
the set of vertices of degree 2 of H. A parity handle (or P-handle) PP (n) in a graph G is a handle
P (n) with the additional property that there exists another path of length m ≤ `, of the same
parity than ` in G− int(P (n)), between the two end-vertices of P (n). An S-handle S(n1, n2, n3) in
a graph G is a handle of length n1 such that one of its end-vertices has degree 3 in G and is also the
end-vertex of two other handles of length n2 and n3. An H-handle H(n1, n2, n, n3, n4) in a graph
G is a handle of length n such that its two endvertices are of degree three in G and one of them is
also the end-vertex of two other handles of lenght n1 and n2 and the other end vertex is also the
end-vertex of two handles of length n3 and n4. Examples of handles are illustrated in Figure 1.
Due to symetry reasons, we will consider only S-handles with n1 ≥ n2 ≥ n3 and H-handles with
n1 ≤ n2 ≤ n and n4 ≤ n3 ≤ n. Note that extremities of a handle may be the same vertices (hence
a handle may induce a cycle in the graph).

A handle H is (a, b)-reducible in a graph G if any (a, b)-coloring of G− int(H) can be extended
to a (a, b)-coloring of G, i.e., whatever the colors of the end-vertices of the handle, there always
exists a (a, b)-coloring of int(H).

For a graph G and a family F of handles in G, we define coreF (G) as any (induced) subgraph
obtained after successively removing vertices of degree 0 and 1 and vertices of int(H) for each
handle H ∈ F until no more degree 0 or 1 vertex nor handle of F remains. It can be shown that
the core is in fact unique, i.e., whatever the order of the reductions made, it will end with the same
graph.

By the definition of reducibility, we immediatly have the following result:



P (5) PP (4) S(4, 3, 2) H(1, 2, 5, 3, 2)

Figure 1: Examples of handles in a graph, from left to right: handle, parity handle , S-handle and
H-handle.

Theorem 2. For any graph G and any familiy F of (a, b)-reducible handles in G,

G (a, b)-colorable⇔ coreF (G) (a, b)-colorable.

For any real x, let Even(x) be the minimum even integer m such that m ≥ x. When speaking
about smallest reducible handles, it refers to the natural ordering on the vectors of integers. The
following reducibility results are given without proof due to space constraints.

Theorem 3. For any graph G and any integers b, e such that b ≥ 2 and e < b, any handle P (n)
with n ≥ Even(2b/e) is (2b + e, b)-reducible in G and any parity handle PP (n) with n ≥ 3 is
(2b + e, b)-reducible in G.

Theorem 4. For any graph G and any integers b, e, k such that b ≥ 2, e < b, and k ≤ b,
S(Even(2b/e)−1, 2, 1) is the smallest (2b+e, b)-reducible S-handle and S(2b−k, k, k) is the smallest
(2b + 1, b)-reducible S-handle in G.

Theorem 5. For any graph G and any integers b, e such that b ≥ 2 and e < b, H(1, 2,Even(2b/e)−
2, 2, 1) is the smallest (2b + e, b)-reducible H-handle and the following H-handles are the smallest
(2b + 1, b)-reducible H-handles in G:

• H(2, 2, 2b− 3, 2, 2), H(1, 2, 2b− 3, 3, 2), H(1, 4, 2b− 3, 2, 2);

• H(2, 3, 2b− 4, 3, 2), H(2, 2, 2b− 4, 4, 2), H(2, 2, 2b− 4, 3, 3), H(1, 2, 2b− 4, 4, 3), H(1, 4, 2b−
4, 3, 3).

2 Multicoloring hexagonal graphs

In a similar way than the method used by Havet [2], i.e., starting from a degree 3 vertex in a
’corner’ of the graph and exploring the configurations around it for proving that a handle from F
is present, we can prove the following:

Theorem 6. Let H be a hexagonal graph. For each of the following three families of handles we
have coreF (H) = ∅:

1. F = {P (2)};

2. F = {P (4), PP (3)};



3. F = {P (6), PP (3), PP (4), PP (5), S(5, 2, 1), H(1, 2, 4, 2, 1)}.

This theorem along with Theorems 3, 4, 5 allow to prove the known results [2] for (a, b)-
colorability of hexagonal graphs for b = 1, 2 and 3 in a unified way:

Corollary 7. Any hexagonal graph is (3, 1)-colorable, (5, 2)-colorable and (7, 3)-colorable.

For a = 9 and b = 4, it allows to prove simply the result of Witkowski and Žerovnik [4], where
a corner is a vertex of degree 2 or 3 adjacent to at least two vertices of non opposite directions:

Corollary 8. Any hexagonal graph without adjacent corners is (9, 4)-colorable.

For any hexagonal graph H, consider the following set of handles:
F9,4 = {P (8), PP (3), PP (4), PP (5), PP (6), PP (7)} ∪ {S(7, 2, 1), S(6, 2, 2), S(5, 3, 3), S(4, 4, 4)} ∪
{H(1, 2, 6, 2, 1), H(1, 2, 5, 3, 2), H(1, 4, 5, 2, 2), H(2, 2, 5, 2, 2), H(2, 2, 4, 4, 2), H(2, 2, 4, 3, 3),
H(1, 2, 4, 4, 3), H(2, 3, 4, 3, 2), H(1, 4, 4, 3, 3)}.

Note that, by Theorems 3, 4, 5, the handles of F9,4 are all (9, 4)-reducible. Moreover, all the
handles of F9,4 are necessary since we have examples of hexagonal graphs for which the core is not
empty if we remove one of the handle from F9,4. Figure 2 shows three examples of hexagonal graphs
that only possess H-handles (the graphs on the left and right contains only handles H(2, 2, 4, 4, 2)
and the one on the center only handles H(1, 2, 6, 2, 1).

Figure 2: Three hexagonal graphs that only have (9, 4)-reducible H-handles.

We have performed computational experiments for testing the reduction tools defined in the
previous section on hexagonal graphs for finding a (9, 4)-coloring. The algorithms were coded in
C++ and ran on a Intel Xeon CPU at 2.67 GHz. The graphs are generated randomly on a grid of
size `× h by choosing randomly the coordinates of a point and testing if the corresponding vertex
can be added to the graph without creating a triangle (repeated 10`h times). In order to obtain the
’harder’ instances of hexagonal graphs, we then do a final pass in which we consider the points of
the grid in order and test if they can be added to the graph. Hence the graph obtained are maximal
triangle-free subgraphs of the triangular lattice, i.e., no point in the area can be added without
creating a triangle. The reduction algorithm consists in testing, for each vertex x in sequence, if x is
the end-vertex of a handle from F9,4. The results are reported on Table 1 in which the first column
indicates the grid size, the second column reports the number of graphs generated and tested, the
third column indicates the mean density, i.e., the mean ratio of degree-3 vertices, the fourth one
indicates mean order of the graphs tested, the fifth one reports the ratio of graphs that require at
least a reduction H(n1, n2, n, n3, n4). Column 6 gives the time needed to test all the graphs and
column 7 reports the number of graphs for which the core is not empty.



Grid size
`× `

number of
graphs tested

mean
density

mean or-
der

H-ratio (per
1000)

computation
time (s)

number of
graphs with
coreF9,4 6= ∅

10 10000000 20 35 0 732 0

12 10000000 23 56 0.0006 1020 0

16 10000000 27 108 0.0016 2000 0

20 10000000 29 176 0.0062 3030 0

30 10000000 32 416 0.0335 7296 0

40 10000000 33 755 0.0963 13740 0

50 1000000 34 1193 0.184 22140 0

75 1000000 35 2721 0.528 5508 0

100 1000000 36 4868 1.118 9792 0

150 1000000 36 11016 2.815 22960 0

200 100000 36 19639 5.12 4278 0

500 20000 37 123345 36.65 6036 0

1000 1000 37 494129 142 1329 0

1500 1000 37 1112383 283 3243 0

Table 1: Summary of the computations.

Our computations show that on thousand millions of graphs on grid sizes ranging from 10× 10
to 1500 × 1500, every graph has been reduced completely, i.e., its core is empty. Moreover, the
ratio of hexagonal graphs that cannot be reduced completely without using H-handles is quite small
(although this ratio grow with the order of the graph, see column 5 of Table 1).

With these new reductions, we can state the following equivalent form of Conjecture 1:

Conjecture 9. For every hexagonal graph G, coreF9,4(G) is (9, 4)-colorable.

However, the (9, 4)-reducible handles considered so far are not sufficient to prove McDiarmid
and Reed’s conjecture since our program, ran on hexagonal graphs generated from the flower of
Figure 2 (by adding vertices randomly), found few examples for which coreF9,4 is not empty. For
each we have to define a new type of handle with constraints on the distances between some end-
vertices (that in turn, induce constraints on the colors of theses vertices). One of such configurations
is the hexagonal handle H∗(2, 2, n, 2, 2) which is a handle P (n) with a length 6 cycle attached to
each of its two end-vertices (hence it is a H-handle H(2, 2, n, 2, 2) with a path of length two between
the two end-vertices of the paths of length two attached to each extremity of the central path).
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