Stable gonality is computable

Ragnar Groot Koerkamp — Mathematical Institute, Utrecht University, PO Box
80.010, 3508 TA Utrecht, The Netherlands, ragnar.grootkoerkamp@gmail.com (now at
Google)

Marieke van der Wegen — Department of Information and Computing Sciences,

Utrecht University, PO Box 80.089, 3508 TB Utrecht, The Netherlands,
m.vanderwegen@Quu.nl

Abstract

Stable gonality is a multigraph parameter that measures the complexity of a graph. It is
defined using maps to trees. Those maps, in some sense, divide the edges equally over the edges
of the tree; stable gonality asks for the map with the minimum number of edges mapped to each
edge of the tree. This parameter is related to treewidth, but unlike treewidth, it distinguishes
multigraphs from their underlying simple graphs. Stable gonality is relevant for problems in
number theory. In this paper, we give an algorithm that computes the stable gonality of a graph
in O((1.33n)"m™ poly(n, m)) time.

1 Introduction

The gonality of an algebraic curve X is the minimal degree of a morphism to the projective line
P!. Algorithms are known that, given equations for X, compute the gonality (using Grébner basis
algorithms, e.g. [7]). Various analogues of gonality have been defined in graph theory, see [1, 3, 4].
In this paper, we are concerned with the computation of the so-called stable gonality sgon(G) of a
multigraph G, which is defined as the direct analogue of the above geometric definition: sgon(G) is
the minimal degree of a finite harmonic morphism of a refinement of G to a tree, where a refinement
of G is given by iteratively subdividing edges or adding leaves (cf. 1-6 infra). Our main result says:

Theorem 1. There is an algorithm that, given a graph G, computes its stable gonality sgon(Q)
in time O((1.33n)"m™ poly(n,m)). Furthermore, deciding whether a graph has stable gonality at
most a given integer is in NP.

It is not immediately clear that stable gonality of a graph is computable in general, since
its definition involves three quantifiers over infinite sets. In this paper we bound the number of
refinements, trees and morphisms that we have to consider and give an algorithm to compute the
stable gonality of a graph, which shows that stable gonality is computable.

Computing stable gonality is relevant in the theory of diophantine equations. More specifically,
if X is a smooth projective curve defined over a number field K with stable reduction graph G at
some non-archimedean place, it is known that gon(X) > sgon(G) [1, §4]. The following “uniform
boundedness result” follows: X has only finitely many points in the union of all field extensions of
K of degree at most (sgon(G) —1)/2 [4, §11].

2 Preliminaries

By ’graph’ we mean finite undirected connected multigraph. In this section, we will define stable
gonality as in [, Definition 3.6], using finite harmonic morphisms.

Definition 1. Let G and H be loopless graphs. A finite morphism is a map ¢: G — H, such that
o ¢(v) e V(H) for all v € V(G),
e ¢(e) = dp(u)p(v) € E(H) for all e = uv € E(G),

together with, for every edge e € F(G), an index r4(e) € N.

Definition 2. Let ¢: G — H be a finite morphism. Let v € V(G) be a vertex of G and e € Ey,)
an edge in H. The index of v in the direction of e, denoted by mg (v) is

mee(v) = > re(d).
d€Ey,p(d)=e

In order for a morphism ¢ to be harmonic, we want that for every vertex v its incident edges
are distributed equally (counted with their index) over the edges incident to ¢(v):

Definition 3. A finite morphism ¢: G — H is harmonic if, for all v € V(G) and for all e, €’ € Ey,),

o= DD rela).

FEEy,¢(f)=e d€Ey,¢(d)=e’
In other words, ¢ is harmonic if for every vertex the index in each direction is the same. We call

this number the index of v and denote it by mg(v).

A consequence of a finite morphism being harmonic is that the total number of edges (counted
with their index) that are mapped to each edge is equal. We call this amount the degree of the
finite harmonic morphism.

Definition 4. The degree of a finite harmonic morphism ¢: G — H is
deg(d) = D re(d)= D my(u),
ded=(e) u€p=1(v)
for any choice of e € E(H) or v € V(H). This number is independent of the choice [2, Lemma 2.4].

Definition 5. Let G be a graph. A refinement of G is a graph H that can be obtained by applying
the following operations finitely many times:

e add a new leaf, i.e. a vertex of degree 1;

e subdivide an edge by adding a vertex of degree 2.
Definition 6. Let G be a graph. The stable gonality of G is

sgon(G) = min{deg(¢) | ¢: H — T a finite harmonic morphism,
H a refinement of G, and T a tree}.

In Figure 1(d) we see an example of a refinement of the graph in Figure 1(a) and a finite
harmonic morphism of degree 4.

The stable gonality of a graph G with n vertices and m edges is related to other graph parameters
like treewidth [5, Section 5] and the first Betti number g := m — n + 1 [, Theorem 5.7] by the
inequalities tw(G) < sgon(G) < L#J Whereas treewidth only depends on the underlying simple
graph of a multigraph, stable gonality distinguishes multigraphs and their underlying simple graphs.

Lastly, we introduce notation for a part of a graph from a given vertex v in the direction of a
given vertex u.

Definition 7. Let G be a graph and wu,v vertices. Let U be the connected component of G — v
containing u. By G, (u) we denote the induced subgraph on U U {v}. By G, we denote the graph

(Gu(v))v(w).

We say we add G,(u) to a vertex w in a graph H, when we add a copy of G,(u) to H and
identify v with w.

We say we refine edge uv of G as Ty, when we remove uv from G, add a copy of Ty and
identify u with v and v with v'.

3 Algorithm overview

In this paper we will give an algorithm to compute the stable gonality of a graph. Notice that the

computability of stable gonality is not immediate from the definition: there are infinitely many

refinements of a graph, there are infinitely many trees and there are infinitely many finite harmonic

morphisms, since there are infinitely many assignments of indices to the edges. We bound the trees

and maps that we have to consider, after which our algorithm enumerates all those trees and maps.
The algorithm considers all tuples a = (7', f,), where

e T is a tree with at most n = |V(G)| vertices,
o [:V(G)— V(T) is a surjective map,
o 7: B(G) — {1,2,..., ™2+ |} is a map assigning indices to the edges of G.

Given such a tuple, we construct a finite harmonic morphism ¢, from a refinement of G to a tree
constructed from T by optionally adding at most m leaves. We compute the degree of ¢,, and
output the minimum degree over all tuples .

We now explain how to construct a refinement H and a finite harmonic morphism ¢, from a
tuple o = (T, f,r).

First we set ¢(v) = f(v) for every vertex v of G. For each edge uv € E(G) with f(u) = f(v),
we add a vertex ey, to uv. Besides, we add a leaf €/, to f(u). We assign index 1 to those new edges
and set ¢(ey,) = €}, This is depicted in the second column of Figure 1. Write 7" for the tree we
constructed from T by adding these leaves. Now, for every edge uv € E(G) with f(u) # f(v), we
refine uv as Tj’[(u) F)" Assign index r(uv) to all those new edges and use the identity map to map
this part of the refinement to T}(u) Fl)" This is the third column in the figure. In the last column,
we ensure that our map is harmonic: for every vertex v € V(G), let e € Ey(,) be the edge such
that mg c(v) is maximal. Now, for every edge ¢’ = f(v)u' € Ey(,) with mg e (v) < mg(v), we add
T}(y) (u') to v, assign index Mg ¢(v) — Mg (v) to these new edges and use the identity map to map
this part of the refinement to 77 (U)(u’).

Let H, be the refinement constructed in this way, and set ¢, = ¢. Now ¢, is a finite harmonic
morphism from H, to T".

4 Correctness

To show that our algorithm is correct, we need to prove that our algorithm will find a finite harmonic
morphism of minimal degree. For this we use several lemmas of the form: ‘There exists a finite
harmonic morphism ¢: H — T for a refinement H of G and a tree T such that ¢ has a certain

T *
(a) (b) () (d) x
E— w E— E—

l J | J
® el . .

Figure 1: Consider the map (in (a)) where every vertex is mapped to the vertex of the tree below
it. When both ends of an edge are mapped to the same vertex, for example edge vw, we add a
vertex e, and map it to a new vertex e}, (see (b)). Then, we refine edges for which the ends are
not mapped to the same vertex, like edge uy, as the part of the tree they correspond with (see (c)).
Lastly, we add copies of parts of the tree, to make sure the morphism is harmonic at every vertex
(see (d)). In this example, all edges have index 1.

property.’. To prove these lemmas we make some local changes to a finite harmonic morphism
without changing the degree. Using these lemmas we prove that there exists a finite harmonic
morphism with minimum degree and having these properties, from which it will follow that there
exists a finite harmonic morphism of the from ¢, with minimum degree for some «. For all proofs,
see [0].

References

[1] Matthew Baker. Specialization of linear systems from curves to graphs. Algebra & Number Theory,
2(6):613-653, 2008. With an appendix by Brian Conrad. doi:10.2140/ant.2008.2.613.

[2] Matthew Baker and Serguei Norine. Riemann—Roch and Abel-Jacobi theory on a finite graph. Advances
in Mathematics, 215(2):766 — 788, 2007. doi:10.1016/j.2aim.2007.04.012.

[3] Lucia Caporaso. Gonality of algebraic curves and graphs. In Algebraic and Complex Geometry, In
Honour of Klaus Hulek’s 60th Birthday, volume 71 of Springer Proceedings in Mathematics € Statistics,
pages 77-108. Springer, 2014. doi:10.1007/978-3-319-05404-9.

[4] Gunther Cornelissen, Fumiharu Kato, and Janne Kool. A combinatorial Li-Yau inequality and rational
points on curves. Mathematische Annalen, 361(1):211-258, 2015. doi:10.1007/s00208-014-1067~-x.

[5] Josse van Dobben de Bruyn and Dion Gijswijt. Treewidth is a lower bound on graph gonality. preprint,
arXiv:1407.7055v2, 2014.

[6] Ragnar Groot Koerkamp and Marieke van der Wegen. Stable gonality is computable. preprint,
arXiv:1801.07553, 2018.

[7] Josef Schicho, Frank-Olaf Schreyer, and Martin Weimann. Computational aspects of gonal maps and
radical parametrization of curves. Applicable Algebra in Engineering, Communication and Computing,
24(5):3137341, 2013. doi:10.1007/s00200-013-0205-0.

http://dx.doi.org/10.2140/ant.2008.2.613
http://dx.doi.org/10.1016/j.aim.2007.04.012
http://dx.doi.org/10.1007/978-3-319-05404-9
http://dx.doi.org/10.1007/s00208-014-1067-x
http://dx.doi.org/10.1007/s00200-013-0205-0

	Introduction
	Preliminaries
	Algorithm overview
	Correctness

