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Abstract

The well-known 1–2–3 Conjecture asserts that the edges of every graph without isolated edges
can be weighted with 1, 2 and 3 so that adjacent vertices receive distinct weighted degrees. This
is open in general. We prove that every d-regular graph, d ≥ 2, can be decomposed into at most
2 subgraphs (without isolated edges) fulfilling the 1–2–3 Conjecture if d /∈ {10, 11, 12, 13, 15, 17},
and into at most 3 such subgraphs in the remaining cases. Additionally, we prove that in general
every graph without isolated edges can be decomposed into at most 24 subgraphs fulfilling the
1–2–3 Conjecture, improving the previously best upper bound of 40. Both results are partly
based on applications of the Lovász Local Lemma.

1 Introduction

A graph of order at least 2 cannot be irregular, i.e. its vertices cannot have pairwise distinct
degrees. Potential alternative definitions of “irregular graphs” (referring to more local features
of a graph) were investigated by Chartrand, Erdős and Oellermann in [9], while the related so-
called irregularity strength of a graph was introduced in [10], and investigated further in numerous
papers, see e.g. [3, 11, 14, 17, 19]. The following notion was in turn proposed in [5]: A graph (or
multigraph) is called locally irregular if its adjacent vertices have distinct degrees. We say a graph
G = (V,E) can be decomposed into k locally irregular subgraphs if E can be partitioned into k sets:
E = E1 ∪ E2 ∪ . . . ∪ Ek so that Gi := (V,Ei) is locally irregular for i = 1, 2, . . . , k. In [5] it was
conjectured that except for some family of exceptional graphs (each of which has maximum degree
at most 3, see [5] for details), every connected graph can be decomposed into 3 locally irregular
subgraphs. This was then confirmed in [20] for graphs with sufficiently large minimum degree.

Theorem 1 ([20]). Every graph G with minimum degree δ(G) ≥ 1010 can be decomposed into 3
locally irregular subgraphs.

It was also proved by Bensmail, Merker and Thomassen [8] that in general every connected graph
which is not exceptional can be decomposed into (at most) 328 locally irregular subgraphs, what
was then pushed down to 220 such subgraphs in [18]. See also [5, 6, 8, 18] for a number of partial
and related results.

An another direction of research towards inducing local irregularities in graphs was earlier
introduced in [16]. There Karoński,  Luczak and Thomason considered the least k so that a locally
irregular multigraph can be obtained from a given graph G = (V,E) by replacing each edge with at
most k parallel edges. This problem was in fact originally formulated in terms of weightings, where
by a k-edge-weighting of G we mean any mapping ω : E → {1, 2, . . . , k}. For such w we may define
the so-called weighted degree of or simply the sum at a given vertex v as: sω(v) :=

∑
e∈Ev

ω(e),
where Ev denotes the set of edges incident with v in G. In this setting, the authors of [16] were
interested in the least k such that a k-edge-weighting ω of G exists so that sω(u) 6= sω(v) for every
edge uv ∈ E – we say that u and v are sum-distinguished then (note we must assume that G
contains no isolated edges to that end). They posed a very intriguing question, commonly known
as the 1–2–3 Conjecture in the literature nowadays, and confirmed it e.g. for 3-colourable graphs.



Conjecture 2 (1–2–3 Conjecture, [16]). For every graph G = (V,E) without isolated edges there
exists a weighting ω : E → {1, 2, 3} sum-distinguishing all neighbours in G.

Theorem 3 ([16]). Every graph G with no isolated edges and χ(G) ≤ 3 fulfills the 1–2–3 Conjecture.

In general Conjecture 2 is however still widely open. The best general result thus far was delivered
by Kalkowski, Karoński and Pfender [15], who proved that it is sufficient to use weights 1, 2, 3, 4, 5,
see also [1, 2] for other results.

We develop research initiated in [7], related to and combaining the both concepts discussed
above. In the following, by writing that a graph fufills the 1–2–3 Conjecture, we shall mean that
there actually exists its neighbour sum-distinguishing 3-edge-weighting (assuming this holds in par-
ticular for an edgeless graph). We prove below that for almost every d ≥ 2, a d-regular graph G
can be decomposed into 2 subgraphs fulfilling the 1–2–3 Conjecture, while in the remaining cases
it can be decomposed into 3 such subgraphs, cf. Corollary 6 and Theorem 7 below. We also show
that in general every graph without isolated edges can be decomposed into (at most) 24 subgraphs
consistent with the 1–2–3 Conjecture, while thus far it was known that 40 such subgraphs were
always sufficient, see [7] (also for other related results). Our approach is in both cases partly
based on various applications of the probabilistic method, and in particular symmetric and general
versions of the Lovász Local Lemma, see e.g. [4], and the Chernoff Bound, see e.g. [12].

2 Graphs with Bounded Chromatic Number

We first analyse graphs with relatively small degrees by investigating, more generally, graphs with
upper-bounded chromatic number. For this aim we develop research from [7] to prove that:

Lemma 4. For each positive integer k, every graph G = (V,E) without isolated edges and with
χ(G) ≤ 3k can be decomposed into k (some possibly empty) subgraphs G1, G2, . . . , Gk such that
χ(Gi) ≤ 3 and Gi contains no isolated edges for i = 1, 2, . . . , k.

By Theorem 3 and Lemma 4 we thus almost immediately obtain the following corollaries.

Corollary 5. Every graph G without isolated edges can be decomposed into dlog3 χ(G)e graphs
fulfilling the 1–2–3 Conjecture.

Corollary 6. Let G be a d-regular graph. If 2 ≤ d ≤ 9, then G can be decomposed into 2 subgraphs
fulfilling the 1–2–3 Conjecture, while if 10 ≤ d ≤ 27, then G can be decomposed into 3 subgraphs
fulfilling the 1–2–3 Conjecture.

3 Main Result for Regular Graphs

Our main result concerning regular graphs is the following.

Theorem 7. Every d-regular graph G with d ≥ 14, d 6= 15, 17, can be decomposed into two graphs
fulfilling the 1–2–3 Conjecture.

In order to prove Theorem 7, we first apply the symmetric version of the Local Lemma to prove
in Lemma 8 the existence of a specific partition V = V0 ∪ V1 of the vertex set of a given graph
G = (V,E). This is then used within the proof of Theorem 7 itself to construct a decomposition of



G into two subgraphs G0, G1 (where Gi contains all edges induced by Vi in G and part of the edges
joining Vi with V1−i for i = 0, 1) consistent with the assumption of Lemma 9 (and thus fulfilling
the 1–2–3 Conjecture). To prove Lemma 9 in turn we apply a certain refinement of Kalkowki’s
algorithm from [13], exploiting for this aim the concept of maximal independent sets.

Lemma 8. The vertices of every d-regular graph G with d ≥ 14, d 6= 15, 17, can be partitioned into
sets V0 and V1 such that if d ≡ r mod 2 for some r ∈ {0, 1}, then:

(i) ∀v ∈ V0 : dV0(v) ≥ 2 + r; (ii) ∀v ∈ V0 : dV1(v) ≥ 2;

(iii) ∀v ∈ V1 : dV1(v) ≥ 2 + r; (iv) ∀v ∈ V1 : dV0(v) ≥ 2.

Lemma 9. If a graph G = (V,E) contains a maximal independent set I such that there exists a
constant α ≥ 1 so that for R := V r I,

(1◦) d(v) ≤ α for every v ∈ I and

(2◦) d(v) ≥ α+ dR(v)+1
2 for every v ∈ R,

then G fulfills the 1–2–3 Conjecture.

4 General Upper Bound for All Graphs

For general graphs, i.e. not necessarily regular, we prove the following.

Theorem 10. Every graph G without isolated edges can be decomposed into 24 subgraphs fulfilling
the 1–2–3 Conjecture.

The proof of this relies strongly on the following lemma (partly inspired by [8]), whose thesis
could be optimized via application of the general version of the Local Lemma (used to prove an
additional auxiliary lemma).

Lemma 11. Every graph G = (V,E) without isolated edges can be decomposed into two graphs
H and F such that: H is either empty or has minimum degree δ(H) ≥ 1010, and F contains no
isolated edges and has degeneracy less than 1010 + 108.

Theorem 10 then follows, as by Lemma 11 any graph without isolated edges can be decomposed into
H and F such that by Theorem 1, H can be further decomposed into 3 locally irregular subgraphs
(which fulfill the 1–2–3 Conjecture), and by Lemma 5, F can be decomposed into 21 subgraphs
fulfilling the 1–2–3 Conjecture.

5 Concluding Remarks

Note that by Corollary 6 and Theorem 7 we know that any d-regular graph without isolated edges
can be decomposed into 2 subgraphs fulfilling the 1–2–3 Conjecture if only d /∈ {10, 11, 12, 13, 15, 17}.
The remaining cases apparently need a separate special treatment, but either way, by Corollary 6
every d-regular graph, d ≥ 2, can be decomposed into (at most) 3 subgraphs complying with the
1–2–3 Conjecture. It is however believed that something stronger should hold. Namely, it was
conjectured that every graph G without isolated edges and isolated triangles can be decomposed
into 2 subgraphs admitting neighbour sum-distinguishing 2-edge-weightings, see [7] for details and
further observations concerning this new concept, and many other related problems and results.
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