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Abstract

We prove that a tournament T and its complement T contain the same number of oriented
Hamiltonian paths (resp. cycles) of any given type, as a generalization of Rosenfeld’s result
proved for antidirected paths.

An oriented Hamiltonian path in a tournament is an oriented path containing all its vertices,
and if this path is directed, then it is said to be a directed Hamiltonian path. The definitions are
similar for cycles. The first result of existence concerns the directed paths. It was given by Redei
[1] in 1934, who proved that every tournament contains a directed Hamiltonian path. Later on,
in 1969, Grunbaüm [2] treated the existence of antidirected paths, which are paths where any two
consecutive arcs have opposite directions: he proved that at the exception of 3 cases, which are
the directed 3-cycle, the regular tournament on 5 vertices, and the Paley tournament on 7 vertices,
every tournament contains an antidirected Hamiltonian path. Later on, many researches followed
on this subject until the problem of existence was completely setteled by Havet and Thomassé [3]
in 1998: they proved that at the exception of the 3 cases previously mentioned by Grunbaüm, every
tournament contains any oriented Hamiltonian path. Concerning the existence of oriented cycles,
Havet [4] proved in 1999 that every tournament contains any oriented Hamiltonian cycle, except
possibly the Hamiltonian circuit (directed cycle) in a reducible tournament, which is a tournament
that is not strong.

Let’s consider the definitions introduced by El Sahili and Abi Aad in their article [6] ”Antidi-
rected Hamiltonian paths and directed cycles in tournaments”.
Let α = (α1, α2, . . . , αs); s ≥ 1, αi ∈ Z, αi · αi+1 < 0, ∀ i = 1, . . . , s − 1. An oriented path P is
said to be of type P (α1, α2, . . . , αs) if P is formed by s consecutive blocks (i.e. maximal directed
subpaths) I1, I2, . . . , Is such that length(Ii) =|Ii |=|αi | with αi > 0 if the arcs of the block of length
| αi | are forward arcs, and αi < 0 if the arcs of the block are backward. We have a similar definition
for cycles: Let α = (α1, . . . , αs); αi ∈ Z, s is even if s > 1, αi·αi+1 < 0, ∀ i = 1, . . . , s−1, αs·α1 < 0.
An oriented cycle C is said to be of type C(α1, . . . , αs) if C is formed by s consecutive blocks
I1, I2, . . . Is, with | Ii |=|αi | and αi > 0 if the arcs of the block are forward, and αi < 0 otherwise.
If T is a tournament, then PT (α1, . . . , αs) (resp. CT (α1, . . . , αs)) is defined as being the set of
oriented paths (resp. cycles) in T of type P (α1, . . . , αs) (resp. C(α1, . . . , αs)) and fT (α1, . . . , αs)
(resp. gT (α1, . . . , αs)) represents the cardinal of this set.
For α = (α1, . . . , αs) in Zs, we denote by −α the uplet (−α1, . . . ,−αs) and by α the uplet
(αs, αs−1 . . . , α1). A uplet α is said to be symmetric if α = −α. An oriented path P (resp.
cycle C) is said to be symmetric if there exists a symmetric uplet α such that P (resp. C) is of
type P (α) (resp. C(α)). Otherwise, the path P (resp. cycle C) is non-symmetric.
Also, a notion of period has been introduced: Let α = (α1, . . . , αs) ∈ Zs. An integer 1 ≤ r ≤ s is
said to be a period of α if [i ≡ j (mod r)⇒ αis = αjs ] where is is the unique integer belonging to
{1, 2, . . . , s} such that i ≡ is (mod s). Let r(α) = min{r; r is a period of α}. We can prove that



r is a period of α ⇐⇒ r(α) divides r, and as a result r(α) divides s, since s is a trivial period of
α, and we set t(α) = s

r(α) .

Rosenfeld [5] proved in 1974 that the number of antidirected Hamiltonian paths starting by a
forward arc is equal to the number of antidirected Hamiltonian paths starting by a backward arc,
in any tournament, i.e. fT (1,−1, 1, ...) = fT (−1, 1,−1, ...), which can be stated as the following:
The number of anidirected Hamiltonian paths in a tournament T is equal to the number of those
in its complement T .
During our work, we could first generalize Rosenfeld’s result for any type of oriented Hailtonian
paths, by proving the following theorem:

Theorem 1. Let α = (α1, . . . , αs) ∈ Zs; αi.αi+1 < 0, α1 ≥ 0, and let T be a tournament of order

n; n =
s∑
i=1
| αi | +1. We have:

fT (α) = fT (−α).

The proof of this theorem is based on set’s theory, and requires a double induction on the
number s of components of the uplet α, and on the cardinal |α1|.
The above result can be stated as the following: ”Every tournament and its complement contain
the same number of oriented Hamiltonian paths of any given type”, which is in fact a generalization
of Rosenfeld’s result.

We could also establish this fact for cycles. To prove it, we first had to find a link between the
number of oriented Hamiltonian paths of a given type in a tournament, and the number of some
particular corresponding oriented cycles (defined in what follows):
Let T be a tournament on n vertices. An oriented cycle C in T is said to be generated by an
oriented path P = x1x2 . . . xr if C = P∪ < {x1, xr} >. We write C = CP . We define the relation
R on the set of oriented paths in T by PRP ′ ⇐⇒ CP = CP ′ , which is obviously an equivalence
relation, and so is Rα, the restriction of R on the set PT (α).
Now given a Hamiltonian cycle of a certain type C(β), it can be generated by many Hamiltonian
paths of the same type, say P (α), and we can compute their exact number using the notion of
period. In fact we proved the following proposition:

Proposition 1. Let P ∈ PT (α) be an oriented Hamiltonian path in a tournament T of order n
and let CP be the cycle generated by P in T , of type C(β), and let P be the equivalence class of P
with respect to Rα. Then if CP is non-symmetric, such that CP has at least 2 blocks (i.e. CP is
not a circuit), then |P |= t(β), while if CP is symmetric, then |P |= 2.t(β). Moreover, if CP is a
circuit, then |P |= n.

On the other hand, remark that given an oriented path P = x1x2...xr of a certain type P (α) in
a tournament T , then the type of the cycle CP in T can take two different values, C(β) or C(β′),
and it depends on whether (v1, vr) or (vr, v1) is an arc in T .
We proved the following proposition:

Proposition 2. Let α = (α1, . . . , αs) ∈ Zs, αi.αi+1 < 0, and let T be a tournament of order

n =
s∑
i=1
| αi | +1. We have:



CT (β) = CT (β′) ⇐⇒ α is symmetric,

where C(β) and C(β′) are the two types of Hamiltonian cycles in T that can be generated by a
Hamiltonian path of type P (α) in T .

Given a uplet β = (β1, β2, . . . , βs) ∈ Zs; s is even, and βiβi+1 < 0, ∀ i = 1, . . . , s − 1, then ∀
1 ≤ i ≤ s, define βi ∗ 1 as

βi ∗ 1 =

{
βi − 1 if β1 > 0
βi + 1 if β1 < 0

.

Using the two previous propositions, we could establish the following theorem:

Theorem 2. Let T be a tournament of order n, and (β1, . . . , βs) ∈ Zs;
s∑
i=1
|βi |= n, s is even and

βiβi+1 < 0, ∀ i = 1, . . . , s− 1. Then:

If (β1 ∗ 1, β2, . . . , βs) is symmetric, we have:

fT (β1 ∗ 1, β2, . . . , βs) = gT (β1, β2, . . . , βs).t(β1, β2, . . . , βs).

Otherwise we have:

fT (β1 ∗ 1, β2, . . . , βs) = δ(β1, β2, . . . , βs).gT (β1, β2, . . . , βs).t(β1, β2, . . . , βs)

+δ(β1 ∗ 1, β2, . . . , βs ∗ 1).gT (β1 ∗ 1, β2, . . . , βs ∗ 1).t(β1 ∗ 1, β2, . . . , βs ∗ 1),

where δ(γ) =


1 if γ non− symmetric and is not a circuit
2 if γ is symmetric
n
t(γ) if γ is a circuit

.

(Note that C(β1, β2, . . . , βs) and C(β1 ∗ 1, β2, . . . , βs ∗ 1) are the two types of cycles that can be
generated by a path of type P (β1 ∗ 1, β2, . . . , βs)).

Finally, Theorems 1 and 2 allowed us to prove our result for cycles:

Theorem 3. Let α = (α1, . . . , αs) ∈ Zs; αi.αi+1 < 0, α1 ≥ 0, s is even if s 6= 1, and let T be a

tournament or order n; n =
s∑
i=1
| αi |. We have:

gT (α) = gT (−α).

At last, we could go further by noticing that every digraph of maximal degree ∆ ≤ 2 is a union
of oriented cycles and paths, and we proved the following:

Theorem 4. Let T be a tournament and let D be a digraph of maximal degree ∆(G(D)) ≤ 2. Then
the number of copies of D in T and in its complement T is the same.

However, as this result is not always true for digraphs of maximal degree ∆ > 2, we ask the
following question: Let fT (D) be the number of copies of a digraph D in a tournament T ,

Problem 1. Can we characterize the set H of all digraphs D such that fT (D) = fT (D) for a
tournament T?
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