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ABSTRACT. We construct an algebraic equivalence between set systems with a
given alphabet graph G and constant dimension codes (CDC) over finite fields.
Moreover, we see that set systems generalise t−designs and groups divisible
designs. Furthermore in the context of secret sharing schemes, we construct
2-designs from the projective line.

1. INTRODUCTION

Methods of classification of data sets which can be recorded as strings of se-
quences of letters over a finite alphabet, use graph theory. One of the most im-
portant classes of graphs considered in this framework is that of Cayley graphs.
Consider a network represented by a directed multigraph G = (V (G),E(G)), with
vertex set V (G) and edge set, E(G) with error free unit capacity edges, that is, a
graph with loops (edges whose endpoints are equal) and multiple edges. Let G be
a simple graph and H a subgraph of G. A G−design of H is a pair where X is the
vertex set of H and B is an edge-disjoint decomposition of H also known as par-
tition of the vertex set. The best known cryptographic problem is that of privacy:
preventing the unauthorized extraction of information from communications over
an insecure channel. In order to use cryptography to insure privacy, however, it is
currently necessary for the communicating parties to share a key which is known
to no one else.

A group divisible design (GDD) is an incidence structure (X ,G ,B) where X is
a set of points, G is a partition of X into groups, and B is a collection of subsets of
X called blocks such that any pair of distinct points from X occurs either in some
group or in exactly one block, but not both, see [GW]. Recently, q−ary designs
(designs over finite fields) gained a lot of attention because of its applications for
error-correcting in networks, and secret sharing scheme, a way for sharing a secret
data among a group of participants so that only specific subsets (which are called
qualified subsets) are able to recover the secret by combining their shares. The
adjacency matrix of the graph is interpreted as the incidence matrix of the design.
Recall that the adjacency matrix A of a multigraph is a n×n matrix (where n = |V |)
with rows and columns indexed by the elements of the vertex set and the (x,y)−
entry is the number of edges connecting x and y. If the graph is directed, the
matrix A is symmetric and therefore all its eigenvalues are real. The degree of
a vertex deg(v) is the number of edges incident with v, where we count a loop
with multiplicity 2. The largest eigenvalue λ of the adjacency matrix describes the
spectrum character of the graph topology.
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2. CONSTANT DIMENSION CODES OVER FINITE FIELDS FROM t−DESIGNS

A simple t−design over a finite field or, more precisely, a t− (n,k,λ ;q) design
is a set B of k−subspaces of an n−dimensional vector space V over the finite field
Fq such that each t−subspace of V is contained in exactly λ blocks of B. Re-
cently, designs over finite fields gained a lot of attention because of its applications
for error-correcting in networks. If V is the finite field Fn

q, then the set of points
are the vectors and the block set B of k subspaces K ⊆ Fn

q are the points in the
Grassmannian Gk,n(Fq).

Given a t−design you can associate to it a regular graph, where the points are
the nodes of the graph, all the nodes have the same degree and two different nodes
are connected if and only if they are in the same block of the design, that is, the
neighbors of the vertices are the blocks. Reciprocally given a k−regular graph on
v vertices, if any two distinct vertices have exactly λ common neighbors it is a
2-(v,k,λ ) design.

2.1. Set systems. A set system is a pair (X ,A ) such that X is a finite set of points
and A is a set of subsets of X , called blocks. The number of points, |X |, is the
order of the set system. Let K be a set of positive integers. A set system (X ,A ) is
said to be K−uniform if |A| ∈K for all A∈A . Let G = {G1, . . . ,Gs} be a partition
of X into subsets called groups. The triple (X ,G ,A ) is a group divisible design
(GDD) when every 2-subset of X not contained in a group appear in exactly one
block and |A

⋃
G| ≤ 1 for all A ∈A and G ∈ G .

Proposition 2.1. There is bijective correspondence between ordered basis sets of
(Fq)

n and set systems of order n.

Proof. This correspondence can be established by associating to any list of t
elements contained in GL(n,q) a partition of t groups of size the order of the corre-
sponding element in GL(n,q). Namely, to any list {γ1, . . . ,γt} of t elements we as-
sociate the subgroup Gλ generated by these t elements. This is a group of type λ the
partition of orders λi = ord(γi) ordered in increasing order λ1 ≥ λ2 ≥ . . .λt > 0.We
assume that n≥ q−1 and G is a group containing a Singer cycle α ∈GL(n,q). Let
Γ(Gλ ) be the Cayley graph attached to the subgroup Gλ , that is, the graph in which
vertices 1 through t corresponding to each generator are placed in a row with each
vertex connected by an unlabelled edge of its immediate neighboors . There is an
action of the symmetric group Sn on the combinatorial class Gn of regular graphs
with n vertices. For any σ ∈ Sn and g ∈ Gn, the graph σ · g has the same vertex
set and edge set as g, but each label i in g is replaced by σ−1(i) in σ · g, they are
isomorphic graphs. We define the following linear map over (Fq)

n:

(1) Φ(Γ(Gλ ))(x) = AGλ

t,k x.

Here AG
t,k is the adjacency matrix of graph Γ(G), thus it is a {0,1}matrix with rows

and columns indexed by the t−subspaces and the k−subspaces of Fn
q. In particular,

constructing t−designs over Fq is equivalent to solving the systems of linear Dio-
phantine equations 1. There is a 1 in row X and column Y of M iff t−subspaces X
is contained in k−subspaces Y. With this definition, a t− (n,k,λ ) design over Fq

is precisely a {0,1} solution to AG
t,kx = (λ ,λ , . . . ,λ )T , where λ is the number of

k−subspaces containing at least a t−subspace, in particular rank (AG
t,k)≥ t.
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2.2. r-designs constructed from the projective line. Let X be a v-set and Pk(X)
denote the set of all k−subsets of X . A t− (v,k,λ )−design is a set system D =
(X ,D) in which D is a collection of Pk(X) (called blocks) such that every t−subset
of X appears in exactly λ−blocks

Definition 2.2. A (k;r)−arc K in PG(2,q) is a set of k−points such that some r,
but not r+ 1 of them are collinear. In other words, some line of the plane meets
K in r points and no more than r−points. A (k;r)−arc is complete if there is no
(k+1;r) arc containing it.

Let V be a 3-dimensional vector space over Fq and consider the projective plane
PG(2,q) defined by the incidence structure (P(V ),B(V ), I).

A 2-(v,k,λ ) design is a collection B of elements of Pk(X) (called blocks) such
that every line of the incidence structure (P(X),B(X), I) intersect B in exactly
λ points. This is also known as a perfect secret sharing scheme S for a finite graph
G access structure of v vertices. Namely, a partition of subsets of vertices of G of
size k such that every 2-subset is contained in at least λ−subsets of G.

A 3-(v,k,λ ) design is a collection of B of elements of Pk(X) (called blocks)
such that any triple (r1,r2,r3) of points is collinear. Such sets are called lines in
B and every line intersect B in exactly λ points. In general r−designs admitting
PG(2,q) as a group of automorphisms are known as (k;r) arcs.

Following the classification of conjugacy classes in PG(2,q) in [SG], next Lemma
classifies designs constructed from the projective line.

Lemma 2.3. There are 3 types of r-designs constructed from PG(2,q): unipotent
type, semisimple split or semisimple non-split according to the eigenvalues of the
representation matrix of the generating elements in PG(2,q).

Proof. If the characteristic polynomial P(λ ) of the representation matrix A has
only one root, call it α , it is a primitive element of order p a prime number, then
the derived design is called unipotent. It is an arc containing p+ 1 points and
for n < p every set of n + 1 points are linearly independent. If P(λ ) has two
different roots a,a−1 ∈ F∗q, tr(A) = a+a−1 is an element α of order dividing q−1

d .
The corresponding design is called semisimple split, and finally if there are no
roots, tr(A) = a+ aq = α , where a ∈ F∗q2\F∗q is an element α dividing q+1

d , the
corresponding design is called semisimple non-split. �

We associate to the 2-design generated by τ and σ in [BM] the graph which has
as vertex set V the points of the projective system P((F2)

m) and edge set E ⊆ [V ]2

the lines of the projective space which corresponds to the blocks of the design.

There are
[

m
2

]
q

lines. For any two points there are as much blocks (lines) con-

taining these points as eigenspaces Wj by the action of the linear operators τ and
σ . This special design with parameters t = 2 and k = 3 is a Steiner triple sys-
tem. The automorphism group of the projective line P(Fq) is the projective linear
group PGL(2,q). Any finite subgroup A ⊂ PGL(2,q) defines a k−uniform Cay-
ley (sum) hypergraph Γk(A) whose vertices are the generating k−tuples of A and
the edges are k−element sets {x1, . . . ,xk} ∈

(G
k

)
represented by random variables

x1, . . . ,xk. In particular, if f (z) is the ordinary generating function that enumerates
A, that is, number of conjugacy classes in A, then 1

1− f (z) is the ordinary generating
function enumerating sequences of k elements in A. If G is an abelian group, then
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x1+ · · ·+xk ∈A. In general, we will consider k-arcs in Γ(A) which represent casual
connections between the variables.
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