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Abstract

Two important examples of permutation arrays for the study of M(n, d) are the Affine General
Linear Group AGL(1, q) acting on the finite field GF (q) of size q, and the Projective Linear Group
PGL(2, q) acting on the set GF (q) ∪ {∞} of size q + 1. Lower bounds for M(q − 1, q − 3) and
M(q, q − 3) have been shown when q 6≡ 1(mod 3). Here we consider the case when q ≡ 1(mod 3)
We give lower bounds for M(q − 1, q − 3) if q ≥ 7, and when q is odd for M(q, q − 3) if q ≥ 13.

1 Introduction

We consider permutations on a set Ω of size n. Given two such permutations π and σ, we let hd(π, σ) =
|{x ∈ Ω : π(x) 6= σ(x)}|, so hd(π, σ) is the number of elements of Ω at which π and σ disagree. When
hd(π, σ) = d, we say that π and σ and are at Hamming distance d. A permutation array A is a set of
permutations on Ω. We say that hd(A) = d if d = min{hd(π, σ) : π, σ ∈ A}. For positive integers n
and d with d ≤ n we let M(n, d) be the maximum number of permutations in any array A satisfying
hd(A) ≥ d.

The study of permutation arrays began (to our knowledge) with the papers [6] and [9]. In recent
years there has been renewed interest in permutation arrays, motivated by applications in power line
transmission [8], [14], [17], and [10], block ciphers [16], and in multilevel flash memories [12] and [13].
Some elementary exact values and bounds on M(n, d) are shown in [5]). More sophisticated bounds
were proved in [6] and [9], with a recent improvement in [18]. The smallest interesting case for d is
d = 4, where non-elementary bounds for M(n, 4) were developed in [7].

There are various construction methods for permutation arrays. If there are m mutually orthogonal
Latin squares (MOLS) of order n, then M(n, n−1) ≥ mn [4]. Computational approaches for bounding
M(n, d) include clique search, and the use of automorphisms, for small n and d, are described in [5],
[11], [15], permutation polynomials [5], coset search [2], and partition and extension [3].

In this paper we obtain new lower bounds on M(n, d) for n and d near a prime power. Previous
results of this kind are given in [5] where it is shown that for n = 2k with n 6≡ 1(mod 3) we have
M(n, n− 3) ≥ (n+ 2)n(n− 1) and M(n, n− 4) ≥ 1

3n(n− 1)(n2 + 3n+ 8).
Our method is to apply a contraction operation to the groups AGL(1, q) and PGL(2, q). We obtain

the following lower bounds, assuming that q is prime power satisfying q ≡ 1 (mod 3);

1. for q ≥ 7, M(q − 1, q − 3) ≥ (q2 − 1)/2 for q odd and M(q − 1, q − 3) ≥ (q − 1)(q + 2)/3 for q even,
and

2. for q ≥ 13, M(q, q − 3) ≥ Kq2log(q) for some constant K if q is odd, and

3. bounds for M(n, d) for a finite number of exceptional pairs n, d using the Mathieu groups.
Consider a permutation array A acting on a set Ω = {x1, x2, · · · , xn} of size n, where the elements

of Ω are ordered by their subscripts. We distinguish some element, say xn, by renaming it F . Thus
the image string of any element σ ∈ A will be σ(x1)σ(x2) · · ·σ(F ), and we say that σ(xi) occurs in
position or coordinate xi of the string. Now for any π ∈ A, define the permutation π4 on Ω by
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π4(x) =


π(F ) if π(x) = F,

F if x = F,

π(x) otherwise.

Thus the image string of π4 is obtained from the image string of π by interchanging the symbols
F and π(F ) if π(F ) 6= F , while π4 = π if and only if π(F ) = F . In either case, π4 has F as its

final symbol. We let π4− be the permutation on n− 1 symbols obtained from π4 by dropping the last

symbol F from π4. As an example, if π = aFbcd, then π4 = adbcF , and π4− = adbc. Further, for any

subset R ⊂ A, let R4 = {π4 : π ∈ R}, and R4− = {π4− : π ∈ R}. So R4− is a permutation array on the
n− 1 symbols acting on the set Ω− {F}, and is called the contraction of R.

Lemma 1 Let G be a permutation group acting on the set Ω of size n, and π, σ ∈ G. (a) hd(π4, σ4) ≥
hd(π, σ)− 3. b) Assume hd(π4, σ4) = hd(π, σ)− 3. Then πσ−1 contains a 3-cycle in its disjoint cycle

factorization, and |G| is divisible by 3. c) Let S ⊆ G. Then |S4| = |S4− | and hd(S4) = hd(S4− ). If
also hd(S) > 3, then |S| = |S4|.

2 The contraction graph for AGL(1, q)

Recall the Affine General Linear Group AGL(1, q) acting as permutation group on the finite field GF (q)
of size q, as the set of transformations {x→ ax+ b : x, a 6= 0, b ∈ GF (q)} under the binary operation of
composition. Clearly |AGL(1, q)| = q(q− 1). It is straightforward to show that hd(AGL(1, q)) = q− 1.

For brevity set H = AGL(1, q). We have previously proved that if q 6≡ 1(mod 3), then hd(H4) ≥
q−3. Here we investigate the case where q ≡ 1(mod 3). The key idea is to find a subset I ⊂ AGL(1, q)

such that hd(I4) ≥ q − 3. Once we have such an I, then I4− is a permutation array on q − 1 symbols,

and by Lemma 1c satisfies hd(I4− ) ≥ q− 3. This implies the lower bound M(q− 1, q− 3) ≥ |I4− | = |I|,
since q ≥ 7 implies hd(I) ≥ q − 1 > 3. The actual size of I will then yield our precise lower bound.

Consider the contraction graph CA(q) defined by V (CA(q)) = AGL(1, q), and E(CA(q)) = {πσ :
hd(π4, σ4) = q−4}. Now recall that hd(AGL(1, q)) = q−1, so that by Lemma 1 we have hd(π4, σ4) ≥
q − 4 for all π, σ ∈ AGL(1, q). So if I is an independent set in CA(q), then hd(I4) ≥ q − 3. We are
thus reduced to finding a large independent set I in CA(q).

Lemma 2 Let π and σ be vertices of the graph CA(q), q ≡ 1(mod 3), say with σ(x) = ax + r and
π(x) = bx + s. Then, (a) if a 6= b, hd(π, σ) = q − 1, (b) if π(F ) = F , then π is an isolated point in
CA(q), (c) if π and σ are neighbors in CA(q), then (1) hd(π, σ) = q−1, and hd(π4, σ4) = hd(π, σ)−3,
and (2) a

b and b
a are the distinct roots of the quadratic t2 + t+ 1 = 0 over GF (q).

We now define a graph H(q) on the same vertex set as that of CA(q) which contains CA(q) as a
subgraph. Then any independent set in H(q) is also independent in CA(q), and thus it suffices to find
a suitably large independent set in H(q). The equation t2 + t+ 1 = 0 has two distinct roots in GF (q)
for q ≡ 1 (mod 3). Also direct substitution shows that if t is a root of this equation, then so is 1

t . So
with Lemma 2 as motivation, let us call two permutations π, σ ∈ AGL(1, q), say with σ(x) = ax + r
and π(x) = bx + s, associates if a

b and b
a are the distinct roots of the quadratic t2 + t + 1 = 0 over

GF (q). We then let V (H(q)) = AGL(1, q) and E(H(q)) = {πσ : π and σ are associates}.

Theorem 3 Let q be a prime power with q ≡ 1 (mod 3). Then, (a) H(q) is regular of degree 2, (b)
Every connected component of H(q) is a cycle of length a multiple of 3, (c) Each connected component

D of H(q) contains an independent set of vertices in CA(q) of size at least: if q is odd, d |V (D)|
2 e, and

if q is even, |V (D)|
3 .

Corollary 4 Let q be a prime power with q ≡ 1 (mod 3). Then M(q − 1, q − 3) ≥ (q2 − 1)/2 if q is
odd, and M(q − 1, q − 3) ≥ (q − 1)(q + 2)/3 if q is even.
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3 The contraction graph for PGL(2, q)

Let q be power of a prime. The permutation group PGL(2, q) is defined as the set of one to one
functions σ : GF (q) ∪ {∞} → GF (q) ∪ {∞}, under the binary operation of composition, given by

{ σ(x) =
ax+ b

cx+ d
| a, b, c, d ∈ GF (q), ad 6= bc, x ∈ GF (q) ∪ {∞} }. (1)

Here σ(x) is computed by the rules: (1) if x ∈ GF (q) and x 6= −(d/c), then σ(x) = ax+b
cx+d , (2) if

x ∈ GF (q) and x = −(d/c), then σ(x) = ∞, (3) if x = ∞, and c 6= 0, then σ(x) = a/c, and (4) if
x =∞, and c = 0, then σ(x) =∞. It is known that |PGL(2, q)| = (q + 1)q(q − 1).

If q 6≡ 1(mod 3), then hd(PGL(2, q)4) ≥ q − 3. Thus, we restrict ourselves to the case q ≡ 1(mod
3), q an odd prime power. The plan will be similar to the one we used in the previous section. That

is, for a certain set I ⊂ PGL(2, q) we will find a permutation array I4− ⊂ PGL(2, q)4− on q symbols

with hd(I4− ) ≥ q − 3, thus obtaining the lower bound on M(q, q − 3) ≥ |I4− |.
Define the contraction graph CP (q) by V (CP (q)) = PGL(2, q), and E(CP (q)) = {πσ : hd(π4, σ4) =

q − 4}. So edges of CP (q) correspond to pairs π, σ for which hd(π4, σ4) achieves its least possible
value of q − 4, occurring when π4 and σ4 agree in 5 postions. Thus any independent set I in CP (q)

satisfies hd(I4) ≥ q − 3. By Lemma 1c, we get hd(I4− ) ≥ q − 3, while |I4− | = |I4| = |I|.
Consider π ∈ PGL(2, q), say with π(x) = ax+b

cx+d , where x ∈ GF (q)∪ {∞}. If c = 0, then π(∞) =∞.
Thus π is an isolated point in CP (q). Suppose then that c 6= 0. Then some manipulation shows that
π(x) = ax+b

cx+d = K + r
x−i , for suitable elements K, r, i ∈ GF (q), r 6= 0, which depend on π.

Lemma 5 Let q = pm, where p is an odd prime, with q ≡ 1(mod 3), q ≥ 13. Let π, σ ∈ PGL(2, q), say
with π(x) = a+ r

x−i , σ(x) = b+ s
x−j , r, s 6= 0. Then πσ ∈ E(CP (q))⇐⇒ r = s and (b− a)(j − i) = r.

For any S ⊂ CG(q), we let [S] be the subgraph of CP (q) induced by S; that is, V ([S]) = S and
E([S]) = {πσ : π, σ ∈ S, πσ ∈ E(CP (q))}. When r is fixed by context, we denote a vertex v = a+ r

x−i
by the abbreviation (i, a).

Consider the partition of PGL(2, q) given by PGL(2, q) = ∪r 6=0Pr, where for r ∈ GF (q) with
r 6= 0, Pr = {a + r

x−i : a, i ∈ GF (q)}, so |Pr| = q2. Further consider the partition of Pr given by
Pr = ∪i∈GF (q)Bi(r), where, Bi(r) = {a+ r

x−i : a ∈ GF (q)}.

Theorem 6 Let q = pm, where p is an odd prime, with q ≡ 1(mod 3). Then the following hold in
the graph CP (q). (a) For any r 6= s, r, s 6= 0, we have [Pr] ∼= [Ps]. (b) For any r 6= 0 and i 6= j,
[Bi(r) ∪ Bj(r)] is a perfect matching, which matches Bi(r) to Bj(r]. (c) CP (q) is regular of degree
q − 1. (d) For any nonisolated vertex v ∈ CP (q), [N(v)] is a disjoint union of cycles, where N(v) is
the set of neighbors of v in CP (q).

Theorem 7 Let q = pm, where p is an odd prime, q ≥ 13. Then the connected components of CP (q)
are: (1) the isolated points - these are of the form π = ax + b, a 6= 0, and there are q(q − 1) of them,
and (2) the graphs [Pr] induced by the sets Pr.

We can now obtain our independent set by a theorem of Alon [1].

Theorem 8 [1] Let G = (V,E) be a graph on N vertices with average degree t ≥ 1 in which for every
vertex v ∈ V the induced subgraph on the set of all neighbors of v is r-colorable. Then the maximum
size α(G) of an independent set in G satisfies α(G) ≥ c

log(r+1)
N
t log(t), for some absolute constant c.

Corollary 9 Let q be a power of an odd prime p, with q ≡ 1(mod 3), a) α(CP (q)) ≥ Kq2log(q) for
some constant K. b) M(q, q − 3) ≥ Kq2log(q) for some constant K.

Note: A more complete version of this research is available at
http://www.utdallas.edu/~besp/contraction.pdf
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