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Abstract

The price of connectivity for dominating set in a graph G is the ratio between the minimum
sizes of a connected dominating set and a dominating set of G. It is always at most three, and
Zverovich characterized the class of graphs such that this ratio equals one. In this paper, we
prove a conjecture of Camby and Schaudt by characterizing the class of graphs with price of
connectivity at most two.

A dominating set of a graph is a subset of vertices such that every vertex of the graph is at
distance at most one of a vertex of the dominating set. In the following, we denote by γ(G) the
size of a minimum dominating set of G. Informally, a dominating set represents a subset of agents
of a network which can communicate with any other agent directly. Determining the minimum
size of a dominating set is a classical NP-hard problem (one of Karp’s 21 problems). The problem
remains intractable even in restricted classes of graphs [14, 15].

In practice, dominating sets are not always satisfying. Indeed, the vertices of a dominating set
may have to communicate between themselves before making a decision. It motivates the intro-
duction of a variant of dominating sets: connected dominating sets [13]. A connected dominating
set is a dominating set which induces a connected subgraph. Every connected graph admits a
connected dominating set: the whole set of vertices is a dominating set. Connected dominating
sets have several applications, such as routing messages in ad-hoc networks [2] or designing fiber
optics networks [7]. However, any dominating set of size k can be transformed into a connected
dominating set of size (3k − 2), as first observed in [9]. Conversely, a connected dominating set is
indeed a dominating set. So, denoting by γc(G) the size of a minimum connected dominating set
of G, we have:

γ(G) ≤ γc(G) ≤ 3 · γ(G)

In other words, γc(G) and γ(G) are of the same order: the only unknown concerns the exact
ratio between the two. The price of connectivity for dominating set of the graph G, or PoC(G) for
short, is the maximum over all induced subgraphs G′ of G of the ratio γc(G

′)/γ(G′) (its definition
is similar to that of the price of anarchy, a well-known invariant in game theory [11]). This notion
was first formally introduced by Cardinal and Levy [6], in the context of vertex cover. It has then
been generalized to dominating sets [3] and feedback vertex sets [1]. We briefly note that the area
has been active in the past few years [4, 5, 10].

Price of connectivity for dominating sets. A natural question is the following: which con-
straints on the graph ensure that the gap between γ(G) and γc(G) is small? To restate the earlier
remark, the price of connectivity for dominating set is at most 3 [9]. Moreover, Camby and Schaudt
argued in [3] that this bound of 3 is asymptotically tight. This can be seen by considering a very
long path.



In fact, paths (and their close relatives, cycles) appear naturally when we try to bound the price
of connectivity. Zverovich proved [12] that the class of (P5, C5)-free graphs is exactly the class of
graphs for which the price of connectivity for dominating set is 1. Camby and Schaudt [3] extended
this result by characterizing the class of graphs for which the difference between dominating set
and connected dominating set is at most one. On the other hand, they proved that the class of
(P9, C9)-free graphs contain graphs whose price of connectivity is arbitrarily close to 3.

Camby and Schaudt proved that the class of (P8, C8)-free graphs has price of connectivity at
most two and that this bound is already tight for (P7, C7)-free graphs. Moreover, they pointed
out that the graph represented in Figure 1, which we refer to as H from now on, has price of
connectivity more than 2. Note that this is also the case of P9 and C9. Determining the class of
graphs for which the price of connectivity is at most 2 was still open, and they conjectured that
they are precisely the graphs which do not contain P9, C9 nor H as an induced subgraph.

Figure 1: The graph H.

We prove here that the conjecture of Camby and Schaudt is satisfied, i.e. we characterize the
class of graphs such that the price of connectivity for dominating set is at most 2.

Theorem 1. Any (P9, C9, H)-free graph G satisfies γc(G) ≤ 2γ(G).

We prove Theorem 1 by contradiction. Given a counter-example, we consider among the min-
imum dominating sets of G one with the fewest connected components. We then discuss how to
reduce the number of connected components without increasing too much the number of vertices.
Once the dominating set cannot be thus improved anymore, we define the notion of semi-relevant
set as, informally, a set of vertices which would almost be worth adding to the dominating set. We
discuss their properties, and derive a small connected dominating set, a contradiction.

Due to technical issues at the very end of the proof, we have to guarantee some notion of
heredity on the connected components of the successive dominating sets. This accounts for the
somewhat counter-intuitive definition of improvement.

Sketch of the proof of the main theorem

Let G = (V,E) be a connected (P9, C9, H)-free graph. We assume for a contradiction that γc(G) ≥
2γ(G) + 1. Let D0 be a minimum dominating set of G with the fewest connected components.
Note that |D0| = γ(G) and N [D0] = V . Let us denote by D0

1, . . . , D
0
g the connected components

of G[D0]. Since γc(G) ≥ 2γ(G) + 1, we have g ≥ 2.
We consider how much D0 can be improved with respect to the number of connected compo-

nents. Let ` be the largest integer such that exists a dominating set D` of G with the following
properties:

• G[D`] has g − ` connected components.

• |D`| ≤ γ(G) + `.

• There is an increasing function σ such that for every connected component D`
i of G[D`],

N [D0
σ(i−1)+1 ∪ . . . ∪D

0
σ(i)] ⊆ N [D`

i ], where σ(0) = 0 and σ(g − `) = g.



We emphasize that D0 might not be a subset of D`.
Among the eligible such dominating sets, we take one of smallest size, and write for short

D = D`. Note that possibly ` = 0. Again, since γc(G) ≥ 2γ(G) + 1, we have ` ≤ g − 2. Let us
denote by D1, . . . , Dg−` the connected components of G[D] and observe that for every i 6= j, no
vertex has both a neighbor in Di and Dj .

Observation 2. For any set T ⊆ ∪i{Di}, the distance between T and ∪i{Di} \ T is at most 3.

We define the following useful notions. A set S ⊆ V \ D is semi-relevant if G[D ∪ S] has at
most g − ` − |S| + 1 connected components. Note that by Observation 2, every Di is incident
to a semi-relevant set of size 2. Besides, one can prove that every semi-relevant set is connected.
Given a semi-relevant set S, we define its action A(S) as the set of connected components of G[D]
that it is adjacent to. Note that since γc(G) ≥ 2γ(G) + 1, there is no semi-relevant set S with
A(S) = ∪iDi. Moreover, there is a bijection between S and A(S) where every component of A(S)
is adjacent to a unique vertex of S. Indeed, note that by maximality of `, there is no vertex of S
adjacent to two elements of A(S). The statement follows by cardinality.
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2

D`
3 D`

4
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Figure 2: Two semi-relevant sets S and S′.

By abuse of notation, for every semi-relevant set S and for every Di ∈ A(S), we refer to the
vertex of S adjacent to Di as vSi . We say a semi-relevant set S is maximal if there is no semi-
relevant set S′ with |S′| ≤ |S| + 1 such that A(S) ( A(S′). For every semi-relevant set S and for
every Dj 6∈ A(S), we say a vertex x 6∈ S ∪D` is j-linking if there is Di ∈ A(S) such that x has a
neighbour in Di and a neighbour in the neighbourhood of Dj (i.e. x is at distance 2 from Dj). For
every semi-relevant set S, we say a vertex x 6∈ S ∪D` is linking for S if there is some j such that
x is j-linking for S. In other words, the vertex x is linking for S if there is y such that {x, y} is a
semi-relevant set with action A({x, y}) = {Di, Dj}. We can now rephrase Observation 2.

Observation 3. Every maximal semi-relevant set S admits a linking vertex.

We are now ready to introduce the key lemmas of the proof of Theorem 1. We omit the proofs
due to space constraints.

Lemma 1. For every semi-relevant set S, for every Di ∈ A(S), there is a vertex ui ∈ N [Di] that
does not belong to N [S] but has a common neighbour wi ∈ Di with vSi .

Lemma 2. Let S be a maximal semi-relevant set and let x be a vertex that is j-linking for S for
some j. For p the index such that Dp ∈ A(S) and x ∈ N(Dp), we have that xvSp ∈ E. Additionally,

there is an index q such that vSq is in a different connected component of G[S∪{x}\{vSp }] and some
vertex uq in N [Dq] that does not belong to N(S ∪ {x, y}) but has a common neighbour wq ∈ Dq

with vSq .

Lemma 3. For every maximal semi-relevant set S, there is a semi-relevant set S′ such that A(S)∪
A(S′) = ∪i{Di} and |A(S) ∩A(S′)| = 1.



Note that it follows from Lemma 3 that |D`| = γ(G)+`. In fact, we also obtain γc(G) = 2γ(G)+1
and |D0

i | = 1 for every i. Note that the previous statement only holds because the desired upper
bound on γc(G) is 2γ(G) and not just γ(G) + g. In this latter case, neither Lemma 4 nor the final
wrap-up might fail.

Let S be a maximal semi-relevant set S. By Lemma 3, there is a semi-relevant set S′ such that
A(S) ∪A(S′) = ∪i{Di} and |A(S) ∩A(S′)| = 1. We assume w.l.o.g. that A(S) ∩A(S′) = {D1}.

Lemma 4. We have |D`
1| = 1.

As a result, let us denote by w1 the unique vertex of D`
1. Either D′ = D \ {w1} ∪ S ∪ S′ is a

connected dominating set, in which case the conclusion follows, or it is not. If D′ is not a connected
dominating set, then w1 has a neighbour which is not in the neighbourhood of any vertex in D,
and we can find an induced copy of H, a contradiction.
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