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Abstract

The generalised colouring numbers were introduced by Kierstead and Yang as a generalisation
of the usual colouring number, and have since found important theoretical and algorithmic
applications. The definitions of these numbers involve a given distance and linear orderings
of the vertices of the graphs. For different distances, the optimal orderings can be completely
different. We show that it is possible to find a single uniform ordering that approximates (in a
precisely prescribed way) all the generalised colouring numbers of that graph.

These uniform orderings also provide a new characterisation of graph classes of bounded
expansion, where for every class in the graph we need only find one uniform ordering.

1 Introduction

The colouring number col(G) of a graph G is the minimum integer k such that there is a strict
linear order <L of the vertices of G for which each vertex v has at most k − 1 neighbours u with
u <L v. It is well-known that for any graph G, the chromatic number χ(G) satisfies χ(G) ≤ col(G).

Several generalisations of the colouring number have been studied in the literature. These in-
clude the arrangeability [1], the admissibility [9], and the rank [8]. But maybe the most natural
generalisation of the colouring number are the two series scolr and wcolr of generalised colouring
numbers introduced by Kierstead and Yang [10] in the context of colouring games and marking
games on graphs. As proved by Zhu [17], these invariants are strongly related to low tree-depth de-
compositions [12], and can be used to characterise bounded expansion classes of graphs (introduced
in [13], see also below) and nowhere dense classes of graphs (introduced in [14]).

The strong r-colouring number scolr(G) of a graph G is the minimum integer k such that there
is a linear order <L of the vertices for which each vertex v can reach at most k − 1 other vertices
smaller than v (in the order <L) with a path of length at most r, all internal vertices of which
are greater than v. For the weak r-colouring number wcolr(G), we do not require that the internal
vertices are greater than v, but only that they are greater than the final vertex of the path. (Formal
definitions will be given below.) As noticed already in [10], the two types of generalised colouring
numbers are related by the inequalities

scolr(G) ≤ wcolr(G) ≤ (scolr(G))r. (1)

Note that this means that if one of the generalised colouring numbers is bounded for a class of
graphs (for some r), then so is the other one.

If we allow paths of any length (but still have similar restrictions on the position of the internal
vertices), we get scol∞(G) and wcol∞(G).
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An interesting aspect of generalised colouring numbers is that they can also be seen as gradations
between the colouring number col(G) and two important minor monotone invariants, namely the
tree-width tw(G) and the tree-depth td(G) (which is the minimum height of a depth-first search
tree for a supergraph of G [12]). More explicitly, for every graph G we have the following relations.

Proposition 1.

(a) col(G) = scol1(G) ≤ scol2(G) ≤ . . . ≤ scol∞(G) = tw(G) + 1;

(b) col(G) = wcol1(G) ≤ wcol2(G) ≤ . . . ≤ wcol∞(G) = td(G).

The equality scol∞(G) = tw(G) + 1 was first proved in [4]. The equality wcol∞(G) = td(G) is
proved in [15, Lemma 6.5].

Shortly after Nešetřil and Ossona de Mendez [13] introduced the notion of classes with bounded
expansion, Zhu [17] provided a characterising of these classes in terms of generalised colouring
numbers. We will use this characterisation as a definition.

Definition 1.

A class of graphs G has bounded expansion if and only if there exists a function c : N → R such
that scolr(G) ≤ c(r) for all r and all G ∈ G.

Note that by the inequalities in (1) we equally well could have defined bounded expansion in terms
of the weak colouring number.

The concept of a class of graphs with bounded expansion generalises that of classes of graph with
bounded tree-width, minor-closed classes, etc. See the book of Nešetřil and Ossona de Mendez [15]
for a wealth of information about the properties of these graph classes.

The generalised colouring numbers are an important tool in the context of algorithmic sparse
graphs theory; see again [15]. More recently they’ve played a key role in algorithmic results on
model-checking for first-order logic on bounded expansion and nowhere dense graph classes [3, 5, 7].

2 Orderings and Generalised Colouring Numbers

We now give a more formal definition of the generalised colouring numbers. For a graph G, let Π(G)
be the set of all linear orderings of V (G), and let L ∈ Π(G). For readability, we write u <L v if u
is smaller than v with respect to L, and u 6L v if u <L v or u = v.

Let u, v ∈ V (G). For a positive integer r we say that u is weakly r-reachable from v with respect
to L, if u 6L v and there exists a path P of length ℓ ≤ r between u and v such that u is minimum
among the vertices of P (with respect to L). Let Wr[G,L, v] be the set of vertices that are weakly
r-reachable from v with respect to L. Note that v ∈ Wr[G,L, v].

Next, u is strongly r-reachable from v with respect to L, if u 6L v and there is a path P

of length ℓ ≤ r connecting u and v such that all internal vertices w of P satisfy v <L w. Let
Sr[G,L, v] be the set of vertices that are strongly r-reachable from v with respect to L. Again we
have v ∈ Sr[G,L, v].

For a graph G and linear ordering L ∈ Π(G) we define

wcolr(G,L) = max
v∈V (G)

∣

∣Wr[G,L, v]
∣

∣ and scolr(G,L) = max
v∈V (G)

∣

∣Sr[G,L, v]
∣

∣.

Now wcolr(G) and scolr(G) are defined as

wcolr(G) = min
L∈Π(G)

wcolr(G,L) and scolr(G) = min
L∈Π(G)

scolr(G,L).



An obvious question related to these definitions is if an ordering that is “good” for some r

is also “good” for a different r′. In fact, this need not be the case, as the following examples
show. For integers n, t, define Gn,t as follows. Start with the complete graph Kn with vertices
v1, . . . , vn. First subdivide each edge; i.e. replace each edge vivj , i 6= j, by a path viui,jvj using
a new vertex uij . Next replace each vi by t vertices v1i , . . . , v

t
i which are adjacent to the same

vertices ui,j , j ∈ {1, . . . , n} \ {i} as vi was.
We define two orderings of V (Gn,t): L1 is the ordering in which the vertices vsi come first and

then the vertices ui,j ; while L2 is the ordering in which the vertices ui,j come first and then the
vertices vsi . (The internal ordering of the two groups of vertices can be arbitrary in both cases.)
Then it is not so hard to show that for 1 ≪ t ≪ n we have:

scol1(G) = scol1(G,L1) = 2t+ 1 ≪ n = scol1(G,L2) and

scol2(G) = scol2(G,L2) = n ≪ tn = scol2(G,L1).

So the ordering L1 that is “good” for r = 1 is very “bad” for r′ = 2; while the reverse is true
for the ordering L2. This construction can be generalised to arbitrary values of r, r′ by replacing
the vertices ui,j by paths and the edges viui,j by paths, where the appropriate lengths of these
replacement paths depend on r and r′.

The observation above also has consequences for the many algorithms that for a graph class G
with bounded expansion, for some r, use explicitly an ordering L which shows that scolr(G) ≤ c(r).
It seems that for every r a different ordering is needed.

Our main results show that in fact this is not the case.

Theorem 2. [6]
For any graph G, there exits a linear ordering L∗ of V (G) such that for all r ∈ N we have

scolr(G,L∗) ≤ (2r + 1) ·
(

scol2r(G)
)4r

.

Corollary 3. [6]
A graph class G has bounded expansion if and only if there exists a function c′ : N → R, such that
for every graph G ∈ G there exists an ordering L∗(G) of V (G) such that scolr(G,L∗(G)) ≤ c′(r)
for all r.

Corollary 3 answers in the positive a problem raised by Dvořák (see [16]).
The results above follow from a technical, more general, result that deals with different graphs

on the same vertex set. A specific consequence of this more general result is the following.

Theorem 4. [6]
Let G1, . . . , Gk be a collection of graphs, all on the same vertex set V , and let r1, . . . , rk ∈ N. Then
there exists a linear ordering L∗ of V such that for all i = 1, . . . , k we have

scolri(Gi, L
∗) ≤ (k + 1) ·

(

scol2ri(Gi)
)4ri .

The proof of the general result is based on ideas in [10, 11].
The proofs are constructive and in fact give a polynomial algorithm to construct the uniform

ordering L∗, assuming that orderings L such that scol2r(G) = scol2r(G,L) are given for the rele-
vant r. Dvořák [2] gives a polynomial algorithm for approximating the weak colouring numbers.
By the relations in (1), this algorithm can be used, for given G and r, to find in polynomial time
an ordering L of V (G) such that scolr(G,L) is bounded by a function of scolr(G). Combining this
with our algorithm to find the uniform ordering gives polynomial algorithms to find the uniform
orderings for the results above as well.
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[3] Z. Dvořák, D. Král’, and R. Thomas, Testing first-order properties for subclasses of sparse graphs.
J. ACM, 60:Art. 36, 2013.

[4] M. Grohe, S. Kreutzer, R. Rabinovich, S. Siebertz, and K. Stavropoulos. Colouring and
covering nowhere dense graphs. In: 41st International Workshop on Graph-Theoretic Concepts in
Computer Science (WG 2015), vol. 9224 of Lecture Notes in Comput. Sci., pp. 325–338, Springer,
2016.

[5] M. Grohe, S. Kreutzer, and S. Siebertz, Deciding first-order properties of nowhere dense graphs.
In: Proceedings of the 46th ACM Symposium on Theory of Computing (STOC 2014), pp. 89–98, ACM,
2014.

[6] J. van den Heuvel and H.A. Kierstead, Uniform orderings for generalised colouring numbers and
graph classes with bounded expansion. In preparation.

[7] W. Kazana and L. Segoufin, Enumeration of first-order queries on classes of structures with
bounded expansion. In: Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, (PODS 2013), pp. 297–308, ACM, 2013.

[8] H.A. Kierstead, A simple competitive graph coloring algorithm. J. Combin. Theory Ser. B, 78:57–68,
2000.

[9] H.A. Kierstead and W.T. Trotter, Planar graph coloring with an uncooperative partner. J.
Graph Theory, 18:569–584, 1994.

[10] H.A. Kierstead and D. Yang, Orderings on graphs and game coloring number. Order, 20:255–264,
2003.

[11] H.A. Kierstead and D. Yang, Very asymmetric marking games. Order, 22:93–107, 2005.
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