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Abstract

A strong edge coloring of a graph is a proper edge coloring such that each color class is an
induced matching. The strong chromatic index χ′

s(G) of a graph G is the minimum number
of colors for G to have a strong edge coloring. A bipartite graph is called an (a, b)-bipartite
graph if one part has maximum degree at most a and the other part has maximum degree b.
Brualdi and Quinn Massey (1993) conjectured that for a (a, b)-bipartite graph G, χ′

s(G) ≤ ab,
as a refinement of the conjecture by Faudree, Gyárfás, Schelp, Tuza (1990). The conjecture
holds for a ∈ {2, 3}, by Naprasit (2014) and Huang, Yu, Zhou (2017).

In this talk, we study list strong edge coloring, and denote the list strong chromatic index by
ch′s(G). We show that for any (2,3)-bipartite graph G, ch′s(G) ≤ 6. From a relation to incidence
coloring, this is also a generalization of a result by Benmedjdoub et. al. (2017), on incidence
6-choosability of Hamiltonian cubic graph.

1 Introduction and the main result

In this paper, we always consider a loopless graph. For a graph allowed to have a multiple edge,
we call it a multigraph. In addition, we call a simple graph which is a graph without multiple edge,
just a graph.

A strong edge coloring of a graph is an edge coloring such that each color class is an induced
matching, and the strong chromatic index χs(G) is the smallest integer k such that G allows a
strong edge coloring using k colors. There are intensive research on this topic started from one
famous conjecture of Erdős and Nešetřil (1989) on strong edge chromatic index. A bipartite version
of the conjecture was suggest by Faudree, Gyárfás, Schelp and Tuza in [7], and Brualdi and Quinn
Massey refined the conjecture as follows. A (a, b)-bipartite graph G means a bipartite graph with
a bipartition (A,B) such that max{degG(v) | v ∈ A} ≤ a and max{degG(v) | v ∈ B} ≤ b.

Conjecture 1 ([6]). For every (a, b)-bipartite graph G, χs(G) ≤ ab.

We remark that the conjecture is still open, and see [2, 5, 9, 12, 13] for some recent partial
results. In [12], it was shown that a (2,∆)-bipartite graph satisfies the conjecture.

Brualdi and Quinn Massey [6] introduced the notion of an incidence coloring, in a relation to
a strong edge coloring of a special bipartite graph. An incidence of a multigraph is a pair (u, e)
of a vertex u and an edge e of G such that u is an endpoint of e. In this case, we say (u, e) is an
incidence on the edge e. We denoted by I(G) all incidences of a multigraph G. Two incidences
(u, e) and (v, f) are adjacent if one of the following holds: (i) u = v; (ii) e = f ; (iii) uv = e or
uv = f . An incidence coloring of a multigraph G is a function ϕ from I(G) to the set of colors
so that ϕ(u, e) 6= ϕ(v, f) for any two adjacent incidences (u, e) and (v, f). An incidence k-coloring
means an incidence coloring using at most k colors. The incidence chromatic number χi(G) of a
multigraph G is the smallest integer k such that G admits an incidence k-coloring. It was known
that an incidence coloring of a multigraph G corresponds to strong edge coloring of the subdivision
S(G) of G, where S(G) is the graph obtained from G by subdividing every edge of G. See [6] for
more details. Note that the subdivision of a graph with maximum degree ∆ is a (2,∆)-bipartite



graph. In this context, Brualdi and Quinn Massey introduced the notion of incidence coloring and
then suggested Conjecture 1.

An incidence coloring is also interpreted as a special case of directed star coloring. For a
multigraph G, let D(G) be the digraph obtained from G by replacing each edge of G by two
opposite arcs. If we associate each incidence (v, vw) of I(G) with the arc (v, w) of D(G), then
an incidence coloring of G is equal to a directed star coloring of D(G). A directed star coloring,
introduced by Algor and Alon in [1], is a coloring of the arcs of a digraph D so that each color
class induces a forest of directed stars whose arcs are directed towards the center, and the directed
star arboricity of D is the minimum number of colors to obtain a directed star coloring of G. See
[8] for more details.

It is easy to observe that for any connected graph G with at least three vertices, ∆(G) + 1 ≤
χi(G) ≤ 3∆(G) − 2, and in [6], the authors conjectured that any simple graph G satisfies that
χi(G) ≤ ∆(G)+2. This conjecture was called the incidence coloring conjecture, but few years later,
counterexamples were found in [8]. Even though it turned out be false, it leads several interesting
questions about graphs satisfying the inequality. On the class of cubic graphs, in [3, 14], it was
shown that some several classes of cubic graphs are incidence 5-colorable. In 2005, Maydanskiy
[11] showed that any cubic graph is incidence 5-colorable:

Theorem 1 ([11]). For every cubic graph G, χi(G) ≤ 5.

It is known to be NP-hard to determine if the incidence chromatic number of a cubic graph is
4 (see [10]).

In this paper, we study a list version of incidence coloring, and this automatically gives a result
in strong edge choosability of a bipartite graph. For a multigraph G, an incidence list assignment
L of G is a function defined on I(G) such that L associates each (v, e) ∈ I(G) with a nonempty
set L(v, e). If |L(v, e)| ≥ k for each (v, e) ∈ I(G), then we say it is an incidence k-list assignment.
When an incidence list assignment L of G is given, we say G is incidence L-choosable if there is an
incidence coloring ϕ such that ϕ(v, e) ∈ L(v, e) for each incidence (v, e) of G. A multigraph G is
said to be incidence k-choosable if G is incidence L-choosable for any incidence k-list assignment.
Then incidence choice number chi(G) is the smallest integer k such that G is incidence k-choosable.

As we noted in Theorem 1, the incidence chromatic number for a cubic graph is known to be
at most 5, the incidence choice number of a Hamiltonian cubic graph is studied the most recently
in [4] as follows.

Theorem 2 ([4]). For every Hamiltonian cubic graph G, chi(G) ≤ 6.

In this paper, we generalize Theorem 2, as follows:

Theorem 3 (Main result). For a subcubic loopless multigraph G, chi(G) ≤ 6.

By a relation to strong edge coloring, we immediately obtain the following. The list strong
chromatic index ch′s(G) of a graph G is the smallest integer k such that G is strong edge L-
choosable for every list assignment L on E(G) satisfying that |L(e)| ≥ k for any e ∈ E(G). Then
Theorem 3 is equivalent to the following:

Theorem 4 (Equivalent to Theorem 3). For every (2, 3)-bipartite graph G, ch′s(G) ≤ 6.

Note that the bound 6 is tight by a complete bipartite graph K2,3.



2 Outline of proof of Theorem 3

We prove the following Theorems 5 and 6 first, and we skip their proofs here.

Theorem 5. For a 2-connected cubic graph G, chi(G) ≤ 6.

For a graph G and an incidence list assignment L of G, an edge e = uv of G is said to be
freely L-choosable if for any two distinct colors c1 ∈ L(u, e) and c2 ∈ L(v, e), there is an incidence
L-coloring ϕ such that ϕ(u, e) = c1 and ϕ(u, e) = c2.

Theorem 6. Let G be a semicubic graph with at least one pendant vertex, L be an incidence 6-list
assignment. Suppose that the graph obtained from G by deleting all pendant vertices of G is K1 or
2-connected. Then for every pendant edge e∗ = uv of G, e∗ is freely L-choosable.

We mention one simple fact in graph theory.

Fact 1. For a cubic graph G, G has a cut-vertex if and only if it has a cut-edge.

Here, we give a proof of the main result, using Theorems 5 and 6.

Sketch of the proof of Theorem 3. Let G be a minimum counterexample with respect to the number
of vertices. Then there is an incidence 6-list assignment such that G is not incidence L-choosable.

Note that G is connected. First, we will show the following first and we skip the proof here.

Claim 1. The graph G is cubic and has no multiple edge.

By Claim 1, G is simple and cubic. If G is 2-connected, then it holds by Theorem 5. Suppose
that G is not 2-connected. Then by Fact 1, G has cut-edges, and let K be the set of all cut-edges
of G (note that K 6= ∅). Let G1, . . ., Gm be the components of G−K, which is the graph obtained
from G by deleting the edges in K. Note that each Gi is K1 or 2-connected. For each i ∈ [m], we
let G∗i be the graph obtained from Gi by adding all edges in K incident to a vertex of Gi.

Let G be the graph whose vertices are {G1, . . . , Gm}, and Gi and Gj are adjacent if and only
if there is a cut edge between a vertex of Gi and a vertex of Gj . Then it is easy to see that G is
a tree and the number of edges in G (actually in K) between Gi and Gj is at most one. Thus we
can relabel the vertices of G so that for each i ∈ {2, . . . ,m}, Gi is adjacent to exactly one Gj for
some j ∈ [i− 1], and so we let e∗i be the edge of G∗i between Gi and such Gj .

Note that each G∗i is semi-cubic at least one pendant edge, and the graph obtained from G∗i
by deleting all pendant vertices is Gi, which is K1 or 2-connected. Thus we can apply Theorem 6
to each G∗i . By Theorem 6, G∗1 has an incidence L-coloring ϕ. Suppose that G∗1 ∪ · · · ∪G∗i has an
incidence L-coloring ϕ for some i ∈ [m]. Then among the incidences of G∗i+1, only two incidence
on the edge e∗i+1 are precolored under ϕ. By applying Theorem 6 to G∗i+1 and e∗i+1, it follows that
ϕ is well-extended to an incidence L-coloring of G∗1 ∪ · · · ∪ G∗i ∪ G∗i+1. Hence, by repeating the
arguments, we obtain an incidence L-coloring of G.

References

[1] I. Algor and N. Alon. The star arboricity of graph. Annals of Discrete Mathematics 43, 11–22, 1989.

[2] M. Basavaraju and M. C. Francis. Strong chromatic index of chordless graphs, Journal of Graph Theory
80, 58–68, 2015.
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