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Abstract

The edge isoperimetric problem for a graph G is to determine, for each n, the minimum
number of edges leaving any set of n vertices. In general this problem is NP-hard, but exact
solutions are known in some special cases, for example when G is the usual integer lattice. We
solve the edge isoperimetric problem asymptotically for every Cayley graph on Zd. The near-
optimal shapes that we exhibit are zonotopes generated by line segments corresponding to the
generators of the Cayley graph.

For every space equipped with notions of size and boundary of subsets there is a corresponding
isoperimetric problem: how small can the boundary be over all subsets of a given size? For example,
the classical isoperimetric theorem states that the measurable subset of Rd with minimum boundary
for a given volume is an appropriate scaling of the unit ball. Isoperimetric problems can also be
posed for graphs, where they are closely related to the phenomenon of expansion.

There are two commonly studied isoperimetric problems on graphs, corresponding to two nat-
ural definitions of the boundary of a set of vertices. Given a graph G, the edge boundary of a set
S ⊆ V (G) is

∂(S) = ∂G(S) = |{(u, v) ∈ E(G) : u ∈ S, v ∈ V (G) \ S}|,

and the vertex boundary is

∂v(S) = ∂v,G(S) = |{v ∈ V (G) \ S : there exists u ∈ S such that (u, v) ∈ E(G)}|.

That is, the edge boundary is the number of edges leaving S, and the vertex boundary is the
number of vertices we can reach by following these edges. We write

∂∗(n) = min
S⊆V (G) : |S|=n

∂(S), ∂∗v(n) = min
S⊆V (G) : |S|=n

∂v(S)

for the minimum size of the edge or vertex boundary over all subsets of size n. The edge (re-
spectively, vertex) isoperimetric problem on G is to determine the function ∂∗ (respectively, ∂∗v).
Solving either of these problems for a general graph G is NP-hard, but results are known in several
special cases where G has a lot of structure. The approximate shape of the optimal sets for some
families of graphs are listed in Table 1.

Graph Edge-optimal shapes Vertex-optimal shapes

Qd subcubes [1, 2, 3, 4] Hamming balls [5]
(Zd, l1) cubes (l∞-balls) [6] cross-polytopes (l1-balls) [7]
(Zd, l∞) cubes [8]

Table 1: Approximate shapes of optimal sets for isoperimetric problems on certain families of
graphs.



The d-dimensional hypercube Qd is the graph on vertex set {0, 1}d with edges between those
pairs of binary strings that differ in a single coordinate. With a coding theory application in mind,
the edge isoperimetric problem was solved independently by mutliple authors [1, 2, 3, 4]. The
corresponding vertex isoperimetric problem was solved by Harper [5].

Isoperimetric problems have also been studied for many grid-like graphs. Let (Zd, l1) be the
graph on vertex set Zd with edges between pairs of vertices at l1-distance 1. Wang and Wang [7]
solved the vertex isoperimetric problem on this graph and the edge isoperimetric problem was solved
by Bollobás and Leader [6]. More recently, Radcliffe and Veomett [8] solved the vertex isoperimetric
problem on the l∞-grid (Zd, l∞), where two points are adjacent if they are at l∞-distance 1.

For each of the preceding results the authors solved the isoperimetric problem exactly. In fact,
they found an ordering v1, v2, . . . of the vertex set such that, for each n, the set {v1, . . . , vn} has
boundary of minimum size. These orderings remain consistent as the dimension d varies, in the
following sense. Write Gd for either Qd, (Zd, l1) or (Zd, l∞). Then viewing Gd as a subgraph of
Gd+1 in the natural way, the optimal order for Gd+1 restricts to an optimal ordering for Gd. This
allows each of the preceding results to be proved using ‘compression’ techniques.

Our starting point is the following question:

Question. What is the solution to the edge isoperimetric problem on (Zd, l∞)?

An answer to this question would fill the gap in Table 1. In fact we will prove a more general
result: we will solve the edge isoperimetric problem asymptotically for every Cayley graph on Zd.

0.1 Cayley graphs

Let G be a group and let U be a generating set for G that does not contain the identity. The
Cayley graph GU has vertex set G and edge set {(g, ug) : g ∈ G, u ∈ U}. We shall always take G
to be (Zd,+) for some d and U = {u1, . . . , uk} to be a finite set of non-zero vectors. Then GU is
a lattice-like graph on Zd in which the neighbourhood of the origin is U and the neighbourhood
of each other vertex is obtained by translation. This construction includes both families of lattice
graphs considered earlier: taking U = {(±1, 0, . . . , 0), . . . , (0, . . . , 0,±1)} produces (Zd, l1); taking
U = {−1, 0, 1}d \ {(0, . . . , 0)} produces (Zd, l∞).

To state our main result we require one more piece of notation. For subsets A,B of any abelian
group, the sumset or Minkowski sum of A and B is

A+B = {a+ b : a ∈ A, b ∈ B}.

We also write
nA = A+ · · ·+A︸ ︷︷ ︸

n times

.

Theorem 1. Let U = {u1, . . . , uk} be a finite set of non-zero vectors that generate Zd as a group.
Let Z0 be the sumset {0, u1}+ {0, u2}+ · · ·+ {0, uk} and let Z be the convex hull of Z0 in Rd. For
every δ > 0, there is an n0 = n0(δ,U) such that, for every n ≥ n0,

(1− δ)d vol(Z)1/dn1−1/d ≤ ∂∗GU (n) ≤ (1 + δ)d vol(Z)1/dn1−1/d.

The upper bound is witnessed by intersections of scaled copies of Z with Zd.



Figure 1: A near-optimal shape for the edge isoperimetric problem in (Z3, l∞). The dotted lines
represent the coordinate axes.

The set Z is a ‘zonotope’ in Rd.
When U = {(±1, 0, . . . , 0), . . . , (0, . . . , 0,±1)}, we have Z = [−1, 1]d, so we recover an asymp-

totic version of the edge isoperimetric theorem for (Zd, l1). When U = {−1, 0, 1}d \ {(0, . . . , 0)},
corresponding to (Zd, l∞), the zonotope Z is more complicated. For d = 2, it is an octagon obtained
by cutting the corners off a square through points one third of the way along each side. In this case
there is in fact a nested sequence of optimal sets, which interpolate between discrete versions of this
octagon. This was proved by Brass [9, Theorem 3] as part of his work on the Erdős distance problem
in (R2, l∞). The zonotope Z for d = 3 is shown in Figure 1. When U = {±(1, 0),±(0, 1),±(1, 1)},
GU is isomorphic to the triangular lattice and Z corresponds to a regular hexagon. Harper [11,
Theorem 7.2] proved that for this lattice there is an optimal ordering interpolating between regular
hexagons. As far as we are aware, these are the only cases of Theorem 1 appearing in the literature.
We might also ask about the vertex isoperimetric problem on these more general lattices. It turns
out that this question has already been answered by Ruzsa [10].

Theorem 2 ([10]). Let U = {u1, . . . , uk} be a finite set of non-zero vectors that generate Zd as a
group. Let U be the convex hull of U ∪ {0} in Rd. For every δ > 0, there is an n0 = n0(δ,U) such
that, for every n ≥ n0,

(1− δ)d vol(U)1/dn1−1/d ≤ ∂v,GU (n) ≤ (1 + δ)d vol(U)1/dn1−1/d.

The structures of the optimal sets in Theorems 1 and 2 do not seem promising for the use of
compression techniques. To use compressions to prove that the shape Z in Figure 1 is optimal
for the edge isoperimetric problem in (Z3, l∞) we would like to take slices of our graph isomorphic
to (Z2, l∞) and show that the intersection of each slice with Z is itself optimal; but most cross-
sections through Z are not octagons of the correct shape. To prove Theorem 2 Ruzsa instead solved
a continuous approximation using tools from convex geometry, then used combinatorial methods
to show that the approximation was good.

The edge isoperimetric problem has a natural continuous analogue, and the solution suggests
the correct statement of Theorem 1. (Indeed, Theorem 1 has been conjectured independently by



Tsukerman and Veomett [12].) However, it is not clear that the continuous analogue is a good
approximation to the original discrete problem. Instead, we will show that the edge isoperimetric
problem can be related to the vertex isoperimetric problem in a related lattice.
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