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Abstract

Let G be a graph. A graph puzzle Puz(G) of G is defined as follows. A configuration of
Puz(G) is a bijection from the set of vertices of a board graph G to the set of vertices of a
pebble graph G. A move of pebbles is defined as exchanging two pebbles which are adjacent on
both a board graph and a pebble graph. For a pair of configurations f and g, we say that f is
equivalent to g if f can be transformed into g by a sequence of finite moves.

Let Aut(G) be the automorphism group of G, and let 1G be the unit element of Aut(G).
The pebble exchange group of G, denoted by Peb(G), is defined as the set of all automorphisms
f of G such that 1G and f are equivalent to each other.

In this paper, some basic properties of Peb(G) are studied. Among other results, it is shown
that for any connected graph G, all automorphisms of G are contained in Peb(G2), where G2

is a square graph of G.

1 Introduction

Let G be a finite and undirected graph with no multiple edge or loop. The vertex set of G and
the edge set of G are denoted by V (G) and E(G), respectively. For two graphs G and H with a
common number of vertices, let us consider a puzzle Puz(G,H), where G is a board graph and H
is a pebble graph. We call a bijection f from V (G) to V (H) a configuration of Puz(G,H), and we
denote the set of all configurations of Puz(G,H) by C(G,H). Given a configuration f , if f(x) = y,
we consider that the vertex x of the board is occupied by the pebble y.

In Puz(G,H), two pebbles y1 = f(x1) and y2 = f(x2) can be exchanged if x1x2 ∈ E(G)
and y1y2 ∈ E(H). Then the resultant configuration g satisfies that g(x1) = y2, g(x2) = y1 and
g(x) = f(x) for any x ∈ V (G) \ {x1, x2}. We call the operation a move. If a configuration f is
transformed into another configuration g with a finite sequence of moves, we say that f and g are
equivalent, denoted by f ∼ g. Puz(G,H) is called feasible if all the configurations of the puzzle
are equivalent to each other. Let Pk be the path with k vertices, and let K1,` be the star with `
pendant vertices.

Example 1. Puz(P4 × P4,K1,15) corresponds to a well-known puzzle named 15-puzzle, by consid-
ering the center of K1,15 a vacant position. For two configurations f, g ∈ C(P4 × P4,K1,15), f is
equivalent to g if and only if g−1 ◦ f is an even permutation on V (G)([4, 6]).

We will show some more examples, from Example 2 to Example 5, which are considered as
generalizations of Example 1. Suppose that both G and H are bipartite graphs. It is not difficult
to see that for f, g ∈ C(G,H), if g−1 ◦ f is an odd permutation, then we have f 6∼ g([2]).

Let θ(1, 2, 2) be a graph such that V (θ(1, 2, 2)) = {vi : 1 ≤ i ≤ 7} and E(θ(1, 2, 2)) =
{v1v2, v2v3, v3v4, v4v5, v5v6, v6v1, v1v7, v4v7}.

Example 2. Let G be a 2-connected non-bipartite graph with n vertices. If G is not a cycle or
θ(1, 2, 2), then Puz(G,K1,n−1) is feasible([7]).
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For a positive integer k, a path P = v1v2 · · · vk of a graph G is called a k-isthmus if (1) every
edge of P is a bridge of G, (2) every vertex of P is a cutvertex of G, and (3) degG(vi) = 2 for
1 < i < k. For two graphs G and H, the join G + H is defined as V (G + H) = V (G) ∪ V (H),
E(G+H) = E(G) ∪ E(H) ∪ {uv : u ∈ V (G), v ∈ V (H)}.

Example 3. Let 2 ≤ k ≤ n. Let G be a connected graph with n vertices except a cycle. Then
Puz(G,Kk +Kn−k) is feasible if and only if G has no k-isthmus([5]).

Example 4. Let 2 ≤ k ≤ n/2. Let G be a graph with n vertices. Then Puz(G,Kk,n−k) is feasible
if and only if (1) G is not a cycle, and (2) G is not bipartite, and (3) G has no k-isthmus([1]).

Example 5. Let r ≥ 3 and let n1 ≤ . . . ≤ nr. Let G be a graph with n = n1 + n2 + · · · + nr

vertices. Then Puz(G,Kn1,n2,...,nr) is feasible if and only if (1) G is not a cycle, and (2) G has no
(n− nr)-isthmus([1]).

In [2], the above mentioned graph puzzle was formally introduced and some more neces-
sary/sufficient conditions of the feasibility of the puzzle was studied.

In this paper, we will shed light on algebraic property of the puzzle. In the following, we only
consider the case where a board graph and a pebble graph are the same, and we denote C(G,G)
and Puz(G,G) simply by C(G) and Puz(G), respectively.

The automorphism group of a graph G, denoted by Aut(G), is the group which consists of all
bijections f from V (G) to V (G) such that f(x1)f(x2) ∈ E(G) if and only if x1x2 ∈ E(G). Let 1G,
or simply 1, denote the identity element of Aut(G). Let us introduce the pebble exchange group
of G, denoted by Peb(G), as the group which consists of all automorphisms f of G such that 1G
and f are equivalent in Puz(G). If f, g ∈ Peb(G), there exists a finite sequence of configurations
f = f0, f1, . . . , fs = g, where fi is generated from fi−1 by a move of Puz(G) for all 1 ≤ i ≤ s. We
remark that for 1 ≤ i ≤ s− 1, fi is not necessarily an automorphism of G. It is not difficult to see
that Peb(G) turns out a normal subgroup of Aut(G).

In this paper, we will study basic properties of Peb(G).

2 Main Results

It is known that for any finite group Γ, there exists a graph G such that Aut(G) ' Γ([3]). By using
this fact, we have the following result.

Proposition 1. For any finite group Γ, there exists a graph G such that Peb(G) ' Γ.

Second, we note a simple observation about Peb(G), where G contains no small cycle. For a
graph G, the girth of G, denoted by girth(G), is the order of the smallest cycle contained in G. If
G contains no cycle, girth(G) is defined as ∞.

Proposition 2. Let G be a connected graph with at least three vertices. If girth(G) ≥ 5, then
Peb(G) ' {1G}.

Let Pn and Cn denote the path or the cycle graph of order n, respectively. By Proposition 2,
we have Peb(Pn) ' {1} for n ≥ 3, and Peb(Cn) ' {1} for n ≥ 5.

The next result is about pebble exchange group of a product of graphs. For two graphs G and
H, let G × H denote a Cartesian product of G and H, where V (G × H) = V (G) × V (H) and
E(G × H) = {(u1, v1)(u2, v2) ∈ V (G × H)2 : u1u2 ∈ E(G) and v1 = v2, or u1 = u2 and v1v2 ∈
E(H)}.
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Theorem 3. For any two connected graphs G and H, Peb(G×H) ' Peb(G)× Peb(H).

Let Qn be the n-dimensional hypercubic graph. Since Qn = Pn
2 and Peb(P2) ' Z/2Z, we have

the following corollary as an immediate consequence of Theorem 3.

Corollary 4. For n ≥ 1, Peb(Qn) ' (Z/2Z)n.

As a graph G becomes sparse, the number of possible moves of Puz(G) decreases. Hence,
it is interesting to show the existence of graphs G such that Peb(G) has a rich structure with
|E(G)| = O(|V (G)|). For a graph G, the square graph G2 of G is defined as V (G2) = V (G) and
E(G2) = {uv ∈ V (G)2 : dG(u, v) = 1 or 2}, where dG(u, v) is the distance between u and v in G.

The main result of the paper is the following theorem.

Theorem 5. For any connected graph G, Peb(G2) ⊃ Aut(G).

In the remaining of the paper, we show the sketch of the proof of Theorem 5. First, we deal
with the simplest but the most important case, where G is a path.

Lemma 6. For n ≥ 2, Peb(P 2
n) ⊃ Aut(Pn).

Proof. It is not difficult to see that for n ≤ 5, we have Puz(P 2
n) is feasible. Hence, we have

Peb(P 2
n) = Aut(P 2

n) ⊃ Aut(Pn). Suppose that n ≥ 6. In this case, since Aut(P 2
n) = Aut(Pn) '

Z/2Z, it suffices to prove Peb(P 2
n) ' Z/2Z. Let us label the vertices of Pn as V (Pn) = {1, 2, . . . , n}

and E(Pn) = {ij : j − i = 1}. Note that Aut(P 2
n) = {1n, αn}, where 1n(i) = i for 1 ≤ i ≤ n and

αn(i) = n− i+ 1 for 1 ≤ i ≤ n. It suffices to show that 1n ∼ αn in Puz(P 2
n).

In the following, besides Puz(P 2
n), we consider two additional puzzles Puz(P 2

n+1 \ {n}, P 2
n)

and Puz(P 2
n , P

2
n+1 \ {n}). For configurations f ∈ C(P 2

n , P
2
n), g ∈ C(P 2

n+1 \ {n}, P 2
n) and h ∈

C(P 2
n , P

2
n+1 \ {n}), we will use notations as

f = (f(1), f(2), . . . , f(n− 1), f(n)),

g = (g(1), g(2), . . . , g(n− 1), ∗, g(n+ 1)),

h = (h(1), h(2), . . . , h(n− 1), h(n)).

By using this notation, 1n and αn is expressed as

1n = (1, 2, . . . , n− 1, n), αn = (n, n− 1, . . . , 2, 1).

Let us define 1′n and βn ∈ C(P 2
n+1 \ {n}, P 2

n) as

1′n = (1, 2, . . . , n− 1, ∗, n), βn = (n, n− 1, . . . , 2, ∗, 1),

and let us define 1′′n and γn ∈ C(P 2
n , P

2
n+1 \ {n}) as

1′′n = (1, 2, . . . , n− 1, n+ 1), γn = (n+ 1, n− 1, . . . , 2, 1).

What we want to show is that 1n ∼ αn, 1
′
n ∼ βn, 1

′′
n ∼ γn for n ≥ 1.

Note that P 2
n+1 \ {n} is naturally considered as a subgraph of P 2

n . Hence, 1′n ∼ βn implies that
1n ∼ αn. Furthermore, Puz(P 2

n+1 \ {n}, P 2
n) and Puz(P 2

n , P
2
n+1 \ {n}) are isomorphic as puzzles,

since these puzzles can be switched to each other by interchanging the roles of a board graph and
a pebble graph. Hence, 1′n ∼ βn holds if and only if 1′′n ∼ γn holds.
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We proceed by induction on n. For n ≤ 2, it is not difficult to see that the conclusion holds.
Let n ≥ 3. It suffices to show that 1′n ∼ βn by using the inductive assumptions 1k ∼ αk, 1

′
k ∼ βk,

1′′k ∼ γk for 2 ≤ k ≤ n− 1. By the inductive hypothesis, we have

1′n = (1, 2, . . . , n− 2, n− 1, ∗, n)
∼ (1, n, . . . , 4, 3, ∗, 2) by 1′n−1 ∼ βn−1

∼ (1, 3, . . . , n− 1, n, ∗, 2) by 1n−2 ∼ αn−2

∼ (n, n− 1, . . . , 3, 1, ∗, 2) by 1′′n−1 ∼ γn−1

∼ (n, n− 1, . . . , 3, 2, ∗, 1) by the exchange of 1 and 2

= βn,

as required.
Second, let us introduce a new operation, path flip, for a configuration f ∈ C(G). Let P =

v0v1 . . . vn be a path of G. If f(v0)f(v1) . . . f(vn) is also a path of G, by a path flip, f can
be replaced with g ∈ C(G) such that g(vi) = f(vn−i) for 0 ≤ i ≤ n, and g(x) = f(x) for all
x ∈ V (G) \ V (P ).

The following lemma may arouse an independent interest apart from pebble exchange puzzles.

Lemma 7. For a connected graph G, and for any two configurations f , g ∈ Aut(G), f can be
transformed into g by a finite sequence of path flips.

By Lemma 6 and 7, Theorem 5 follows.
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