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Abstract

The strong chromatic number χs(G) of a graph G on n vertices is the least number r with
the following property: after adding rdn/re−n isolated vertices to G and taking the union with
any collection of spanning disjoint copies of Kr in the same vertex set, the resulting graph has
a proper vertex-colouring with r colours. We show that for every c > 0 and every graph G on
n vertices with ∆(G) > cn, χs(G) ≤ (2 + o(1))∆(G), which is asymptotically best possible.

1 Introduction

Let r be a positive integer. Let G be a graph on n vertices, where r divides n. We say that G is
strongly r-colourable if it can be properly r-coloured after taking the union of G with any collection
of spanning disjoint copies of Kr in the same vertex set. Equivalently, G is strongly r-colourable if
for every partition {V1, . . . , Vk} of V (G) with classes of size r, there is a proper vertex colouring of
G using r colours with the additional property that every Vi receives all of the r colours. If r does
not divide n, we say that G is strongly r-colourable if the graph obtained by adding rdn/re − n
isolated vertices to G is r-strongly colourable. The strong chromatic number χs(G) of G is the
minimum r such that G is r-strongly colourable. This notion was introduced independently by
Alon [2] and Fellows [5].

1.1 Strong chromatic number versus maximum degree

It is an open problem to find the best bound on χs(G) in terms of ∆(G). Alon [3] proved that
χs(G) ≤ c∆(G) for some constant c > 0. Haxell [7] showed that c = 3 suffices and later [8] that
c ≤ 11/4 + ε suffices given ∆(G) is large enough with respect to ε.

On the other hand, there are examples showing c ≥ 2 is necessary. For any ∆ ≥ 1, consider the
graph G on A1 ∪B1 ∪A2 ∪B2 where all these sets are pairwise disjoint, |Ai| = ∆ and |Bi| = ∆− 1
for all i ∈ {1, 2}, and add every possible edge between A1 and A2. Then ∆(G) = ∆, but the
partition {A1 ∪B1, A2 ∪B2} shows that G is not strongly (2∆− 1)-colourable (see also, e.g., [4]).

It is conjectured (first explicitly stated by Aharoni, Berger and Ziv [1, Conjecture 5.4]) that
this lower bound is also tight.

Conjecture 1. For every graph G, χs(G) ≤ 2∆(G).

Conjecture 1 is known to be true for graphs G on n vertices with ∆(G) ≥ n/6, proven by
Axenovich and Martin [4] and independently by Johansson, Johansson and Markström [10].

A fractional version of Conjecture 1 was proven by Aharoni, Berger and Ziv [1]. We say that a
graph on n vertices is fractionally strongly r-colourable if after adding rdn/re − n isolated vertices
and taking the union with any collection of disjoint spanning copies of Kr in the same vertex set,
the graph is fractionally r-colourable.

Theorem 2 (Aharoni, Berger and Ziv [1]). Every graph G is fractionally strongly r-colourable, for
every r ≥ 2∆(G).



2 Main results

We prove that Conjecture 1 is asymptotically true if ∆(G) is linear in |G|.

Theorem 3 (Lo and S. [12]). For all c, ε > 0, there exists n0 = n0(c, ε) such that the following
holds: if G is a graph on n ≥ n0 vertices with ∆(G) ≥ cn, then χs(G) ≤ (2 + ε)∆(G).

Given a graph G and a partition P = {V1, . . . , Vk} of V (G), we make the following definitions.
A subset S ⊆ V (G) is P-legal if |S ∩ Vi| ≤ 1 for every i ∈ [k]. A transversal of P is a P-legal set of
cardinality |P|. An independent transversal of P is a transversal of P which is also an independent
set in G. We will write transversal and independent transversal if G and P are clear from the
context.

To prove Theorem 3 it suffices to show that given any partition P of V (G) with classes of size
r ≥ (2 + ε)∆(G), V (G) can be partitioned into independent transversals of P. Moreover, since
Conjecture 1 is known to be true for graphs on n vertices with ∆(G) ≥ n/6, we might restrict
ourselves to study graphs with ∆(G) ≤ n/6, and in such graphs any partition P of V (G) with
parts of size r = (2 + ε)∆(G) < 3∆(G) will have at least 3 classes. Thus Theorem 3 is implied by
the following theorem.

Theorem 4. For all integers k ≥ 3 and ε > 0, there exists r0 = r0(k, ε) such that the following holds
for all r ≥ r0: if G is a graph and P is a partition of V (G) with k classes of size r ≥ (2 + ε)∆(G),
then there exists a partition of V (G) into independent transversals of P.

By considering the complement graph, Theorem 4 easily yields the following corollary. A perfect
Kk-tiling of a graph G is a spanning subgraph of G with components which are complete graphs
on k vertices.

Corollary 5. For all integers k ≥ 3 and ε > 0, there exists n0 = n0(k, ε) such that the following
holds: if n ≥ n0 and G is a k-partite graph with classes of size n and δ(G) ≥ (k − 3/2 + ε)n, then
G has a perfect Kk-tiling.

3 Proof sketch

Theorem 3 and Corollary 5 are implied by Theorem 4. To prove Theorem 4 we use the absorption
method, first used in a systematic way by Rödl, Ruciński and Szemerédi [13] (although similar ideas
were used previously, e.g. by Krivelevich [11]). This method has been used since to tackle a lot of
problems in extremal combinatorics regarding the existence of spanning graphs or hypergraphs.

To prove Theorem 4, the absorbing method works in two steps: finding an absorbing set and
finding an almost-perfect partial strong colouring. These can be summarised in the following way.

1. Finding an absorbing set. Given a partition P we find a small vertex set A ⊆ V (G)
which is balanced (i.e. it intersects each class of P in the same number of vertices) with
the property that for every small balanced set S ⊆ V (G), A ∪ S can be partitioned into
independent transversals.

2. Finding an almost-perfect partial strong colouring We find a collection of disjoint
independent transversals of P covering almost all vertices.



Given that we can find an absorbing set and an almost-perfect partial strong colouring, the
proof of Theorem 4 can be sketched as follows. First, find a balanced absorbing set A ⊆ V (G) of
small size. Remove it to get the graph G \ A, which has a natural induced partition P ′. For this
partition, find an almost-perfect partial strong colouring, i.e. a collection T ′ of disjoint independent
transversals of P ′, which covers almost all vertices of G \ A, except for a set S which is balanced
and small. Then, by the property of the absorbing set A, there exists a collection T ′′ of disjoint
independent transversals which partitions A ∪ S. Then T = T ′ ∪ T ′′ is a collection of disjoint
independent transversals which covers the whole graph, as desired.

In the following subsections we sketch how to find an absorbing set and an almost-perfect partial
strong colouring.

3.1 Existence of an absorbing set

Given a graph G and a vertex partition P = {V1, . . . , Vk}, a set S is P-balanced if |S∩Vi| = |S∩Vj |
for all i, j ∈ [k]; or just balanced if there is no possible ambiguity. This is the absorbing lemma we
prove.

Lemma 6 (Absorbing lemma). For all integers k ≥ 3 and ε > 0, there exist 0 < β � α � ε and
r0 = r0(ε, k) such that the following holds for all r ≥ r0. Let G be a graph and let P = {V1, . . . , Vk}
be a partition of V (G) with classes of size r ≥ (2 + ε)∆(G). Then there exists a P-balanced set
A ⊆ V (G) of size at most αn such that for every P-balanced set S ⊆ V (G) of size at most βn,
A ∪ S can be partitioned in independent transversals of P.

We sketch the proof of this lemma. To prove this, we proceed in three steps. First, using a
lemma of Haxell [9], we can show the following: for every two vertices xi, x

′
i belonging to the same

class Vi, there is a set T such that both T ∪{xi} and T ∪{x′i} are independent transversals. That is,
every two vertices in the same class Vi are contained in two independent transversals which differ
only in Vi. Using this lemma and applying the standard ‘supersaturation’ trick, we can show that
for every pair not only one set T as before exists, but Ω(rk−1) of them.

Secondly, using the previous results, for each transversal S (not necessarily independent) we
construct ‘many’ balanced sets A of size k2 such that A ∪ S can be partitioned into independent
transversals. We call this an absorbing set for S. Finally, form a set A by selecting every possible
balanced set of size k2 independently at random. Almost surely, for every transversal S it will
contain ‘many’ absorbing sets for S. So for a small balanced set S ⊆ V (G), we can partition it
into transversals and then select for each one of them disjoint absorbing sets in A. This gives the
desired partition of A ∪ S into independent transversals.

3.2 Existence of an almost-perfect partial strong colouring

Let G be a graph and P = {V1, . . . , Vk} a partition of V (G) with classes of size r. A t-partial
strong colouring of G with respect to P is a collection of t disjoint independent transversals of P.
If χs(G) = r, then G has a r-partial strong colouring with respect to P. We show the existence of
(1− δ)r-partial strong colourings of P.

Lemma 7. For all integers k ≥ 3 and δ, ε > 0, there exists r0 = r0(k, δ, ε) such that the following
holds for all r ≥ r0: Let G be a graph and P be a partition of V (G) with k classes of size r ≥
(2 + ε)∆(G). Then there exists a (1− δ)r-partial strong colouring of G with respect to P.



To see this, it is convenient to work in the k-uniform hypergraph H given by the independent
transversals of G. First we use Theorem 2 which implies that given the conditions of Lemma 7, there
always exists a perfect fractional strong colouring. In terms of the hypergraph H, this is equivalent
to the existence of a perfect fractional matching in H, i.e. an assignment of non-negative weights
to E(H) such that for every vertex v ∈ V (H), the sum of weights of every edge incident with v is
equal to 1.

Now, we select a random subgraph H ′ ⊆ H guided by the perfect fractional matching. Using
concentration inequalities we can show that H ′ can be selected such that every vertex x ∈ V (G)
is contained in almost the same number of edges of H ′ and every pair x, y ∈ V (G) is contained in
a bounded number of edges of H ′. It turns out these two conditions are enough to apply a result
of Frankl and Rödl [6] which guarantees the existence of a matching M in H ′ (i.e. a collection of
disjoint edges of H ′) covering almost all vertices. We are done since we can select M ⊆ H ′ ⊆ H as
our desired collection of independent transversals covering almost all vertices.
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