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Abstract

A graph is (k1, k2)-colorable if its vertex set can be partitioned into two sets, one inducing a
graph with maximum degree at most k1 and one inducing a graph with maximum degree at most
k. We show that every (Cs,Cy, Cg)-free planar graph is (0, 6)-colorable. We also show that
deciding whether a (Cs5, Cy, Cg)-free planar graph is (0, 3)-colorable is an NP-complete problem.

1 Introduction

A graph is (kj, ka)-colorable if its vertex set can be partitioned into a set inducing a graph with
maximum degree at most k1 and a set inducing a graph with maximum degree at most k. Choi,
Liu, and Oum [1] have established that there exist exactly two minimal sets of forbidden cycle
lengths such that every planar graph is (0, k)-colorable for some absolute constant k.

e Planar graphs without odd cycles are bipartite, that is, (0, 0)-colorable.
e Planar graphs without cycles of length 3, 4, and 6 are (0,45)-colorable.

For every n > 3, we denote by C, the cycle on n vertices. To reformulate, if S is any set of
cycles, then there exists a k such that every planar graph with no cycle in S is (0, k)-colorable if
and only if either S contains every odd cycle, or S contains the cycles Cs, Cy, and Cg.

Our aim is to improve the second point. So we are interested in the class C of (Cs, Cy, Cg)-free
planar graphs.

We will sketch the proofs of the following two theorems in the next two sections. Full proofs
are available on arXiv [2].

Theorem 1. Every graph in C is (0,6)-colorable.

Theorem 2. For every k > 1, either every graph in C is (0, k)-colorable, or deciding whether a
graph in C is (0, k)-colorable is an NP-complete problem.

In addition, we construct a graph in C that is not (0, 3)-colorable in Section 4. This graph and
Theorem 2 imply the following.

Corollary 1. Deciding whether a graph in C is (0, 3)-colorable is an NP-complete problem.

Since we deal with (0, k)-colorings for some k > 2, we denote by the letter 0 the color of the
vertices that induce the independent set and we denote by the letter k the color of the vertices that
induce the graph with maximum degree at most k.



2 Sketch of the proof of Theorem 1

The proof will be using the discharging method. For every plane graph G, we denote by V(G) the
set of vertices of G, by E(G) the set of edges of G, and by F(G) the set of faces of G.

Let us define the partial order <. Let n3(G) be the number of vertices with degree at least 3
in G. For any two graphs G and Gg, we have G1 < G5 if and only if either n3(G1) < ng(Gs), or
n3(G1) = n3(G2) and |V(G1)| < |V(G2)|. Note that the partial order < is well-defined and is a
partial linear extension of the subgraph poset.

We suppose for contradiction that G is a graph in C that is not (0, 6)-colorable and is minimal
according to <. For all d, let us call a vertex of GG of degree d, at most d, and at least d a d-vertexz,
a d~-verter, and a dT-vertex respectively. For all vertex v, a d-neighbor, a d~-neighbor, and a
d*-neighbor of v is a neighbor of v that is a d-vertex, a d”-vertex, and a d*-vertex respectively.
For all d, let us call a face of G of degree d, at most d, and at least d a d-face, a d~-face, and a
d* -face respectively.

We are going to give some weight on the vertices and faces of the graph. Initially, for all d, every
vertex or face of degree d has weight d — 4. Thus every face and every 4"-vertex has non-negative
initial weight. The aim is to transfer some weight from vertices and faces to other vertices and
faces so that in the end, every face and every vertex has a non-negative weight, which will lead to
a contradiction, since the sum of the weights is negative by Euler’s formula.

The general idea is that vertices and faces of high degree will give weight to 2-vertices and 3-
vertices. The faces that need the most charge are the 5-faces with many 2-vertices in its boundary.

We will start with some lemmas on the structure of G, that show that aside from 5-faces with
many 2-vertices, we can always find the necessary charge locally. Those lemmas can be proven
via the following scheme. Assuming the lemma is false, consider a graph H smaller than G with
respect to <. The graph H admits a (0, k)-coloring by minimality of G. We can show that we can
extend the coloring to GG, a contradiction.

Lemma 1. G is connected.

Lemma 2. G has no 1-vertex.

Lemma 3. Every 7~ -vertex of G has a 8" -neighbor.

Lemma 4. Every vertex with degree at least 3 and at most 7 has two 8" -neighbors.
Lemma 5. No 3-vertex is adjacent to a 2-verter.

Let us now define the concept of special faces and special configurations, that will correspond
to the places that will lack weight the most. A special face is a 5-face with three 2-vertices and
two non-adjacent 8T-vertices. See Figure 1, left. A special configuration is three 5-faces sharing a
common 3-vertex adjacent to three 8"-vertices, such that all the other vertices of these faces are
2-vertices. See Figure 1, right. We say special structure to speak indifferently about a special face
or a special configuration.

Let us define a hypergraph G whose vertices are the 8-vertices of G and the hyperedges
correspond to the sets of 8T-vertices contained in the same special structure. For every vertex v of
CAJ, let cz(v) denote the degree of v in CAJ, that is the number of hyperedges containing v.

Lemma 6. For every vertez v in G, d(v) — d(v) > 7.

Lemma 7. Every component of G has at least one vertez v such that d(v) — d(v) > 8.
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Figure 1: A special face (left) and a special configuration (right).

For each component C of G, we choose a vertex v in C such that d(v) — d(v) > 8 as the root of
C. Now the root v is set to sponsor all of the special structures v belongs to. Since C' is connected,
by a simple search in G we can set every vertex of C'— {v} to sponsor some of the special structures
it belongs to so that every vertex of C' aside from v does not sponsor all of the special structures
it belongs to, and every special structure has a vertex sponsoring it.

We call a 2-vertex with a 2-neighbor a 2;-vertez and a 2-vertex with no 2-neighbor a 2y-vertex.
Some local weight adjustments are omitted here, especially around 5-faces that have low degree
vertices in their boundary but are not special structures.

1. Every 8T -vertex gives weight % to each of its 7 -neighbors and to each special structure it
Sponsors.

2. For each d-vertex v with 3 < d < 7 in G, v gives % to each of its 2-neighbors.
3. Each 5-face gives % to each of its 2¢p-vertices and g to its 2p-vertices.

4. Each TT-face gives % to each of its 2¢p-vertices that belong to a 5-face, % to each of its 21-
vertices that belong to a 5-face, % to each of its 2¢p-vertices that do not belong to a 5-face,
and % to each of its 2;-vertices that do not belong to a 5-face.

It can be shown that every vertex and every face has a non-negative final weight.

Let n denote the number of vertices, m the number of edges and f the number of faces of G.
By Euler’s formula, since G is connected by Lemma 1 and has at least one vertex, n + f —m = 2.
The initial weight of the graph is 37 cy ) (d(v) —4) + X pepe(dla) —4) = X ey (@ dv) +
ZaeF(G) d(a) —4n — 4f = 4m — 4n — 4f = —8 < 0. Therefore the initial weight of the graph is
negative, thus the final weight of the graph is negative, a contradiction. That completes the proof
of Theorem 1.

3 Sketch of the proof of Theorem 2

Let k£ > 3 be a fixed integer. Suppose that there exists a graph in C that is not (0, k)-colorable.
We consider such a graph Hj that is minimal according to <. Similarly to Lemmas 1, 2, and 3, the
minimum degree of Hy, is at least two and every (k + 1)~ -vertex in Hy is adjacent to a (k + 2)"-
vertex. A standard discharging argument shows that Hj contains a 2-vertex v. Let w; and us be
the two neighbors of v.



Figure 2: The forcing gadget F ,. Figure 3: The non-(0, 3)-colorable graph in C.

By minimality of Hy, Hy — v is (0, k)-colorable, every (0, k)-coloring of Hj, — v is such that u;
and us get distinct colors, and the vertex in {uy,us} that is colored k has exactly k neighbors that
are colored k. It can be shown that replacing v in Hy by a path ujususugqus of length 4 leads to a
(0, k)-colorable graph Hj in C and that every (0, k)-coloring of H, is such that us is colored k and
is adjacent to exactly one vertex colored k.

We are ready to prove that deciding whether a graph in C is (0, k)-colorable is NP-complete.
The reduction is from the NP-complete problem of deciding whether a planar graph with girth at
least 9 is (0, 1)-colorable [3]. Given an instance G of this problem, we construct a graph G’ € C, as
follows. For every vertex v in G, we add k — 1 copies of H}, and we add an edge between v and the
vertex ug of each these copies. The graph G is (0, 1)-colorable if and only if G’ is (0, k)-colorable.

4 A graph in C that is not (0, 3)-colorable

The graph depicted in Figure 3, where every dashed line represents a copy of the graph Fj, in
Figure 2, is a graph in C that is not (0, 3)-colorable. The idea is that in every (0, 3)-coloring of
F, 4, at least one neighbor of = or y (a white vertex in the picture) is colored 3.

One can see that if we remove the thin parts in Figures 2 and 3, we obtain a planar graph with
girth 7 that is not (0, 2)-colorable. A graph with such properties is already known [4], but this new
graph is smaller (184 vertices instead of 1304) and the proof of non-(0, 2)-colorability is simpler.
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