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Abstract

In the last two decades the swap (switch) Markov chain approach was heavily used to sample
realizations of graphic degree sequences. It is conjectured that this Markov chain is rapidly
mixing on all sequences, however there are particulary few proven cases. Here we report two
new results:

(1) Let d be a bipartite graphical degree sequence, and let ∆ = max d. Let M be half of the
sum of the degrees. If 2 ≤ ∆ ≤ 1√

2

√
M , then the swap Markov Chain on the realizations of d

is rapidly mixing.
(2) Let d⃗ be a directed degree sequence. Let M be half of the sum of the degrees. If

max{max dout,max din} <
√
M/2− 2,

then the swap Markov chain on this directed degree sequence is rapidly mixing.
These results are germane to the recent results of Greenhill and Sfragara about rapidly

mixing MCMC processes on simple and directed degree sequences.

1 Introduction and history
An important problem in network science is to algorithmically construct typical instances of net-
works with predefined properties, often expressed as graph measures. In particular, special attention
has been devoted to sampling simple graphs with a given degree sequence. In 1997 Kannan, Tetali,
and Vempala ([8]) proposed the use of the so-called swap Markov chain approach, which had
already been used in statistics.

The swap operation (also known as switch operation) exchanges two disjoint edges ac and
bd in the realization G with ad and bc if the resulting configuration G′ is again a simple graph
(we denote the operation by ac, bd ⇒ ad, bc). It is a well-known fact that the set of all possible
realizations of a graphic degree sequence is connected under this operation. (See Havel [7].)
Similar operations can be considered for bipartite graphs with similar properties. Sometimes not
every edge exchange is potentially possible, for example, on a bipartite graph we must ensure that
vertices a and d belong to different vertex classes.

In case of directed graphs, to achieve full analogy the introduction of the so-called triple swap
operation is required. Indeed, imagine that our graph H⃗1 is a directed triangle −→C3 while H⃗2 is
the oppositely directed ←−C3. Both graphs have the same degree bi-sequence D = ((1, 1, 1); (1, 1, 1)).
(The first vector is the list of the in-degrees, while the second one is the list of the out-degrees.) It
is clear that in order to transform H⃗1 into H⃗2 we should exchange three edges and three non-edges
(For details see for example [2].)

The simple directed graph G⃗ can be represented by a bipartite graph (see [4]): let B(G⃗) =
(U, V ;E) be a bipartite graph where each class consists of one copy of every vertex x of the vertex
set X(G⃗). The edges adjacent to a vertex ux in class U represent the out-edges from x, while
the edges adjacent to a vertex vx in class V represent the in-edges to x (so a directed edge −→xy



corresponds the edge uxvy). Since there are no loops in a simple directed graph, there cannot
be a (ux, vx) edge in its bipartite representation — these vertex pairs are forbidden and form a
forbidden 1-factor in the bipartite graph B(G⃗).

In the bipartite representations of the directed graphs H⃗1 and H⃗2 no edge pair can be trans-
formed by a swap operation. In the bipartite representations the edges and non-edges of an alter-
nating C6 need to be exchanged (also called a triple swap) to transform B(H⃗1) into B(H⃗2). (For
details see [2].)
The swap Markov chains corresponding to the most common graph models are irreducible, aperi-
odic, reversible (obey detailed balance), have symmetric transition matrices, and thus have uniform
global stationary distributions.

In their paper [8], Kannan, Tetali and Vempala conjectured that all these Markov chains are
rapidly mixing. The first rigorous proof in this topic is due to Cooper, Dyer and Greenhill about
regular simple graphs ([1]). The following known degree sequence classes accommodate rapidly
mixing swap Markov chains:

1. simple regular degree sequences (see [6]);
2. regular directed degree sequences (see [6]);
3. half regular bipartite degree sequences (it means that in one class the degrees are the same,

while in the other class the only restrictions are those imposed by graphicality) (see [2]);
4. almost half regular bipartite degree sequences (here on one side we have |d(v1)− d(v2)| ≤ 1)

(see [2]);
5. almost half regular directed degree sequences (see [2]).

Recently the following results were found and published (see [3]): Let d be a bipartite degree
sequence on the underlying set U ⊎ V .

Theorem 1. Let 0 < c1 ≤ c2 < |U | = n and 0 < d1 ≤ d2 < |V | = m be integer parameters and
assume d satisfies the following properties:

c1 ≤ d(v) ≤ c2, ∀v ∈ V

d1 ≤ d(u) ≤ d2, ∀u ∈ U. (1)

Furthermore, assume that

(c2 − c1 − 1) · (d2 − d1 − 1) ≤ max {c1(m− d2), d1(n− c2)} (2)

holds. Then the swap Markov chain on the realizations of this bipartite degree sequence is rapidly
mixing.

The analogous result for directed degree sequences is the following: Let d⃗ a directed degree sequence
on the n element vertex set V .

Theorem 2. Let 0 < c1 ≤ c2 < n and 0 < d1 ≤ d2 < n be integer parameters and assume that
graphic degree be-sequence d⃗ satisfies the following properties:

c1 ≤ dout(v) ≤ c2, ∀v ∈ V,

d1 ≤ din(v) ≤ d2, ∀v ∈ V. (3)



Furthermore, assume that

(c2 − c1) · (d2 − d1) ≤ 2 + max
{
c1(n− d2 − 1) + d1 + c2, d1(n− c2 − 1) + c1 + d2

}
− n (4)

holds. Then the swap Markov chain using double and triple swap operations is rapidly mixing on
the realizations of this directed degree sequence.

In the same paper it was also shown that on bipartite and directed degree sequences generated
under the Erdős – Rényi random model (with not extremely low or high edges probabilities), the
swap Markov chains are rapidly mixing.

2 New results
In [6] Greenhill and Sfragara developed the following nice results:

Theorem 3 (Greenhill, Sfragara (2017)). (i) Let d be a simple graphic degree sequence, satisfying
3 ≤ dmax ≤ 1

3

√
M , where M is the sum of the degrees. Then the swap Markov chain is rapidly

mixing.
(ii) Let d is a graphic directed degree sequence with 2 ≤ dmax ≤ 1

4

√
M , where M is the sum of

the degrees, and where the set of all realizations under study is irreducible under the double swap
operation. Then the swap Markov chain is rapidly mixing.

Due to the irreducibility condition, (ii) does not apply to all degree sequences numerically sat-
isfying the inequality. One example for such a degree sequence is the already mentioned D =
((1, 1, 1); (1, 1, 1)). However these results cover a wide range of degree sequences, including power-
law graphs with parameter γ > 5/2 and sufficiently many edges (see [6]).
In what follows we announce two new analogous results.

Theorem 4. Let d be a bipartite degree sequence, let M be half of the sum of the degrees in d, and
let ∆ = max d. If

2 ≤ ∆ ≤ 1√
2

√
M, (5)

then the corresponding Markov chain is rapidly mixing on the realizations of d.

Theorem 5. Let d⃗ be a directed degree sequence. Let M be half of the sum of the degrees, and let
∆ = max{max dout,max din}. If

∆ <
1√
2

√
M − 4, (6)

then the corresponding Markov chain is rapidly mixing on the realizations of d⃗.

This theorem, unlike Theorem 3, applies to all directed degree sequences satisfying the numerical
conditions. This is a consequence of the fact that our Markov chain uses both double and triple
swaps. The small discrepancy between inequalities (5) and (6) is due to the forbidden 1-factor
which the realizations must respect.
The proof of these results are rather similar to the proofs of Theorem 1 and 2. We will illustrate it
with a bird’s-eye view of the more complicated proof of Theorem 5. The Markov chain is constructed
the same way as in [3], including the transition matrix ([3, condition (2.2)]).



For any pair of realizations G1 and G2 we have to construct the multicommodity flow of Sinclair
([9]), satisfying the conditions of [3, Theorem 3.1]. To that end we consider the symmetric difference
of realizations G1 and G2. We decompose it into ordered alternating cycles in all possible ways.
(The word alternating indicates that the cycles contain edges from G1 and G2 in turns.

In the next step we fix a particular cycle decomposition and determine a unique canonical path
from G1 to G2 corresponding to this decomposition. To construct a part of the path, we take an
alternating cycle of the decomposition and we design an eligible swap sequence to process this cycle
(i.e., to exchange its G1 edges to G2 edges). This process is identical to that of [3, Section 4].

The next step is to analyze the constructed swap sequences and prove that they satisfy the
conditions of Theorem 3.1 in [3]. The fundamental point of that is a counting lemma (this termi-
nology coined by Catherine Greenhill) which proves that the edges representing the swap operations
between realizations are not oversaturated by the canonical paths. As Greenhill pointed out in [5],
this is the centerpiece of all known methods to prove the rapidly mixing nature of a swap Markov
chain.

This particular part of the proof of Theorem 5 is very similar to the proof of [3, Lemma 6.1].
We can use the same auxiliary structures and similar reasoning, but the actual calculations are of
course different. This finishes the very high level sketch of the proof.
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