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Abstract

An (r, ℓ)-partition of a graph G is a partition of its vertex set into r independent sets and ℓ
cliques. A graph is (r, ℓ) if it admits an (r, ℓ)-partition. The dichotomy P versus NP-complete
for recognizing (r, ℓ)-graphs is well-known [2]: the problem is in P if max{r, ℓ} ≤ 2, and NP-
complete otherwise. Well-covered graphs are graphs in which every maximal independent set
is also maximum. The problem of recognizing a well-covered graph was proved to be coNP-
complete [4, 10]. A graph G is said (r, ℓ)-well-covered if G is both (r, ℓ) and well-covered. In
(r, ℓ)-well-covered ((r, ℓ)wcg) problem, we are given an undirected graph G = (V,E), and
we are asked to determine whether G is a (r, ℓ) and a well-covered graph. Alves et al. proved in
[1] that (r, ℓ)-well-covered problem is polynomial when r ≤ 1 and ℓ ≤ 2 or r = 2 and ℓ = 0,
and hard otherwise. In this paper we give structural characterizations to each of the following
six subclasses: (0, 1)wcg, (0, 2)wcg, (1, 0)wcg, (1, 1)wcg, (1, 2)wcg, and (2, 0)wcg.

1 Introduction

An (r, ℓ)-partition of a graph G = (V,E) is a partition of V into r independent sets S1, . . . , Sr

and ℓ cliques K1, . . . , Kℓ. We observe that some of these sets can be empty. A graph is (r, ℓ)
if it admits an (r, ℓ)-partition. The dichotomy P versus NP-complete for recognizing (r, ℓ)-graphs
is well-known [2]: the problem is in P if max{r, ℓ} ≤ 2, and NP-complete otherwise. The class
of (r, ℓ)-graphs and its subclasses have been extensively studied in the literature. For instance,
list partitions of (r, ℓ)-graphs, chordal- (r, ℓ)-graphs, and cographs-(r, ℓ) were studied in [5, 6, 3],
respectively.

A graph G is called well covered if every two maximal independent sets of G have the same
cardinality. In other words, a graph G is well covered if every maximal independent set of G is a
maximum independent set of G. The concept of well covered graph was introduced by Plummer [8].
Since the problem of finding the independence number of a general graph is NP-complete and,
once applying the greedy algorithm for producing a maximal independent set always produces a
maximum independent set when applied to well covered graphs, this class of graphs turns out to
have interesting algorithmic properties. The problem of recognizing a well-covered graph, which
we denote by Well-Covered Graph, was proved to be coNP-complete by Chvátal and Slater [4]
and independently by Sankaranarayana and Stewart [10], but is in P when the input graph is known
to be, for instance, a cograph [7]. One of the main directions of the work on well covered graphs
has been done towards characterizing some of their subclasses, exploring estructural properties of
these classes. In this paper we are interested in characterizing graphs that are both, (r, ℓ) and
well-covered, and can be recognized in polynomial time.



2 Complexity of (r, ℓ)-well-covered graph problem

The decision problem (r, ℓ)-well-covered graph is defined as follows:

(r, ℓ)-well-covered graph ((r, ℓ)wcg)
Instance: A graph G = (V,E).
Question: Is G (r, ℓ) and well-covered?

The complexity of this decision problem was established in [1] and it is shown in Table 1.

(r, ℓ)wcg 0 1 2 ≥ 3

0 - P P NPc

1 P P P NPc

2 P coNPc coNPc (co)NPh

≥ 3 NPh (co)NPh (co)NPh (co)NPh

Table 1: Complexity of the decision problem (k, ℓ)wcg.

Hence, there are six polynomially-time recognizable subclasses of (r, ℓ)wcg: (1, 0)wcg, (0, 1)wcg,
(1, 1)wcg, (1, 2)wcg, (2, 0)wcg and (0, 2)wcg. In Section 3, we give structural characterizations
for all these subclasses. Note that there are some pairs (r, ℓ) of the decision problem (r, ℓ)wcg which
belong, at the same time, to both classes NP-hard and coNP-hard. This is a consequence of two
facts: the recognition problem of a (r, ℓ)-graph, when r > 2 or ℓ > 2, is NP-complete (see [2]), and
the recognition problem of well-covered graphs, for graphs in general, is coNP-complete (see [4]).

3 Structural characterizations

In this section we present characterizations for the six polynomially-time recognizable (r, ℓ)wcg

subclasses. Our main result is the characterization of the (1, 2)-well covered graph.

Fact 1. A graph G whose V (G) induces either a clique or an independent set is well-covered.

The following Corollary is a simple application of Fact 1.

Corollary 1. G is a (0, 1)-wcg if, and only if, G is a (0, 1)-graph. Similarly, G is a (1, 0)wcg if
and only if G is a (1, 0)-graph.

Theorem 1 provides a characterization for the decision problem (0, 2)wcg.

Theorem 1. Let G = (V,E) be a graph. G is a (0, 2)wcg if, and only if, either G is a complete
graph or G is a co-bipartite graph having no universal vertex.

In [1] we give a necessary and sufficient condition for a graph to be a (1, 1)-wcg. In the
literature, (1, 1)-graphs are often called split graphs.

Theorem 2. [1] A graph G = (V,E) is a (1, 1)wcg if, and only if, it admits a (1, 1) partition
(S,K) such that either, ∀v ∈ K, |NS(v)| = 0, or, ∀v ∈ K, |NS(v)| = 1.

The structural characterization of a (2, 0)-wcg is a result of Ravindra [9] and it is described in
Theorem 3.



Theorem 3. [9] Let G = (V,E) be a graph. G is a (2, 0)-wcg if, and only if, G contains a perfect
matching F such that, for every edge e = uv in F , G[N(u) ∪N(v)] is a complete bipartite graph.

Next, we present a structural characterization of (1, 2)wcg.

Theorem 4. Let G = (V,E) be a graph with partition V = (S,K1,K2) where S is a maximal
independent set, and K1, K2 are cliques.Then, G = (V,E) is a (1, 2)-well covered graph if and only
if G satisfies the four conditions:

1. If v ∈ K1 ∪K2, then 1 ≤ |NS(v)| ≤ 2,

2. If u, v ∈ K1 ∪K2 with uv /∈ E, then 1 ≤ |NS(v) ∪NS(u)| ≤ 2,

3. If ∃v ∈ Ki such that |NS(v)| = 2, then ∃u ∈ Kj, i 6= j such that uv /∈ E and NS(u) ⊆ NS(v),

4. Given v ∈ Ki with |NS(v)| = 1. If u ∈ Kj, i 6= j with uv /∈ E, then |NS(u) ∪NS(v)| = 2.

Proof. Suppose G a (1, 2)–well covered graph with a partition V = (S,K1,K2) where S is maximal
independent set. We prove the necessity of conditions 1, 2, 3 and 4 bellow.

(1.) First, note that |NS(v)| ≥ 1,∀v ∈ (K1 ∪K2), otherwise S would not be maximal. Next,
suppose by contradiction, there is a vertex v ∈ K1 ∪ K2, such that |NS(v)| ≥ 3. We observe
that |S| − 1 is an upper bound to the size of a maximal independent set containing v, since the
set I = {v} ∪ S \ NS(v) ∪ {w}, where w is a vertex of K2 possibly non adjacent to a vertex of
{v} ∪ S \ NS(v), reaches this upper bound (|I| ≤ 1 + |S| − 3 + 1 = |S| − 1). Thus, G is not well
covered, once S and I are maximal independent sets of different sizes. A contradiction. Then,
∀v ∈ K1 ∪K2, |NS(v)| ≤ 2.

(2.) Suppose, by contradiction, there is a pair of vertices u ∈ K1 and v ∈ K2, such that
uv /∈ E, and |NS(u) ∪ NS(v)| ≥ 3. We observe that, again, |S| − 1 is an upper bound for an
independent set containing v, since the set I = {u, v} ∪ S \ (NS(u) ∪ NS(v)) reaches this upper
bound (|I| ≤ 2 + |S| − 3 = |S| − 1). Hence, G is not well covered. A contradiction. Then,
∀u, v ∈ K1 ∪K2, uv /∈ E, 1 ≤ |NS(v) ∪NS(u)| ≤ 2.

(3.) Assume that v ∈ K1 with |NS(v)| = 2. If there is no vertex u ∈ K2 with uv /∈ E, then we
have that v is adjacent to every vertex of K2. Hence, {v} ∪ S \ NS(v) is a maximal independent
set of size 1 + |S| − 2 = |S| − 1, a contradiction.
Thus, suppose, by contradiction, there is a vertex u ∈ K2 with uv /∈ E, such that NS(u) 6⊆ NS(v).
Since |NS(v)| = 2 and S is maximal, we have that |NS(u)∪NS(v)| ≥ 3, what contradicts condition 2.
Hence, ∀v ∈ K2 with |NS(v)| = 2, ∃u ∈ K2 such that uv /∈ E and NS(u) ⊆ NS(v).

(4.) Let v ∈ K1 with |NS(v)| = 1. Suppose there exists u ∈ K2 such that uv /∈ E and, by
contradiction, suppose |NS(u) ∪NS(v)| 6= 2. It follows from condition 2 that |NS(u) ∪NS(v)| = 1,
since 1 ≤ |NS(u) ∪ NS(v)| ≤ 2. Hence, the maximal independent set {u, v} ∪ S \ NS(u) has size
2+ |S|−1 = |S|+1 contradicting the fact that G is well covered. Hence, ∀v ∈ K1 with |NS(v)| = 1,
if there exists u ∈ K2 such that uv /∈ E, then |NS(u) ∪NS(v)| = 2.

Now suppose the graph G satisfies the conditions 1, 2, 3 and 4 listed above.

Observe that the maximal independent sets of G can be partitioned into three types: those
who have no vertex in K1 ∪K2, those who have exactly one vertex in K1 ∪K2, or those who have
exactly two vertices in K1 ∪K2.
Next, we prove that, under the assumptions 1, 2, 3 and 4, all maximum independent sets of G



have size |S|. Let I be a maximal independent set containing exactly a vertex v in K1 ∪K2, say
v ∈ K1. From condition 1 and from the fact that S is maximal, we know that, either, |NS(v)| = 2
or |NS(v)| = 1.
Suppose |NS(v)| = 2. From condition 3 we have that a maximal independent set I containing v
must contain a vertex u ∈ K2 such that NS(u) ⊆ NS(v). In this case, I = {v, u} ∪ S \NS(v) and
|I| = 2 + |S| − 2 = |S|.
Now, suppose |NS(v)| = 1 and let I be a maximal independent set containing v. By condition 4,
we have two cases to analyze: when v is adjacent to all vertices of K2, and when there is a vertex
u ∈ K2 such that uv /∈ E. In the first case, I = {v} ∪ S \NS(v) and then |I| = 1 + |S| − 1 = |S|.
In the second case, we can have two additional cases: the case when I = {v} ∪ S \NS(v), and the
case when I = {v, u} ∪ S \ (NS(v) ∪NS(u)), for some vertex u ∈ K2 with uv /∈ E. In the first
case, notice that I is maximal since that, by condition 4, every vertex of K2 nonadjacent to v has
a neighbor in S \NS(v). Thus, |I| = 1 + |S| − 1 = |S|. In the second case, again by condition 4.,
we have that |S \ (NS(v) ∪NS(u)) | = |S| − 2. Hence, |I| = 2 + |S| − 2 = |S|.
Therefore, we conclude that every maximal independent set of G has size |S|, and, then, G is well
covered.
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