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Abstract

The vertex colouring game gB is played on a simple graph with k permissible colours. Two
players, Alice and Bob, take turns to colour an uncoloured vertex such that adjacent vertices
receive different colours. Bob makes the first move. The game ends once, the graph is fully
coloured, in which case Alice wins, or the graph can no longer be fully coloured, in which case
Bob wins. A graph is gB-perfect if for every induced subgraph H, the game gB played on H
admits a winning strategy for Alice with only ω(H) colours, where ω(H) denotes the clique
number of H. We characterise gB-perfect graphs in two ways, by forbidden induced subgraphs
and by explicit structural descriptions. We also present a clique module decomposition, allowing
us to efficiently recognise gB-perfect graphs.

1 Introduction

We consider the following maker-breaker graph colouring game gB played on an initially uncoloured
simple graph G with a set of colours C. Bob starts the game by colouring a vertex. Alice and
Bob then take turns to apply a colour from C to an uncoloured vertex such that adjacent vertices
receive different colours. The game ends once such a move is no longer possible. Alice wins if every
vertex is now coloured, otherwise Bob wins. Our game gB is a variation of Bodlaender’s graph
colouring game [3], which requires Alice to make the opening move but is otherwise identical.

For any graph G, the game chromatic number χgB (G) of G (with respect to the game gB)
denotes the cardinality of a smallest colour set C that admits a winning strategy for Alice at the
game gB. A graph G is called gB-perfect (or game-perfect with respect to the game gB) if, for any
induced subgraph H of G, we have χgB (H) = ω(H), where ω(H) denotes the clique number of H.

Game-perfect graphs for Bodlaender’s original game and two further variants thereof have been
characterised by means of forbidden induced subgraphs and by explicit structural characterisa-
tions [2]. These results imply a characterisation of non-connected gB-perfect graphs as the graphs
of type E∪

1 defined below Figure 1. Our main result is to extend this characterisation to the
non-trivial case of connected gB-perfect graphs.

Theorem 1. Let G be a graph. Then the following are equivalent.

(i) G is gB-perfect.

(ii) G contains no induced F1, . . . , F15 from Figure 2.

(iii) G is an instance of one of the structures E∪
1 , E2, . . . , E9 defined in Figure 1.

The characterisation of gB-perfect graphs by the explicit structures in Theorem 1 (iii) enables us
to efficiently characterise gB-perfect graphs. For that purpose we use a clique module decomposition
of a graph as follows. A module of a graph G = (V,E) is a set M of vertices such that for every
v ∈ V \M either v is connected to every vertex of M or not connected to any vertex of M . If a
module is a clique, it is called clique module. A clique module M is maximal if there is no clique
module M ′ 6= M with M ⊂M ′.
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Figure 1: The 9 structural possibilities for connected gB-perfect graphs: the cliques denoted by
large circles have order ≥ 0 in E1 and ≥ 1 in the other classes. Further we have k ≥ 0 for E1 and
k ≥ 1 for E5. In E7, vertex c must be completely connected to vertex b or to Kn. We define E∪

1 as
the class of disjoint unions of one or several structures of type E1.
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Figure 2: The 15 forbidden induced subgraphs for gB-perfect graphs



Lemma 1. Every graph G = (V,E) admits a unique decomposition into maximal clique modules.
This decomposition can be determined in time O(|V |2).

In Section 3 we describe a simple clique module decomposition algorithm used to prove Lemma 1.
More sophisticated general modular decomposition algorithms in time O(|E|) are known [7]. Using
Theorem 1 and Lemma 1 we can prove the following.

Theorem 2. There is a polynomial time algorithm to decide whether a given graph is gB-perfect.

gB-perfect graphs are in particular perfect. The Hamiltonian Cycle problem is NP-complete
for perfect graphs, even for bipartite graphs [5]. But for gB-perfect graphs, by Theorem 2 we obtain

Corollary 1. The Hamiltonian Cycle problem for gB-perfect graphs is in P.

2 Proof of Theorem 1

(i) =⇒ (ii): For every 1 ≤ i ≤ 15, we provide a winning strategy for Bob on Fi with |C| = ω(Fi)
colours for the game gB.

(iii) =⇒ (i): Let G be an instance of E∪
1 , E2, . . . , E9. We first observe that any induced subgraph H

of G is also an instance of E∪
1 or E` for some 2 ≤ ` ≤ 9. Then we provide strategies for Alice to

win at the game gB on any instance H of E∪
1 , E2, . . . , E9 with ω(H) colours.

(ii) =⇒ (iii): Let G = (V,E) be a connected graph that contains no induced F1, . . . , F15. We can
assume that |V | ≥ 2. Our aim is to show that G is an instance of one of the classes E1, . . . , E9.
The following theorem provides the key to our approach. Recall that a dominating edge in a graph
is an edge e such that every vertex of the graph is adjacent to at least one endpoint of e.

Theorem 3 (Cozzens and Kelleher (1990) [4]). Let H be a connected graph with at least two
vertices. If H contains no induced P5, C5 or P4 ∪K1, then it has a dominating edge.

By Theorem 3 the graphG has a dominating edge x1x2. Therefore V \{x1, x2} can be partitioned
into three vertex sets V1, V2 and V3 that contain the vertices not adjacent to x2, the vertices not
adjacent to x1, and the vertices adjacent to both of x1 and x2, respectively.

The remainder of the proof consists of analysing the possible internal structures of the subgraphs
G1, G2 and G3 induced by V1, V2 and V3, respectively, and making a series of nested case distinctions
to determine the possible structures of adjacencies between G1, G2 and G3.

The internal structures of G1, G2 and G3 are described by the following two lemmas.

Lemma 2. G1 and G2 may have any number of complete components and at most one non-complete
component N each. If such an N exists, it takes the shape N = Ka ∨ (Kb ∪Kc).

Lemma 3. G3 is of type Ka ∨ (Kb ∪Kc) with a, b, c ≥ 0.

The results of our nested case distinctions (cf. [6]) are listed below.

G1 or G2 empty E1

G1 and G2 not empty G3 non complete E2

G3 complete G1 or G2 has non complete component E3

G1 and G2 have only isolated vertices E3, E6, E7, E9

G1 has only isolated vertices, G2 is of
type Kn1 ∪ . . . ∪Knk

, k ≥ 1, n1 ≥ 2
E3, E6, E7, E8

G1 and G2 are of type Kn1 ∪ . . . ∪Knk
,

k ≥ 1, n1 ≥ 2
E3, E4, E5



3 Proof of Lemma 1

We use the algorithm in Listing 1 which calculates, given a graph G = ({1, . . . , n}, E), its clique
module decomposition F . N [v] := N(v)∪{v}, where N(v) denotes the set of neighbours of v in G.
The algorithm is correct and takes O(n2) time. It is easy to see that a decomposition of a graph
into maximal clique modules is unique.

Listing 1: A simple clique module decomposition algorithm

Set F = {{1, . . . , n}}
For v = 1, . . . , n :

For S in F :
Remove S and add S ∩N [v] and S \N [v] to F u n l e s s empty .

Return F .

4 Open questions and further work

gB,A- and gA,A-perfect graphs are defined by variants of game gB in which Alice is permitted to
miss her turn. Furthermore, in game gA,A, Alice may move first instead of Bob. For both games
gB,A and gA,A, every odd antihole is a minimal forbidden configuration for game-perfect graphs [1].
Apart from the odd antiholes, 13 minimal forbidden configurations are known for gB,A-perfect
graphs, and 74 for gA,A-perfect graphs [6]. It is unknown whether these lists are complete.

Open question 1. Characterise the gB,A- and gA,A-perfect graphs, respectively.

In view of Corollary 1 we might ask the following.

Open question 2. Identify other problems that are NP-complete on perfect graphs which can be
solved efficiently on gB-perfect graphs.
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