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Abstract

Let H =< G,S > be a hypergraph, where G = (V,E) is a complete undirected graph and
S is a set of clusters Si ⊆ V , which may intersect. The Clustered Spanning Tree problem is
to find whether there exists a spanning tree of G such that each cluster induces a subtree. In
this paper we provide different techniques for this decision problem. The first technique can
handle every instance hypergraph and is based on finding a maximum spanning tree in a special
defined weighted version of G. The weights of the edges in the graph are defined according to the
number of clusters containing each edge. All other techniques consider the intersection graph
of H to decide whether a feasible solution exists. When applicable, these techniques achieve
better complexity, as the intersection graph is significantly smaller compared with the original
graph.

1 Introduction

Let G = (V,E) be a complete undirected graph with vertex set V such that |V | = n and complete
edge set E. Let H =< G,S > be a hypergraph, where S is a set of clusters S1, . . . , Sm, Si ⊆ V for
i ∈ {1, . . . ,m}, where the clusters may intersect. The Clustered Spanning Tree problem, denoted
by CST, is to find an whether there exists a spanning tree of G, such that each cluster induces a
subtree.

The main result in this paper is a unique technique for the essential and interesting question
of whether a feasible solution exists for a given instance of the CST problem. This technique
requires O(n2m) time complexity and can handle every instance hypergraph. In the first stage of
the algorithm a new weighted graph is constructed, where the weight of each edge in the graph is
equal to the number of clusters containing this edge. Next, we find a maximum spanning tree for
this graph. A feasible solution for the CST problem exists if and only if the weight of this tree is∑m

i=1 |Si| −m. When equality holds, the maximum spanning tree offers a feasible solution.
This paper also introduces feasibility decisions using information derived from the hypergraph

and the corresponding intersection graph. First, we prove that when H has a solution tree TH ,
then induced subtrees of TH are solution trees for the corresponding induced subproblems. This
also proves that when an induced hypergraph does not have a solution tree, neither does H. For the
special case where every vertex in V is contained in at most 2 clusters from S, the CST problem
has a feasible solution if and only if the corresponding intersection graph is a tree. As a result of
the above claims, when the intersection graph of H contains a chordless cycle with at least 4 nodes,
no feasible solution exists. The latter result agrees with the results summarized in [10].

When the intersection graph contains a cut-edge, we prove that deciding whether a feasible
solution exists can be based on the decision made for each part of the intersection graph inde-
pendently. The feasible solution tree for the given hypergraph is constructed using the feasible
solution subtrees created from the corresponding subproblems and thus may significantly reduce
the required complexity.



Throughout this paper we assume that the intersection graph of H is connected. Otherwise, a
feasible solution tree for H can be constructed by adding edges between the feasible solutions of
each connected component, if they exist.

In [4], [5], [11] and summarized in [10] it is shown that a hypergraph has a feasible solution tree
if and only if it satisfies the Helly property and its intersection graph is chordal. In [6] it is proven
that a graph is the intersection graph of subtrees of a tree if and only if it is chordal. In [12] a
polynomial algorithm, which constructs a tree where each cluster spans a path, is presented. The
most restricted problem where both the tree and subtrees are required to be paths, is in fact the
Consecutive Ones Problem, which Booth and Leuker [3] solved in linear time using PQ-trees.

In the optimization CST problem the edges of E have weights and the objective is to find a
feasible solution tree with minimum weight. This problem was solved by Korach and Stern in
[8] where an optimum solution is found in O(n4m2) time complexity, when a feasible solution
exists. In addition, an abstraction of the problem using matroids is presented. For the restricted
case where each cluster contains at most three vertices, there is a linear time algorithm and a
polyhedral description of all feasible solutions. A special case of the optimization CST problem,
where the optimum spanning tree solution is required to span a complete star on each cluster,
is presented in [9]. A structure theorem which describes all feasible solutions and a polynomial
algorithm for finding an optimum solution are presented, when the intersection graph is connected.
Another related optimization problem is the clustering TSP-path, where the optimum solution tree
is required to be a TSP-path. A lot of research has been investigated on the clustered TSP-path
where the clusters are disjoint, for example bounded-approximation algorithms are presented in [1],
[2] and [7].

2 Feasibility Based on a Weighted graph

This section introduces Algorithm Existence of Solution (ES) which is the main result of the paper.
The algorithm, presented in Figure 1, either finds a solution tree for a hypergraph H =< G,S >
or states that there is no feasible solution. The algorithm creates a weighted graph denoted by
GES = (VES , EES), where VES = V and EES contains an edge (v, u) if there exists a cluster Si such
that {v, u} ⊆ Si. The weight w(v, u) of an edge (v, u) is equal to the number of clusters containing
both v and u. In this graph a maximum spanning tree TES is found. We prove that the hypergraph
has a solution tree if and only if w(TES) =

∑m
i=1 |Si|−m. When a solution exists, TES is a feasible

solution tree.

Theorem 1. Given a hypergraph H =< G,S >, for every cluster Si ∈ S and every T a spanning
tree of GES, wi(T ) ≤ |Si| − 1 with wi(v, u) = 1 if {v, u} ⊆ Si and wi(v, u) = 0 otherwise. An
equality holds if T |Si is a spanning tree of Si. Moreover, w(T ) =

∑m
i=1wi(T ) ≤

∑m
i=1 |Si| −m.

Theorem 2. Given a hypergraph H =< G,S > and TES a maximum spanning tree of GES,
w(TES) =

∑m
i=1 |Si| −m if and only if TES is a feasible solution tree.

Theorem 3. The complexity of Algorithm ES (Figure 1) is O(n2m).

3 Induced Hypergraphs

Consider a hypergraph H =< G,S > which is an instance for the CST problem. New instances
of the problem are created by considering induced hypergraphs defined by collections of clusters



ES (Existence of Solution)
input A hypergraph H =< G,S >, where G = (V,E) , S = {S1, . . . , Sm}, Si ⊆ V .
returns A feasible solution tree or a a statement ”No feasible solution”.
begin

Construct the following weighted graph GES = (VES , EES) where VES ≡ V ,
and EES contains the edge (v, u) (for v 6= u) if there exists a cluster Si such that {v, u} ⊆ Si.
The weight of an edge (v, u) is set: w(v, u) = |{Si : i ∈ {1, . . . ,m}, {v, u} ⊆ Si}|.
Find TES - a maximum spanning tree for GES.
if w(T ) =

∑m
i=1 |Si| −m

then return TES

else return ”No feasible solution”.
end if

end ES

Figure 1: Algorithm ES

from S. In this section we prove that when H has a solution tree TH , then induced subtrees of
TH are solution trees for the corresponding induced subproblems. This also proves that when an
induced hypergraph does not have a feasible solution tree, neither does H. Furthermore, when
the intersection graph of H contains a cut-edge, the feasibility problem can be divided into smaller
subproblems, where a feasible solution to the given instance exists if each subproblem has a feasible
solution. The complexity decreases according to the sizes of the subproblems.

Theorem 4. Let H =< G,S > be a hypergraph with a connected intersection graph and a solution
tree TH . If for S ′ ⊆ S the intersection graph of S ′ is connected, then the induced tree of TH on⋃

Si∈S′ Si is a solution tree for the induced hypergraph H|S ′.

Corollary 5. Let H =< G,S > be a hypergraph with a connected intersection graph. If for S ′ ⊆ S
the intersection graph of S ′ is connected, and H|S ′ has no feasible solution tree, then H has no
feasible solution tree.

Theorem 6. Let H =< G,S > be a hypergraph with a connected intersection graph. If the inter-
section graph contains a cut-edge (bridge) which divides the intersection graph into two connected
components: the two intersection graphs of S ′ and S\S ′, then H has a feasible solution tree if and
only if each one of H|S ′ and H|(S\S ′) has a feasible solution tree.

4 Bounded number of containing clusters

The feasibility of the CST problem can be determined using information derived from different
structures of the intersection graph. Since the intersection graph is significantly smaller compared
with the weighted graph considered by Algorithm ES, methods for feasibility check based on the
intersection graph can achieve better complexity.

It is proved here that when every vertex in V is contained in at most 2 clusters from S, the
CST problem has a feasible solution tree if and only if the intersection graph is a tree. As a result
we get that when the intersection graph for an instance of the CST problem contains a chordless
cycle with at least 4 nodes, then the instance has no feasible solution tree.



Definition 7. For every v ∈ V we define nc(v) = |{Si : i ∈ {1, . . . ,m}, v ∈ Si}| (the number of
clusters which contain the vertex v).

Observation 8. In an intersection graph, a vertex u ∈ V which belongs to k clusters (nc(u) = k)
creates a k-sized clique. Hence, if the intersection graph of a hypergraph is a tree or a chordless
cycle with at least 4 nodes, then nc(v) ≤ 2 ∀v ∈ V .

Theorem 9. Let H =< G,S > be a hypergraph with nc(v) ≤ 2 ∀v ∈ V and a connected intersection
graph. H has a feasible solution tree if and only if its intersection graph is a tree.

Theorem 10. Let H =< G,S > be a given hypergraph. The complexity of verifying that nc(v) ≤ 2
∀v ∈ V and that the intersection graph of H is a tree, is O(m2n).

Corollary 11. Let H =< G,S > be a hypergraph with a connected intersection graph of S. If the
intersection graph contains a chordless cycle with at least 4 nodes, then H has no feasible solution
tree.

The last Corollary is also proven using a completely different approach in [4], [5], [11] and summa-
rized in [10].
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