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Abstract

Golumbic et al. introduced in [1] the class of Vertex intersection graphs of Paths on a Grid
(VPG graphs), i.e. graphs for which there exists a collection of nontrivial paths on a grid, referred
to as a representation, in one-to-one correspondance with their vertex set, such that two vertices
are adjacent if and only if the corresponding paths intersect on at least one grid-point. In this
paper we consider a natural subclass of VPG graphs, namely that of Contact graphs of Paths on
a Grid (CPG graphs): the class CPG consists of those VPG graphs admitting a representation
in which paths are pairwise interiorly disjoint. We examine this class from a structural point
of view which leads to constant uppper bounds on the clique number, the chromatic number
and the clique chromatic number. We further investigate the relation between planar and CPG
graphs and show that CPG graphs are not necessarily planar and not all planar graphs are
CPG.

Consider a rectangular grid G where the horizontal lines are referred to as rows and the vertical
lines as columns. A grid-point lying on row x and column y is denoted by (x, y). If P is a collection
of interiorly disjoint paths on the grid G, the contact graph of P is the graph whose vertex set is
in one-to-one correspondance with P, and two vertices are adjacent in the graph if and only if the
corresponding paths touch at a grid-point. R = (G,P) is then referred to as a CPG representation
of the contact graph of P, and more specifically a k-bend CPG representation of the contact graph
of P if every path of P has a most k bends (i.e. 90 degrees turns at a grid-point), for k ≥ 0. A
graph G is said to be CPG if there exists a collection P of interiorly disjoint paths on a grid G such
that G is the contact graph of P, and more specifically Bk-CPG if every path in P has at most k
bends. In the following, the path representing some vertex u in a CPG representation R of a graph
G is denoted by PR

u , or simply Pu if it is clear from the context.
Let G = (V,E) be a CPG graph and R = (G,P) be a CPG representation of G. We say that

a grid-point p is of type I if it corresponds to an endpoint of four paths in P (see Fig. 1a), and of
type II if it corresponds to an endpoint of two paths in P and an interior point of a third path in
P (see Figure 1b).
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Figure 1: Two types of grid-points (the endpoints of a path are marked by an arrow).

For any grid-point p, we denote by τ(p) the number of edges corresponding to p. For instance,
if p is of type I, then τ(p) = 6 since four paths pairwise touching correspond to K4 which has 6
edges. More generally, τ(p) =

(
k
2

)
if k paths touch at grid-point p.



For any path P , we denote by P̊ (resp. ∂(P )) the interior (resp. endpoints) of P . For a vertex
u ∈ V , we define the weight of u with respect to R, denoted by wR

u , or simply wu if it is clear from
the context, as follows. Let (xiu, y

i
u) (i = 1, 2) be the endpoints of the corresponding path Pu in P

and consider for i = 1, 2:

wi
u = |{P ∈ P | (xiu, y

i
u) ∈ P̊}|+ 1

2
· |{P ∈ P | P 6= Pu and (xiu, y

i
u) ∈ ∂(P )}|

Then:
wu = w1

u + w2
u

Observation 1. Let G = (V,E) be a CPG graph and R = (G,P) be a CPG representation of G.
For any vertex u ∈ V and i = 1, 2, wi

u ≤ 3
2 with equality if and only if (xiu, y

i
u) is a grid-point of

type I or II.

Indeed, the contribution of (xiu, y
i
u) to wi

u is maximal if all four grid-edges containing (xiu, y
i
u)

are used by paths of P, which may only happen when (xiu, y
i
u) is a grid-point of type I or II.

Remark. In fact, we have wi
u ∈ {0, 12 , 1,

3
2} for any vertex u ∈ V and i = 1, 2.

Observation 2. Let G = (V,E) be a CPG graph and R = (G,P) be a CPG representation of G.
Then,

|E| ≤
∑
u∈V

wu

with equality if and only if all paths of P pairwise touch at most once.

Indeed, if uv ∈ E, we may assume, without loss of generality, that either an endpoint of Pu

touches the interior of Pv, in which case the edge uv is accounted for in whole in the weight of u,
or Pu and Pv have a common endpoint, in which case the edge uv is accounted for in both wu and
wv by one half.

From these two key observations, we may deduce the following results.

Lemma 1. A CPG graph is either 6-regular or has a vertex of degree at most 5.

We can further show that any B1-CPG graph has a vertex of degree at most 5, a result which
no longer holds for Bk-CPG with k ≥ 2 as there exist 6-regular B2-CPG graphs (see Fig. 2).

It immediately follows from Observation 2 that CPG graphs cannot contain Kn, for n ≥ 8.
This can further be improved as shown in the next result.

Theorem 1. CPG graphs are K7-free.

Proof. For the sake of contradiction, assume that K7 is a CPG graph and consider a CPG repre-
sentation R = (G,P) of K7. First observe that the weight of every vertex with respect to R must
be exactly 2 · 3/2 (which is equivalent to saying that every grid-point corresponding to an endpoint
of a path is either of type I or II) as otherwise the sum of all weights over V would be strictly
less than 3|V | = 21 = |E|, thereby contradicting Observation 2. Similarly, any two paths must
touch exactly once, since the sum of all weights over V , equal to 21 as just seen, would otherwise
be strictly greater than the number of edges by Observation 2. Hence if we denote by PI (resp.
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Figure 2: A 6-regular B2-CPG graph.

PII) the set of grid-points of type I (resp. type II), then since τ(p) = 6 for all p ∈ PI and τ(p) = 3
for all p ∈ PII , we have that 6|PI | + 3|PII | = 21, i.e. 2|PI | + |PII | = 7. Consequently, |PII | 6= 0
must be odd, which implies the existence of a path Pu having one endpoint corresponding to a
grid-point of type I and the other corresponding to a grid-point of type II. Since the corresponding
vertex u has degree 6, Pu must then properly contain an endpoint of another path which, as first
observed, necessarily corresponds to a grid-point of type II. But vertex u would then have degree
strictly greater than 6 as no two paths touch more than once, a contradiction.

We can in fact strenghten the latter result for B1-CPG graphs by showing that K6 is B2-CPG
but not B1-CPG. Now by combining Lemma 1 and Theorem 1, we can show that CPG graphs are
6-colorable. Since K6 is B2-CPG, this bound is tight for Bk-CPG graphs, with k ≥ 2. It is not
difficult to show that B0-CPG graphs are 4-colorable (a bound which is tight as K4 is B0-CPG),
but it remains open whether 6 is a tight bound for B1-CPG graphs (note that it is at least 5 since
K5 is B1-CPG). Since any coloring is a clique coloring, it follows that CPG graphs are 6-clique
colorable. We can further improve this result in some specific cases.

Theorem 2. Any CPG graph not containing the 3-sun as a subgraph is 4-clique colorable.

Theorem 3. B0-CPG graphs are 3-clique colorable.

In [3], the authors consider a family of graphs similar to CPG graphs, namely those admitting a
Vertex Contact representation of Paths on a Grid (VCPG for short). Likewise, the vertices of such
graphs can be represented by a family of interiorly disjoint paths on a grid, but the adjacencies
are defined slightly differently: two vertices are adjacent if and only if the endpoint of one of the
corresponding paths touches an interior point of the other corresponding path. It is not difficult to
see that graphs admitting a VCPG must be planar, as mentioned in [3], and it immediately follows
from the definition that the CPG class contains those graphs. This containment is in fact strict
as there exist CPG graphs which are maximally planar and can therefore not admit a VCPG as
shown in [3] (see Fig. 4b). We further investigate the relation between planar and CPG graphs.

Lemma 2. If G is a CPG graph for which there exists a CPG representation containing no grid-
point of type I or II.a, then G is planar. In particular, if G is a triangle-free CPG graph, then G
is planar.

It follows from Lemma 2 that CPG graphs are K3,3-free. Observe however that for any k ≥ 0,
Bk-CPG is not a subclass of planar graphs as there exist B0-CPG graphs which are not planar (see
Fig. 3).
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Figure 3: A B0-CPG graph containing K3,3 as a minor (it suffices to contract the edge e).

As it was shown in [2] that all triangle-free planar graphs are B1-CPG, we deduce the following
corollary.

Corollary 1. If a graph G is triangle-free, then G is planar if and only if G is B1-CPG.

Finally, the next result proves that not all planar graphs are CPG.

Lemma 3. Let G = (V,E) be a planar graph. If G is a CPG graph, then G has at most 4|V |−2f+4
vertices of degree at most 3, where f denotes the number of faces of G. In particular, if G is
maximally planar, then G has at most 12 vertices of degree at most 3.

In Figure 4a, we give an example of a maximally planar graph which is not CPG due to Lemma
3. It is constructed by iteratively adding a vertex in a triangular face, starting from the triangle,
so that it has exactly 13 vertices of degree 3.

(a) A non CPG maximally planar graph.
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(b) A maximally planar CPG graph.

Figure 4: Two maximally planar graphs.
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