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Abstract

Rademacher (1941; unpublished) asked for the minimum number of triangles in a graph of
given order and size, and solved this problem in the first non-trivial case when the size is by
1 larger than the Turán number of the triangle. This problem was revived by Erdős in the
1950s and has attracted much attention since then. In a major breakthrough, Razborov solved
it asymptotically in 2008. We provide an exact solution for all large graphs whose edge density
is bounded away from 1, confirming a conjecture of Lovász and Simonovits from 1975 in this
range.

1 Overview of some previous results

Let Kr denote the complete graph with r vertices. Let gr(n, e) be the minimum of gr(G), the
number of copies of Kr in a graph G, over all graphs with n vertices and e edges. Turán’s [21]
famous result (see also Mantel [10]) states that the largest Kr-free graph is the complete balanced
(r − 1)-partite graph Tr−1(n). In other words, gr(n, e) = 0 if and only if e ≤ tr−1(n), where tk(n)
denotes the number of edges in Tk(n).

Here we concentrate on the case r = 3, when we minimise the number of triangles. Rademacher
(1941; unpublished) showed that g3(n, t2(n) + 1) = bn/2c. The triangle minimisation problem
was revived by Erdős [2] and attracted much attention since then. It is now widely called the
Erdős-Rademacher problem.

It is not hard to show using the triangle-counting method of Goodman [6] that g3(n, tk(n)) =
g3(Tk(n)) and many early results concentrated on the case when e is slightly above the Turán
number tk(n), see [2, 3, 8, 9, 13, 14]. The strongest result (for n→∞) in this direction was proved
by Lovász and Simonovits [9] and is as follows.

Define H(n, e) to be the family of graphs with n vertices and e edges that can be obtained from
a complete multipartite graph by adding a triangle-free graph into one part, and let

h(n, e) := min{g3(H) : H ∈ H(n, e)}. (1)

Lovász and Simonovits [9] proved that for every integer k ≥ 3 there exists α = α(k) > 0 such that
g3(n, e) = h(n, e) for all positive integers (n, e) with tk(n) ≤ e ≤ tk(n) + αn2. In fact they were
able to characterise the extremal graphs in this range.

Also, Lovász and Simonovits [8, 9] made the following bold conjecture.

Conjecture 1 (Lovász and Simonovits [8, 9]). There is n0 such that for all n ≥ n0 and 0 ≤ e ≤
(
n
2

)
,

we have g3(n, e) = h(n, e).

In order to state some of the following results, we define for λ ∈ [0, 1]

g3(λ) := lim
n→∞

g3(n, e(n))(
n
3

) , where e(n) = (λ+ o(1))

(
n

2

)
, 0 ≤ e(n) ≤

(
n

2

)
. (2)



It is easy to see that the limit exists and does not depend on the choice of the function e(n).
General lower bounds on g3(λ) were proved by Moon and Moser [11], Nordhaus and Stewart [15],

and Bollobás [1]. Then Fisher [5] determined g3(λ) in the range 1/2 ≤ λ ≤ 2/3. In a major
breakthrough, Razborov [17, 18] used his newly developed theory of flag algebras to determine
g3(λ) for all λ ∈ [0, 1] (and this result was extended to r = 4 by Nikiforov [12] and to arbitrary r
by Reiher [19]).

Razborov’s result is consistent with Conjecture 1. It is routine to show that the value of
h(n, e) is attained within additive error o(n3) by a complete multipartite graph consisting of k
(larger) parts of size (c+ o(1))n and one part of size (1− kc+ o(1))n, where the integer k satisfies
1 − 1

k ≤ λ < 1 − 1
k+1 and c is uniquely determined by

(
k
2

)
c2 + kc(1 − kc) = λ/2 and c ≥ 1 − kc.

The corresponding upper bound on g3(λ) has a scalloped shape: it is a concave function between

the (convexly placed) special points g3(1 − 1
k ) = (k−1)(k−2)

k2
, k ∈ N, that correspond to the Turán

graph Tk(n). Thus, by Razborov’s result, this upper bound on g3(λ) is equality for every λ ∈ [0, 1].
More recently, Pikhurko and Razborov [16] proved a “stability” version: every almost g3(n, e)-

extremal graph is o(n2) close in the edit distance to some graph in H(n, e).

2 Our contribution

First, we observe that the problem of determining h(n, e), i.e. finding the minimum in the right-hand
side of (1), can be solved exactly for every (n, e).

Proposition 1 (Liu, Pikhurko and Staden [7]). For every 0 ≤ e ≤
(
n
2

)
, the value of h(n, e) is

attained by taking a complete (k + 1)-partite graph K[A1, . . . , Ak+1] with |A1| ≥ · · · ≥ |Ak+1| and
removing a (possibly empty) star between Ak and Ak+1.

Note that each graph H from the above proposition can be represented as adding a triangle-free
graph to the complete k-partite graph K[A1, . . . , Ak−1, B], where B = Ak ∪ Ak+1; so H belongs
to the family H(n, e). In fact, the number of parts and their exact sizes in Proposition 1 can be
explicitly stated, see [7, Proposition 1.8]. Namely, one takes the smallest possible number k + 1
of parts, then minimises the size of the smallest part, and then makes all other parts as equal as
possible. An interesting consequence of Proposition 1 that has not been observed before is that if
Conjecture 1 is true, then its conclusion is in fact true for all n ≥ 1, see [7, Lemma 10.1].

Our main result proves Conjecture 1 if the edge density is bounded away from 1:

Theorem 1 (Liu, Pikhurko and Staden [7]). For all ε > 0, there exists n0 > 0 such that for all
positive integers n ≥ n0 and e ≤

(
n
2

)
− εn2, we have g3(n, e) = h(n, e).

Furthermore, in [7, Theorem 1.9] we give an explicit description of all extremal graphs in this
range. Unfortunately, this description is quite technical to state (in fact, every g3(n, e)-extremal
graph comes from one of three related but different graph families H∗i (n, e), i = 0, 1, 2, with each
family needed for this result).

The asymptotic proofs of Fisher, Nikiforov, Pikhurko-Razborov, Razborov and Reiher all use
algeraic and/or analytic methods. These techniques do not seem to be helpful for the exact problem,
and indeed our proof of Theorem 1 uses purely combinatorial methods. At its heart, our proof is
based on the well-known stability method that goes back to Erdős and Simonovits [4, 20].

Informally speaking, the proof proceeds as follows. We assume that the desired inequality
g3(n, e) ≥ h(n, e) is false for some (n, e) in our range and take a worst counterexample G of order



n, that is, a graph that maximises h(n, e(G))− g3(G). By Pikhurko and Razborov’s result [16] we
know that G is structurally close to some H in H(n, e), where e := e(G).

The standard strategy here would be to analyse G and show by means of local transformations
(such as, for example, deleting one vertex and cloning another) that G has a simple structure and
then derive a contradiction. However, a significant obstacle is the fact that there is a large family
of conjectured extremal graphs: namely, when we add a triangle-free graph F of a given size into
one part of a complete multipartite graph P , then there are usually many choices of F , all of them
giving the same number of triangles in the final graph. In fact, for some (n, e), an extremal graph
can be obtained by adding extra edges into more than one part of P . Also, for some other (n, e),
there are extremal graphs obtained from a complete multipartite graph by removing edges spanning
more than two parts.

Our proof first obtains as much information as possible about G by exploiting local transfor-
mations. However, this does not seem enough yet to get a contradiction. Then, roughly speaking,
we make global changes that convert G into a (k+ 1)-partite graph H of the same order n and the
same size e, where k satisfies tk(n) < e ≤ tk+1(n). While we cannot guarantee that g3(H) ≤ g3(G),
we can show that g3(H) − g3(G) is small and that the part sizes of H deviate from the optimal
ones to a degree that allows us to prove that g3(H) − h(n, e) > g3(H) − g3(G). This gives the
desired contradiction g3(G) > h(n, e). Unfortunately, the rigorous proof is very long (around 85
pages) and technical (in particular, requiring a number of different types of transformations). Its
full details can be found in [7].

The main remaining open problems are to settle Conjecture 1 in the whole range and to prove
exact results for gr(n, e) when r ≥ 4.
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[4] P. Erdős. Some recent results on extremal problems in graph theory. Results. In Theory
of Graphs (Internat. Sympos., Rome, 1966), pages 117–123 (English); pp. 124–130 (French).
Gordon and Breach, New York, 1967.

[5] D. C. Fisher. Lower bounds on the number of triangles in a graph. J. Graph Theory, 13:505–
512, 1989.

[6] A. W. Goodman. On sets of acquaintances and strangers at any party. Amer. Math. Monthly,
66:778–783, 1959.

[7] H. Liu, O. Pikhurko, and K. Staden. The exact minimum number of triangles in graphs of
given order and size. E-print arxiv:1712.00633, 2017.

[8] L. Lovász and M. Simonovits. On the number of complete subgraphs of a graph. In Proceedings
of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975), pages 431–
441. Congressus Numerantium, No. XV, Winnipeg, Man., 1976. Utilitas Math.



[9] L. Lovász and M. Simonovits. On the number of complete subgraphs of a graph. II. In Studies
in pure mathematics, pages 459–495. Birkhäuser, Basel, 1983.
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