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Abstract

The sandwich conjecture formulated in [Kim, Vu, Advances in Math., 2004] states that if
min{d, n−d} ≥ log n, then the random d-regular graph on n vertices can asymptotically almost
surely be “sandwiched” between G(n, p1) and G(n, p2) where probabilities p1 and p2 are both
(1 + o(1))d/n. They proved this conjecture for the range log n ≤ d ≤ n1/3−o(1) with a defect
in one side of sandwiching: a few edges from each vertex should be deleted from the random
regular graph to guarantee the containment. Recently, their result (one-sided containment) was
improved by Dudek, Frieze, Ruciński and Šileikis to d = o(n).

We prove the sandwich conjecture (with perfect containments on both sides) for all values
of d such that min{d, n − d} � n/ log n. In this talk we also discuss extensions to random
subgraphs of a given graph and, in particular, random regular bipartite graphs.

1 Introduction

Random graphs are one of the most important notions in modern graph theory. Besides the rich
theory in its own field, it has many connections and applications in the general area of combinatorics.
Many existence combinatorial results are shown by using or modifying random graphs. Today
random graphs are also widely used in computer science, engineering, physics and other branches
of sciences.

There are many random graph models. The most classical models G(n, p) and G(n,m) are
introduced by Erdős and Renyi more than half a century ago. The binomial model G(n, p) retains
each potential edge in the complete graph Kn independently with probability p. The G(n,m) is
simply G(n, p) by restricting to having exactly m edges in total. In other words, G(n,m) is the
random graphs on n vertices and m edges with the uniform distribution. These two models are the
best studied and understood. The independence between the occurrence of edges makes G(n, p) a
relative easier model, compared with many others, for analysing its properties, and for analysing
algorithms on G(n, p). Some algorithms depend on the degrees of vertices, and unavoidably the
algorithms need to “expose” the degrees of the vertices as the algorithms proceed. For instance,
the peeling algorithm for obtaining the k-core of the graph repeated deletes a vertex whose degree
is below k. An important property of G(n, p) and G(n,m) is that, by conditioning on the degree
sequence of G(n, p) or G(n,m) being d = (d1, . . . , dn), the resulting random graph is exactly G(n,d),
the random graph given degree sequence d, with the uniform distribution. This places G(n,d)
among the most important random graph models in the study of random graphs. If d is a constant
sequence, then we write G(n, d) for the random d-regular graph. Unlike G(n, p), probabilities
of events in G(n,d) such as two vertices u and v being adjacent are highly non-trivial. The
most common way to prove properties of G(n,d) is via a translation result from the configuration
model [1] to the random graph model. Probabilities of events are usually easier to compute or
estimate in the configuration model than in G(n,d). However, such a translation result can only be
applied when degrees specified by d are small. When the average degree grows with n, translation
becomes hard or fails.



As a consequence, many questions that feel like deserving a confirmative answer are indeed
open for G(n,d). For instance, is G(n,d) Hamiltonian? What is the chromatic number of G(n,d)?
What is the connectivity of G(n,d)? Using highly non-trivial switching arguments and enumeration
results of d-regular graphs, these questions were answered [2, 9] for G(n, d). Using similar techniques
it may be possible to work out the answers for more general degree sequences. However, it will be
desirable to have simpler approaches.

This is the motivation of the sandwich conjecture, proposed by Kim and Vu [8] in 2004. They
conjectured that for every d � log n, G(n, d) can be sandwiched by two binomial random graphs
G(n, p1) and G(n, p2), one with slightly smaller average degree, and the other with slightly greater
average degree than d. The formal statement is as follows.

Conjecture 1 (Sandwich Conjecture [8]). For d � log n, there are p1 = (1 − o(1))d/n and p2 =
(1 + o(1))d/n and a coupling (GL, Gd, G

U ) such that GL ∼ G(n, p1), GU ∼ G(n, p2), Gd ∼ G(n, d)
and P(GL ⊆ Gd ⊆ GU ) = 1− o(1).

For log n� d� n1/3/ log2 n, Kim and Vu proved a weakened version of the sandwich conjecture
where Gd ⊆ GU is replaced by ∆(GU \Gd) being small (see [8, Theorem 2]). Note that this sandwich
conjecture, even the weakened version, allows direct translation of many results from G(n, p) to
G(n, d), including the chromatic number, the Hamiltonicity, etc., which are well studied in G(n, p).

Recently, Dudek, Frieze, Ruciński and M. Šileikis [4] proved a weakened sandwich conjecture for
random hypergraphs where d = o(n). In this weakened version the condition Gd ⊆ GU is removed.
Their result allows translation of all monotonely increasing properties from G(n, p) and G(n, d).
For instance, they applied it to prove the Hamiltonicity of random regular hypergraphs.

An immediate corollary of the sandwich conjecture, if it were true, is that, one can couple two
random regular graphs Gd1 ∼ G(n, d1) and Gd2 ∼ G(n, d2) such that a.a.s. Gd1 ⊆ Gd2 , if d2 is
sufficiently greater than d1. In fact we conjecture that such a coupling exists as long as d2 ≥ d1.
However, the weakened versions of the sandwich conjecture, as proved in [8] and [4], are not strong
enough to imply the existence of such a coupling, even when d2 is much greater than d1.

Conjecture 2. Let d1 ≤ d2 be integers between 1 and n − 1. There exists a coupling (Gd1 , Gd2)
such that Gd1 ∼ G(n, d1), Gd2 ∼ G(n, d2), and P(Gd1 ⊆ Gd2) = 1− o(1).

Remark: This conjecture or some variate of it has already been speculated and discussed in the
community. But we haven’t found any written document about it.

In this paper, we confirm the sandwich conjecture for all d where min{d, n − d} � n/ log n.
Moreover, we prove the sandwich conjecture for all degree sequences d where each coordinates in
d do not deviates too much from d. In addition, we confirm Conjecture 2 for degrees d1 and d2

from the corresponding dense range and also for constant d1.

2 Main results

Given a sequence d = (d1, . . . , dn) of (not necessarily nonnegative) integers, let dmax and dmin denote
the maximum and minimum components of d respectively, and denote dmax − dmin, a semi-norm
of d, by ‖d‖. Define near-regular degree sequence as follows.

Definition 3. For d > 0, we say a degree sequence d is d-near-regular if ‖d‖ = o(d(n− d)/n).



Let G(n,d) denote the uniform probability space over the set of graphs on [n] with degree
sequence d. Note that for G(n,d) to be non-empty, d necessarily has nonnegative coordinates and
even sum. All asymptotics in the paper refer to n→∞. For two sequences of real numbers an and
bn, we say an = o(bn) if bn 6= 0 eventually and limn→∞ an/bn = 0. We say an = O(bn) if there exists
a constant C > 0 such that |an| ≤ C|bn| for all n. We use notation an = ω(bn) and an = Ω(bn) to
denote bn = o(an) and bn = O(an) respectively. Alternatively, we write an � bn and an � bn for
an = o(bn) and an = ω(bn), if both an and bn are positive sequences. For convenience, Ω(an) and
ω(an) in our paper only refer to positive sequences, e.g. Ω(an) denotes some sequence bn such that
bn > 0 always and bn = Ω(an). We use an = Θ(bn) to denote an = O(bn) and bn = O(an).

In the following we list some of our main results.

Theorem 4. Assume min{d, n− d} = ω(n/(log n)) and assume that d is d-near-regular. For any
ξ satisfying √√√√√
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)
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d
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n
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there is a multiple coupling (GL, Gd, G
U ) such that GL ∼ G(n, p1), GU ∼ G(n, p2), Gd ∼ G(n, d),

where p1 = (1− ξ)d/n, p2 = (1 + ξ)d/n, and

P(GL ⊆ Gd ⊆ GU ) = 1− exp(−Ω(n/(log n)4)).

Corollary 5. Assume n/ log n� d1 ≤ d2 and n− d2 � n/ log n, and d2− d1 = ω(n/ log n). Then
there is a coupling (Gd1 , Gd2) such that Gd1 ∼ G(n, d1), Gd2 ∼ G(n, d2) and

P(Gd1 ⊆ Gd2) = 1− exp(−Ω(n/(log n)4)).

Note that the sandwich conjecture is still open for d = O(n/ log n), since both results in [8]
and [4] did not prove the existence of a coupling between G(n, d) and G(n, p), p = (1 + ε)d/n,
where the former is contained in the latter with high probability. In the next theorem, we prove
the existence of such a coupling when d is fixed and p is rather large.

Theorem 6. Let d > 0 be fixed and let p = ω(n−1/d log1/d n). Then, there is a coupling (Gd, G)
such that Gd ∼ G(n, d), G ∼ G(n, p) and

P(Gd ⊆ G) = 1− o(1).

Corollary 7. Let d > 0 be fixed. Assume ∆ = ω(n1−1/d log1/d n). Then, there is a coupling
(Gd, G∆) such that Gd ∼ G(n, d), G∆ ∼ G(n,∆) and

P(Gd ⊆ G∆) = 1− o(1).

The proofs are based on new asymptotic enumeration theory developed in [7].
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