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J. Bensmail — Université Côte d’Azur, Inria, CNRS, I3S, France
D. Mazauric — Université Côte d’Azur, Inria, France
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Abstract

Seager introduced the following game in 2013. An invisible and immobile target is hidden at
a vertex t of a graph G. Every step, one vertex of G can be probed, informing us of its distance
to t. The goal is to locate t, whatever vertex it be, in the minimum number of steps.

We address the generalization of this game where k ≥ 1 vertices can be probed at every step.
Precisely, given a graph G and two integers k, ` ≥ 1, the Localization Problem asks if there
exists a strategy to locate a target hidden in G in at most ` steps by probing at most k vertices
per step. We show that this problem is NP-complete when k (resp., `) is a fixed parameter.

In the class of trees, we show that Localization is NP-complete when k and ` are part of
the input. Despite this, we design a polynomial-time (+1)-approximation algorithm in trees. It
follows that Localization is polynomial-time solvable in trees if k is fixed.

1 Introduction

Localization (or Identification) problems consist of making the vertices of a graph G = (V,E)
distinguishable using a smallest subset R ⊆ V of vertices. Many variants have been considered,
where the main difference is the distinction condition that R must provide. One notable example,
connected to our investigations in this work, is the one of resolving sets [HM76, Sla75], where
R is resolving whenever any two vertices of G can be distinguished according to their distances
to the vertices in R. The minimum size MD(G) of a resolving set of G is called the metric
dimension of G [HM76, Sla75]. In general, computing MD(G) is NP-complete (even when restricted
to planar graphs and diameter-2 graphs), and W[2]-hard when parameterized by the solution’s
size (see [FMN+17b] and the bibliography there). On the positive side, the problem is FPT for
bounded-treelength graphs [BFGR17], while some general bounds on the metric dimension have
been exhibited for some graph classes [FMN+17a].

In this paper, we address a sequential variant of the problem of determining the metric dimension
of a graph. Let us consider a graph G = (V,E) where an unknown vertex t ∈ V hosts a hidden
(invisible) and immobile target. Probing one vertex v ∈ V results in the knowledge of the distance
between t and v in G, denoted by dG(v, t). Probing a set R ⊆ V of vertices results in a distance
vector (dG(v, t))v∈R. Rephrased differently, R is resolving if it does not yield two vertices of G
having the same distance vector, while MD(G) is the minimum number of vertices that must be
probed simultaneously to determine t. As simple examples, note that for any path P we have
MD(P ) = 1 (just probe one end), while for any star Sn with n leaves we have MD(Sn) = n − 1
(it is necessary and sufficient to probe all leaves but one).

If less than MD(G) vertices can be probed at once, it is natural to allow more than one probing
step. Obviously, if at most 1 ≤ k < MD(G) vertices can be probed at once, then it is always
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possible to locate an immobile target in at most dMD(G)/ke steps by sequentially probing k
different vertices of a smallest resolving set at each step. However, there are graphs for which the
target can be located much faster. In [Sea13], Seager studied this aspect under a game formalism,
where the immobile target must be located as fast as possible by probing one vertex each step. She
notably gave bounds and exact values on the minimum number of probing steps needed in particular
subclasses of trees (e.g., subdivisions of caterpillars). In this paper, we study the generalization of
this game where k ≥ 1 vertices can be probed at every step.

Precisely, let k ≥ 1 be an integer and G = (V,E) be a graph hosting an invisible and immobile
target hidden at t ∈ V . By a k-strategy, we mean a sequence of probing steps resulting in the
determination of t, where, at each step, at most k vertices are probed. Note that, in general, in a
k-strategy the choice of the vertices to be probed at some step is highly dependent of the results
obtained through the previous probing steps. We denote by λk(G) the minimum integer h such
that there exists a k-strategy resulting in the determination of t in at most h steps, whatever t be.
For a given graph G and two integers k, ` ≥ 1, the Localization Problem asks whether λk(G) ≤ `.
We also consider the dual parameter κ`(G) defined as the minimum integer h such that there exists
an h-strategy to locate t in at most ` steps. Note that, for every graph G, the parameter κ1(G) is
exactly the metric dimension MD(G) of G, and λk(G) ≤ ` if and only if κ`(G) ≤ k.

1.1 Related work

Moving target. Sequential games related to resolving sets have first been introduced and mainly
studied in the case of a mobile target. That is, at every step, some vertices may be probed and, if
the target has not been located yet, it may move to one of its neighbouring vertices (sometimes,
though, it is required that the target cannot “backtrack”, i.e., move to a vertex that has been
probed during the previous step). In this setting, locating the target is not always feasible. For
instance, if the moving target is allowed to backtrack, then it is not possible to locate it in a
triangle by probing only one vertex each step. In [Sea12] and [BDE+17], this game was studied in
the context where the graph is a tree and the target cannot backtrack. In [Sea14], the case of trees
when the target is allowed to backtrack was considered. Let ζ(G) be the minimum integer k such
that there exists a k-strategy for locating a moving target in G. In [BGG+17b], it was shown that
deciding whether ζ(G) ≤ k is NP-hard and that ζ(G) is not bounded in the class of graphs with
treewidth 2. There, it was also proved that ζ(G) ≤ 3 for any outerplanar graph G.

Relative distance and centroidal dimension. Foucaud et al. defined a variant of resolving
sets, called centroidal bases, where the vertices of a graph G = (V,E) must be distinguished by their
relative distances to the probed vertices [FKS14]. In this setting, given an integer k ≥ 2, probing
a set B = {v1, · · · , vk} of vertices results in a relative-distance vector (δi,j(t))1≤i<j≤k where, for
every 1 ≤ i < j ≤ k, δi,j(t) = 0 if dG(t, vi) = dG(t, vj), δi,j(t) = 1 if dG(t, vi) > dG(t, vj) and
δi,j(t) = −1 otherwise. Intuitively speaking, this vector, for any vertex t, gives an ordering over the
vi’s indicating which ones are the closest to t. The set B is a centroidal basis if the relative-distance
vectors are different for any two vertices of G. The centroidal dimension of G, denoted by CD(G),
is the minimum size of a centroidal basis of G [FKS14]. Note that CD(G) ≥ 2 in general (unless
G has order 1), and that CD(G) ≤ |V | (as, clearly, V is a centroidal basis of G). In [FKS14], it
was proved that determining the centroidal dimension of a graph is NP-complete in general, and
almost tight bounds on the centroidal dimension of paths have been computed.

Just as for the metric dimension, sequential variants of centroidal bases can naturally be defined.



The variant with a mobile target was introduced in [BGG+17a]. Here, we also initiate the study
of the variant where the target is immobile. Let k ≥ 2 be an integer and G be a graph. We
denote by λrelk (G) the minimum integer h such that there exists a k-strategy for locating (through
the relative-distance vectors) a hidden immobile target in G within at most h steps, wherever it
be. Given G, k, `, the Relative-Localization Problem asks whether λrelk (G) ≤ `. The dual
parameter κrel` (G) is defined as the minimum integer h such that there exists an h-strategy for
locating (through the relative-distance vectors) the target in G in at most ` steps. Note that,
for every graph G, the parameter κrel1 (G) is exactly the centroidal dimension CD(G) of G, and
λrelk (G) ≤ ` if and only if κrel` (G) ≤ k.

2 Our results

Throughout this work, every graph considered is connected, undirected, and simple. Our first
results are about the computational complexity of Localization and Relative-Localization.
In particular, we show that they are NP-complete when k or ` is fixed; precisely:

Theorem 1. Let k ≥ 1 (resp. k′ ≥ 2) be a fixed integer. Given a graph G and an integer ` ≥ 1 as
inputs, deciding whether λk(G) ≤ ` (resp. λrelk′ (G) ≤ `) is NP-complete.
Let ` ≥ 1 be a fixed integer. Given a graph G and an integer k ≥ 1 (resp. k′ ≥ 2) as inputs,
deciding whether κ`(G) ≤ k (resp. κrel` (G) ≤ k′) is NP-complete.

The main result of this paper is the comprehension of Localization in trees. As a first step,
we show that, in general, the problem remains hard for trees.

Theorem 2. Localization is NP-complete when restricted to trees.

However, we show that, surprisingly, Localization becomes polynomial-time solvable after the
first step. This follows from the following observation. Let us consider a tree T where a target
is hidden and assume that, as a first step, a single node r ∈ V (T ) is probed. After this single
probe, the distance d ∈ N between the target and r is known. Therefore, from the second step, the
instance becomes equivalent to a tree T ′ (a subtree of T ) rooted in r, whose leaves are all the same
distance d from r, and where the target is known to occupy a leaf of T ′. Our main result is a proof
that, in such instances, the target can be located in polynomial time independent of k and `.

Theorem 3. There is an algorithm with running time O(n log n) that, given an integer k ≥ 1 and
an n-node tree T , computes a k-strategy that locates a target in T in at most λk(T ) + 1 steps.

In brief words, this algorithm runs as follows. It first probes any one node, so that, as explained
earlier, for the next step the instance is reduced to a tree T ′ with the convenient properties described
above. Let v1, · · · , vd be the children of r, and, for any vi, let Tvi denote the subtree of T ′ rooted
at vi. One key argument used by the algorithm is that, for any integer 1 ≤ i ≤ d, it suffices to
probe one node in any Tvi to determine whether the target is in Tvi or T ′ − Tvi .

From this, locating the target is then just determining in which subtree it is located and
recursively repeating this process for that subtree. But, if enough nodes are probed in Tvi , then
it is advantageous if the target is in Tvi as it is as if the first turn of an optimal strategy in Tvi
were played and thus, there only remain λk(Tvi)−1 steps to locate the target in Tvi . We denote by
π(Tvi), the minimum number of nodes needed to be probed in Tvi (the first time a node is probed
in Tvi), so that λk(Tvi)− 1 steps remain to locate the target in Tvi if it is in Tvi .



Precisely, the algorithm functions by dynamic programming. For each subtree Tvi , it calcu-
lates π(Tvi), as well as an optimal strategy (using λk(Tvi) steps) to locate the target on a leaf of
Tvi . The subtrees are ordered from largest to smallest in terms of the lexicographical ordering of
(λk(Tvi), π(Tvi)). Our algorithm tests these subtrees in this order by either probing 1 or π(Tvi)
nodes in each subtree Tvi (if the target is located in a subtree before testing each subtree Tvi , then
subtrees of that subtree are now tested). We prove that the algorithm determines the optimal
number of nodes to be probed, that probing them in this order is an optimal strategy, and thus,
that (λk(Tr), π(Tr)) can be “easily” calculated.

As explained earlier, the hardness of Localization in trees arises from the first step. However,
it can be solved greedily by considering all possible first probings, and then applying our algorithm,
which is optimal starting from the second step, for each such resulting instance. This yields:

Theorem 4. There is an algorithm with running time O(nk+2 log n) that, given an integer k ≥ 1
and an n-node tree T , computes a k-strategy that locates a target in T in at most λk(T ) steps.

3 Further work

Our results in trees leave the open question of whether Localization is FPT (in k) in the class of
trees T . Also, we do not know the complexity of determining whether κ`(T ) ≤ k for a tree T . It
could be interesting to study these problems in other graph classes, like interval or planar graphs.

relative-localization seems to be much more intricate even for simple topologies. A first
step towards a better understanding of it would be to fully understand the centroidal dimension of
paths (i.e., to determine κrel1 (P ) for every path P ), which has been initiated in [FKS14]. A more
challenging direction would then be to consider the case of all trees.
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