
Perfect landmark sets in the ALT route planning algorithm

Micha l Dȩbski , Konstanty Junosza-Szaniawski , Zbigniew Lonc Micha l Tuczyński , —
Warsaw University of Technology, Poland1

Abstract

A perfect landmark set is a set L of vertices such that every shortest path can be extended
to a shortest path from a vertex in L to some other vertex. We denote the size of a minimum
perfect landmark set in G by mPLS(G).

Landmark sets play a crucial role in the ALT algorithm that finds shortest paths in weighted
graphs. For a fixed perfect landmark set L in a graph G, after some preprocessing using
O(|L||V (G)|) memory, it is possible to determine the distance between any two vertices in time
O(|L|). Therefore, it is desirable to find small perfect landmark sets. We show that determining
mPLS(G) is NP-hard.

We also introduce the parameter mPLS∗(G) equal to the minimum of mPLS(H) over all
weighted graphs H such that G is an isometric subgraph of H. Sometimes mPLS∗(G) is much
smaller than mPLS(G) and a further improvement of performance of route planning can be
obtained.

There is a lot of ongoing research on routing planning algorithms in transportation networks.
Modern systems handle huge transportation networks and need to answer a large number of queries
in a short time. Therefore, it becomes increasingly more important to develop methods with the
best possible performance. We refer to the survey by Bast et al. [1] for the state of the art in the
field.

Dijkstra’s algorithm is the classic solution for finding a shortest path between two given vertices
in a weighted graph. It scans all vertices in the order of increasing distances from the starting point
until the target is reached. It means that in the worst case the whole graph is scanned. However,
it is possible to reduce the amount of computation needed by using some additional properties of
the network. The A∗ search is a modification of Dijkstra’s algorithm that reduces the number of
vertices scanned. It requires a function called a potential which assigns to each vertex v a lower
bound on the distance from v to the target. Using this information the algorithm is able to skip
scanning vertices that are known to be too far from the target to be of any relevance. If the
potential of every vertex is close to its real distance from the target, the method is much faster
than Dijkstra’s algorithm; in the extreme case when the potential is exactly equal to the desired
distance, only vertices along a shortest path are scanned. Usually the potential is based on some
additional properties of a graph, e.g its geometrical representation.

A universal approach to constructing a useful potential function is to choose an arbitrary subset
L of the vertices, called a landmark set, and precompute the distances from each landmark to every
vertex of the graph. Using the triangle inequality we obtain dist(v, t) ≥ dist(v, l)−dist(t, l) for every
vertex v and landmark l, where t is the target. It follows that π(v) = max{|dist(s, l)− dist(t, l)| :
l ∈ L}, is a viable potential function. This approach is called ALT (A for A∗, L for landmarks
and T for triangle inequality) [3]. Note that adding more vertices to L may result in a more useful
potential π, but π is computed in time O(|L|) and uses auxiliary data that takes O(|L| |V (G)|)
memory, so we want to keep the number of added vertices as low as possible.

If we fix the number of landmarks then the problem of choosing optimal landmark set is NP-
hard [2]. Our approach is complementary: to find a perfect landmark set L of minimum cardi-
nality. We say that L is perfect if for any two vertices s, t there exists a vertex l ∈ L such that

1email: {m.debski, k.szaniawski, z.lonc, m.tuczynski}@mini.pw.edu.pl

dist(s, t) = |dist(s, l)− dist(t, l)|. It means that the distance between any vertices s, t is given by
the formula dist(s, t) = max{|dist(s, l)− dist(t, l)| : l ∈ L} and can be computed in O(|L|) time
using O(|L| |V (G)|) precomputed data. If L is small then we obtain a very fast implementation of
the ALT algorithm finding a shortest path. Note that a naive approach applied to dense graphs –
to precompute all distances – would give an algorithm that gives an answer in constant time, but
uses O(|V (G)|2) memory for precomputed data, which is by far too much. Notice that our notation
of perfect landmark set is different than metric basis, used in the context of metric dimension of
graphs. Therefore, our understanding of landmarks should not be confused with landmarks used
in that context.

Consider as an example a rectangular grid – a Cartesian product of two paths – with all edges
of weight 1. It turns out that two corners on one side e.g. two left corners form a 2-element perfect
landmark set. This shows that the minimum landmark set can be arbitrary small comparing to
the number of vertices in a graph.

Grids are also interesting for practical reasons as they have a structure similar to the street
graphs of cities. If we consider a weighted grid such that shortest paths in the sense of weights
coincide with shortest paths in the corresponding unweighted graph, then still two corners on one
side form a 2-element perfect landmark set, which gives us efficient algorithm for the shortest path.
The distance between two given vertices can be computed in a constant time and the shortest path
can be found in linear time.

We have also observed that sometimes the size of a minimum perfect landmark set can be
significantly reduced by adding some extra vertices to the graph, which gives a further increase in
performance of the computation of shortest paths. There are examples of graphs with arbitrary
large minimum perfect landmark set that are isometric subgraphs of a graph with a small (e.g
2-element) perfect landmark set. This means that the ALT algorithm can be efficiently used for
much larger classes of graphs.

By G = (V,E) we denote simple graph with the vertex set V and edge set E. By Gw we denote
weighted graph i.e. a graph G with a weight function w : E → R+ ∪ {0}. We treat unweighted
graphs as a weighted graph with all edges of weight one.

By distG(u, v) in Gw we denote the minimum of {
∑

e∈E(P)w(e) : P is u − v − path}. We
omit index in distG if the graph G is clear from the context. For any two vertices u, v holds
dist(u, v) = dist(v, u). We say that a path P is a shortest u− v-path if

∑
e∈E(P)w(e) = dist(u, v).

A path P is called a geodesic in a graph G or Gw if it is a shortest path joining its ends. A geodesic
is maximal if it can not be extended to a longer geodesic. A set L ⊆ V (G) is a perfect set of
landmarks for G, if every maximal geodesic has an end in L. Let mPLS(G) denote the size of the
smallest perfect landmark set in a simple or weighted graph G. Consider any geodesic joining u
and v. Let P be geodesic joining u and v and let P ′ be a maximal geodesic containing P . Let l be
an end of P ′ belonging to a perfect landmark set (from the definition at leas one end of maximal
geodesic belongs to L). Then dist(u, v) = |dist(v, l)− dist(u, l)| and we obtain

Remark 1. Let L be a perfect landmark set in G then for any two vertices u, v holds dist(u, v) =
min{|dist(v, l)− dist(u, l)| : l ∈ L}

By Ĝ we denote a graph (V, Ê) where uv ∈ Ê if and only if u and v are the ends of maximal
geodesic. Directly from definitions we get:

Remark 2. A set L is a minimal perfect landmark set in G if and only if it is minimal vertex
cover in the graph Ĝ.

Example 3. 1. Ĉ2n = nK2 and mPLS(C2n) = n,

2. Ĉ2n+1 = C2n+1 and mPLS(C2n+1) = n+ 1,

3. K̂n,m = Kn ∪Km and mPLS(Kn,m) = n+m− 2,

4. ̂Pm × Pn = 2K2 ∪ (mn− 4)K1 and mPLS(Pm × Pn) = 2,

5. T̂ = Kt ∪ (|T | − t)K1, and mPLS(T) = t− 1,where T is a tree with t leaves.

By a twin in a graph we mean a pair of vertices whose sets of neighbors are the same. Clearly,
the vertices in a twin are nonadjacent.

Theorem 4. The problem of determining if mPLS(G) does not exceed k is NP-complete, when k
is a part of the instance.

Proposition 5. Let C be a cycle in G of length m such that every path of length at most 1
2m

contained in C is a geodesic. Then each set of landmarks in G has at least
⌈
m
2

⌉
elements.

Although it may seem counterintuitive at first, sometimes a perfect landmark set – and therefore,
an amount of computation needed to find shortest paths in a graph – may be reduced by adding
some artificial vertices. However, we need to take some extra care so that the shortest paths in the
original graph are still shortest in the extended graph. This motivates the following definitions.

We say that a graph G is an isometric subgraph of H if for every u, v ∈ V (G) distG(u, v) =
distH(u, v). We define mPLS∗(G) to be the minimum of mPLS(H) over all weighted graphs H
such that G is an isometric subgraph of H.

As an example, consider the graph G from Figure 1 drawn with solid lines; we have mPLS(G) =
12, because Ĝ is 2K6,6. When we add two extra vertices and dashed edges of weight 5, we obtain an
extended graph that behaves as a graph satisfying the assumptions of Theorem ??, so mPLS∗(G) =
2.

Figure 1: A graph G with mPLS(G) = 12 and mPLS∗(G) = 2

Let us start with a simple lower bound on the parameter mPLS∗(G). We observe that the proof
of Proposition 5 can be easily (with almost no changes) adapted to prove the following statement.

Proposition 6. Let m be the length of a longest cycle in G such that every path of length at most
1
2m contained in the cycle is a geodesic. Then

mPLS∗(G) ≥
⌈

1

2
m

⌉
.

The lemma beneath tells how to add a small set of vertices that will “handle” all maximal
geodesics that end in a larger set S, provided that S has some nice property.

Lemma 7. Let G be a simple graph and d ∈ {1, 2}. Consider a set S ⊆ V (G) such that every
two vertices of S are at distance d in G and every vertex from S is adjacent to every vertex from
N(S) \ S. There exists a graph H such that

(i) G is an isometric subgraph of H,

(ii) |V (H) \ V (G)| = dlog2(|S|+ 1)e,

(iii) there is no maximal geodesic path in H with both ends in S,

(iv) every maximal geodesic path in H with one end in S has the other end in V (H) \ V (G).

Using Lemma 7 we show an upper bound on mPLS∗ of a clique, a star and a bipartite graph.

Proposition 8. For every n ≥ 1 we have mPLS∗(K1,n) ≤ dlog2(n+ 1)e.

Proposition 9. For every n ≥ 1 we have mPLS∗(Kn) ≤ dlog2(n+ 1)e.

Proposition 10. For every n,m ≥ 1 we have mPLS∗(Kn,m) ≤ dlog2(n+ 1)e+ dlog2(m+ 1)e.

Lemma 11. Let Tw be a weighted tree, r the radius of T and ∆ the maxiumum degree of a vertex
of T . There exists a graph Hw such that

(i) |V (Hw)− V (Tw)| = r dlog2(∆)e,

(ii) Tw is an isometric subgraph of Hw,

(iii) every maximal geodesic path in Hw has at least one end in V (Hw)− V (Tw).

Proposition 12. Let Tw be a weighted tree, r the radius of T and ∆ the maxiumum degree of a
vertex of T . Then mPLS∗(Tw) ≤ r dlog2(∆)e.

Lemma 13. Kn can not be covered by less than Ω
(

logn
log logn

)
triangle-free graphs.

Theorem 14. mPLS∗(K1,n) = Ω
(

logn
log logn

)
.

Theorem 15. mPLS∗(Kn) = Ω
(

logn
log logn

)
.

Corollary 16. For every graph G with maximum degree ∆ we have mPLS∗(G) = Ω
(

log log ∆
log log log ∆

)
.

References

[1] H. Bast, D. Delling, A. V. Goldberg, M. Müller-Hannemann, T. Pajor, P. Sanders, D. Wagner and R. F.
Werneck, Route Planning in Transportation Networks. Algorithm Engineering - Selected Results and
Surveys, volume 9220 of LNCS, 19-80. Springer, 2016.

[2] R. Bauer, T. Columbus, B. Katz, M. Krug, D. Wagner, Preprocessing Speed-Up Techniques Is Hard. In:
T. Calamoneri, J. Diaz (eds) Algorithms and Complexity. CIAC 2010. LNCS 6078.

[3] A. V. Goldberg and C. Harrelson. Computing the shortest path: A* search meets graph theory. In
Proceedings of the 16th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA’05), 156–165.
SIAM, 2005.

