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Abstract

We elucidate the structure of (P6, C4)-free graphs by showing that every such graph either
has a clique cutset, or a universal vertex, or belongs to several special classes whose structure is
completely characterized. Using these results we show that every such graph G has chromatic
number at most d 54ω(G)e and that this is the best possible bound. Another consequence is the
existence of polynomial-time algorithms that compute the chromatic number and the stablity
number of any graph in this class.

1 Introduction

For any integer k, a k-coloring of a graph G is a mapping c : V (G) → {1, . . . , k} such that any
two adjacent vertices u, v in G satisfy c(u) 6= c(v). A graph is k-colorable if it admits a k-coloring.
The chromatic number χ(G) of a graph G is the smallest integer k such that G is k-colorable.
Determining whether a graph is k-colorable is NP-complete for every fixed k ≥ 3 [2, 6].

Given a family of graphs F , a graph G is F-free if no induced subgraph of G is isomorphic to a
member of F ; when F has only one element F we say that G is F -free. For any integer ` we let P`

denote the path on ` vertices and C` denote the cycle on ` vertices. Here we focus on (P6, C4)-free
graphs.

A clique in a graph G is a set of pairwise adjacent vertices. Let ω(G) denote the maximum
clique size in a graph G. Following Gyárfás [5], we say that a class of graphs is χ-bounded if
there is a function f such that every member G of the class satisfies χ(G) ≤ f(ω(G)). Gyárfás [5]
conjectured that if T is any tree (or forest) then the class of T -free graphs is χ-bounded; moreover
he proved the conjecture when T is a path. Gravier et al. [4] improved Gyárfás’s bound slightly by
proving that every Pk-free graph G satisfies χ(G) ≤ (k−2)ω(G)−1. In particular every P6-free graph
G satisfies χ(G) ≤ 4ω(G)−1. One may wonder whether this exponential bound can be improved.

Gaspers and Huang [3] studied the (P6, C4)-free graphs and showed that every such graph G
satisfies χ(G) ≤ 3

2ω(G). We improve their result and establish the best possible bound, as follows.

Theorem 1.1. Let G be any (P6, C4)-free graph. Then χ(G) ≤ d54ω(G)e. Moreover, this bound is
tight.

One can readily see that the bound is tight on the following example (as in [1]). Let G be a
graph whose vertex-set is partitioned into five cliques Q1, . . . , Q5 such that for each i mod 5, every
vertex in Qi is adjacent to every vertex in Qi+1∪Qi−1 and to no vertex in Qi+2∪Qi−2, and |Qi| = q
for all i (q > 0). It is easy to check that G is (P6, C4)-free. Moreover, we have ω(G) = 2q, and
χ(G) ≥ d52qe since G has no stable set of size 3. Hence χ(G) ≥ d54ω(G)e.
Theorem 1.2. There is a polynomial-time algorithm which computes the chromatic number of any
(P6, C4)-free graph.

Theorem 1.3. There is a polynomial-time algorithm which computes the stability number of any
(P6, C4)-free graph.

Theorems 1.1, 1.2 and 1.3 will be derived from the structural theorem below (Theorem 3.1).



2 Some special graphs

Let F1, F2, F3 be three graphs defined as follows, as in [3].
The graph F1 has eight vertices v1, ..., v6, a, b such that v1, . . . , v6 induce a 6-cycle with edges

vivi+1 (mod 6), and NF1(a) = {v1, v2, v3, b} and NF1(b) = {v3, v4, v5, a}.
The graph F2 has eight vertices v1, ..., v5, a, b, c such that v1, . . . , v5 induce a 5-cycle with edges

vivi+1 (mod 5), and NF2(a) = {v1, v4, v5, b, c}, NF2(b) = {v1, v2, a} and NF2(c) = {v3, v4, a}.
The graph F3 has nine vertices v1, . . . , v6, x, y, z such that v1, . . . , v6 induce a 6-cycle with

edges vivi+1 (mod 6), and NF3(x) = {v1, v2, v3, y, z}, NF3(y) = {v3, v4, v5, x, z}, and NF3(z) =
{v5, v6, v1, x, y}.

Let H1 be the Petersen graph.
Let H2 have vertices v1, ..., v6, a, b, c such that v1, ..., v6 induce a C6, with edges vivi+1 (mod-

ulo 6), and NH2(a) = {v1, v2, v3, v6, b, c}, NH2(b) = {v3, v4, v5, v6, a, c}, and NH2(c) = {v3, v6, a, b}.
Let H3 have vertices v1, ..., v9 with edges vivi+1 and vivi+2 for all i (mod 9).
Let H4 have vertices v1, ..., v6, a, b, c such that v1, ..., v6 induce a C6 with edges vivi+1 for

all i (mod 6), and NH4(a) = {v6, v1, v2, v3, b}, NH4(b) = {v1, v2, v3, v4, a, c}, and NH4(c) =
{v2, v3, v4, v5, b}.

Let H5 have vertices v1, ..., v5, t1, ..., t5 such that v1, ..., v5 induce a C5 with edges vivi+1 for all
i (mod 5) and NH5(ti) = {vi−1, vi, vi+1} for all i.

For integers k, ` ≥ 0 let Fk,` be the graph whose vertex set can be partitioned into sets A,B,U,W
and {x, y, z} such that:

• A = {a0, a1, . . . , ak} is a clique of size k + 1, and U = {u1, u2, . . . , uk} is a stable set of size
k, and the edges between A and U form a matching of size k, namely, [A,U ] = {aiui | i ∈
{1, . . . , k}};
• B = {b0, b1, . . . , b`} is a clique of size ` + 1, and W = {w1, . . . , w`} is a stable set of size `,

and the edges between B and W form a matching of size `, namely, [B,W ] = {bjwj | j ∈
{1, . . . , `}};
• The neighborhood of x is A ∪ U ∪W ∪ {y};
• The neighborhood of y is B ∪ U ∪W ∪ {x};
• The neighborhood of z is A ∪B.

In a graph G, let A,B be disjoint subsets of V (G). It is easy to see that the following two
conditions (i) and (ii) are equivalent: (i) any two vertices a, a′ ∈ A satisfy either NB(a) ⊆ NB(a′)
or NB(a′) ⊆ NB(a); (ii) any two vertices b, b′ ∈ B satisfy either NA(b) ⊆ NA(b′) or NA(b′) ⊆ NA(b).
If this condition holds we say that the pair {A,B} is graded. It is easy to see that in a C4-free
graph any two disjoint cliques form a graded pair.

Blowups A blowup of a graph H is any graph G such that V (G) can be partitioned into |V (H)|
(not necessarily non-empty) cliques Qv, v ∈ V (H), such that [Qu, Qv] is complete if uv ∈ E(H),
and [Qu, Qv] = ∅ if uv /∈ E(H).

Bands A band is any graphG whose vertex-set can be partitioned into seven setsQ1, ..., Q5, R2, R3

such that:

• Each of Q1, ..., Q5, R2, R3 is a clique.



• The sets [Q5, Q1 ∪Q4], [R2, Q1 ∪Q2 ∪Q3], [R3, Q2 ∪Q3 ∪Q4] and [Q2, Q3] are complete.

• The sets [Q1, Q3 ∪R3 ∪Q4], [Q4, Q1 ∪Q2 ∪R2] and [Q5, Q2 ∪R2 ∪Q3 ∪R3], are empty.

• The pairs {Q1, Q2}, {Q3, Q4} and {R2, R3} are graded.

Belts A belt is any (P6, C4, C6)-free graph G whose vertex-set can be partitioned into seven sets
Q1, ..., Q5, R2, R3 such that:

• Each of Q1, ..., Q5 is a clique.

• Q1 is complete to Q2 ∪ R2 ∪ Q5 and anticomplete to Q3 ∪ R3 ∪ Q4, and Q4 is complete to
Q3∪R3∪Q5 and anticomplete to Q2∪R2∪Q1, and Q5 is anticomplete to Q2∪R2∪Q3∪R3.

• For each j ∈ {2, 3}, Qj is complete to Rj , and no vertex of Rj is universal in G[Rj ].

• For each j ∈ {2, 3}, every vertex in Qj ∪Rj has a neighbor in Q5−j ∪R5−j .

Boilers A boiler is a (P6, C4, C6)-free graph G whose vertex-set can be partitioned into five sets
Q,A,B,L,M such that:

• Q, A and B are cliques;

• [Q,A], [Q,M ], and [B,L] are complete;

• [Q,B], [Q,L] and [L,M ] are empty;

• Every vertex in L has a neighbor in A;

• For some integer k ≥ 3, M is partitioned into k non-empty sets M1, ..., Mk, and B is parti-
tioned into k non-empty sets B1, ..., Bk, such that for each i ∈ {1, ..., k} every vertex in Mi

has a neighbor in Bi and no neighbor in B \Bi;

• A is complete to M1 ∪M2 ∪ B1 ∪ B2, and for each i ∈ {3, ...,m} every vertex in A is either
complete or anticomplete to Mi ∪Bi.

We consider that the definition of blowups and of bands is also a complete description of the
structure of such graphs. However this is not so for belts and boilers. Belts and boilers have many
additional technical properties that are useful but too lengthy to describe here. Such properties
can be used to give a precise description of the structure of belts and boilers.

3 The main result

Theorem 3.1. If G is any (P6, C4)-free graph, then one of the following holds:

• G has a clique cutset.

• G has a universal vertex.

• G is a blowup of either H1, ..., H5, F3 or Fk,` (for some k, ` ≥ 1).

• G is a band, a belt, or a boiler.
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[4] Gravier, S., Hoàng, C.T., Maffray, F.: Coloring the hypergraph of maximal cliques of a graph with no
long path. Discrete Mathematics 272 (2003) 285–290.
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