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Abstract

Given a graph G, a strong clique of G is a collection of edges of G every pair of which are
incident or connected by an edge in G; the strong clique number ω′

2(G) of G is the cardinality of
a largest such collection. We study the strong clique number of graphs missing some set of cycle
lengths. Among other results, we show the following: ω′

2(G) ≤ 5∆(G)2/4 if G is triangle-free;
ω′
2(G) ≤ 3(∆(G) − 1) if G is C4-free; ω′

2(G) ≤ ∆(G)2 if G is C5-free (where ∆(G) denotes
the maximum degree of G). These bounds are attained by natural extremal examples. Our
work extends and improves upon previous work of Faudree, Gyárfás, Schelp and Tuza (1990),
Mahdian (2000) and Faron and Postle (2017). We are motivated by the corresponding problems
for the strong chromatic index.

1 Prelude

Let G = (V,E) be a graph. A strong edge-colouring of G is a partition of E into parts each of
which induces a matching; the strong chromatic index χ′2(G) of G is the least number of parts in
such a partition. Although simply stated, χ′2 has proven very difficult to analyse: a conjecture of
Erdős and Nešetřil [1] from the 1980s is notorious. (∆(G) denotes the maximum degree of G.)

Conjecture 1 (Erdős and Nešetřil [1]). For any graph G, χ′2(G) ≤ 5∆(G)2/4.

If true, this bound would be sharp for ∆(G) even, by considering a 5-cycle and substituting each
of its vertices with a copy of a stable set (of ∆(G)/2 vertices). Molloy and Reed [8] proved the
existence of some absolute constant ε > 0 such that χ′2(G) ≤ (2 − ε)∆(G)2 for any graph G.
Unfortunately, despite much effort, there is no explicit lower estimate on ε greater than, say, 0.001
(although slightly better results are known when ∆(G) is large).

The problem is still difficult if we restrict attention to a (non-trivial) class defined by some
forbidden set of subgraphs, say, cycles. The following has also been open since the 1980s.

Conjecture 2 (Faudree, Gyárfás, Schelp and Tuza [3]). For any bipartite graph G, χ′2(G) ≤ ∆(G)2.

Balanced complete bipartite graphs meet the conjectured bound. A more general bound has been
conjectured: perhaps it suffices to forbid just one odd cycle length rather than all of them.

Conjecture 3 (Mahdian [7]). For any C5-free graph G, χ′2(G) ≤ ∆(G)2.

By contrast, the best understood classes are when the forbidden set includes some bipartite graph.
In particular, Mahdian [7] showed the following for C4. This was subsequently extended to a similar
statement with C4 replaced by any bipartite H [9]. See [5] for an explicit derivation with H = C2k.

Theorem 4 (Mahdian [7]). Fix ε > 0. If G is a C4-free graph, then, provided ∆(G) is large
enough, χ′2(G) ≤ (2 + ε)∆(G)2/ log ∆(G). This is sharp up to the constant multiplicative factor.

Despite this result, the graphs of small maximum degree remain a potential obstruction to the
outright confirmation of Erdős and Nešetřil’s conjecture for the class of all, say, C4-free graphs.
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2 Main results

From the above rather frustrating state of affairs, there is justification to the pursuit of a somewhat
weaker parameter than χ′2, even for restricted graph classes. In particular, a strong clique of G is
a collection of edges of G every pair of which are incident or connected by an edge in G; the strong
clique number ω′2(G) of G is the cardinality of a largest such collection. Since the edges of a strong
clique must be assigned to different parts in a strong edge-colouring, ω′2(G) ≤ χ′2(G) always. The
originators provided the following supporting evidence for Conjecture 2.

Theorem 5 (Faudree, Gyárfás, Schelp and Tuza [4]). For any bipartite graph G, ω′2(G) ≤ ∆(G)2.

Our main results are as follows.

Theorem 6. Let G be a graph with maximum degree ∆(G) ≥ 4. Then the following hold:

1. ω′2(G) ≤ 5∆(G)2/4 if G is triangle-free;

2. ω′2(G) ≤ 3(∆(G)− 1) if G is C4-free; and

3. ω′2(G) ≤ ∆(G)2 if G is C5-free.

Although it would “just” be a consequence of a special case of Conjecture 1, Theorem 6.1 is best
possible for even ∆(G) due to the blown-up 5-cycles. Theorem 6.2 is sharp by considering a triangle
to each vertex of which is added ∆(G) − 2 pendant edges. This bound (slightly) improves upon
a bound announced in Mahdian’s master’s thesis [6]. Observe how Theorem 6.2 compares with
Theorem 4. Theorem 6.3 is sharp for the balanced complete bipartite graphs. It simultaneously
extends Theorem 5 and another result of Mahdian [7, Thm. 15] and provides (further) evidence
towards Conjecture 3.

In the full version (in preparation), we also establish bounds for ω′2(G) when G is free of other
(sets of) cycle lengths. Those bounds provide a contrast between the even and odd parities of
cycle lengths. We also consider a more challenging parameter. A distance-t edge-clique of G is a
collection of edges of G that form a clique in the t-th power L(G)t of the line graph L(G) of G; the
distance-t edge-clique number of G is the cardinality of a largest distance-t edge-clique of G. The
proposal of such parameters was already hinted at by Erdős [1, p. 81]. We study the effect on the
distance-t edge-clique number of excluding a modest fixed set of cycle lengths. Most of our bounds
are (nearly) extremal, but we omit them here for the sake of brevity and clarity.

3 Methodology

Recently, Faron and Postle [2] strengthened Theorem 5 by use of the Ore-degree σ(G) of G, which
is defined as the largest over all edges of G of the sum of the two endpoint degrees.

Theorem 7 (Faron and Postle [2]). For any bipartite graph G, ω′2(G) ≤ σ(G)2/4.

Since the sum of two degrees in G is always at most 2∆(G), this directly implies Theorem 5.
Theorem 7 follows from a slightly more technical version. For a sub(multi)graphH of a (multi)graph
G, the Ore-degree σG(H) of H in G is maxxy∈E(H) (degG(x) + degG(y)), where degG(x) denotes
the degree of x in G.



Lemma 8 (Faron and Postle [2]). If G is a bipartite multigraph and H is a sub(multi)graph of G
such that E(H) is a clique in L(G)2, then |E(H)| ≤ ∆(H) · (σG(H)−∆(H)) ≤ σG(H)2/4.

We have further extended Theorem 7 (and Lemma 8), and have Theorem 6.3 as a corollary.

Theorem 9. For any C5-free graph G, ω′2(G) ≤ σ(G)2/4.

We omit the proof of Theorem 9, but show how it, or rather Lemma 8, yields Theorem 6.1.

Proof of Theorem 6.1. Let H be a subgraph of G whose edges form a maximum clique in L(G)2.
From now on we call H and its edges blue. Let v ∈ V (G) be of maximal blue degree s. Let
VT denote the set of vertices that are incident to an edge of H that is not incident to N [v]. Let
GT = (VT , ET ) be the graph induced by VT and HT = (VT , ET ∩ E(H)) the blue subgraph of GT .

Let C1, C2, . . . denote the connected components of HT . Let pq be an edge in component Ci.
For all x ∈ NH(v), the blue edges xv and pq must be within distance 2. They are not incident,
so either xp ∈ E(G) or xq ∈ E(G). By triangle-freeness, we cannot have both xp, xq ∈ E(G). It
follows that pq partitions NH(v) into Ai := NG(p)∩NH(v) and Ai := NG(q)∩NH(v). We will call
(Ai, Ai) the partition induced by pq. Now suppose Ci contains another edge qr which is incident to
pq. Then by triangle-freeness, qr induces the same partition. It follows inductively that all edges
in Ci induce the same partition (Ai, Ai) of NH(v).

Let C1, . . . , Ck be the components that induce the trivial partition (∅, NH(v)) (if they exist).
Let M = |C1|+ · · ·+ |Ck| denote the number of (blue) edges that are in these ‘trivial’ components.
On the other hand, let GB := G[

⋃
i≥k+1 V (Ci)] and HB := H[

⋃
i≥k+1 V (Ci)] be the graphs induced

by the remaining ‘nontrivial’ components.

Claim 10. M ≤ (∆− s)∆.

Claim 11. σGB
(HB) ≤ 2∆− s−M/∆.

Claim 12. GB is bipartite.

We postpone the proofs of these claims. Note that E(HB) is a clique not only in L(G)2 but
also in L(GB)2. So by Claim 12, we may apply Lemma 8 and then Claim 11, yielding

|E(HB)| ≤ σGB
(HB)2

4
≤ (2∆− s−M/∆)2

4
.

It follows that ω(L(G)2) is at most

|E(H)| = # {e ∈ E(H) | e incident to NG(v)}+ |E(HT )| ≤ s · |NG(v)|+M + |E(HB)|

≤ s∆ +M +
(2∆− s−M/∆)2

4
= ∆2 +

1

4

(
s+

M

∆

)2

≤ 5

4
∆2,

where we used Claim 10 in the last line. This concludes the proof, conditioned on Claims 10–12.

Given the i-th component Ci, let Xi respectively Yi denote the set of vertices in Ci whose
neighbourhood in NH(v) is Ai respectively Ai. Note that Xi is complete to Ai and Yi is complete
to Ai. Furthermore, the bipartite subgraph of H induced by Ci has parts Xi and Yi.

Proof of Claim 10. If Ci is a trivial component (1 ≤ i ≤ k) then Yi is complete to Ai = NH(v).
Therefore |

⋃
1≤i≤k Yi| ≤ ∆, and for the same reason all y ∈

⋃
1≤i≤k Yi satisfy |NHT

(y)| ≤ ∆ − s.
So M ≤ |NHT

(
⋃

1≤i≤k Yi)| ≤ ∆(∆− s). ♦



Proof of Claim 11. Let e = pq ∈ E(HB). Then for all x ∈ NH(v), x must be adjacent to either p
or q. So there are |NH(v)| = s edges between {p, q} and NH(v). Also, pq must be at distance 2 of
every of the M edges induced by the trivial components. So there are at least M

∆ edges between
{p, q} and the trivial components. So at least s+M/∆ edges incident to {p, q} are not in GB. It
follows that σGB

(e) = dGB
(p) + dGB

(q) ≤ 2∆− s−M/∆. ♦

Proof of Claim 12. Suppose there are two different nontrivial components, Ci and Cj . We will first
show that we may then assume that either Ai ⊆ Aj or Aj ⊆ Ai. Indeed: if either Aj ⊆ Ai or
Ai ⊆ Aj , then after interchanging Xj and Yj (and thus interchanging Aj and Aj), we obtain Aj ⊆ Ai

or Ai ⊆ Ai. So we may assume for a contradiction that none of Ai ⊆ Aj , Ai ⊆ Aj , Aj ⊆ Ai, Aj ⊆ Ai

holds. But then there exist a ∈ Ai ∩ Aj , b ∈ Ai ∩ Aj , c ∈ Ai ∩ Aj and d ∈ Ai ∩ Aj . Furthermore,
because each component contains at least one blue edge, there are blue edges (xi, yi) ∈ (Xi × Yi)
and (xj , yj) ∈ (Xj×Yj) that have to be connected by an edge in order to have them within distance
2. If xixj is an edge, then xixjb forms a triangle. Similarly, if xiyj , yiyj or xjyi is an edge then
xiyja, yiyjd or xjyic is a triangle, respectively. Contradiction.

It follows that we can reorder the components by inclusion, so that Ak+1 ⊆ Ak+2 ⊆ · · · . Now
we are ready to show that GB is bipartite, on parts X :=

⋃
i≥k+1Xi and Y :=

⋃
i≥k+1 Yi. Suppose

X is not a stable set. Then there are x1, x2 ∈ X that form an edge, where x1 ∈ Xi and x2 ∈ Xj

for some i ≤ j. Since ∅ 6= Ai ⊆ Aj , there must be a triangle in x1x2Ai. Contradiction. Similarly,
suppose Y is not a stable set. Then there are y1, y2 ∈ Y that form an edge, where y1 ∈ Yi and
y2 ∈ Yj for some i ≤ j. Since ∅ 6= Aj ⊆ Ai, there must be a triangle in y1y2Aj . Contradiction. ♦

This completes the proof of Theorem 6.1.

Theorem 6.2 follows from a case analysis which we have chosen to omit from this extended abstract.
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