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Abstract

I prove that if G is a finite simple graph in which no two even-degree vertices are adjacent,
and if e is an edge of G, then the number of cycles containing e and all the odd-degree vertices
is even. Andrew Thomason proved this when there are no even-degree vertices using his elegant
lollipop method. Thomason’s Theorem itself generalizes Smith’s Theorem, which is the instance
in which all vertices have degree 3.

This work was inspired by a recent result of Carsten Thomassen, who proved that in a
graph in which no two even-degree vertices are adjacent, if there is one cycle containing all the
odd-degree vertices, then there is another.

1 Introduction

All graphs in this paper are finite and have no loops or multiple edges. A hamiltonian path in a
graph G is a path which contains each vertex (exactly once); a hamiltonian cycle in G consists of
a hamiltonian path together with an edge joining the last vertex of the path to the first.

In 1946, Bill Tutte [7] gave a beautiful short proof of Smith’s Theorem:

Theorem 1. Smith’s Theorem. Let G be a 3-regular graph and let e be an edge of G. The number
of hamiltonian cycles of G containing e is even.

An obvious corollary of any theorem which says that the number of objects is even is: Given
one of the objects, there exists another. Tutte’s proof does not provide an algorithm for given one
hamiltonian cycle containing e, finding another.

In 1978, Andrew Thomason [5] extended Smith’s Theorem to any graph where all vertices have
odd degree:

Theorem 2. (Andrew Thomason, [5]) Let G be a graph where all vertices have odd degree and let
e be an edge of G. The number of hamiltonian cycles of G containing e is even.

Andrew Thomason’s proof constructs a graph X(G) which he calls a lollipop graph such that
the odd-degree vertices of X(G) correspond precisely to the hamiltonian cycles of G containing e.
This provides an algorithm for finding a second hamiltonian cycle containing e by walking in X(G)
from a given odd-degree vertex to another odd-degree vertex. Unfortunately, this elegant algorithm
is exponential [1, 4], even for 3-regular graphs. Jack Edmonds and I use the term exchange graph
for a graph like Thomason’s in which the odd-degree vertices correspond to the objects of interest.
Many theorems which say that the number of objects is even can be proved by constructing an
exchange graph [2].

Recently, Carsten Thomassen [6] proved:

Theorem 3. (Carsten Thomassen, [6]) Let G be a graph where no two even-degree vertices are
adjacent. If there is one cycle C containing all the odd-degree vertices of G, then there is another
such cycle.

In fact, Thomassen’s proof actually shows:



Theorem 4. Let G be a graph where no two even-degree vertices are adjacent and let e be an edge
of G. If there is one cycle C containing e and all the odd-degree vertices of G, then there is another
such cycle.

Knowing Thomassen’s Theorem, it is natural to ask: Is the number of cycles containing e and
all the odd-degree vertices even? The answer is yes, and is a corollary of the main result in this
paper:

Theorem 5. Let G be a bipartite graph with bipartition (Y, Z) where every vertex in Y has even
degree and every vertex in Z has odd degree. Let e be an edge of G. Then the number of cycles
containing e as well as all the odd-degree vertices is even.

2 Exchange Operations

I’ll say a path v1, v2, . . . , vk in G is extendible to a cycle if vkv1 is an edge of G.
To prove Theorem 2, Andrew Thomason constructs a graph X(G) whose vertices are the hamil-

tonian paths in G beginning with the edge e = v1v2 (in order). Two vertices (hamiltonian paths)
are adjacent in X(G) if one can be obtained from the other by the following exchange operation:
Given a hamiltonian path P with vertices v1, v2, . . . vn = z (in order), add an edge zvi where i ̸= 1
and remove the edge vivi+1 to get a new hamiltonian path P ′ beginning with v1v2. (Note that this
operation is reversible.) It can easily be seen that if P is extendible to a hamiltonian cycle in G,
then the degree of the vertex corresponding to P in X(G) is degG(z) − 2, which is odd, and if P
is not extendible to a hamiltonian cycle in G, then the degree of the vertex corresponding to P in
X(G) is degG(z) − 1, which is even. Since in any graph, the number of vertices of odd degree is
even, it follows that the number of hamiltonian paths beginning with v1 followed by v2 which are
extendible to a hamiltonian cycle is even, and that is the number of hamiltonian cycles containing
e = v1v2.

Regardless of whether path P is hamiltonian, I will call such an exchange an A-exchange. More
precisely, an A-exchange is: given a path P with vertices v1, v2, . . . vk = z, add an edge zvi where
i ̸= 1 and vi is on P and remove the edge vivi+1 to get a new path P ′ containing the same vertices
as P .

Carsten Thomassen’s proof of Theorem 3 used A-exchanges as well as three other exchanges, one
of which I will call a C-exchange, and define as follows. Given a path P with vertices v1, v2, . . . vk =
z, add a path z, r, vi where r is a vertex not in P and vi is a vertex of P different from v1; remove
vertex vi+1 and edges vivi+1 and vi+1vi+2 from P to obtain a new path P ′′. (Note that C-exchanges
are reversible: from path P ′′ ending at vi+2, add path vi+2, vi+1, vi and remove vertex r and edges
rvi and rz to obtain P .)

3 Cycles Containing all the Odd-Degree Vertices

I will now prove Theorem 5.

Proof. As in the statement of the theorem, let G be a bipartite graph with bipartition (Y, Z) where
every vertex in Y has even degree and every vertex in Z has odd degree. Let e = v1v2 be an edge
of G and let v1 be the even-degree end of e.

Construct an exchange graph X(G) as follows: The vertices of G are paths beginning with v1
followed by v2, containing all odd-degree vertices of G and ending at an odd-degree vertex. Two



such paths are adjacent in G if one can be obtained from another by either an A-exchange or a
C-exchange.

Consider a path P beginning with v1 followed by v2, containing all odd-degree vertices of G
and ending at an odd-degree vertex z. Consider an edge meeting z whose other end t is on P and
is not v1. Call such edges type 1. One exchange (an A-exchange) can be made with zt.

Now consider an edge meeting z whose other end r is not in P . Call such edges type 2. Then
r has even degree, and where S is the set of vertices adjacent to r distinct from z, |S| is odd, each
vertex of S has odd-degree, and v1 is not in S (since v1 has even degree). For each edge rt where
t is in S one exchange (a C-exchange) can be made, so an odd number of exchanges can be made
using zr. Because the degree of z is odd,

if P is a path such that zv1 is an edge (i.e. if P is extendible to a cycle), then the number of
edges meeting z which can be used in an exchange is odd (all except zv1 and the edge of P
meeting z).

If the number of type 1 edges is odd, then the number of type 2 edges is even, so the
number of exchanges that can be made from z is odd + (even × odd) which is odd.

If the number of type 1 edges is even, then the number of type 2 edges is odd, so the
number of exchanges that can be made from z is even + (odd × odd) which is odd.

If P is a path such that zv1 is not an edge (i.e. if P is not extendible to a cycle), then the
number of edges meeting z which can be used in an exchange is even (all except the edge of
P meeting z).

If the number of type 1 edges is odd, then the number of type 2 edges is odd, so the
number of exchanges that can be made from z is odd + (odd × odd) which is even.

If the number of type 1 edges is even, then the number of type 2 edges is even, so the
number of exchanges that can be made from z is even + (even × odd) which is even.

Thus the degree of vertices of X(G) corresponding to paths in G which are extendible to cycles
is odd and the degree of vertices of X(G) corresponding to paths in G which are not extendible to
cycles is even. Since in any graph the number of vertices of odd degree is even, it follows that the
number of cycles of G containing e = v1v2 and all odd-degree vertices is even.

Corollary 1. Suppose H is a graph in which no two even-degree vertices are adjacent and let e be
an edge of H. Then the number of cycles containing e and all the odd-degree vertices of H is even.

Proof. Let H be a graph in which no two even-degree vertices are adjacent. Split each edge uv
joining odd-degree vertices as follows: Replace edge uv by a path of two edges consisting of a new
vertex w and two edges uw and wv; call the set of new vertices W . This results in a bipartite
graph G with bipartition (Y, Z) where Z is the set of odd-degree vertices of H and Y consists of
the even-degree vertices of H together with W . A cycle of H corresponds precisely to a cycle of G
by contracting to an edge each path of length 2 whose midpoint is a vertex of W . In particular, if
uv is an edge of H joining odd-degree vertices, and a cycle of G contains an edge uw where w is in
W , then it must contain wv. Thus Corollary 1 follows from Theorem 5.

Jack Edmonds and I have generalized Theorem 5 to one concerning trees with specified degrees
in a bipartite graph [3].
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