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Abstract

Given a graph G and a 2-coloring f : E(Kn)→ {red, blue}, we say that f induces a balanced
copy of G if there is a copy of G in Kn which, under coloring f , has de(G)/2e red edges and
be(G)/2c blue edges or vice versa. Graphs G for which, for sufficiently large n, every coloring
f : E(Kn) → {red, blue} with sufficiently many red and blue edges induces a balanced copy
of G are called balanceable. In this work, we present a characterization of balanceable graphs,
and analyze the balanceability of certain graph families as well as the extremal structures of the
colorings that prevent to find the desired balanced graph.

1 Introduction

This work is based on the results of Zero-sum Ramsey theory flavour obtained in [2] and [3]. See
also [1, 4] for closely related literature.

We will consider 2-colorings on the set of edges E(Kn) of the complete graph Kn, written as
follows:

f : E(Kn)→ {red, blue}.

Given such a coloring f , let Rf and Bf be the graphs induced by, respectively, the red and the blue
edges of Kn with respect to the coloring f . Let e(G) denote the number of edges of a graph G.

Given a graph G and a 2-coloring f : E(Kn) → {red, blue}, we say that f induces a balanced
copy of G if there is a copy of G in Kn which, under coloring f , has de(G)/2e red edges and
be(G)/2c blue edges or vice versa. We will study graphs for which one can always find a balanced
copy of it in every 2-coloring of E(Kn) fulfilling certain constraints on the number of edges of each
color. For example, a balanced copy of a path of length 2 (that is, with one red and one blue edge)
can always be found on a 2-coloring of E(Kn) that contains at least one red edge and one blue
edge. Graphs G for which, for sufficiently large n, every coloring f : E(Kn) → {red, blue}, with
sufficiently many red and blue edges, induces a balanced copy of G are called balanceable.

Given a balanceable graph G, we define bal(n,G) as the minimum integer such that any 2-
coloring f : E(Kn)→ {red, blue} with min{e(R), e(B)} > bal(n,G) contains a balanced copy of G.
Moreover, let Bal(n,G) be the set of extremal graphs, namely the graphs on bal(n,G) edges induced
by one of the colors on a coloring f : E(Kn) → {red, blue} with min{e(R), e(B)} = bal(n,G) but
without a balanced G. We will focus our attention on the following problems.

• Characterize all balanceable graphs.

• If G is balanceable, determine the value of bal(n,G).

• If G is balanceable, determine the family of extremal graphs Bal(n,G).

We will use standard graph theoretical notation to denote particular graphs. So, as already
mentioned, Kn is the complete graph on n vertices, and K1,k, Pk and Ck will stand, respectively, for



the star, the path and the cycle on k edges. Moreover, H1 ∪H2 will represent the disjoint union of
graphs H1 and H2. Further, given disjoint sets X,Y ⊆ V (G) on a graph G, we denote by e(X,Y )
the set of edges between the vertices in X and the vertices in Y . Finally, for a set W ⊆ V (G) we
denote by G[W ] the subgraph of G induced by the vertices in W .

2 Characterization of balanceable graphs

For this section, we need to introduce the following notation. A 2-edge-colored graph G is said to
be of type A if there is a partition of the vertex set V (G) = X ∪ Y such that all edges in X have
one color and the rest of edges have the other color. A 2-edge-colored graph G is said to be of type
B if there is a partition of the vertex set V (G) = X ∪ Y such that all edges from X to Y have one
color and the rest of edges have the other color. If the mentioned sets satisfy |X| = |Y | in case
V (G) ≡ 0 (mod 2) and ||X| − |Y || = 1 in case V (G) ≡ 1 (mod 2), then we say G is equipartite of
type A or, respectively, equipartite of type B.

A major result in [3] is the determination of necessary and sufficient conditions for a graph G
to be balanceable. The following theorem contains the essence of what is needed for the character-
ization.

Theorem 1. Let t be a positive integer. Then, for n sufficiently large, there is an integer ϕ(n, t)
such that any coloring f : E(Kn)→ {red, blue} with min{e(Rf ), e(Bf )} ≥ ϕ(n, t), contains a copy
of K2t either equipartite of type A or equipartite of type B.

Suppose we have a type A-coloring of Kn and let G be a balanceable graph. Since there has
to exist a balanced copy of G in Kn, G admits a partition V (G) = X ∪ Y such that e(X,Y ) ∈
{b12e(G)c, d12e(G)e}. Similarly, a type B-coloring forces the existence of a vertex set W ⊆ V (G)
such that e(G[W ]) ∈ {b12e(G)c, d12e(G)e}.

It turns out that these conditions are also sufficient to guaranty the balanceability of a graph
G. This is given in the following theorem.

Theorem 2. A graph G is balanceable if and only if G has both a partition V (G) = X ∪ Y and a
set of vertices W ⊆ V (G) such that e(X,Y ), e(G[W ]) ∈ {b12e(G)c, d12e(G)e}.

The nature of the proof of Theorem 1, which relies on the Ramsey Theorem, the Turán numbers
and the Zarankiewicz numbers, prevents at the same time to get a sharp or even good upper bounds
for bal(n,G).

As an application of Theorem 2, a simple inductive proof yields that any tree is balanceable.
Also it is easy to see that the complete graph on 4 vertices is balanceable.

3 Complete graphs

In this section, which is based on results given in [2], we study whether the complete graph Km is
balanceable. We are now considering only graphs with an even number of edges, that is, we will
assume that m ≡ 0, 1(mod 4). It turns out that only K4 is balanceable.

Observe that a 2-coloring f : E(Kn) → {red, blue} has no balanced K4 if and only if the red
graph Rf (or equivalently the blue graph Bf ) is {K1,3,K3 ∪ K1, P3}-free (in the induced sense).



The following lemma characterizes the K3-free subclass of the family of {K1,3,K3 ∪ K1, P3}-free
graphs, and is used in [2] to determine bal(n,K4) and Bal(n,K4). We define

h(n) =

{
n, if n ≡ 0 (mod 4), and
n− 1, otherwise.

Lemma 1. Let G be a {K1,3,K3, P3}-free graph on n vertices. Then each component of G is
isomorphic to one of C4, K1, K2 or P2. Moreover, e(G) ≤ h(n), and equality holds if and only if
G ∼= J ∪

⋃q
i=1C4, where J ∈ {∅,K1,K2, P2} and q = bn4 c.

The following lemma shows that the absence of a balanced K4 in a red-blue coloring of Kn

implies that at least one of both, the red graph or the blue graph, is triangle-free.

Lemma 2. Let n ≥ 5 and f : E(Kn)→ {red, blue} be a coloring without a balanced K4. Then at
least one of Rf or Bf is triangle-free.

Let f : E(Kn) → {red, blue} be such that min{e(Rf ), e(Bf )} ≥ h(n) + 1 and suppose for
contradiction that it has no balanced K4. Then both Rf and Bf are {K1,3,K3 ∪ K1, P3}-free
graphs. By Lemma 2, Rf or Bf is K3-free. So we may assume, without loss of generality, that
Rf is triangle-free. It follows by Lemma 1 that e(R) ≤ h(n), which is a contradiction. Hence,
bal(n,K4) = h(n). This, together with the characterization of the extremal family Bal(n,K4),
which follows also quite easily by means of the previous lemmas and Mantel’s theorem, is given in
the following theorem.

Theorem 3. Let n ≥ 5. Then bal(n,K4) = h(n) and

Bal(n,K4) =

J ∪
bn/4c⋃
i=1

C4 : J ∈ {∅,K1,K2, P2}

 .

Theorem 4. For any positive integer m ≥ 5 with m ≡ 0, 1(mod 4), Km is not balanceable.

So Theorem 4 solves the question concerning the balanceablility of complete graphs Km, m ≥ 5,
with an even number of edges.

4 Paths, stars and trees

We know, as shown in Section 2, that all trees are balanceable. In this section, compiling results
from [3], we give the precise value of bal(n,G) and describe Bal(n,G) for G = K1,k and for G = Pk,
where k ≥ 2 is even and n sufficiently large. Moreover, we give a sharp lower bound for bal(n, T )
in the case that T is a tree with k edges, where k is even.

For non-negative integers p and q, let Sp,q be the complete (p, q)-split graph, that is as a graph
whose vertex set is partitioned into two parts, V1 and V2, such that |V1| = p, |V2| = q, V1 induces a
complete graph, V2 is an independent set and such that it contains all edges between the vertices
of V1 and V2.

The next two theorems give bal(n,G) and Bal(n,G) for the case that G = K1,k and G = Pk.

Theorem 5. Let k ≥ 2 and n be integers with k even and such that n ≥ max{3, k24 + 1}. Then

bal(n,K1,k) = n

(
k

2
− 1

)
− k2

8
+

k

4
and Bal(n,K1,k) =

{
S k

2
−1,n− k

2
+1

}
.



Theorem 6. Let k ≥ 2 and n be integers with k even and such that n ≥ 9
32k

2 + 1
4k + 1. Then

bal(n, Pk) =

{ (
k−2
4

)
n− k2

32 + 1
8 , for k ≡ 2 (mod 4),(

k−4
4

)
n− k2

32 + k
8 + 1, for k ≡ 0 (mod 4),

and Bal(n, Pk) =
{
Sb k−2

4 c,n−b k−2
4 c
}
.

We finish presenting the following sharp upper bound on bal(n, T ), where T is a tree.

Theorem 7. Let T be a tree on k edges. Then

bal(n, T ) ≤
(
k/2

2

)
,

and the bound is sharp.
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