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Abstract

I prove that if G is a finite simple graph in which no two even-degree vertices are adjacent,
and if e is an edge of GG, then the number of cycles containing e and all the odd-degree vertices
is even. Andrew Thomason proved this when there are no even-degree vertices using his elegant
lollipop method. Thomason’s Theorem itself generalizes Smith’s Theorem, which is the instance
in which all vertices have degree 3.

This work was inspired by a recent result of Carsten Thomassen, who proved that in a
graph in which no two even-degree vertices are adjacent, if there is one cycle containing all the
odd-degree vertices, then there is another.

1 Introduction

All graphs in this paper are finite and have no loops or multiple edges. A hamiltonian path in a
graph G is a path which contains each vertex (exactly once); a hamiltonian cycle in G consists of
a hamiltonian path together with an edge joining the last vertex of the path to the first.

In 1946, Bill Tutte [7] gave a beautiful short proof of Smith’s Theorem:

Theorem 1. Smith’s Theorem. Let G be a 3-regular graph and let e be an edge of G. The number
of hamiltonian cycles of G containing e is even.

An obvious corollary of any theorem which says that the number of objects is even is: Given
one of the objects, there exists another. Tutte’s proof does not provide an algorithm for given one
hamiltonian cycle containing e, finding another.

In 1978, Andrew Thomason [5] extended Smith’s Theorem to any graph where all vertices have
odd degree:

Theorem 2. (Andrew Thomason, [5]) Let G be a graph where all vertices have odd degree and let
e be an edge of G. The number of hamiltonian cycles of G containing e is even.

Andrew Thomason’s proof constructs a graph X (G) which he calls a lollipop graph such that
the odd-degree vertices of X (G) correspond precisely to the hamiltonian cycles of G containing e.
This provides an algorithm for finding a second hamiltonian cycle containing e by walking in X (G)
from a given odd-degree vertex to another odd-degree vertex. Unfortunately, this elegant algorithm
is exponential [1, 4], even for 3-regular graphs. Jack Edmonds and I use the term exchange graph
for a graph like Thomason’s in which the odd-degree vertices correspond to the objects of interest.
Many theorems which say that the number of objects is even can be proved by constructing an
exchange graph [2].

Recently, Carsten Thomassen [6] proved:

Theorem 3. (Carsten Thomassen, [6]) Let G be a graph where no two even-degree vertices are
adjacent. If there is one cycle C' containing all the odd-degree vertices of G, then there is another
such cycle.

In fact, Thomassen’s proof actually shows:



Theorem 4. Let G be a graph where no two even-degree vertices are adjacent and let e be an edge
of G. If there is one cycle C containing e and all the odd-degree vertices of G, then there is another
such cycle.

Knowing Thomassen’s Theorem, it is natural to ask: Is the number of cycles containing e and
all the odd-degree vertices even? The answer is yes, and is a corollary of the main result in this

paper:

Theorem 5. Let G be a bipartite graph with bipartition (Y, Z) where every vertez in 'Y has even
degree and every vertex in Z has odd degree. Let e be an edge of G. Then the number of cycles
containing e as well as all the odd-degree vertices is even.

2 Exchange Operations

I’ll say a path v1,vo, ..., v, in G is extendible to a cycle if viyvy is an edge of G.

To prove Theorem 2, Andrew Thomason constructs a graph X (G) whose vertices are the hamil-
tonian paths in G beginning with the edge e = v1vy (in order). Two vertices (hamiltonian paths)
are adjacent in X (G) if one can be obtained from the other by the following exchange operation:
Given a hamiltonian path P with vertices vy, vs,...v, = z (in order), add an edge zv; where i # 1
and remove the edge v;v;1+1 to get a new hamiltonian path P’ beginning with v1ve. (Note that this
operation is reversible.) It can easily be seen that if P is extendible to a hamiltonian cycle in G,
then the degree of the vertex corresponding to P in X (G) is degq(z) — 2, which is odd, and if P
is not extendible to a hamiltonian cycle in G, then the degree of the vertex corresponding to P in
X(G) is degg(z) — 1, which is even. Since in any graph, the number of vertices of odd degree is
even, it follows that the number of hamiltonian paths beginning with v; followed by ve which are
extendible to a hamiltonian cycle is even, and that is the number of hamiltonian cycles containing
e = v1vs.

Regardless of whether path P is hamiltonian, I will call such an exchange an A-exchange. More
precisely, an A-exchange is: given a path P with vertices vy, vs,... v = 2, add an edge zv; where
i # 1 and v; is on P and remove the edge v;v;11 to get a new path P’ containing the same vertices
as P.

Carsten Thomassen’s proof of Theorem 3 used A-exchanges as well as three other exchanges, one
of which I will call a C-exchange, and define as follows. Given a path P with vertices vy, vs,... v =
z, add a path z,r,v; where r is a vertex not in P and v; is a vertex of P different from wv;; remove
vertex v;41 and edges v;v;11 and v;11v; 2 from P to obtain a new path P”. (Note that C-exchanges
are reversible: from path P” ending at v; 2, add path v;12,v;11,v; and remove vertex r and edges
rv; and rz to obtain P.)

3 Cycles Containing all the Odd-Degree Vertices

I will now prove Theorem 5.

Proof. Asin the statement of the theorem, let G be a bipartite graph with bipartition (Y, Z) where
every vertex in Y has even degree and every vertex in Z has odd degree. Let e = viv2 be an edge
of G and let v1 be the even-degree end of e.

Construct an exchange graph X (G) as follows: The vertices of G are paths beginning with v;
followed by wve, containing all odd-degree vertices of G and ending at an odd-degree vertex. Two



such paths are adjacent in G if one can be obtained from another by either an A-exchange or a
C-exchange.

Consider a path P beginning with v, followed by wo, containing all odd-degree vertices of G
and ending at an odd-degree vertex z. Consider an edge meeting z whose other end ¢ is on P and
is not v1. Call such edges type 1. One exchange (an A-exchange) can be made with zt.

Now consider an edge meeting z whose other end r is not in P. Call such edges type 2. Then
r has even degree, and where S is the set of vertices adjacent to r distinct from z, |S| is odd, each
vertex of S has odd-degree, and v; is not in S (since v; has even degree). For each edge rt where
t is in S one exchange (a C-exchange) can be made, so an odd number of exchanges can be made
using zr. Because the degree of z is odd,

if P is a path such that zv; is an edge (i.e. if P is extendible to a cycle), then the number of
edges meeting z which can be used in an exchange is odd (all except zv; and the edge of P
meeting z).

If the number of type 1 edges is odd, then the number of type 2 edges is even, so the
number of exchanges that can be made from z is odd + (even x odd) which is odd.

If the number of type 1 edges is even, then the number of type 2 edges is odd, so the
number of exchanges that can be made from z is even + (odd x odd) which is odd.

If P is a path such that zv; is not an edge (i.e. if P is not extendible to a cycle), then the
number of edges meeting z which can be used in an exchange is even (all except the edge of
P meeting z).

If the number of type 1 edges is odd, then the number of type 2 edges is odd, so the
number of exchanges that can be made from z is odd + (odd x odd) which is even.

If the number of type 1 edges is even, then the number of type 2 edges is even, so the
number of exchanges that can be made from z is even + (even x odd) which is even.

Thus the degree of vertices of X (G) corresponding to paths in G which are extendible to cycles
is odd and the degree of vertices of X (G) corresponding to paths in G which are not extendible to
cycles is even. Since in any graph the number of vertices of odd degree is even, it follows that the
number of cycles of G containing e = vyvo and all odd-degree vertices is even. O

Corollary 1. Suppose H is a graph in which no two even-degree vertices are adjacent and let e be
an edge of H. Then the number of cycles containing e and all the odd-degree vertices of H is even.

Proof. Let H be a graph in which no two even-degree vertices are adjacent. Split each edge uv
joining odd-degree vertices as follows: Replace edge uv by a path of two edges consisting of a new
vertex w and two edges uw and wv; call the set of new vertices W. This results in a bipartite
graph G with bipartition (Y, Z) where Z is the set of odd-degree vertices of H and Y consists of
the even-degree vertices of H together with W. A cycle of H corresponds precisely to a cycle of G
by contracting to an edge each path of length 2 whose midpoint is a vertex of W. In particular, if
uw is an edge of H joining odd-degree vertices, and a cycle of G contains an edge uw where w is in
W, then it must contain wv. Thus Corollary 1 follows from Theorem 5. 0

Jack Edmonds and I have generalized Theorem 5 to one concerning trees with specified degrees
in a bipartite graph [3].
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