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Abstract

The theta graph ©,, consists of two vertices joined by t¢ vertex-disjoint paths of length ¢
each. For fixed odd ¢ and large ¢, we show that the largest graph not containing ©,, has at
most cot'~1/¢n1*+1/¢ edges and that this is tight apart from the value of cy.

Given a graph F', the Turdn number for F, denoted by ex(n, F') is the maximum number of edges
in an n-vertex graph that contains no subgraph isomorphic to /. Mantel and Turdn determined
this function exactly when F' is a complete graph, and the study of Turdn numbers has become a
fundamental problem in combinatorics (see [19) 21, 25] for surveys). The Erdés—Stone theorem [12]
determines the asymptotic behavior of ex(n, F') whenever x(F) > 3, and so the most interesting
Turan type problems are when the forbidden graph is bipartite.

One of the most well-studied bipartite Turan problems is the even cycle problem: the study of
ex(n, Cyy). Erdés initiated the study of this problem when he needed an upper bound on ex(n, Cy)
in order to prove a theorem in combinatorial number theory [9]. The combination of the upper
bounds by Kévari, Sés and Turdn [22] and the lower bounds by Brown [3] and Erdés, Rényi and
Sé6s [11] gave the asymptotic formula

L3
ex(n,Cy) ~ 57

It is now known that for certain values of n the extremal graphs must come from projective
planes [15], (17, [14] and this is conjectured to be the case for all n (see [16]).

A general upper bound of ex(n,Cy) of cen' /¢ for sufficiently large n was originally claimed
by Erdés [10] and first published by Bondy and Simonovits [2] who showed that one can take
¢¢ = 20¢. Subsequent improvements of the best constant ¢y to 8(¢ — 1) by Verstraéte [27], to (¢ —1)
by Pikhurko [24], and finally to 80v/¢log¢ by Bukh and Jiang [7] were made, and this final bound
is the current record.

As stated above, we have an asymptotic formula for ex(n,Cy). Additionally, the upper bound
on ex(n, Cy) is of correct order of magnitude for £ € {3,5} [I, 29], i.e., ex(n, Cy) = O(n'*+1/*) for
these values of ¢. However, unlike the case of Cy, the sharp multiplicative constant is not known;
see [18] for the best bounds on ex(n, Cs). The order of magnitude for ex(n,Cy) is unknown for any
¢ ¢{2,3,5}. The best known general lower bounds are given by Lazebnik, Ustimenko and Woldar
[23] (but see [26] for a better bound for the ex(n, C14) case).

Although it is unclear whether or not ex(n, Ca) = Q(n'*1/¢) in general, more is known if instead
of forbidding a pair of internally disjoint paths of length ¢ between pairs of vertices (that is, a Coy)
one forbids several paths of length ¢ between pairs of vertices. For ¢t € N, let ©,; be the graph
made of t internally disjoint paths of length ¢ connecting two endpoints. The study of ex(n, ©;)
generalizes the even cycle problem as ©y 2 = Cy. Faudree and Simonovits showed [13] that

ex(n,0¢) = Oy (n“’l/é) )

More recently, Conlon showed that this upper bound gives the correct order of magnitude if
the number of paths is a large enough constant [§]. That is, there exists a constant ¢; such that



ex(n, Opc,) = Oy(n' /%), Verstraéte and Williford [28] constructed graphs with no Oy 3 that have
(2 - o(1))n5/* edges.

In this paper, we are interested in the behavior of ex(n,©.;) when ¢ is fixed and ¢ is large.
When ¢ = 2, the result of Fiiredi [20] shows that ex(n, ©a) ~ 3v/fn%2. For general ¢, the result

of Faudree and Simonovits gives that ex(n, ;) < cztﬂnlﬂ/ ¢, We improve this bound as follows.
Theorem 1. For fized { > 2, we have ex(n, ©¢;) < cott= 1/t 1H1/L,
When ¢ is odd, we show that the dependence on ¢ in Theorem [1|is correct.

Theorem 2. Let ¢ > 3 be an odd integer. Then
ex(n,Bp) = Q (tl_l/enl'HM) .

Below we illustrate some of the ideas with a proof of Theorem [I| for the simplest case.

Case /=3

As every graph of average degree 4d contains a bipartite subgraph of average degree 2d, and since
every graph of average degree d contains a subgraph of minimum degree d, we henceforth assume
that the graph is bipartite of minimum degree d.

Lemma 1. Let r be any vertex of G. Call a vertex u bad if u # r and u has more than t common
neighbors with r. If G is O3 4-free, then no neighbor of r is adjacent to t bad vertices.

Proof. Suppose w is adjacent to bad vertices ui,...,u;. Define a sequence of vertices z1, ...,z as
follows. We let z; be any common neighbor of » and w; other than w, z1,...,2;_1. It exists since
there are more than ¢ common neighbors between r and u;. Then (wuizir)ﬁzl is a collection of ¢
disjoint paths of length 3 from w to r. O

Proof of Theorem[d] for £ = 3. Let r be any vertex of G. Let Ly = {r}. Let L1 be the set of all the
neighbors of r. Let La be the set of all vertices at distance 2 from r that have at most ¢ common
neighbors with 7. Note that by Lemma [I] each vertex in L has at least d — ¢ neighbors in Ly. Call
a vertex v1 € L1 a parent of vy € Lo if v1 and vy are adjacent. Note that a vertex in Lo can have
at most ¢ parents. Hence, each vertex in Lo has at least d — ¢ neighbors in V(G) \ L;.

Let L3 be all vertices in V(G) \ Ly that are adjacent to some Ly. Call v € L a descendant of
v1 € L1 if there is a path of the form vivovg with vg € Lo.

Let B(v1) C L3 be all descendants of v; that have more than ¢ common neighbors with v;. By
Lemma (I} each vy € N(v;) has fewer than ¢ neighbors in B(v;).

Let H be the subgraph of G obtained from G by removing all edges between B(v;) and N (v;) for
all v1 € Ly. Since each vy € Ly has at most ¢ parents, each vertex in Lo has at least d—t—t(t—1) =
d — t? neighbors in Ls.

For a vertex vs € L3, let p(vs) be the number of paths of the form rvivovs with v; € L;. We
claim that p(vs) < 2t(t — 1) for every vs € L3. Indeed, suppose the contrary. We will construct a

O3 subgraph as follows. First, we pick any path T"L)§1)’L)§1)U3 counted by p(u). Since v and Ugl) has

at most ¢ common neighbors, and since r and vél) have at most ¢ common neighbors, at most 2¢

paths counted by p(u) intersect {Ugl), 1)52)}. So, we can pick another path rvf)vg)vg that is disjoint



from {Uil),vém}. We can repeat this, at each step selecting path rvgl)vg)vg that is disjoint from
Uj<i{v§9),véj)} for t = 1,...,t. The paths T”UY)US)’U:; together form a ©3;. So, p(u) < 2t(t — 1)
after all.

Since each vertex in Lj has at least d — t neighbors in Lo and each vertex in Lo has at least

d — t? neighbors in Lz, it follows that

d(d —t)(d — t?)
2(t — 1)

|Ls| >

Since |Lg| < n the result follows.
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