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Abstract

A branch vertex in a tree is a vertex of degree at least three. We prove that, for all s ≥ 1,
every connected graph on n vertices with minimum degree at least ( 1

s+3 + o(1))n contains a
spanning tree having at most s branch vertices. Asymptotically, this is best possible and solves
a problem of Flandrin, Kaiser, Kuz̆el, Li and Ryjác̆ek, which was originally motivated by an
optimization problem in the design of optical networks.

1 Introduction

A tree is an acyclic connected graph and a branch vertex in a tree is a vertex of degree at least three.
Dirac [8] proved that every graph with minimum degree at least (n− 1)/2 contains a Hamiltonian
path, i.e. a spanning tree with no branch vertices and exactly two leaves; furthermore, this is best
possible as for all n ≥ 2, there are connected graphs with minimum degree d(n− 1)/2e − 1 which
have no Hamiltonian paths. This result has been generalized in many ways. In particular, Win [22]
proved that if G is a connected graph on n vertices with δ(G) ≥ (n − 1)/k, then G contains a
spanning tree in which every vertex has degree at most k. Broersma and Tuinstra [1] proved that
if G is a connected graph on n vertices with δ(G) ≥ (n − k + 1)/2, then G contains a spanning
tree with at most k leaves. These results are best possible for all k ≥ 2 and when k = 2, they
correspond to Dirac’s theorem.

The problem of determining whether a connected graph contains a spanning tree with a bounded
number of branch vertices, while a natural theoretical question, seems to have been first explicitly
studied because of a problem related to wavelength-division multiplexing (WDM) technology in
optical networks, where one wants to minimize the number of light-splitting switches in a light-tree
(see [11] for a more detailed description and background). Gargano, Hell, Stacho and Vaccaro [12]
showed that the problem of finding a spanning tree with the minimum number of branch vertices
is NP-hard. Since then, the problem has been investigated by many authors [2, 3, 4, 6, 13, 14, 15,
18, 19, 20, 21].

A spanning tree with at most one branch vertex is called a spider. Gargano, Hammar, Hell,
Stacho and Vaccaro [11] (also see Gargano and Hammar [10]) proved that if G is a connected graph
on n vertices with δ(G) ≥ (n− 1)/3, then G contains a spanning spider (Later Chen, Ferrara, Hu,
Jacobson and Liu [5] proved the stronger result that connected graphs on n ≥ 56 vertices with
δ(G) ≥ (n − 2)/3 contain a spanning broom; that is, a spanning spider obtained by joining the
center of a star to an endpoint of a path). Motivated by this, Gargano et al. [11] conjectured that
for all s ≥ 1, if G is a connected graph on n vertices with δ(G) ≥ (n− 1)/(s+ 2), then G contains
a spanning tree with at most s branch vertices. Later, Flandrin, Kaiser, Kužel, Li and Ryjáček [9,
Problem 11] asked if the much stronger bound of δ(G) ≥ n/(s+ 3) +C is sufficient and then Ozeki
and Yamashita [16, Conjecture 30] conjectured a precise value for the constant term1. Note that
even the approximate version of the conjecture by Flandrin et al. has not been verified for any
s ≥ 1 and the original (weaker) conjecture of Gargano et al. has not been verified for any s ≥ 2.

1In both places, the conjecture is stated as a generalized Ore-type degree condition; that is, in terms of the sum
of the degrees of every independent set of s+ 3 vertices, but we only state the minimum degree version here.



Conjecture 1 (Ozeki and Yamashita [16]). For all s ∈ N, if G is a connected graph on n vertices
with δ(G) ≥ n−s

s+3 , then G contains a spanning tree with at most s branch vertices.

The goal of this paper is to prove Conjecture 1 asymptotically.

Theorem 1. Let s ∈ N and let 0 < 1/n0 � γ, 1/s. Suppose that G is a connected graph on n ≥ n0
vertices with δ(G) ≥ ( 1

s+3 + γ)n, then G contains a spanning tree with at most s branch vertices.

The following example(s) show that our result is asymptotically best possible and that Conjec-
ture 1 is best possible if true. First note that if s+ 3 divides n, then one can obtain a graph G on
n vertices with δ(G) = n

s+3 − 1 which contains no spanning tree with at most s branch vertices by
identifying each vertex of a path on s+ 3 vertices with a complete graph on n

s+3 vertices since the
s+ 1 internal vertices of the path will be branch vertices in every spanning tree.

Example 1. For all s,m ∈ Z+, there exists a connected graph G on n = (s+ 3)m− 2 vertices with
δ(G) = n−s−1

s+3 such that every spanning tree of G has more than s branch vertices.

Proof. Let H1 be a graph on 2m − 1 vertices obtained from two copies of Km by identifying a
vertex v and let H2 be the graph obtained by taking the join of an independent set on m vertices
with a Km−1. Let n = (s + 3)m − 2 and let G be a graph obtained from a path P = b1b2 . . . bs+1

on s + 1 vertices by identifying for each 2 ≤ i ≤ s, the vertex bi with a vertex of a Km and for
j ∈ {1, s+ 1}, either by identifying bj with the cut vertex of H1, or by identifying bj with some
vertex in the smaller side of H2; that is, adding some edge from b2 (if j = 1) or bs (if j = s+ 1) to
the smaller side of H2. It is clear that δ(G) = m− 1 = n−s−1

s+3 and for any spanning tree T , each bi
will be a branch vertex in T .
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Figure 1: An example for the case s = 3.

2 Overview of the proof

Our proof splits into two main parts. First we show that if G is a graph with minimum degree at
least (1/r+ γ)n, then we can find a partition of V (G) into at most r− 1 parts {V1, . . . , Vk} having
the property that for each i, G[Vi] has no sparse cuts and most vertices in Vi have degree at least
(1/r+γ/2)n in G[Vi] while all other vertices in Vi have linear minimum degree in G[Vi]. Let us say
that we have partitioned G into “robust” subgraphs.

The second part of the proof focuses on these so-called robust subgraphs obtained above. Let
t ≥ 1 and let G be a graph on n vertices with linear minimum degree having no sparse cuts in which
most of the vertices have degree at least ( 1

t+3 + γ)n. We will show that not only does G contains a
spanning tree with at most t branch vertices, but G contains a cycle C and a set K ⊆ V (C) with
|K| ≤ t such that for all v ∈ V (G) \ V (C), v has a neighbor in K. It is clear that such a structure,
which we call a “star-cycle”, contains a spanning tree with at most t branch vertices.



The real heart of the proof lies in finding these spanning star-cycles in the robust subgraphs.
It is now standard in spanning subgraph problems to use Szémerédi’s regularity lemma to reduce
the problem to finding a simpler structure in the so-called reduced graph. For instance, if one
were looking for a Hamiltonian cycle, it would be natural to apply regularity and prove that the
reduced graph is connected and contains a perfect matching. In our case, the simpler structure that
we wish to find is a collection of vertex-disjoint edges and stars which we call a “star-matching.”
Unfortunately it may not be sufficient to find a star-matching in the reduced graph, as this may
not correspond to the desired star-cycle in the original graph (it is possible that every star-cycle
in the original graph has unbounded maximum degree, a situation for which the regularity lemma
is unequipped to deal with). To get around this issue, we introduce a more complex structure in
place of the reduced graph, called the “fractional-random-reduced-graph”. The fractional-random-
reduced-graph will retain more of the information about the original graph and therefore make it
possible to turn a spanning star-matching in the fractional-random-reduced-graph into a nearly
spanning star-cycle in the original graph. To get from a nearly spanning star-cycle to a spanning
star-cycle, we use the now standard absorbing method of Rödl, Ruciński and Szemerédi [17] in a
form proved by the first author and Nelsen [7].

Finally, to combine the two parts of the proof, we start with a connected graph G having
minimum degree at least ( 1

s+3 + γ)n. We obtain a robust partition of G and inside each part of
the partition we find a star-cycle having the correct number of stars depending on the relative
degrees inside that part. Then we use the connectivity of G to find edges connecting the spanning
star-cycles from each part of the partition. The minimum degree of G will put bounds on the
number of parts of the partition and the relative degrees inside those parts in such a way that the
obtained spanning tree has at most s branch vertices.
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