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Abstract

A graph is (k1, k2)-colorable if its vertex set can be partitioned into two sets, one inducing a
graph with maximum degree at most k1 and one inducing a graph with maximum degree at most
k2. We show that every (C3, C4, C6)-free planar graph is (0, 6)-colorable. We also show that
deciding whether a (C3, C4, C6)-free planar graph is (0, 3)-colorable is an NP-complete problem.

1 Introduction

A graph is (k1, k2)-colorable if its vertex set can be partitioned into a set inducing a graph with
maximum degree at most k1 and a set inducing a graph with maximum degree at most k2. Choi,
Liu, and Oum [1] have established that there exist exactly two minimal sets of forbidden cycle
lengths such that every planar graph is (0, k)-colorable for some absolute constant k.

• Planar graphs without odd cycles are bipartite, that is, (0, 0)-colorable.

• Planar graphs without cycles of length 3, 4, and 6 are (0, 45)-colorable.

For every n ≥ 3, we denote by Cn the cycle on n vertices. To reformulate, if S is any set of
cycles, then there exists a k such that every planar graph with no cycle in S is (0, k)-colorable if
and only if either S contains every odd cycle, or S contains the cycles C3, C4, and C6.

Our aim is to improve the second point. So we are interested in the class C of (C3, C4, C6)-free
planar graphs.

We will sketch the proofs of the following two theorems in the next two sections. Full proofs
are available on arXiv [2].

Theorem 1. Every graph in C is (0, 6)-colorable.

Theorem 2. For every k ≥ 1, either every graph in C is (0, k)-colorable, or deciding whether a
graph in C is (0, k)-colorable is an NP-complete problem.

In addition, we construct a graph in C that is not (0, 3)-colorable in Section 4. This graph and
Theorem 2 imply the following.

Corollary 1. Deciding whether a graph in C is (0, 3)-colorable is an NP-complete problem.

Since we deal with (0, k)-colorings for some k ≥ 2, we denote by the letter 0 the color of the
vertices that induce the independent set and we denote by the letter k the color of the vertices that
induce the graph with maximum degree at most k.



2 Sketch of the proof of Theorem 1

The proof will be using the discharging method. For every plane graph G, we denote by V (G) the
set of vertices of G, by E(G) the set of edges of G, and by F (G) the set of faces of G.

Let us define the partial order �. Let n3(G) be the number of vertices with degree at least 3
in G. For any two graphs G1 and G2, we have G1 ≺ G2 if and only if either n3(G1) < n3(G2), or
n3(G1) = n3(G2) and |V (G1)| < |V (G2)|. Note that the partial order � is well-defined and is a
partial linear extension of the subgraph poset.

We suppose for contradiction that G is a graph in C that is not (0, 6)-colorable and is minimal
according to �. For all d, let us call a vertex of G of degree d, at most d, and at least d a d-vertex,
a d−-vertex, and a d+-vertex respectively. For all vertex v, a d-neighbor, a d−-neighbor, and a
d+-neighbor of v is a neighbor of v that is a d-vertex, a d−-vertex, and a d+-vertex respectively.
For all d, let us call a face of G of degree d, at most d, and at least d a d-face, a d−-face, and a
d+-face respectively.

We are going to give some weight on the vertices and faces of the graph. Initially, for all d, every
vertex or face of degree d has weight d− 4. Thus every face and every 4+-vertex has non-negative
initial weight. The aim is to transfer some weight from vertices and faces to other vertices and
faces so that in the end, every face and every vertex has a non-negative weight, which will lead to
a contradiction, since the sum of the weights is negative by Euler’s formula.

The general idea is that vertices and faces of high degree will give weight to 2-vertices and 3-
vertices. The faces that need the most charge are the 5-faces with many 2-vertices in its boundary.

We will start with some lemmas on the structure of G, that show that aside from 5-faces with
many 2-vertices, we can always find the necessary charge locally. Those lemmas can be proven
via the following scheme. Assuming the lemma is false, consider a graph H smaller than G with
respect to �. The graph H admits a (0, k)-coloring by minimality of G. We can show that we can
extend the coloring to G, a contradiction.

Lemma 1. G is connected.

Lemma 2. G has no 1-vertex.

Lemma 3. Every 7−-vertex of G has a 8+-neighbor.

Lemma 4. Every vertex with degree at least 3 and at most 7 has two 8+-neighbors.

Lemma 5. No 3-vertex is adjacent to a 2-vertex.

Let us now define the concept of special faces and special configurations, that will correspond
to the places that will lack weight the most. A special face is a 5-face with three 2-vertices and
two non-adjacent 8+-vertices. See Figure 1, left. A special configuration is three 5-faces sharing a
common 3-vertex adjacent to three 8+-vertices, such that all the other vertices of these faces are
2-vertices. See Figure 1, right. We say special structure to speak indifferently about a special face
or a special configuration.

Let us define a hypergraph Ĝ whose vertices are the 8+-vertices of G and the hyperedges
correspond to the sets of 8+-vertices contained in the same special structure. For every vertex v of
Ĝ, let d̂(v) denote the degree of v in Ĝ, that is the number of hyperedges containing v.

Lemma 6. For every vertex v in Ĝ, d(v)− d̂(v) ≥ 7.

Lemma 7. Every component of Ĝ has at least one vertex v such that d(v)− d̂(v) ≥ 8.
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Figure 1: A special face (left) and a special configuration (right).

For each component C of Ĝ, we choose a vertex v in C such that d(v)− d̂(v) ≥ 8 as the root of
C. Now the root v is set to sponsor all of the special structures v belongs to. Since C is connected,
by a simple search in Ĝ we can set every vertex of C−{v} to sponsor some of the special structures
it belongs to so that every vertex of C aside from v does not sponsor all of the special structures
it belongs to, and every special structure has a vertex sponsoring it.

We call a 2-vertex with a 2-neighbor a 21-vertex and a 2-vertex with no 2-neighbor a 20-vertex.
Some local weight adjustments are omitted here, especially around 5-faces that have low degree
vertices in their boundary but are not special structures.

1. Every 8+-vertex gives weight 1
2 to each of its 7−-neighbors and to each special structure it

sponsors.

2. For each d-vertex v with 3 ≤ d ≤ 7 in G, v gives 1
2 to each of its 2-neighbors.

3. Each 5-face gives 1
4 to each of its 20-vertices and 5

8 to its 21-vertices.

4. Each 7+-face gives 3
4 to each of its 20-vertices that belong to a 5-face, 7

8 to each of its 21-
vertices that belong to a 5-face, 1

2 to each of its 20-vertices that do not belong to a 5-face,
and 3

4 to each of its 21-vertices that do not belong to a 5-face.

It can be shown that every vertex and every face has a non-negative final weight.
Let n denote the number of vertices, m the number of edges and f the number of faces of G.

By Euler’s formula, since G is connected by Lemma 1 and has at least one vertex, n+ f −m = 2.
The initial weight of the graph is

∑
v∈V (G)(d(v) − 4) +

∑
α∈F (G)(d(α) − 4) =

∑
v∈V (G) d(v) +∑

α∈F (G) d(α) − 4n − 4f = 4m − 4n − 4f = −8 < 0. Therefore the initial weight of the graph is
negative, thus the final weight of the graph is negative, a contradiction. That completes the proof
of Theorem 1.

3 Sketch of the proof of Theorem 2

Let k ≥ 3 be a fixed integer. Suppose that there exists a graph in C that is not (0, k)-colorable.
We consider such a graph Hk that is minimal according to �. Similarly to Lemmas 1, 2, and 3, the
minimum degree of Hk is at least two and every (k + 1)−-vertex in Hk is adjacent to a (k + 2)+-
vertex. A standard discharging argument shows that Hk contains a 2-vertex v. Let u1 and u5 be
the two neighbors of v.
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Figure 2: The forcing gadget Fx,y. Figure 3: The non-(0, 3)-colorable graph in C.

By minimality of Hk, Hk − v is (0, k)-colorable, every (0, k)-coloring of Hk − v is such that u1
and u5 get distinct colors, and the vertex in {u1, u5} that is colored k has exactly k neighbors that
are colored k. It can be shown that replacing v in Hk by a path u1u2u3u4u5 of length 4 leads to a
(0, k)-colorable graph H ′k in C and that every (0, k)-coloring of H ′k is such that u3 is colored k and
is adjacent to exactly one vertex colored k.

We are ready to prove that deciding whether a graph in C is (0, k)-colorable is NP-complete.
The reduction is from the NP-complete problem of deciding whether a planar graph with girth at
least 9 is (0, 1)-colorable [3]. Given an instance G of this problem, we construct a graph G′ ∈ C, as
follows. For every vertex v in G, we add k− 1 copies of H ′k and we add an edge between v and the
vertex u3 of each these copies. The graph G is (0, 1)-colorable if and only if G′ is (0, k)-colorable.

4 A graph in C that is not (0, 3)-colorable

The graph depicted in Figure 3, where every dashed line represents a copy of the graph Fx,y in
Figure 2, is a graph in C that is not (0, 3)-colorable. The idea is that in every (0, 3)-coloring of
Fx,y, at least one neighbor of x or y (a white vertex in the picture) is colored 3.

One can see that if we remove the thin parts in Figures 2 and 3, we obtain a planar graph with
girth 7 that is not (0, 2)-colorable. A graph with such properties is already known [4], but this new
graph is smaller (184 vertices instead of 1304) and the proof of non-(0, 2)-colorability is simpler.
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