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Abstract

A branch vertex in a tree is a vertex of degree at least three. We prove that, for all s > 1,
every connected graph on n vertices with minimum degree at least (S}r?) + o(1))n contains a
spanning tree having at most s branch vertices. Asymptotically, this is best possible and solves
a problem of Flandrin, Kaiser, Kuzel, Li and Ryjacek, which was originally motivated by an

optimization problem in the design of optical networks.

1 Introduction

A tree is an acyclic connected graph and a branch vertex in a tree is a vertex of degree at least three.
Dirac [8] proved that every graph with minimum degree at least (n — 1)/2 contains a Hamiltonian
path, i.e. a spanning tree with no branch vertices and exactly two leaves; furthermore, this is best
possible as for all n > 2, there are connected graphs with minimum degree [(n — 1)/2] — 1 which
have no Hamiltonian paths. This result has been generalized in many ways. In particular, Win [22]
proved that if G is a connected graph on n vertices with §(G) > (n — 1)/k, then G contains a
spanning tree in which every vertex has degree at most k. Broersma and Tuinstra [I] proved that
if G is a connected graph on n vertices with 6(G) > (n — k + 1)/2, then G contains a spanning
tree with at most k leaves. These results are best possible for all £ > 2 and when k& = 2, they
correspond to Dirac’s theorem.

The problem of determining whether a connected graph contains a spanning tree with a bounded
number of branch vertices, while a natural theoretical question, seems to have been first explicitly
studied because of a problem related to wavelength-division multiplexing (WDM) technology in
optical networks, where one wants to minimize the number of light-splitting switches in a light-tree
(see [I1] for a more detailed description and background). Gargano, Hell, Stacho and Vaccaro [12]
showed that the problem of finding a spanning tree with the minimum number of branch vertices
is NP-hard. Since then, the problem has been investigated by many authors [2] 3] 14, [6] 13| 14} 15|
18] [19], 20, 21].

A spanning tree with at most one branch vertex is called a spider. Gargano, Hammar, Hell,
Stacho and Vaccaro [I1] (also see Gargano and Hammar [10]) proved that if G is a connected graph
on n vertices with §(G) > (n —1)/3, then G contains a spanning spider (Later Chen, Ferrara, Hu,
Jacobson and Liu [5] proved the stronger result that connected graphs on n > 56 vertices with
0(G) > (n — 2)/3 contain a spanning broom; that is, a spanning spider obtained by joining the
center of a star to an endpoint of a path). Motivated by this, Gargano et al. [11] conjectured that
for all s > 1, if G is a connected graph on n vertices with 6(G) > (n —1)/(s +2), then G contains
a spanning tree with at most s branch vertices. Later, Flandrin, Kaiser, Kuzel, Li and Ryjdcek [9]
Problem 11] asked if the much stronger bound of §(G) > n/(s+3) + C' is sufficient and then Ozeki
and Yamashita [16, Conjecture 30] conjectured a precise value for the constant termﬂ Note that
even the approximate version of the conjecture by Flandrin et al. has not been verified for any
s > 1 and the original (weaker) conjecture of Gargano et al. has not been verified for any s > 2.

n both places, the conjecture is stated as a generalized Ore-type degree condition; that is, in terms of the sum
of the degrees of every independent set of s + 3 vertices, but we only state the minimum degree version here.



Conjecture 1 (Ozeki and Yamashita [16]). For all s € N, if G is a connected graph on n vertices

with 6(G) > 273, then G contains a spanning tree with al most s branch vertices.

The goal of this paper is to prove Conjecture [1] asymptotically.

Theorem 1. Let s € N and let 0 < 1/ng < ,1/s. Suppose that G is a connected graph on n > ng
vertices with 6(G) > (SJ%?) + y)n, then G contains a spanning tree with at most s branch vertices.

The following example(s) show that our result is asymptotically best possible and that Conjec-
ture [1] is best possible if true. First note that if s + 3 divides n, then one can obtain a graph G on

n vertices with §(G) = ;5 — 1 which contains no spanning tree with at most s branch vertices by
identifying each vertex of a path on s+ 3 vertices with a complete graph on 5+L3 vertices since the

s + 1 internal vertices of the path will be branch vertices in every spanning tree.

Example 1. For all s,m € Z*, there exists a connected graph G on n = (s+ 3)m — 2 vertices with

0(G) = ";jgl such that every spanning tree of G has more than s branch vertices.

Proof. Let H; be a graph on 2m — 1 vertices obtained from two copies of K,, by identifying a
vertex v and let Ho be the graph obtained by taking the join of an independent set on m vertices
with a K,,—1. Let n = (s + 3)m — 2 and let G be a graph obtained from a path P = bjby...bsy1
on s + 1 vertices by identifying for each 2 < ¢ < s, the vertex b; with a vertex of a K,, and for
J € {1,541}, either by identifying b; with the cut vertex of Hy, or by identifying b; with some
vertex in the smaller side of Hy; that is, adding some edge from by (if j = 1) or bs (if j = s+ 1) to
the smaller side of Ha. It is clear that 6(G) =m —1 = ";ﬁgl and for any spanning tree 7', each b;
will be a branch vertex in T'.

R

—1 m m m

Figure 1: An example for the case s = 3.

2 Overview of the proof

Our proof splits into two main parts. First we show that if G is a graph with minimum degree at
least (1/r + v)n, then we can find a partition of V(G) into at most r — 1 parts {Vi,..., V}} having
the property that for each i, G[V;] has no sparse cuts and most vertices in V; have degree at least
(1/r+~/2)n in G[V;] while all other vertices in V; have linear minimum degree in G[V;]. Let us say
that we have partitioned G into “robust” subgraphs.

The second part of the proof focuses on these so-called robust subgraphs obtained above. Let
t > 1 and let G be a graph on n vertices with linear minimum degree having no sparse cuts in which
most of the vertices have degree at least (tJ%g +v)n. We will show that not only does G contains a
spanning tree with at most ¢ branch vertices, but G contains a cycle C' and a set K C V(C') with
|K| <t such that for all v € V(G) \ V(C), v has a neighbor in K. It is clear that such a structure,
which we call a “star-cycle”, contains a spanning tree with at most ¢ branch vertices.



The real heart of the proof lies in finding these spanning star-cycles in the robust subgraphs.
It is now standard in spanning subgraph problems to use Szémerédi’s regularity lemma to reduce
the problem to finding a simpler structure in the so-called reduced graph. For instance, if one
were looking for a Hamiltonian cycle, it would be natural to apply regularity and prove that the
reduced graph is connected and contains a perfect matching. In our case, the simpler structure that
we wish to find is a collection of vertex-disjoint edges and stars which we call a “star-matching.”
Unfortunately it may not be sufficient to find a star-matching in the reduced graph, as this may
not correspond to the desired star-cycle in the original graph (it is possible that every star-cycle
in the original graph has unbounded maximum degree, a situation for which the regularity lemma
is unequipped to deal with). To get around this issue, we introduce a more complex structure in
place of the reduced graph, called the “fractional-random-reduced-graph”. The fractional-random-
reduced-graph will retain more of the information about the original graph and therefore make it
possible to turn a spanning star-matching in the fractional-random-reduced-graph into a nearly
spanning star-cycle in the original graph. To get from a nearly spanning star-cycle to a spanning
star-cycle, we use the now standard absorbing method of Rodl, Rucinski and Szemerédi [17] in a
form proved by the first author and Nelsen [7].

Finally, to combine the two parts of the proof, we start with a connected graph G having
minimum degree at least (SJ%?’ + v)n. We obtain a robust partition of G and inside each part of
the partition we find a star-cycle having the correct number of stars depending on the relative
degrees inside that part. Then we use the connectivity of G to find edges connecting the spanning
star-cycles from each part of the partition. The minimum degree of G will put bounds on the
number of parts of the partition and the relative degrees inside those parts in such a way that the
obtained spanning tree has at most s branch vertices.
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