
Turán numbers for theta graphs

Boris Bukh — Carnegie Mellon University
Michael Tait — Carnegie Mellon University

Abstract

The theta graph Θ`,t consists of two vertices joined by t vertex-disjoint paths of length `
each. For fixed odd ` and large t, we show that the largest graph not containing Θ`,t has at
most c`t

1−1/`n1+1/` edges and that this is tight apart from the value of c`.

Given a graph F , the Turán number for F , denoted by ex(n, F ) is the maximum number of edges
in an n-vertex graph that contains no subgraph isomorphic to F . Mantel and Turán determined
this function exactly when F is a complete graph, and the study of Turán numbers has become a
fundamental problem in combinatorics (see [19, 21, 25] for surveys). The Erdős–Stone theorem [12]
determines the asymptotic behavior of ex(n, F ) whenever χ(F ) ≥ 3, and so the most interesting
Turán type problems are when the forbidden graph is bipartite.

One of the most well-studied bipartite Turán problems is the even cycle problem: the study of
ex(n,C2`). Erdős initiated the study of this problem when he needed an upper bound on ex(n,C4)
in order to prove a theorem in combinatorial number theory [9]. The combination of the upper
bounds by Kővari, Sós and Turán [22] and the lower bounds by Brown [3] and Erdős, Rényi and
Sós [11] gave the asymptotic formula

ex(n,C4) ∼
1

2
n3/2.

It is now known that for certain values of n the extremal graphs must come from projective
planes [15, 17, 14] and this is conjectured to be the case for all n (see [16]).

A general upper bound of ex(n,C2`) of c`n
1+1/` for sufficiently large n was originally claimed

by Erdős [10] and first published by Bondy and Simonovits [2] who showed that one can take
c` = 20`. Subsequent improvements of the best constant c` to 8(`− 1) by Verstraëte [27], to (`− 1)
by Pikhurko [24], and finally to 80

√
` log ` by Bukh and Jiang [7] were made, and this final bound

is the current record.
As stated above, we have an asymptotic formula for ex(n,C4). Additionally, the upper bound

on ex(n,C2`) is of correct order of magnitude for ` ∈ {3, 5} [1, 29], i.e., ex(n,C2`) = Θ(n1+1/`) for
these values of `. However, unlike the case of C4, the sharp multiplicative constant is not known;
see [18] for the best bounds on ex(n,C6). The order of magnitude for ex(n,C2`) is unknown for any
` /∈ {2, 3, 5}. The best known general lower bounds are given by Lazebnik, Ustimenko and Woldar
[23] (but see [26] for a better bound for the ex(n,C14) case).

Although it is unclear whether or not ex(n,C2`) = Ω(n1+1/`) in general, more is known if instead
of forbidding a pair of internally disjoint paths of length ` between pairs of vertices (that is, a C2`)
one forbids several paths of length ` between pairs of vertices. For t ∈ N, let Θ`,t be the graph
made of t internally disjoint paths of length ` connecting two endpoints. The study of ex(n,Θ`,t)
generalizes the even cycle problem as Θ`,2 = C2`. Faudree and Simonovits showed [13] that

ex(n,Θ`,t) = O`,t

(
n1+1/`

)
.

More recently, Conlon showed that this upper bound gives the correct order of magnitude if
the number of paths is a large enough constant [8]. That is, there exists a constant c` such that



ex(n,Θ`,c`) = Θ`(n
1+1/`). Verstraëte and Williford [28] constructed graphs with no Θ4,3 that have

(12 − o(1))n5/4 edges.
In this paper, we are interested in the behavior of ex(n,Θ`,t) when ` is fixed and t is large.

When ` = 2, the result of Füredi [20] shows that ex(n,Θ2,t) ∼ 1
2

√
tn3/2. For general `, the result

of Faudree and Simonovits gives that ex(n,Θ`,t) ≤ c`t`
2
n1+1/`. We improve this bound as follows.

Theorem 1. For fixed ` ≥ 2, we have ex(n,Θ`,t) ≤ c`t1−1/`n1+1/`.

When ` is odd, we show that the dependence on t in Theorem 1 is correct.

Theorem 2. Let ` ≥ 3 be an odd integer. Then

ex(n,Θ`,t) = Ω`

(
t1−1/`n1+1/`

)
.

Below we illustrate some of the ideas with a proof of Theorem 1 for the simplest case.

Case ` = 3

As every graph of average degree 4d contains a bipartite subgraph of average degree 2d, and since
every graph of average degree d contains a subgraph of minimum degree d, we henceforth assume
that the graph is bipartite of minimum degree d.

Lemma 1. Let r be any vertex of G. Call a vertex u bad if u 6= r and u has more than t common
neighbors with r. If G is Θ3,t-free, then no neighbor of r is adjacent to t bad vertices.

Proof. Suppose w is adjacent to bad vertices u1, . . . , ut. Define a sequence of vertices z1, . . . , zt as
follows. We let zi be any common neighbor of r and ui other than w, z1, . . . , zi−1. It exists since
there are more than t common neighbors between r and ui. Then (wuizir)

t
i=1 is a collection of t

disjoint paths of length 3 from w to r.

Proof of Theorem 1 for ` = 3. Let r be any vertex of G. Let L0 = {r}. Let L1 be the set of all the
neighbors of r. Let L2 be the set of all vertices at distance 2 from r that have at most t common
neighbors with r. Note that by Lemma 1 each vertex in L1 has at least d− t neighbors in L2. Call
a vertex v1 ∈ L1 a parent of v2 ∈ L2 if v1 and v2 are adjacent. Note that a vertex in L2 can have
at most t parents. Hence, each vertex in L2 has at least d− t neighbors in V (G) \ L1.

Let L3 be all vertices in V (G) \ L1 that are adjacent to some L2. Call v3 ∈ L3 a descendant of
v1 ∈ L1 if there is a path of the form v1v2v3 with v2 ∈ L2.

Let B(v1) ⊂ L3 be all descendants of v1 that have more than t common neighbors with v1. By
Lemma 1, each v2 ∈ N(v1) has fewer than t neighbors in B(v1).

Let H be the subgraph of G obtained from G by removing all edges between B(v1) and N(v1) for
all v1 ∈ L1. Since each v2 ∈ L2 has at most t parents, each vertex in L2 has at least d−t−t(t−1) =
d− t2 neighbors in L3.

For a vertex v3 ∈ L3, let p(v3) be the number of paths of the form rv1v2v3 with vi ∈ Li. We
claim that p(v3) ≤ 2t(t − 1) for every v3 ∈ L3. Indeed, suppose the contrary. We will construct a

Θ3,t subgraph as follows. First, we pick any path rv
(1)
1 v

(1)
2 v3 counted by p(u). Since v3 and v

(1)
1 has

at most t common neighbors, and since r and v
(1)
2 have at most t common neighbors, at most 2t

paths counted by p(u) intersect {v(1)1 , v
(2)
2 }. So, we can pick another path rv

(2)
1 v

(2)
2 v3 that is disjoint



from {v(1)1 , v
(2)
2 }. We can repeat this, at each step selecting path rv

(i)
1 v

(i)
2 v3 that is disjoint from⋃

j<i{v
(j)
1 , v

(j)
2 } for i = 1, . . . , t. The paths rv

(i)
1 v

(i)
2 v3 together form a Θ3,t. So, p(u) ≤ 2t(t − 1)

after all.
Since each vertex in L1 has at least d − t neighbors in L2 and each vertex in L2 has at least

d− t2 neighbors in L3, it follows that

|L3| ≥
d(d− t)(d− t2)

2t(t− 1)
.

Since |L3| ≤ n the result follows.
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[20] Zoltán Füredi. New asymptotics for bipartite Turán numbers. J. Combin. Theory Ser. A, 75(1):141–144,
1996.

[21] P. Keevash. Hypergraph Turán problems. In Surveys in combinatorics 2011, volume 392 of London
Math. Soc. Lecture Note Ser., pages 83–139. Cambridge Univ. Press, Cambridge, 2011.

[22] T. Kövari, V. T. Sós, and P. Turán. On a problem of K. Zarankiewicz. Colloquium Math., 3:50–57,
1954.

[23] F. Lazebnik, V. A. Ustimenko, and A. J. Woldar. A new series of dense graphs of high girth. Bull.
Amer. Math. Soc. (N.S.), 32(1):73–79, 1995.

[24] O. Pikhurko. A note on the Turán function of even cycles. Proc. Amer. Math. Soc., 140(11):3687–3692,
2012.

[25] A. Sidorenko. What we know and what we do not know about Turán numbers. Graphs Combin.,
11(2):179–199, 1995.

[26] T. Arthur Terlep and Jason Williford. Graphs from generalized Kac-Moody algebras. SIAM J. Discrete
Math., 26(3):1112–1120, 2012.
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