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Abstract

Many applications in graph theory are motivated by routing or flow problems. Among these
problems is Steiner Orientation: given a mixed graph G (having directed and undirected
edges) and a set T of k terminal pairs in G, is there an orientation of the undirected edges in G
such that there is a directed path for every terminal pair in T? This problem was shown to
be NP -complete by Arkin and Hassin [1] and later W [1]-hard by Pilipczuk and Wahlström [7],
parametrized by k. On the other hand, there is an XP algorithm by Cygan et al. [3] and a
polynomial time algorithm for graphs without directed edges by Hassin and Megiddo [5]. Chitnis
and Feldmann [2] showed W [1]-hardness of the problem for graphs of genus 1.

We consider a further restriction to planar graphs and show NP -completeness.

1 Introduction
Consider the following routing problem on mixed graphs:

Steiner Orientation
Input: Mixed graph G = (V,E ∪A) with undirected edges E and directed arcs A,

set T ⊆ V × V of k terminal pairs
Output: Orientation of all edges in E, such that for every (s, t) ∈ T there is an s-t-path in G

First notice that there is a polynomial time algorithm by Hassin and Megiddo [5] for the case
where G has no directed edges (A = ∅). On general graphs, this problem is in fact NP -complete,
shown by Arkin and Hassin [1], also providing an efficient algorithm for the special case of k = 2.
Generalizing this result to k ≥ 1, Cygan et al. [3] gave a nO(k) time algorithm. This means that
Steiner Orientation is in XP , parametrized by the number of terminal pairs. This raised the
question if Steiner Orientation is fixed-parameter tractable: is there an algorithm with runtime
f(k) · nO(1) for some computable function f only dependent on k? Pilipczuk and Wahlström [7]
showed Steiner Orientation to be W [1]-hard in k, disproving the existance of such an algorithm
under common assumptions. Considering k-SAT, Impagliazzo and Paturi [6] introduced the Expo-
nential Time Hypothesis (ETH): the classic SAT-problem parametrized by the number of variables
per clause does not have a subexponential algorithm. Assuming ETH—a common assumption
when parametrized problems are considered—Pilipczuk and Wahlström [7] could also show that
there is no f(k) · no(k/ log k) time algorithm for any computable f , showing that the XP algorithm
by Cygan et al. [3] is almost optimal. Even when restricting to graphs of genus 1, Chitnis and
Feldmann [2] showed that the problem remains W [1]-hard and the XP algorithm still is almost
optimal. All hardness-proofs provided utilize non-planar instances. This leaves open the following
question: What is the computational complexity of Steiner Orientation on planar graphs?

In this work, we consider the Planar Steiner Orientation problem where G is a planar
graph. As a first result on computational complexity, we show the following:

Theorem 1. Planar Steiner Orientation is NP-complete.



2 Hardness Proof
To prove Theorem 1, we give a reduction from Planar Monotone 3-SAT, introduced by de Berg
and Khosravi [4] and known to be NP -complete. We use different gadgets for variables, clauses
and edges. These are stitched together at shared undirected edges. Given a planar monotone
3-SAT formula F , we use these gadgets to create an instance of Planar Steiner Orientation
resembling the incidence graph of F with |T | polynomial in the size of F . Without loss of generality
we assume that every variable of F occurs both negated and unnegated.

Figure 1 (a) shows a flip gadget, a building block used in other gadgets. It contains two
terminal pairs (s1, t1) and (s2, t2) and two undirected (red) edges. Connecting both pairs will
result in opposing directions for the two undirected edges.

For every variable x in F , we have a variable gadget (Figure 1 (b)). It mimics the flip gadget,
providing an undirected edge exC for every positive/negative clause C containing x above/below
the terminal pairs respectively. We say that the gadget is (false) true if the undirected edges are
oriented (counter-)clockwise. No other orientation allows connecting both pairs.

For every clause C, we have a clause gadget (Figure 1 (c)). It contains a terminal pair (s, t)
and has an undirected edge ewC for each variable w it contains. The undirected edge eyC in the
middle is flipped to get a consistent orientation for variables set to true. The edges f and g are
synchronized by two flip gadgets to ensure that at most one of them is used to connect (s, t). For
clauses with only two variables we simply replace the edge ẽyC with an arc from left to right and
omit the attached flip gadget (see Figure 2 (a), clause (X ∨ Y )). It is easy to see that this way no
new possibilities for s-t-paths are created, keeping the gadget valid.

We use two stacked flip gadgets as edge gadgets resembling the variable-clause-incidences. By
reversing the direction twice, we synchronize the two red edges exC and exC for all x and C.

An important property of our construction is that all the gadgets that we use are self-contained,
which means that for each gadget any simple path connecting an (s, t)-pair of the gadget stays inside
the gadget. We state this simple observation, which we use to prove the following lemma:

Observation 1. Every source s has indegree zero and every target t has outdegree zero.

Lemma 1. In our construction each clause, edge, and variable gadget is self-contained.

Proof. Clause gadgets. Assume there is a simple path connecting a terminal pair of a clause
gadget, which is not fully contained within the gadget. Then there must be an edge that leaves
the clause gadget and due to the structure, this edge must be part of an edge gadget. But all
edges leaving a clause gadget and entering an edge gadget end in some target terminal, so by
Observation 1 the path cannot re-enter the clause gadget.

Edge gadgets. Consider a simple path that leaves an edge gadget. If the leaving edge is part
of a clause gadget, the path leads to a target terminal within the clause gadget or within another
edge gadget, from where it cannot re-enter the original edge gadget. The case where the leaving
edge is part of a variable gadget is similar.

Variable gadgets. Consider a simple path that leaves a variable gadget. Then the leaving
edge is part of an edge gadget and leads to a target terminal, so the path cannot re-enter the
variable gadget.

Using this, we obtain the following lemmas regarding our gadgets.

Lemma 2. All terminal pairs of a clause gadget corresponding to a clause C can be connected if
and only if at least one of the edges in {exC , e

y
C , e

z
C} is directed to the right.



t2
s1 s2

t1

(a)

t2
s1 s2

t1

exA exB exC

exD exE

(b)

t s

g f
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Figure 1: (a) The flip gadget, used to construct edge gadgets; (b) a variable gadget with three
positive and two negative occurrences; (c) a clause gadget (unlabeled (s, t)-pairs color-coded).

Proof. According to Lemma 1 it suffices to consider only paths within the clause gadget as there
is a path connecting a terminal pair if and only if there is a simple path connecting this terminal
pair. The terminal pairs of the flip gadgets can be connected within the flip gadgets. They cannot
be connected otherwise within the clause gadget since they would have to pass through a source
or target vertex then, which contradicts Observation 1. The edges f and g are both directed
upwards or downwards because of the two flip gadgets between them. Hence it suffices to show the
equivalence for the pair (s, t).

“⇐”: Case 1: If exC is directed to the right, orient the edge f away from s. Case 2: If eyC is
directed to the right, ẽyC is directed to the left. Case 3: If ezC is directed to the right, orient the
edge g pointing to t. In each of these cases s is connected to t.

“⇒”: By contraposition. As we move away from s, we can neither use the edge ẽyC nor ezC .
Thus we have to use f which means it points away from s. To come to t we have to use one of the
edges exC or g. This is impossible.

The next two lemmas follow immediately from the gadget structure and Lemma 1.

Lemma 3. The only way to connect all terminal pairs of a variable gadget is to orient all edges
clockwise or counterclockwise.

Lemma 4. The only way to connect all terminal pairs of an edge gadget is to orient the two outer
edges exC and exC in the same direction.

We can observe that there is always an orientation such that the terminal pairs of all variable
and edge gadgets can be connected. Provided that all terminal pairs of all variable and edge gadgets
are connected, the terminal pairs of all clause gadgets can be connected if and only if the formula
is satisfiable. Thus, the Planar Steiner Orientation instance has a solution if and only if the
corresponding Planar Monotone 3-SAT formula is satisfiable. This proves Theorem 1.

Full Example We want to provide a small but complete example. In Figure 2 we give the inci-
dence graph and the Planar Steiner Orientation instance created using the gadgets introduced
above corresponding to: F = (X ∨ Y ) ∧ (¬X ∨ ¬Z ∨ ¬W ) ∧ (Y ∨ Z ∨W ) ∧ (¬X ∨ ¬Y ∨ ¬Z).

3 Conclusion
By a polynomial-time reduction from Planar Monotone 3-SAT we have shown that Planar
Steiner Orientation is NP -hard. Clearly, it also is in NP , which makes it NP -complete.

Future work involves proving W [1]-hardness or looking for approximation algorithms, connect-
ing as many pairs as possible. Graph classes with other restrictions could also be considered.
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Figure 2: A full example showing the reduction from Planar Monotone 3-SAT to Planar
Steiner Orientation: (a) incidence graph for formula F ; (b) corresponding reduction instance.
Variables and variable gadgets are highlighted in green, clauses and clause gadgets in orange.
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