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Abstract

The marking game is a two players game played on a graph, associated to the game coloring
number of the graph. It was first described as a colorblind version of the coloring game, which
was the reason why this game was studied at first.

We here study how the game coloring number changes on basic operations on the graph. We
are interested mainly about the deletion of a vertex or an edge, about the contraction of edges,
the union of two graphs and the Cartesian product. Moreover, we show that our bounds are
tight and give examples of infinite families of graphs attaining these bounds, that we introduce
as the class of sunflowers.

The graph marking game is a game on a graph that was first introduced in 1998 by Zhu [3] as
a tool to study the graph coloring game, introduced in 1981 by Brams in [1] and rediscovered ten
years later by Bodlaender, [2]. The graph marking game is played by two players, Alice and Bob,
who alternate turns marking a yet unmarked vertex, until the whole graph is marked. Each time
a vertex is marked, its score is 1 plus the number of its marked neighbors. At the end, the score of
the graph is the maximum score of a vertex during the game. Alice tries to minimize it while Bob
tries to maximize it. When Alice starts and both players play optimally, the score of the game is
then known as the game coloring number of the graph G and is denoted by colg(G).

In this paper we study in details how the game coloring number of a graph may change when
small modifications are made to the graph. Among earlier results on this topic, Zhu proved in [3]
the following result about subgraphs.

Theorem 1 (Zhu [3]). For a graph G, let G1 and G2 be spanning subgraphs of G such that
E(G) = E(G1) ∪ E(G2) and E(G1) ∩ E(G2) = ∅. We have

colg(G) ≤ colg(G1) + ∆(G2)

where ∆(G2) denotes the maximum degree of G2.

Note that this implies in particular that the game coloring number of a spanning subgraph
is at most the game coloring number of G. Inspired by this, Sia proved the following about the
Cartesian product of two graphs:

Theorem 2 (Sia [4]). Let G and H be two graphs and denote by � the Cartesian product and t
the disjoint union. Then

colg(G�H) ≤ colg

 ⊔
h∈V (H)

{(g, h) | g ∈ G}

+ ∆(H).



Remark that the set of vertices of C = G�H is V (C) = {(g, h) | g ∈ G, h ∈ H}.
For the following study, we need some notations on the game and some variants. First, we

consider the marking game and a variant where Bob has the first move. To avoid any confusion,
we call A-marking game the game for which Alice has the first move, and B-marking game the
game where Bob has the first move. We denote colA(G) and colB(G) the scores of these games
respectively when both players play optimally, called A-coloring number and B-coloring number
(recall that the default game is the A-marking game). When the variant needs not be explicit,
we use the notation colX , X ∈ {A,B}. We also consider games under progress. For a subset
M ⊆ V (G), denote G|M the graph G where the vertices of M have been marked already. When
considering the score of the games, the score of the vertices of M is not considered though they are
counted as marked neighbors for the score of vertices in V \M .

We say that Alice has a strategy for score s in a game if she can ensure that no vertex get a
score larger than s. In particular, colX(G|M) is then the smallest positive number k such that
Alice has a strategy for score k in the X-marking game on G|M . Similarly, we say that Bob has a
strategy for score s on a graph G for the X-marking game if he has a strategy such that, no matter
how Alice plays, there is always a vertex with score at least s. Now, s = colX(G|M) is the only
value for which both Alice and Bob have a strategy for score s.

Our first result states that starting the game is an advantage in any situation and quantifies
this advantage.

Theorem 3. Let G be a graph with a set M of marked vertices. Then:

colA(G|M) ≤ colB(G|M) ≤ colA(G|M) + 1.

Sketch of the proof. Let us prove colB(G|M) ≤ colA(G[M) + 1. Alice has a strategy for score s
for the A-marking game. Playing the B-game, she just ignores Bob’s first move and she plays her
strategy. This way vertices have score at most s+1, hence colB(G|M) ≤ colA(G|M)+1. Similarly, if
she has a strategy for score s for the B-marking game, then, when playing to the A-one, she imagines
the first move of Bob and she plays accordingly. By doing this, in the A-marking game vertices
have at most the same score than in the B-marking game, thus colA(G|M) ≤ colB(G|M).

In particular, this result implies the following corollary:

Corollary 1. If Alice has a strategy for score s on the graph G|M , then if Bob passes a turn, she
still has a strategy for score s. If Bob has a strategy for score s on a graph G|M , then if Alice
passes a turn, he still has a strategy for score s.

In the following, most examples of tightness are based on sunflower graphs, which are formed
by a clique and a stable set joined in a particular regular way.

Definition 1. Let n and k be positive integers such that k ≤ n. We define the sunflower SFn,k

with:

• V (SFn,k) = {a0, . . . , an−1, b0, . . . , bn−1}

• E(SFn,k) = {aiaj |0 ≤ i < j < n, i 6= j} ∪ {aibj |0 ≤ i < n, j ∈ {i, (i + 1) mod n, . . . , (i + k −
1) mod n}}.

We call seed vertices those from the set A = {a0, . . . , an−1}, and petal vertices those from the set
B = {b0, . . . , bn−1}. We define also the graph SF∗n,k as the graph SFn,k − {b0}.
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Figure 1: Example of sunflower SF6,2 and SF∗6,3

Examples of sunflowers SFn,k and SF∗n,k are drawn in Figure 1.
For vertex deletion, we denote by G−{v} the graph (V (G)\{v}, E(G)\{(u, v) | u ∈ V (G), u 6=

v}), obtained from G by deleting the vertex v and all incident edges.

Theorem 4. Let G be a graph, M a set of marked vertices of G and v a vertex of V (G) \M with
|N(v) ∩M | < colA(G). If G− {v} has at least one unmarked vertex, then

colA(G|M)− 2 ≤ colA(G− {v}|M) ≤ colA(G|M),

and both bounds are tight. Moreover the lower bound is tight only for vertices of degree at least
colA(G)− 1.

One family of graphs attaining the lower bound is the family SF∗n,n for v = a0. For the upper
bound we have SFn,n for v = b0.

For edge deletion, we denote by G \ {e} the graph (V (G), E(G) \ {e}), obtained by deleting the
edge e.

Theorem 5. Let G be a graph, M a set of marked vertices of G and e an edge of G. We assume
G has at least one unmarked vertex. We then have:

colA(G|M)− 1 ≤ colA(G \ {e}|M) ≤ colA(G|M),

and these bounds are tight.

For the lower bound, we have the family of graphs SFn,n when removing the edge a0a1. For the
upper one we have the graphs SFn,1, n > 2, when removing a0b0.

For edge-contraction, we denote G/e the graph obtained by the contraction of the edge e, (where
the two endpoints of e, say u and v are contracted into a unique vertex w).

Theorem 6. Let G be a graph, e = uv an edge of G.

colA(G|M)− 2 ≤ colA(G/e|M) ≤ colA(G|M) + 2,

and both bounds are tight.



For the upper bound, the tightness is reached for the graphs SF∗n+1,n+1 by contracting the edge
a0a1, hence obtaining the graph SFn,n.
For the lower bound we have the graph obtained by taking for G a subgraph of SF∗n+1,n+1 where
we remove some edges in the following way: aibi for 1 ≤ i < n + 1, the edges an+1bi for i ≥ bn/2c
and the edges a0bi for i ≤ bn/2c and for i = n. We denote by d(v) the degree of vertex v. In this
case we have d(a0) = d(an+1) + 1 if n is even and d(a0) = d(an+1) otherwise.
For the union of graphs:

Theorem 7. Let G and H be two graphs:

colA(G ∪H) = min

{
max(colA(G), colB(H))
max(colB(G), colA(H))

}
.

Hence, we can directly improve Sia’s result:

Corollary 2 (Follows from Theorems 2 and 7). Let G and H be two graphs. Then:

colA(G�H) ≤ min

{
colB(G) + ∆(H)
colB(H) + ∆(G)

}
,

and this bound is tight.

If K` is the clique on ` ≥ 2 vertices, then the graphs SFn,k�K`, with n ≥ 2 and k ≥ 2, reach
this upper bound.
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