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Abstract

The Majority problem can be formulated as follows. Given a set B of N balls, each of these
colored either red or green, a colorblind player, who is unable to determine the color of a ball
but can decide if two balls have the same color, wants to determine a ball of the majority color
within a minimum number of comparisons. This problem has been first solved by Saks and
Werman. We consider the variant where the goal of the player is to determine the color of
every ball. Aigner gave bounds on the minimum number of questions, denoted Q(N, p,≤), that
guarantees the determination of the colors of all balls in the case where there are at most p

green balls in B. We extended the results of Aigner on exact values of Q(N, p,≤). Similarly
we define Q(N, p,=) for the case where there are exactly p green balls in B. We provide upper
bounds for Q(N, p,=), and exact values for the first two values of p. Our results lead to several
new questions.

1 Introduction

Let B = {b1, b2, . . . , bN} be a set of N balls, each ball being either red or green. The goal is to
provide the color of each of the balls by asking questions of the type ”Are bi and bj colored the
same ? ” (1 ≤ i < j ≤ N). We remark that N − 1 such comparisons may lead easily to a partition
of B into two subsets B1 and B2 that are the sets of balls of each color. If we would allow B to
contain any number of red and green balls it would be impossible to decide the colors of the balls.
Hence we will always assume in the following that B contains more red balls than green balls and we
call such a coloring a Red-green coloring. Furthermore we will also consider more restricted kinds
of Red-green colorings : given an integer p, a Red-green coloring of N balls will be said p-majored
if there are at most p green balls and it will be said p-equal if there are exactly p green balls.
The difficulty consists in determining a method minimizing the number of comparisons. Given
two integers N and p < N

2
we call (N, p,≤)-identification (respectively (N, p,=)-identification)

the problem of determining for sure all the colors of N balls colored by a p-majored Red-green
coloring (respectively by a p-equal Red-green coloring) and we denote by Q(N, p,≤) (respectively
Q(N, p,=)) the minimum number of comparisons that are necessary to solve any instance of the
(N, p,≤)-identification problem (respectively of the (N, p,=)-identification problem).

We have shown that Q(N, p,≤) and Q(N, p,=) share properties that are useful for proving
bounds.

Let ⊥ denotes either ” = ” or ” ≤ ”, the two following lemmas hold.

Lemma 1. For every two integers N and 1 ≤ p < N
2

we have :

Q(N, p,⊥) ≥ 2 +Q(N − 2, p − 1,⊥).

Lemma 2. For every two integers N and p < N−1

3
we have :

Q(N, p,⊥) ≤ p+Q(N − (p+ 1), p,⊥).



2 The (N, p,≤)-identification problem

In this section we present our main results on the (N, p,≤)-identification problem.
Given two integers N and p such that 0 ≤ p < N

2
, let us define

Q+(N, p,≤ ) := N + 1− ⌊
N + 1

p+ 1
⌋ and Q

−
(N, p,≤) := Q+(N, p,≤)− 1.

Aigner showed the following :

Theorem 1. [1] Let N and p be integers such that 0 ≤ p < N
2
, we have:

• Q
−
(N, p,≤) ≤ Q(N, p,≤) ≤ Q+(N, p,≤),

• Q(N, p,≤) = Q+(N, p,≤) when N ≡ r [p+ 1] and r = p or 0.

The next theorem gives more cases where the exact value of Q(N, p,≤) is known and partially
answers a question of Wildon (Problem 8.1 in [2]).

Theorem 2. Let N and p be integers such that 0 ≤ p < N
2
, we have:

Q(N, p,≤) = Q+(N, p,≤) when N ≡ r [p+ 1] and r = p or 0 ≤ r ≤ ⌊p
2
⌋.

Furthermore the following holds due to several properties satisfied by Q(N, p,≤).

Theorem 3. For every nonnegative integer p exactly one of the two following statements is satisfied:

1. For every N ≥ 2p+ 1 we have Q(N, p,≤) = Q+(N, p,≤).

2. There exist two integers p+1

2
≤ rp ≤ p − 1 and Np ≥ 2p + 1 such that for every N ≥ Np we

have :

Q(N, p,≤) = Q
−
(N, p,≤) ⇐⇒ N ≡ r [p+ 1] for rp ≤ r ≤ p− 1.

Remark that Theorem 2 shows only cases where Q(N, p,≤) = Q+(N, p,≤). In particular Theorem
2 proves that Q(N, p,≤) = Q+(N, p,≤) whenever p = 1 or 2, and N ≥ 2p + 1. Hence it is natural
to wonder if Q(N, p,≤) is always equal to Q+(N, p,≤). This is however not the case: Wildon [2]
has checked by a computer search the values of Q(N, p,≤) for N ≤ 30. In particular he listed all
such Q(N, p,≤) that are equal to Q

−
(N, p,≤). Our (two different) programs confirmed this list.

Looking carefully at the results leads us to two natural questions ; we could answer one of these
positively, but not the other one.

Theorem 4. ∀N ≥ 7, Q(N, 3,≤) = Q+(N, 3,≤) = N + 1−
⌊

N+1

4

⌋

.

Question 1. Is it true that for any positive integer p ≥ 4 there exists a smallest integer N(p) ≥
2p + 1 such that for any integer N ≥ N(p) we have:

Q(N, p,≤) = Q
−
(N, p,≤) ⇐⇒ N ≡ r [p+ 1] for p+1

2
< r ≤ p− 1 ?

Using the program Main.hs, available from Wildon’s website1, generating all couples (N, p) such
that Q(N, p,≤) = Q

−
(N, p,≤) for N ≤ 51, we could verify that there is no contradiction to a

positive answer to Question 1. Furthermore we could prove that the property is verified for any
even p ≤ 12 with N(4) = 9, N(6) = 19, N(8) = 24, N(10) = 29 and N(12) = 34. Notice that,
by the proof of Theorem 3, show that for any p there exists some N ≡ ⌊p+1

2
⌋ + 1 such that

Q(N, p,≤) = Q
−
(N, p,≤) would be enough to answer positively Question 1 in case p is even. For

the case where p is odd one should furthermore show that Q(N, p,≤) = Q+(N, p,≤) for every
N ≡ p+1

2
[p+ 1].

1www.ma.rhul.ac.uk/ uvah099/Programs/MajorityGame/Main.hs



3 The (N, p,=)-identification problem

Q(N, p,=) happens to be more difficult to estimate than Q(N, p,≤). We could obtain one upper
bound.

Theorem 5. Let N and p be integers such that 1 ≤ p < N
2
, and let m be the largest integer such

that 2m ≤ min(N − 2p, 2p), we have :

Q(N, p,=) ≤ N + 1−m−

⌊

N + 2− 2m

p+ 1

⌋

.

For p = 1 or 2 we were able to compute the exact value of Q(N, p,=).

Theorem 6. ∀N ≥ 3, Q(N, 1,=) = N −
⌊

N
2

⌋

.

Theorem 7. ∀N ≥ 6, Q(N, 2,=) = N −
⌊

N+1

3

⌋

.

Theorems 6 and 7 show that, for p = 1 or 2, the upper bound Q+(N, p,=) of Q(N, p,=)
given by Theorem 5, is in fact the right value of Q(N, p,=). This is however not true for any
value of p as shown by our programs. For N ≤ 30 and p < N

2
it happens several times that

Q(N, p,=) = Q+(N, p,=) − 1, once that Q(N, p,=) = Q+(N, p,=) − 2 (for (N, p) = (30, 4)) and
for all other couples (N, p) the equality Q(N, p,=) = Q+(N, p,=) holds.

For p ≥ 3, it seems that the upper bound Q+(N, p,=) works well for ”small” values of N ’s,
however we defined a family of methods that we call ”Tower methods” that are more efficient in
the case of ”very big” N ’s. However one may also wonder if there are other methods that could
give better bounds.
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