
Spanning trees of dense digraphs
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Abstract

An oriented tree T of order n is unavoidable if every tournament of the same order contains
a copy of T . We find a sufficient condition for T to be unavoidable, and use this to prove that
almost all labelled oriented trees are unavoidable. This settles a 28-year old conjecture of Bender
and Wormald, and yields a partial result for a conjecture of Havet and Thomassé. Moreover, we
prove that for all C > 0 every tournament of order n+ o(n) contains every oriented tree T of
order n and maximum total degree ∆(T ) ≤ (log n)C , improving a result of Kühn, Mycroft and
Osthus. We discuss a related question and some work in progress.

1 Unavoidable and almost unavoidable trees

An oriented graph H of order n is unavoidable if every tournament of order n contains a copy of H;
otherwise H is avoidable. Since there exist tournaments without directed cycles, any unavoidable
oriented graph must be acyclic. It is then natural to ask which trees are unavoidable.

A classical result of Rédei [20] states that every directed path is unavoidable. More recently,
Thomason [22] showed that all orientations of sufficiently long cycles are unavoidable except for
those which yield directed cycles—implying that all orientations of sufficiently long paths are
unavoidable. Havet and Thomassé [9] then gave a complete answer for paths: with three exceptions,
every orientation of a path is unavoidable (the exceptions are antidirected paths of order 3, 5 and 7,
which are not contained in the directed cycle of length 3, the regular 5-vertex tournament and the
Paley tournament on 7 vertices respectively). Significant attention has also been focused on the
unavoidability of claws (a claw is an oriented tree formed by identifying the initial vertices of a
collection of vertex-disjoint directed paths). Indeed, Saks and Sós [21] conjectured that every claw
on n vertices with maximum degree at most n/2 is unavoidable. Lu [14, 15] gave a counterexample
to this conjecture, but in the other direction showed that every claw with maximum degree at
most 3n/8 is unavoidable. Lu, Wang and Wong [16] then extended these results by showing that
every claw with maximum degree at most 19n/50 is unavoidable, but that there exist claws with
maximum degree approaching 11n/23 which are avoidable. Finding the supremum of all c > 0 for
which every claw with maximum degree at most cn is unavoidable remains an open problem.

Some trees are far from being unavoidable. For example, the outdirected star S on n vertices
(whose edges are oriented from the central vertex to each of the n− 1 leaves) is not contained in a
regular tournament on 2n− 3 vertices, since each vertex of the latter has only n− 2 outneighbours.
That is, there exist tournaments with almost twice as many vertices as S which do not contain a
copy of S. On the other hand, Bender and Wormald [1] proved that almost all oriented trees are
‘almost unavoidable’, in the sense that they are contained in almost all tournaments on the same
number of vertices.

Definitions 1. We write Tn for the set of all labelled oriented trees of order n, Gn for the set of all
labelled tournaments of order n, and write a.a.s. for “asymptotically almost surely (as n→∞)”.

Theorem 2 (Bender and Wormald [1]). There is T ′
n ⊆ Tn of size (1− o(1))|Tn| such that if G ∈ Gn

is chosen uniformly at random then a.a.s. G contains all trees in T ′
n.
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Figure 1: An α-nice tree T has s = dαne pendant stars A1, . . . As which contain an out-leaf of T such
that the edge between T −Ai and Ai is directed away from Ai, and also s pendant stars B1, . . . , Bs

which contain both an in-leaf of T and an out-leaf of T such that the edge between T −Bi and Bi

is directed towards Bi. In this illustration we only indicate the orientations of edges specified by
this definition. The shaded area is the subtree T −

⋃
i∈[s]

(
V (Ai) ∪ V (Bi)

)
.

Hence, if T ∈ Tn and G ∈ Gn are chosen uniformly at random, then a.a.s. G contains a copy of T .
In the same paper Bender and Wormald conjectured that this holds for every tournament G—that
is, that almost all labelled oriented trees are unavoidable. We confirm their conjecture [18].

Theorem 3. If T ∈ Tn is chosen uniformly at random then a.a.s. T is unavoidable.

The following definitions are crucial for our proof of Theorem 3.

Definitions 4. We say that a subtree T ′ of a tree T is pendant if T − T ′ is connected. Let α > 0.
An oriented tree T of order n is α-nice (see Figure 1) if, writing s := dαne, T contains 2s vertex-
disjoint pendant oriented stars A1, . . . , As and B1, . . . , Bs and for each i ∈ [s]

• Ai is a subtree of T which contains an out-leaf of T and the edge between Ai and T −Ai is
oriented away from Ai, and

• Bi is a subtree of T which contains both an in-leaf of T and an out-leaf of T and the edge
between Bi and T −Bi is oriented towards Bi.

Most of the work involved in proving Theorem 3 lies in the proof of the following theorem, which
states that large nice oriented trees with polylogarithmic maximum degree are unavoidable.

Theorem 5. For every α,C > 0 there exists n0 such that if T is an α-nice tree of order n ≥ n0
and ∆(T ) ≤ (log n)C then T is unavoidable.

We can choose T ∈ Tn uniformly at random by choosing a uniformly-random orientation of a
uniformly-random labelled tree. So (as proved by Moon), almost all labelled trees satisfy the degree
condition of Theorem 5.

Theorem 6 ([17, Corollaries 1 and 2]). Choose T ∈ Tn uniformly at random. For all ε > 0, a.a.s.

(1− ε) log n

log logn
≤ ∆(T ) ≤ (1 + ε)

log n

log log n
.

We prove that almost all labelled oriented trees are 1
250 -nice. Together, theorems 5, 6 and 7

(with C = ε = 1 and α = 1
250) immediately imply Theorem 3.

Theorem 7. If we choose T ∈ Tn uniformly at random, then a.a.s. T is 1
250 -nice.



2 Beyond unavoidability—a conjecture of Havet and Thomassé

Let T be an oriented tree of order n. If T is avoidable, it is natural to ask what is the smallest
integer g(T ) such that every tournament of order g(T ) contains a copy of T . With this notation,
T is unavoidable if and only if g(T ) = |T | = n. Sumner conjectured that for every oriented
tree T on n vertices we have g(T ) ≤ 2n − 2, and the example of an outdirected star described
above demonstrates that this bound is best possible. Kühn, Mycroft and Osthus [12, 13] used a
randomised embedding algorithm to prove that Sumner’s conjecture holds for sufficiently large n;
previous upper bounds on g(T ) had been established by Chung [3], Wormald [23], Häggkvist
and Thomason [6], Havet [7], Havet and Thomassé [8] and El Sahili [5]. In particular, El Sahili
proved that g(T ) ≤ 3n− 3 for every oriented tree T of order n, and this remains the best general
upper bound on g(T ) for small n. Kühn, Mycroft and Osthus [13] improved this for large oriented
trees of bounded maximum degree, proving that, for all α,∆ > 0, if T is a sufficiently large oriented
tree of order n with ∆(T ) ≤ ∆, then g(T ) ≤ (1 + α)n. In other words, bounded degree trees are
close to being unavoidable, in the sense that they are contained in every tournament of slightly
larger order.

Our proof of Theorem 5 makes use of the aforementioned random embedding algorithm of Kühn,
Mycroft and Osthus, using somewhat sharper estimates on certain quantities associated with the
random embedding. In particular, using these stronger estimates we are able to establish the same
bound on g(T ) for oriented trees whose maximum degree is at most polylogarithmic in n (rather
than bounded by a constant as above). This is the following theorem, which we use repeatedly in
the proof of Theorem 5, and which may be of independent interest.

Theorem 8. For all α,C > 0 there exists n0 such that if T is an oriented tree of order n ≥ n0
with ∆(T ) ≤ (log n)C and G is a tournament of order at least (1 + α)n, then G contains T .

Let T be a tree of order n with ` = `(T ) leaves. Havet and Thomassé [7] conjectured that
g(T ) ≤ n+ `− 1, and Havet [7] has proved that g(T ) ≤ n+ 3

2(`2− 3`) + 5. The conjecture is known
to hold for paths and it is easy to see that it holds for all stars and unavoidable trees; hence it
holds for almost every tree by Theorem 3. While the general statement remains open, we note that
for all α,C > 0 Theorem 8 confirms their conjecture for every sufficiently large tree T such that

∆(T ) ≤
(
log n

)C
and `(T ) ≥ αn. (Note that some trees satisfy the conditions of Theorem 8 but are

not α-nice, so Theorem 8 is slightly better than Theorem 3 with respect to Havet and Thomassé’s
conjecture.)

3 An extension—trees in dense digraphs

A well-known result of Komlós, Sárközy and Szemerédi [10] states that for all ε,∆ > 0 there exists n0
such that every graph of order n ≥ n0 and minimum degree

(
1
2 + ε)n contains every (spanning) tree

of order n and maximum degree ∆. (This has subsequently been improved by the same and other
authors in many directions [2, 4, 11].) The theorems above suggest that similar approach could be
used to establish a digraph analogue of their result.

However, our proofs of theorems 3, 5 and 8 use the fact that the host graph is a tournament in
several places. For instance, we rely on a characterisation of the structure of large tournaments
and a randomised embedding algorithm (from [13]), both of which would need to be adapted. We
discuss progress in this direction.
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[9] F. Havet and S. Thomassé. Oriented Hamiltonian Paths in Tournaments: A Proof of Rosenfeld’s
Conjecture. J. Combin. Theory Ser. B, 78 (2000), 243–273.
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