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Abstract

We study the problem of covering simple orthogonal art galleries with rectangular stars.
The problem has been shown to be polynomial [9], but to our knowledge, the exponent of the
running time is still in the double digits. A linear-time 3-approximation algorithm using a
partitioning into staircase shaped regions has been discovered by [8]. This is a follow-up paper
to our recent theoretical result [5] linking point guards to horizontal mobile guards and vertical
mobile guards (vision is restricted to rectangular vision). The result of this paper is that the
algorithm implicitly described by our theoretical result can in fact be run in linear time. The
novelty of the approach is the sparse representation of the pixelation graph of simple orthogonal
polygons and the heavy reliance on so-called horizontal and vertical R-trees. After translating
the problem into graph theory, geometrical insight is barely needed to verify the correctness of
the algorithm.

1 Introduction

Art gallery problems in general ask the minimum number of guards with given power (for example,
static or mobile) and type of vision (line of sight, rectangular vision, etc.) required to control the
gallery. A point guard is a point in the interior of a polygon, and it covers any point in the closed
polygon (the gallery) to which the guard can be joined by a line segment contained by the closed
polygon (line of sight vision). The art gallery theorem due to Chvátal states that given an n-
vertex simple polygon, bn3 c point guards are sufficient and sometimes necessary to cover the closed
polygon. In 1980 the sharp bound for the special case of n-vertex simple orthogonal polygons was
determined to be bn4 c by Kahn, Klawe, and Kleitman.

Mobile guards were introduced by Avis and Toussaint. A mobile guard patrols a line segment
inside the gallery and sees every point in the gallery which can be seen from at least one point
on its patrol. O’Rourke proved that to cover an n-vertex simple polygon, bn4 c mobile guards are
sufficient and sometimes necessary. To cover simple orthogonal polygons, Aggarwal proved that
the extremal bound on the number of mobile guards is b3n+4

16 c.

Throughout the paper, we restrict the meaning of orthogonal polygons to axis-parallel orthogonal
polygons. Győri and O’Rourke independently proved that there is a stronger combinatorial theorem
behind the simple orthogonal art gallery theorem: any n-vertex simple orthogonal polygon can be
partitioned into at most bn4 c simple orthogonal polygons of at most 6 vertices. Recently, Győri
and Mezei proved that Aggarwal’s theorem can be stated in a stronger form as well: any n-vertex
simple orthogonal polygon can be partitioned into at most b3n+4

16 c simple orthogonal polygons of
at most 8 vertices.

Two points in an orthogonal polygon (using axis-parallel sides) have rectangular or r-vision of
each other, if there is an axis-parallel rectangle containing both points such that the rectangle is
contained in the closed polygon. A region covered by a point guard inside the gallery is called an
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r-star. The mentioned partitioning theorems have an important feature in common: the bound on
the number of guards required does not change if vision is restricted to r-vision. We mention that
Katz and Morgenstern [6] introduced the notion of sliding cameras, which are maximal horizontal
or vertical line segments in the gallery equipped with r-vision.

For simple orthogonal polygons an optimal point guard system using r-vision can be found in
polynomial time, a result due to Worman and Keil [9]. The degree of the polynomial bounding the
running time was originally 17, which may be too high for practical applications. Subsequently,
Lingas, Wasylewicz, and Żyliński [8] gave a linear time 3-approximation algorithm for the problem.
Their proof uses partition into staircase shaped regions, where the problem can be solved exactly
in linear time.

In this paper we present the sketch of an algorithm for guarding simple orthogonal polygons with
point guards using r-vision. An advantage of our approach is that it requires minimal geometrical
insight, computation is mostly done on graphs, and there are only 3 subcases to verify.

Let P be a simple orthogonal polygon. Let mH be the minimum size of a horizontal mobile guard
system of P using r-vision. Define mV analogously for vertical mobile guards. Lastly, let p be the
minimum size point guard system of P using r-vision. Then

Theorem 1 (Győri and Mezei [5]).
⌊
4(mV +mH−1)

3

⌋
≥ p.

In [5] it has also been shown that both mH and mV (and the respective optimal guard system)
can be computed in linear time (if holes are allowed, the problem is NP-hard [1]). The algorithm
only relies on linear time triangulation of polygons by Chazelle [2] and an efficient least common
ancestors algorithm in trees [3]. Using the trivial p ≥ mV ,mH inequalities, it is clear that the
left hand side is an 8

3 -approximation of p. The proof Theorem 1 is constructive. In the following
sections we argue that the following holds.

Theorem 2. There is a linear time algorithm which computes a covering set of point guards of P
of cardinality at most b4(mH+mV −1)

3 c.

2 Preliminaries

In this 4 page extended abstract some technical details such as vision along degenerate rectangles
will be neglected. Let SH be the set of internally disjoint rectangles obtained by cutting horizontally
at each reflex vertex of a simple orthogonal polygon P . Similarly, let SV be defined analogously for
vertical cuts of P . We may refer to the elements of these sets as horizontal and vertical slices,
respectively. The horizontal R-tree TH of P is equal to

TH =
(
SH ,

{
{h1, h2} ⊆ SH : h1 6= h2, h1 ∩ h2 6= ∅

})
,

i.e., TH is the intersection graph of the horizontal slices of P . The graph TH is indeed a tree, and
we can think of it as a sort of dual of the planar graph determined by the union of P and its
horizontal cuts. Similarly, TV is the intersection graph of the vertical slices of P . The concept of
R-trees were introduced by [4].

Let G be the intersection graph of SH and SV , i.e.,

G = (SH ∪ SV , {{h, v} : h ∈ SH , v ∈ SV , int(h) ∩ int(v) 6= ∅}) .



In other words, a horizontal and a vertical slice are joined by an edge iff their interiors intersect.
We may also refer to G as the pixelation graph of P . This structure was already studied in [7].
Clearly, the set of pixels {∩e = h ∩ v | e = {h, v} ∈ E(G)} is a cover of P . A cornerstone of the
proof is the following lemma (without proof here).

Lemma 3. G is a connected chordal bipartite graph (any cycle of length at least 6 has a chord).

Definition 4 (r-vision of edges). For any e1, e2 ∈ E(G) we say that e1 and e2 have r-vision of each
other iff e1 ∩ e2 6= ∅ or there exists a C4 in G which contains both e1 and e2.

It is easy to see that two points p1 ∈ int(∩e1) and p2 ∈ int(∩e2) have r-vision of each other if and
only if e1 and e2 have r-vision of each other in the above sense. Furthermore, every horizontal
slice h ∈ SH can be mapped to a maximal horizontal mobile guard patroling the interior of h (by
slightly modifying P , we may assume without loss of generality that every guard can be generated
like this). The guard h covers exactly ∪v∈NG(h)v. Thus a covering set of horizontal mobile guards
of P is a subset MH ⊆ SH , such that every v ∈ SV is covered in G by an element of MH . Similarly,
let MV ⊆ SV be a covering set of vertical mobile guards of P . Without proof, we present any easy
consequence of Lemma 3, and another almost trivial claim.

Claim 5. If G[MH ∪MV ] is connected, then any edge e0 = {h0, v0} ∈ E(G) is r-visible from some
edge of G[MH ∪MV ].

Claim 6. For any h1, h2 ∈ SH the following statements hold:

• NG(h1) is the vertex set of a path in TV , or in other words NG(h1) induces a path in TV .

• NG(h1)
⋂
NG(h2) is either empty, contains exactly one slice, or induces a path in TV .

• If G is 2-connected and h1 is a neighbor of h2 in the TH , then |NG(h1)
⋂
NG(h2)| ≥ 2.

3 Sketch of the proof of Theorem 2

In [5] it was shown that MH and MV can be determined in linear time. G can also be determined in
linear time by only storing the endpoints of NG(h) in TV for a vertex h ∈ SH (we referred to this as
the sparse representation). The proof of Theorem 1 is recursive and has three cases distinguished
by the level of connectivity of G[MH ∪MV ]: disconnected, connected but not 2-connected, and
2-connected.

Take an arbitrary slice vroot ∈ MV , and make it the root of TV (do this for TH as well). Run the
preprocessing of the least common ancestors (LCA) algorithm of [3] on TV (and TH , respectively).
Observe that for any two h1, h2 ∈ SH , we can compute NG(h1)∩NG(h2) by making 6 LCA queries
in constant time. Indeed, NG(h1) ∩NG(h2) is a path and its endpoints can be computed from the
endpoints of the paths induced by NG(h1) and NG(h2) in TV , which is stored in our representation
of G.

Determining and storing G[MH ∪MV ] using sparse representation. Traverse TV via a
DFS started from vroot, and for each node v ∈ SV take note of the closest element of MV which
is on the search path between vroot and v. For each slice h ∈ MH , determine the LCA of the
endpoints of NG(h). If it is neither of the endpoints of NG(h), then the above labels allow us to
determine the endpoints of NG[MH∪MV ](h). If the LCA is one of the endpoints of NG(h), note this
at the endpoint which is farther from vroot. By DFS traversing TV one more time maintaining the
subset of MV contained in the search path, we can identify both ends of NG[MH∪MV ](h).



Determining the R-forests on MH and MV . Join two slices h1, h2 ∈MH by an edge if there
exists a v ∈ MV such that {h1, v}, {h2, v} ∈ E(G) and there does not exist h3 ∈ MH which is
between h1 and h2 in the path induced by NG(v) in TH . We call the constructed graph the R-
forest on MH (since its components are trees). The definition for MV goes analogously. It can be
easily verified that if G[MH ∪MV ] is connected and we replace SH , SV , and G with MH , MV , and
G[MH ∪MV ], Claim 6 still holds.

By the previously described structure, we can identify if h1, h2 ∈ SH have a common neighbor in
MV . For every h ∈ MH check if the closest element of MH \ {h} on the hroot → h path has a
common MV neighbor with h; if so, join them by an edge.

Let v ∈ MV , and let h1, h2 ∈ SH be the endpoints of the path induced by NG(v) in TH . Let the
LCA of h1 and h2 be h3, and suppose that h3 6= h1, h2. Let h4 ∈ MH be the element closest to
h3 on the h3 → h1 path, and let h5 ∈ MH be the element closest to h3 on the h3 → h2 path. In
the R-forest, h4 and h5 also need to be joined. Again, by DFS traversing TH and maintaining the
subset of MH contained in the search path, we can identify h4 and h5.

The remaining steps. Having completed the previous steps, we can identify connected and 2-
connected components of G[MH ∪MV ]. The method described in [5] can then be used to determine
a subset of edges of each 2-connected component such that the chosen edges have r-vision of any
edge induced by the neighborhood of the 2-connected component in G. The set of these induced
neighborhoods cover every node in SH ∪ SH , however, there are edges that join two slices that are
in different neighborhoods. An extra guard has to be found for each component of G[MH ∪MV ],
but the algorithm to find these is not discussed here. If G[MH ∪ MV ] is connected, but not
2-connected, Claim 5 already implies that the union of the point guards constructed for the 2-
connected components of G[MH ∪MV ] is indeed covering set of point guards for the whole polygon.
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