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Abstract

Given a graph G, let vc(G) and vc+(G) be the sizes of a minimum and a maximum minimal
vertex covers, respectively. We say that G is well covered if vc(G) = vc+(G) (that is, all minimal
vertex covers have the same size). Deciding if a graph is well covered is coNP-complete. In this

paper, we obtain O∗(2vc)-time and O∗(1.4656vc
+

)-time FPT algorithms to decide well covered-
ness, parameterized by vc(G) e vc+(G), respectively, improving results of 2015 by Boria et. al.
[4]. We also obtain an FPT algorithm parameterized by α(G) = n − vc(G) for d-degenerate
graphs, which include bounded genus graphs (as planar graphs) and graphs with bounded max-
imum degree. Finally, we use the primeval decomposition technique to obtain a linear time
algorithm for extended P4-laden graphs and (q, q − 4)-graphs, which is FPT parameterized by
q, improving results of 2013 by Klein et al. [11].

1 Introduction

Let G = (V,E) be a graph and C, I ⊆ V . We say that C is a vertex cover if every edge of G has an
endpoint in C and that I is an independent set if every pair of distinct vertices of I are not adjacent
in G. It is well known that C is a vertex cover if and only if V − C is an independent set. Let
vc(G) be the size of a minimum vertex cover and let the independence number α(G) = n− vc(G)
be the size of a largest independent set in G. A graph G is called well covered if all minimal vertex
covers of G are minimum (or equivalently if all maximal independent sets are maximum). The
concept of well covered graph was introduced by Plummer [12]. In well covered graphs, the greedy
algorithm for producing a maximal independent set (or a minimal vertex cover) always produces
a maximum independent set (and a minimum vertex cover). Unfortunately, deciding if a graph
is well covered is coNP-complete even on K1,4-free graphs [5]. In this paper, we obtain O∗(2vc)-

time and O∗(1.4656vc
+

)-time FPT algorithms to decide well coveredness, parameterized by vc(G)
e vc+(G), resp., improving results of 2015 by Boria et. al. [4]. We also obtain an FPT algorithm
parameterized by α(G) = n− vc(G) for d-degenerate graphs, which include bounded genus graphs
and graphs with bounded maximum degree. Finally, we use the primeval decomposition technique
to obtain a linear time algorithm for extended P4-laden graphs and (q, q− 4)-graphs, which is FPT
parameterized by q, improving results of 2013 by Klein et al. [11].

2 Well coveredness of graphs with few P4’s

A cograph is a graph with no induced P4 [6]. A graph G is P4-sparse if every set of five vertices
in G induces at most one P4 [10]. A graph G is (q, q − 4) for some integer q ≥ 4 if every subset
with at most q vertices induces at most q − 4 P4’s [2]. Cographs and P4-sparse graphs are exactly
the (4, 0)-graphs and the (5, 1)-graphs. In [2], polynomial time algorithms are obtained for several
optimization problems in (q, q−4)-graphs. A graph is extended P4-laden if every induced subgraph
with at most six vertices contains at most two induced P4’s or is {2K2, C4}-free. This graph
class was introduced in [9]. A motivation to develop algorithms for extended P4-laden graphs and
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Figure 1: Hierarchy of graphs with few P4’s. In gray, the classes investigated in [11].

(q, q − 4)-graphs lies on the fact that they are on the top of a widely studied hierarchy of classes
containing many graphs with few P4’s, including cographs, P4-sparse, P4-lite, P4-laden and P4-
tidy graphs. See Figure 1. In [11], Klein, Mello and Morgana obtained linear time algorithms
to determine well coveredness for P4-tidy graphs. Using the primeval decomposition of extended
P4-laden graphs and (q, q − 4)-graphs, we extended this result to the following:

Theorem 1. Let G be a graph and q ≥ 4. If G is a (q, q − 4)-graph or extended P4-laden, we can
determine well coveredness in linear time O(2qq2 · (m+ n)).

3 FPT parameterized by vertex cover number vc(G) and vc+(G)

We say that the well coveredness problem in a graph class C is fixed parameter tractable (FPT)
with some parameter k = k(G) in time O(nc) (for a constant c) if deciding well coveredness is
O(f(k) ·nc)-time solvable for any graph G of C, where f is a function depending only on k = k(G).
In this case, we say that the running time is O∗(f(k)).

In 2015, Boria et al. [4] obtained an O∗(1.5397vc
+

)-time FPT algorithm to compute vc+(G)
(which can be used to decide well coveredness). The following theorem improves this results.

Theorem 2. Deciding well coveredness is O∗(1.4656vc
+

)-time solvable.

In 2015, Boria et al. [4] also obtained an O∗(2.8284vc)-time FPT algorithm to compute the
maximum minimal vertex cover. In 2018, Alves et al. [1] proved explicitly that the well coveredness
problem is FPT parameterized by vc(G), by an FPT algorithm with time O∗(2nd) = O∗(2vc+2vc),
where nd(G) is the neighborhood diversity of G. In the following, we improve these results.

Theorem 3. It is possible to enumerate in time O(2vc·(m+n)) all minimal vertex covers of a graph.
Consequently, there exists an O∗(2vc)-time FPT algorithm to decide well coveredness parameterized
by vc = vc(G).

Sketch of the proof. Let C be a minimum vertex cover of G. Then all edges have an endpoint in C.
Therefore, for every partition of C in two sets A and B (A ∪B = C, A ∩B = ∅), (A ∪N(B)) \B



is a vertex cover of G if there are no edges with both endpoints in B. Moreover, for every minimal
vertex cover C ′ of G, A = C∩C ′ and B = C\C ′ form a partition of C such that C ′ = (A∪N(B))\B,
since C ′ \ C ⊆ N(B) (because C ′ is a vertex cover and is minimal). Thus, we can enumerate all
minimal vertex covers of G by checking for every partition (A,B) of C if (A ∪ N(B)) \ B is a
minimal vertex cover of G. Notice that verifying if a set is a minimal vertex cover can be done
in time O(m + n). Since there are 2|C| partitions of C, |C| = vc(G) and it is possible to obtain a
minimum vertex cover C in time O(2vc · (m+ n)), we are done.

4 FPT parameterized by α(G) = n− vc(G)
The local-treewidth [7] of a graph G is the function ltwG : N→ N which associates with any r ∈ N
the maximum treewidth of an r-neighborhood in G. That is, ltwG(r) = maxv∈V (G){tw(G[Nr(v)]},
where Nr(v) is the set of vertices at distance at most r from v. We say that a graph class C has
bounded local-treewidth if there is a function fC : N → N such that, for all G ∈ C and r ∈ N,
ltwG(r) ≤ fC(r). It is known that graphs with bounded genus or bounded maximum degree have
bounded local-treewidth [7]. In particular, a graph with maximum degree ∆ has ltwG(r) ≤ ∆r and
a planar graph has ltwG(r) ≤ 3r − 1 [3].

Theorem 4. The well coveredness decision problem is FPT parameterized by α(G) = n − vc(G)
in time O(n2) for graphs with bounded local-treewidth.

Sketch of the proof. Let WellCovk the first order formula which is true if and only if the graph G
does not have two independent sets X and Y with |X| = k, |Y | = k − 1 and Y being maximal:

WellCovk := ∀x1, . . . , xk ∀y1, . . . , yk−1

 ∧
1≤i<j≤k

xi 6= xj

 ∧ Indep({x1, . . . , xk})

→ ¬
(
Indep({y1, . . . , yk−1}) ∧ Maximal({y1, . . . , yk−1}

)
,

where Indep(X) := ∀x, y(x ∈ X ∧ y ∈ X) → ¬E(x, y) and Maximal(X) := ∀y∃x(y 6∈ X) → (x ∈
X) ∧E(x, y). Notice that, if G is not well covered, then there are independent sets X and Y with
2 ≤ |X| ≤ α, |Y | = |X| − 1 and Y being maximal. So, let WellCov be the first order formula,
which is true if and only if G is well covered:

WellCov :=
∧

2≤k≤α
WellCovk.

Then the well covered decision problem is first order expressible. Moreover, WellCov contains
at most α2 variables and then the size of the expression WellCov is a function of α. We then can
apply the Frick-Grohe Theorem (see [8]) to prove that the well coveredness decision problem is
FPT with parameter α(G) in time O(n2) for graphs with bounded local treewidth.

We can obtain specific FPT algorithms (parameterized by α(G)) for d-degenerate graphs, such
as planar graphs, bounded genus graphs and bounded maximum degree graphs. A graph is called d-
degenerate if every induced subgraph has a vertex with degree at most d. The degeneracy of a graph
G is the smallest d such that G is d-degenerate. For example, outerplanar graphs, planar graphs
and graphs with bounded maximum degree ∆ have degeneracy at most 2, 5 and ∆, respectively.



Theorem 5. The well coveredness decision problem is FPT parameterized by α = α(G) = n−vc(G)
in time O((d + 1)α · (m + n)) for d-degenerate graphs, for every d > 0. Moreover, the time is
O(7α · (m+ n)), if G has bounded genus.

Sketch of the proof. Let G be a d-degenerate graph. The algorithm uses a search tree with height
α(G) where each node has an associated graph. The root graph is the original graph G. A leaf
is a node such that its height is α(G) or its associated graph is empty. Let h be a non-leaf node.
We branch h according to a vertex v with minimum degree in the associated graph of h. Let
N [v] = {u1, . . . , u`}, where ` = |N [v]| ≤ d + 1. With this, the node h will have ` + 1 child nodes
h1, h2, . . . , h` in the search tree. In the child node hi (1 ≤ i ≤ `), remove N [ui] from the associated
graph, which is also d-degenerate. If there are two leaf nodes with different heights, return NO
(since G has a maximal independent set which is not maximum and then G is not well covered).
Otherwise, return YES. Notice that the tree height is at most α(G) and each node has at most
d + 1 child nodes. Therefore, the search tree has at most (d + 1)α nodes and the total time is
O((d+ 1)α · (m+ n)), since every node takes time O(m+ n).
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