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The world is continuous 
(as far as image analysis is 
concerned)
infinite amount of data

but the computer is discrete
finite amount of data

How can we ever be sure 

that we didn’t lose the

information of interest?

The Continuous and the Discrete
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Take-Home Messages

• It is a good idea to analyze both domains conjointly

– formally establish correspondences

– build models in whatever domain is more convenient, 
knowing that results remain valid in the other domain

• Some useful results already exist

– signal-theoretic and geometric sampling theorems

– joint error analysis

Joint work with Peer Stelldinger and Hans Meine

Many thanks to H.S. Stiehl, B. Neumann, V. Kaynig, 
N. Boëtius, G. Kedenburg, F. Hamprecht, DGCI
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Traditional Approaches
To Spatial Discretization  

• Heuristic Approach

– develop an algorithm

– show experimentally that it succeeds sufficiently often

• Physics Approach:

– theory is derived in the continuous domain

– discretization is left to another discipline (numerical 
analysis) – not part of the core theory

– correctness proofs in form of asymptotic convergence 
theorems – not applicable to fixed size images

• Approach of Digital Geometry

– model and prove everything in the discrete domain

– but: the relation of the original image to the real world 
is not considered – we may have already lost the 
relevant information

4
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Example: Discretization of a 
Differential Equation

Anisotropic Diffusion (structure-enhancing smoothing)

original (no noise) standard discretization

Weickert & Scharr: “A scheme for coherence-enhancing diffusion filtering with optimized rotation 
invariance”, J. Visual Communication and Image Representation, 13(1/2):103-118, 2002

based on standard 
finite differences
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Example: Discretization of a 
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Example: Discretization of a 
Differential Equation

Anisotropic Diffusion (structure-enhancing smoothing)
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Example: Discretization of a 
Differential Equation

original (noisy) standard discretization improved discretization

Weickert & Scharr: “A scheme for coherence-enhancing diffusion filtering with optimized rotation 
invariance”, J. Visual Communication and Image Representation, 13(1/2):103-118, 2002

Anisotropic Diffusion (structure-enhancing smoothing)

 tensordiffusiona  is      where)( DuD
t

u



30.04.2008

5

Multidimensional Image Processing IWR, Univ. of Heidelberg

Example: Sampling Artifacts in the 
Original Image

• Moiré effect
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Example: Sampling Artifacts in the 
Original Image

• color Moiré effect                  staircasing artifacts
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Example: Sampling Artifacts in the 
Original Image

• color Moiré effect                  staircasing artifacts
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Example: Wrong Character

• Non-trivial shape changes when sampling is too 
coarse

15

Stelldinger & Köthe: “Towards a general sampling theory for shape preservation”, 
Image and Vision Computing, 23(2):237-248, 2005
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Distinguish ideal geometric image (infinite resolution) 
and real digital image (finite)

sampling, noise,
quantization

16

Cameras as Linear Systems

blurring
by PSF
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sampling, noise,
quantization
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Cameras as Linear Systems
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Our Geometric Sampling 
Theorem, Error Analysis

ideal geometric image
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Shannon‟s Sampling Theorem (1)

• Analog signal can be exactly reconstructed from 
samples when spectrum is band limited

and sampling is sufficiently dense

• Holds approximately 
for real cameras
– effective Nyquist

frequency of MTF: 
100 lp/mm

– sampling frequency:
136 lp/mm

– residual aliasing can  
be modeled as noise
(Moiré effect is rare)18

Nyquist2121 ,ufor    0),( uuuuF

Nyquistsampling 2uu
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Shannon‟s Sampling Theorem (2)

• Reconstruction of the analog camera image possible

– point spread function (PSF) of real cameras enforces band 
limit (typical: Gaussian PSFs with σ = 0.45 ... 0.8)

– small errors due to noise, quantization, finite size, and 
slight under-sampling

– reconstruction by sinc interpolation or spline interpolation

• high reconstruction quality for orders above 3 or 5

 can work in either continuous or discrete domain

36 rotations by 
10 degrees:

high errors for 
nearest neighbor and
linear interpolation

very low error for
5th order spline

Unser et al.: “B-Spline Signal Processing”, Trans. Signal Processing, 41(2), pp. 821-848, 1993
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Shannon‟s Sampling Theorem (3)

• Surprising fact: many imaging textbooks introduce 
sampling theorem, but few draw consequences 

• E.g: non-linear operators increase bandwidth

– image gradient (linear filter) doesn‟t change bandwidth:

– but: image gradient magnitude

doubles the bandwidth, because multiplication corresponds 
to convolution in Fourier domain

 gradient sampling rate must double
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Köthe: “Edge and Junction Detection with an Improved Structure Tensor”, DAGM „03, pp. 25-32, 2003
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Shannon‟s Sampling Theorem (4)

• Visible aliasing in
gradient image 

21

gradient
at original
sampling

rate

gradient
at doubled

sampling
rate
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Shannon‟s Sampling Theorem (5)

• Gradient based edge
detector:

Errors due to insufficient 
resolution clearly visible

original

Canny edges at 

original resolution

Canny edges at

doubled resolution
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Limitations of Shannon‟s Sampling 
Theorem

• Sampling theorem gives no guarantees about 
image geometry, e.g.

– number of edges (zero-crossings) per unit area

– number and arrangement of critical points

– only limited on average

– example: construct band-limited function (minimum 
wavelength = 2) with 9 critical points (4 minima, 1 
maximum, 4 saddles) in single facet [0,1]x[0,1]

23
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Stelldinger & Köthe: unpublished manuscript
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sampling, noise,
quantization

24

Digital Sampling Theorems

Short cut between geometric image and digital image
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Digital Sampling Theorems

• Consider ideal geometric image as given:

– assumptions about region shapes (e.g. r-regular)

– model of digitization process (e.g. Gauss digitization)

– image reconstruction method from digitization (e.g. 
nearest-neighbor reconstruction)

– criteria for successful reconstruction (e.g. 
homeomorphism between original and reconstruction)

• Proof that criteria are fulfilled under these 
conditions

25
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Digital Sampling Theorems

• Serra-Pavlidis Theorem (1982)

– r-regular shapes: morphologically open and closed w.r.t. 
ball of radius r (equiv.: osculating r-balls)

26
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Digital Sampling Theorems

• Serra-Pavlidis Theorem (1982)

– r-regular shapes: morphologically open and closed w.r.t. 
ball of radius r (equiv.: osculating r-balls)

– subset digitization with s-grid

– nearest-neighbor reconstruction

– criterion: homeomorphism between
original and reconstruction

• Proof: shape preserved if s<r

29
Serra: “Image Analysis and Mathematical Morphology”, Academic Press, 1982
Pavlidis: “Algorithms for Graphics and Image Processing”, Computer Science Press, 1982
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Digital Sampling Theorems

• Various extensions, e.g.

– Latecki et al.:

• µ-digitization (arbitrary threshold µ)

– Stelldinger, Köthe: 

• extension to irregular grids

• stronger guarantee (r-homeomorphism)

• shapes may be blurred with disc-shaped PSF

• But too restrictive

– r-regularity forbids corners and junctions, implies binary 
shapes

– homeomorphism cannot be guaranteed in non-binary 
images

30
Latecki, Conrad, Gross: “Preserving Topology by a Digitization Process”, JMIV 8:131-159, 1998
Stelldinger & Köthe: “Towards a general sampling theory for shape preservation”, IMAVIS, 2005
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sampling, noise,
quantization

31

Geometric Sampling Theorem

Describe difference between geometric image and 
reconstructed analog image

ideal projection

blurring
by PSF
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Our Geometric Sampling 
Theorem, Error Analysis

ideal geometric image
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Homeomorphy vs. Homotopy

• Requirement of homeomorphism between original 
shape and reconstruction is too strong

32
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Homeomorphy vs. Homotopy

• Requirement of homeomorphism between original 
shape and reconstruction is too strong

• Only require homotopy equivalence

– isomorphic homotopy trees

– alternating region and boundary levels

33 Meine, Köthe, Stelldinger: “A Topological Sampling Theorem for Robust Boundary Reconstruction and
Image Segmentation”, Discrete Applied Mathematics, to appear, 2008

A0

B1

A1 A2
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r-Stable Shapes

• Most scenes are not binary

• Most shapes have corners, occlusion causes 
junctions

– new condition: partition 
must be r-stable 

= homotopy equivalence 
after r-dilation of 
boundary (no waists!)

– regions must contain 
2r circle

4r1

shape is r1-stable, 
but not r2-stable

Meine, Köthe, Stelldinger: “A Topological Sampling Theorem for Robust Boundary Reconstruction and
Image Segmentation”, Discrete Applied Mathematics, to appear, 2008
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Non-Perfect Boundary Sampling

• Real samplings and edge detectors are not perfect

– systematic distortions: smoothing by PSF and filters

– stochastic distortions: noise, round-off error

– do not sample regions, but boundaries („edge points“)

– detected edge points characterized by two kinds of errors:

• p (maximum distance from true contour to edge point)

• q (maximum distance from edge point to true contour)

p

q

ideal (correct) contour

detected edge points

Meine, Köthe, Stelldinger: “A Topological Sampling Theorem for Robust Boundary Reconstruction and
Image Segmentation”, Discrete Applied Mathematics, to appear, 2008
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Edge Point Linking

( , )-reconstruction: region 
growing on Delaunay 
triangulation of edge points

(generalization of -shapes 

from laser range scanning)
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Edge Point Linking

( , )-reconstruction: region 
growing on Delaunay 
triangulation of edge points

(generalization of -shapes 

from laser range scanning)

1. detect edge points
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Edge Point Linking

( , )-reconstruction: region 
growing on Delaunay 
triangulation of edge points

(generalization of -shapes 

from laser range scanning)

1. detect edge points

2. create Delaunay triangulation 
of edge points



30.04.2008

20

Multidimensional Image Processing IWR, Univ. of Heidelberg

39

Edge Point Linking

( , )-reconstruction: region 
growing on Delaunay 
triangulation of edge points

(generalization of -shapes 

from laser range scanning)

1. detect edge points

2. create Delaunay triangulation 
of edge points

3. seeds: connected sets of large 
triangles (radius > 2p+q) 

4. region growing: remove 
triangles with radius > 

max(p,q)

Multidimensional Image Processing IWR, Univ. of Heidelberg

Geometric Sampling Theorem

• Digitization model

– shapes are r-stable

– boundary sampled with errors p and q

– ( , )-reconstruction with > max(p,q) and > 2p+q

– requirement: homotopy equivalence, similar geometry

• Proved guarantee: Shapes are preserved

40 Meine, Köthe, Stelldinger: “A Topological Sampling Theorem for Robust Boundary Reconstruction and
Image Segmentation”, Discrete Applied Mathematics, to appear, 2008



30.04.2008

21

Multidimensional Image Processing IWR, Univ. of Heidelberg

41

Geometric Sampling Theorem

• Self diagnosis: larger errors result in thick 
boundaries (= uncertain edge positions)

=1.6, =3.7 =4.5, =6.7

Multidimensional Image Processing IWR, Univ. of Heidelberg
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Geometric Sampling Theorem

• Self diagnosis: larger errors result in thick 
boundaries (= uncertain edge positions)

=1.6, =3.7 =4.5, =6.7
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Geometric Sampling Theorem

• Higher errors = segmentation result is less certain

=0.1 =0.7 =1.2 =1.7

Multidimensional Image Processing IWR, Univ. of Heidelberg
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Geometric Sampling Theorem

• thick boundary can be thinned

– remove long edges as long as topology is preserved
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From Sampling Theorems 
to Error Analysis

• Geometric sampling theorem establishes connection 
between geometric projection and detected edge 
points

• Next task: determine errors to show which shapes 
are actually preserved in practice

– systematic errors due to blurring (PSF, filters) and 
approximations in edge modeling

– statistic errors due to noise and sampling round-off

• Basic distinction: 
pixel-accurate and subpixel-accurate edge detectors

– pixel-accurate can be interpreted as subpixel-accurate plus 
rounding to nearest grid coordinate

45

Multidimensional Image Processing IWR, Univ. of Heidelberg

Error sources in different analysis stages

46

From Sampling Theorems 
to Error Analysis

analog
camera
image

digital
camera
image

geometric distortion 
due to blurring
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Pixel-Accurate vs. Subpixel Operators

Difference is very noticeable – rules of thumb:

– localization error of pixel-accurate operators 5 times as big

– much bigger differences for derivatives (tangents, curvature)

47 Herzog: „Analyse historischer chinesischer Manuskripte“, Diploma thesis, University of Hamburg, 2007

pixel-accurate thresholding subpixel-accurate thresholding details

Multidimensional Image Processing IWR, Univ. of Heidelberg

• Example: 8-connected digital straight segments 
(grid-intersection digitization)

– round grid-intersection points to nearest pixel center

– maximum rounding errors:

• similar errors for other DSS types
and inter-pixel edges

• are added to other errors

Rounding Errors of Pixel-Accurate
Edge Detectors

48

2
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Statistical errors of subpixel edge detectors

49

From Sampling Theorems 
to Error Analysis
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Subpixel-Accurate Image Analysis

• gray values also encode geometry! (due to PSF)

• many operators can take advantage of this 
additional geometric information

• some tasks cannot be reliably performed with pixel 
accurate methods

– example: detection of critical points (local minima, 
maxima, saddles) on a Gaussian blob

50

8-neighborhood

(blue: maxima

red: saddle points)

4-neighborhood

(blue: detected maxima)

Stelldinger & Köthe: unpublished manuscript
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Stelldinger & Köthe: unpublished manuscript

Subpixel-Accurate Image Analysis

• gray values also encode geometry! (due to PSF)

• many operators can take advantage of this 
additional geometric information

• some tasks cannot be reliably performed with pixel 
accurate methods

– example: detection of critical points (local minima, 
maxima, saddles) on a Gaussian blob

51

8-neighborhood

(blue: maxima

red: saddle points)

98 123 147 171 190

163 187 206 218 223

220 230 232 225 210

238 228 211 187 160

208 183 155 126 99

spline-based

(blue: detected maxima)
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Subpixel Edge Detectors (1)

• Subpixel watersheds

– interpolate to double resolution

– compute gradient magnitude

– determine saddle points of spline

– follow flow line to maximum of spline

– suppress unwanted watersheds (e.g. threshold on f)
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Steger: “Subpixel-Precise Extraction of Watersheds”, ICCV '99, vol. II, pp. 884-890, 1999
Meine, Köthe: “Image Segmentation with the Exact Watershed Transform”, VIIP ‟05, pp. 400-405, 2005

animations
courtesy of 
Hans Meine
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Subpixel Edge Detectors (2)

• Subpixel Haralick edge:

– determine oriented 2nd derivative on oversampled image

– find crossings between zero-contour of spline and grid lines 
(polynomial root finder)

– complete by contour following along zero-crossings of spline
(predictor-corrector method)

• find next point along gradient

• correct perpendicular onto 
zero contour (Newton)

• Likewise other subpixel
zero-crossings 
(e.g. thresholding)

))((
)(

txf
t

tx 


>0 region <0 region

predictor step

corrector step

contour to

be traceddetected

edge points

Allgower, Georg: “Numerical path following”, In: Handbook of Numerical Analysis, vol. 5, pp. 3-207, 1997
Meine, Köthe: “Image Segmentation with the Exact Watershed Transform”, VIIP ‟05, pp. 400-405, 2005
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Statistical Errors of
Subpixel Edge Detectors

very good agreement between theory and experiments

– reconstruction error can be neglected

– localization error due to noise (mainly sensor noise): 

e.g. SNR=10  maximum errors

54
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Systematic errors of subpixel edge detectors

55

From Sampling Theorems 
to Error Analysis

analog
camera
image

digital
camera
image

geometric distortion 
due to blurring

ideal geometric image
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Systematic Errors of
Subpixel Edge Detectors

very good agreement between theory and experiments

– curved step edges: curvature bias

– corner bias:             for 90°, 
for 15°,

but diverges as angle 
tends to zero

56

pixel 3.0
2

ˆ
2

R
RR

7.0
2.2

blue: true contour, red: subpixel watersheds, green: subpixel Canny edges
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Systematic Errors of
Subpixel Edge Detectors

• Unfortunately, errors near junctions are much higher

– subpixel WS: 

• split-up into junctions of degree 3

• distortions (increasing with low contrast)

– subpixel Canny and Haralick

• gaps at junctions

– max. errors (experimental): 2,3 qp

subpixel WS subpixel WS subpixel WS

red: subpixel Canny
green: subpixel Haralick

Multidimensional Image Processing IWR, Univ. of Heidelberg
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Conclusions

• Conjoint analysis of continuous 
and discrete domains leads to 
much more reliable algorithms

– Sampling theorems and error 
propagation determine what 
properties are preserved during 
digitization and reconstruction

– Can determine necessary accuracy 
and optimal settings from image 
and scene properties

– Sub-pixel accurate algorithms have 
1/5 the error of pixel accurate ones

– Algorithms work as predicted 
without additional tuning

– More fun than trial-and-error
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Open Problems

• Segmentation not always 
accurate enough

– large errors near junctions

– false positives or negatives due to 
noise and shading

• Generalizations of geometric 
sampling theorems to

– 3D and higher dimensions

– interest points and matching

– object recognition

Thank you very much!


