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Abstract

Many real-world optimization problems are subject to dynamic environments that require an optimization algorithm to track the

optimum during changes. Ant colony optimization (ACO) algorithms have proved to be powerful methods to address combinatorial

dynamic optimization problems (DOPs), once they are enhanced properly. The integration of ACO algorithms with immigrants

schemes showed promising performance on different DOPs. The principle of immigrants schemes is to introduce new solutions

(called immigrants) and replace a small portion in the current population. In this paper, immigrants schemes are specifically

designed for the dynamic vehicle routing problem (DVRP). Three immigrants schemes are investigated: random, elitism- and

memory-based. Their difference relies on the way immigrants are generated, e.g., in random immigrants they are generated ran-

domly whereas in elitism- and memory-based the best solution from previous environments is retrieved as the base to generate

immigrants. Random immigrants aim to maintain the population diversity in order to avoid premature convergence. Elitism- and

memory-based immigrants aim to maintain the population diversity and transfer knowledge from previous environments, simul-

taneously, to enhance the adaptation capabilities. The experiments are based on a series of systematically constructed DVRP test

cases, generated from a general dynamic benchmark generator, to compare and benchmark the proposed ACO algorithms integrated

with immigrants schemes with other peer ACO algorithms. Sensitivity analysis regarding some key parameters of the proposed

algorithms is also carried out. The experimental results show that the performance of ACO algorithms depends on the properties of

DVRPs and that immigrants schemes improve the performance of ACO in tackling DVRPs.
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1. Introduction

Ant colony optimization (ACO) algorithms have been suc-

cessfully applied for solving different combinatorial optimiza-

tion problems, e.g., vehicle routing problems (VRPs) [12, 15].

Traditionally, researchers have drawn their attention on sta-

tionary optimization problems, where the environment remains

fixed during the execution of an algorithm [23, 48]. However,

many real-world applications are subject to dynamic environ-

ments. Dynamic optimization problems (DOPs) are challeng-

ing since the aim of an algorithm is not only to find the optimum

of the problem quickly, but to efficiently track the moving op-

timum when changes occur [29]. A dynamic change in a DOP

may involve factors like the objective function, input variables,

problem instance, constraints, and so on.

Conventional ACO algorithms have been designed for sta-

tionary optimization problems [14], e.g., to converge fast into

the global (or near) optimum solution, and may face a serious

challenge to tackle DOPs. This is because the pheromone trails

of the previous environment may bias the population to search

into the old optimum, making it difficult to track the moving
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optimum. As a result, ACO will not adapt well once the popu-

lation converges into an optimum. Considering that DOPs can

be taken as a series of stationary problem instances, a simple

way to tackle them is to re-initialize the pheromone trails and

consider every dynamic change as the arrival of a new problem

instance which needs to be solved from scratch [37]. However,

this restart strategy is generally not efficient.

In contrast, once ACO algorithms are enhanced properly,

they are able to adapt to dynamic changes since they are in-

spired from nature, which is a continuously changing pro-

cess [2, 3, 29]. Recently, ACO algorithms have been suc-

cessfully applied in combinatorial optimization problems with

dynamic environments since they are able to reuse knowl-

edge from previously generated pheromone trails [25, 26, 38].

More precisely, when the changing environments are similar,

the pheromone trails of the previous environment may provide

knowledge to speed up the optimization process to the new en-

vironment. However, the algorithm needs to be flexible enough

to accept the knowledge transferred from the pheromone trails,

or eliminate older unused pheromone trails, to better adapt to

the new environment.

Several strategies have been proposed and integrated with

ACO to shorten the re-optimization time and maintain a high

quality of the output efficiently, simultaneously. These strate-

gies can be categorized as: increasing diversity after a dy-
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namic change [25, 37]; maintaining diversity during the exe-

cution [16, 38]; memory-based schemes [26, 27, 36]; and hy-

brid/memetic algorithms [39].

Among these strategies, immigrants schemes have shown

promising results on binary DOPs [55, 61], dynamic travelling

salesman problems [38], and recently dynamic vehicle routing

problems (DVRPs) [35, 36]. Within immigrants schemes, a

small portion of newly generated ants, called immigrant ants,

replace the worst ants in the current population. Each immi-

grants scheme differs in the way immigrant ants are gener-

ated, e.g., random immigrants represent random solutions of the

problem [24], elitism- or memory-based immigrants represent

solutions that differ slightly from the best solution of a previous

environment [54, 55]. In this paper, we focus on the immigrants

schemes for the DVRP, and thus, the immigrant ants represent

a feasible VRP solution.

Random immigrants ACO (RIACO) and elitism-based im-

migrants ACO (EIACO) [35] were previously applied only on

a DVRP where the pattern of dynamic changes is random, de-

noted as random DVRPs, whereas memory-based immigrants

ACO (MIACO) [36] was applied only on a DVRP where the

pattern of dynamic changes is cyclic, denoted as cyclic DVRPs.

However, these algorithms were extended from the previous de-

velopments proposed for dynamic travelling salesman problems

[38], and thus, their behaviour was unexpected in most dynamic

test cases. In this paper, RIACO, EIACO, and MIACO are re-

designed specifically for the DVRP and their performance is

investigated on both random and cyclic DVRPs generated by a

different benchmark generator. The proposed algorithms differ

from their previous versions [35, 36] as follows: 1) the way ran-

dom, elitism- and memory-based immigrant ants are generated;

2) the selection of ant as the base to generate elitism-based im-

migrants; and 3) the ants selected to replace other ants in the

memory in order to generate memory-based immigrants.

The main issue with different dynamic benchmark generators

for the DVRP currently used in the literature [30, 35, 36, 41]

is that the optimum value is not known during the dynamic

changes. The same case stands for the DVRPs considered

on the initial developments of RIACO, EIACO and MIACO

[35, 36]. Therefore, it is impossible to observe how close

to the optimum each algorithm converges after a change. In

binary and continuous optimization functions, algorithms are

benchmarked in dynamic generators where the optimum value

is known during the dynamic changes [5, 32, 53, 56]. Compre-

hensive surveys regarding benchmark generators for DOPs are

available in [9, 42]. In this paper, the dynamic benchmark gen-

erator for permutation problems (DBGP) [40] is mainly used

which can generate DVRPs with known optimum over the en-

vironmental changes and hence facilitate the observation on

how close to the optimum an algorithm performs. Based on

the DVRPs generated from DBGP, this paper benchmarks and

compares the performance of the re-designed algorithms with

other peer ACO algorithms. In addition, the algorithms are

compared on the DVRP with traffic factors [38], which mod-

els a real-world scenario.

To summarize, the contributions of the paper are as follows:

1) RIACO, EIACO and MIACO, which were developed previ-

ously, are re-designed specifically to address the DVRP; 2) the

dynamic test cases are generated from the recently proposed

DBGP [40]; and 3) the experimental studies are extended on

both random and cyclic DVRPs for all ACO algorithms. Sensi-

tivity analysis on key parameters of the algorithms is also car-

ried out.

The rest of the paper is organized as follows. Section 2 de-

scribes the basic VRP and its stationary and dynamic exten-

sions. Section 3 briefly reviews existing work on ACO for

DVRPs. Section 4 describes the benchmark generator used

which can generate DVRPs where the optimum value is known

over dynamic changes. Section 5 describes the algorithms pro-

posed in this paper for addressing the DVRP. Section 6 gives the

experimental results, including the statistical tests, and analysis.

Finally, Section 7 concludes this paper with discussions on rel-

evant future work.

2. Vehicle routing problems

2.1. Basic VRP description

The basic VRP can be described as follows: we need to route

a number of vehicles with a fixed capacity to satisfy the de-

mands of all the customers, starting from and finishing at the

depot [10]. Hence, a VRP without the capacity constraint and

with one vehicle can be seen as a travelling salesman problem.

The basic problem is also known as the capacitated VRP and

belongs to the class of NP-hard combinatorial problems [31].

The important symbols used in this section and for the remain-

ing paper are summarized in Table 1.

Usually, the VRP is represented by a complete weighted

graph G = (N, A) with n + 1 nodes, where N = {v0, . . . , vn}

is a set of vertices corresponding to the customers (or deliv-

ery points) vi (i = 1, . . . , n) and the central depot v0, and

A = {(vi, v j) : i , j} is a set of arcs. Each arc (i, j) is associated

with a non-negative value di j, which represents the distance (or

travel time) between customers i and j. For each customer i, a

non-negative demand qi is given, whereas for the central depot,

a zero demand is associated. The number of vehicles is denoted

by u and each vehicle k has a limited capacity Qk. If the fleet

of vehicles is homogeneous, Qk is the same for all vehicles;

whereas if the fleet of vehicles is heterogeneous, Qk is different

for each vehicle. In this paper, a homogeneous fleet of vehicles

is considered.

Formally, the VRP can be described as follows. Let ψk
i j

de-

note the binary decision variables defined as follows:

ψk
i j =















1, if arc (i, j) is covered by vehicle k,

0, otherwise,
(1)

Then, the objective of the VRP is defined as follows:

f (s) = min

n
∑

i=0

n
∑

j=0

di j

u
∑

k=1

ψk
i j, (2)

subject to:

n
∑

i=0

qi

n
∑

j=0

ψk
i j ≤ Qk,∀k ∈ {1, . . . , u}, (3)

2



Table 1: Mathematical symbols used in this paper

Symbol Description

G = (N, A) Fully connected weighted graph

N Set of nodes

A Set of arcs

n Number of customers (nodes)

(i, j) Connection between customers i and j

di j Distance (or travel time) between customers i and j

qi Demand of customer i

Qk Capacity of vehicle k

u Number of vehicles

ψk
i j

Binary decision variable

D Distance matrix
~V Random vector of customers
~U Re-ordered vector of ~V
f Frequency of dynamic change

m Magnitude of dynamic change

t Current iteration count

P(t) Population of ants for iteration t

τ0 Initial pheromone trail value

τmax Maximum pheromone trail value

τi j Existing pheromone trails between customer i and j

ηi j Heuristic information between customer i and j

T k The tour of ant k

klong(t) Long-term memory for iteration t

kshort(t) Short-term memory for iteration t

ri Immigrant ant replacement rate

pi
m Immigrants’ mutation probability

tM Iteration number where the next memory update will occur

sbs Global best solution

sib Iteration best solution

selite Best solution for a given environment

scm Most similar ant in long-term memory

smb Best ant in long-term memory

n
∑

i=0

ψk
il −

n
∑

j=0

ψk
l j = 0,∀k ∈ {1, . . . , u}, l ∈ {0, . . . , n}, (4)

n
∑

i=1

ψk
i0 ≤ 1,∀k ∈ {1, . . . , u}, (5)

n
∑

j=1

ψk
0 j ≤ 1,∀k ∈ {1, . . . , u}, (6)

where Eq. (3) is the capacity constraint that ensures that no ve-

hicle can be overloaded; Eq. (4) ensures that if a vehicle arrives

at a customer, it must also leave the customer; Eq. (5) and (6)

ensure that each vehicle is not scheduled more than once.

The VRP is closely related with many real-world applica-

tions since it concerns the transportation of goods between a

depot and customers by a fleet of vehicles [20, 48]. Examples

of real-world applications include: mail delivery, school bus

routing, solid waste collection, heating oil distribution, parcel

pick-up and delivery, and many others.

2.2. Stationary extensions of the VRP

Apart from the capacity constraint, other possible constraints

can be imposed to the VRP taken from real-world applications.

For example, in the VRP with service time constraint, each ve-

hicle, apart from satisfying the capacity constraint described in

Eq. (3), needs to satisfy a service time constraint. Another pop-

ular extension is the VRP with time windows, where each cus-

tomer i is associated with a time interval [ei, li], called the time

window, together with its demand qi, where ei and li is the earli-

est and latest possible service time for customer i, respectively.

Other VRP extensions include: the VRP with backhauls,

where customers are classified into two groups, i.e., linehaul

customers whose demand needs to be delivered and backhaul

customers whose demand needs to be picked up; the multi-

depot VRP, where vehicles can be served by several depots in-

stead of a single one; the VRP with pick-up and delivery, where

a vehicle fleet must satisfy a set of requests in which the de-

livery goods are not originally concentrated in the depot(s), but

they are distributed over the deliver points; and combinations of

the aforementioned extensions, e.g., the VRP with pick-up and

delivery with time-windows.

2.3. Dynamic extensions of the VRP

Although several additional constraints, described above,

make the VRP more challenging and realistic, most real-world

scenarios are subject to dynamic environments. A comprehen-

sive survey on DVRPs is available in [44].

The most common and well studied source of dynamics in

the DVRP is the arrival of customer requests during the oper-

ation, i.e., the DVRP with stochastic demands [30, 41]. More

precisely, the customer requests are not completely known a

prior, but they arrive dynamically during the distribution pro-

cess, and thus, the routes have to be re-planned immediately to

include the new requests. Similarly, new requests may arrive in

the VRP, where a new shipment of goods needs to be delivered

from an existing pick-up point to an existing drop-off point.

Recently, the travel time is taken into account, which is a

dynamic component of most real-world applications, i.e., the

DVRP with traffic factors [36]. More precisely, the cost of links,

i.e., di j, depends on the period of time. For example, in the rush

hour periods the traffic is higher and the routes have to be re-

planed immediately to avoid traffic jams.

3. ACO applications for the vehicle routing problem

ACO is a metaheuristic developed especially for combinato-

rial optimization problems. ACO algorithms are inspired from

the foraging behaviour of real ant colonies where ants commu-

nicate via their pheromone trails to optimize their paths. The

research on ACO has mainly focused on applications in sta-

tionary environments, such as the travelling salesman problem

[14], VRP [20], quadratic assignment problem [22], capacitated

arc routing problem [52], and many others [15].

Regarding the VRP application, there are two main ACO de-

velopments in the literature: the rank-based ant system for the

capacitated VRP (ASrank-CVRP) [6, 7, 47] and the multi-colony

ant colony system for the VRP with time windows (MACS-

VRPTW) [21]. The former development is applied to the ba-

sic capacitated VRP. In the case of ASrank-CVRP, only the w

best ants are allowed to deposit pheromone. The quantity of

pheromone is based on the ranked position of the ant where the
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best ant always deposits more pheromone [8]. The latter devel-

opment is applied to the well-studied VRP with time windows.

In the case of MACS-VRPTW, the ACO algorithm consists of

two colonies that aim to optimize two objectives. Both colonies

are based on the ant colony system [13] variation, where only

the best ant deposits pheromone. One colony is responsible to

minimize the travel time (or distance) whereas the other colony

is responsible to minimize the number of vehicles. The two

colonies interact as follows: if a solution with less vehicles is

found by one colony, then the number of vehicles is passed to

the other colony to find the optimal routes. ACO has also been

applied to several other VRP variations, including the VRP with

pick up and delivery [11, 19] and the VRP with backhauls and

time windows [18, 45, 46].

ASrank-CVRP can be applied to the DVRP directly without

any modifications due to the pheromone evaporation mecha-

nism. The pheromone evaporation in ACO algorithms can elim-

inate the areas with high intensity of pheromones that are gen-

erated by ants due to the stagnation behaviour (i.e., when all

ants follow the same path and construct the same solution).

The adaptation via pheromone evaporation may be a sufficient

choice when the changing environments are similar; otherwise,

a complete re-initialization of the pheromone trails (i.e., a com-

plete restart of the ACO algorithm) after a dynamic change may

be a better choice. In fact,MAX-MIN Ant System (MMAS)

[50] has been applied to dynamic routing problems, including

DVRP, with a global re-initialization of the pheromone trails,

denoted asMMASR in this paper [37].

MACS-VRPTW has also been applied to the DVRP with

stochastic demands, known as the ACS-DVRP [41]. However,

instead of using two interactive ant colonies, ACS-DVRP uses

a single colony to minimize the distance. When a dynamic

change occurs, a pheromone conservation scheme is performed

to regulate previously generated pheromone trails.

Other ACO algorithms that have been developed for the dy-

namic travelling salesman problem, such as the memetic ACO

(M-ACO), have also been applied to the DVRP with traffic fac-

tors [39]. Within M-ACO, local search operators based on the

swap operator are integrated with the ACO algorithm. The

framework of M-ACO is based on the well-known population-

based ACO [26] in which a memory of the best ants is used

to update the pheromone trails. Additional random immigrants

are introduced to the memory when all stored ants are identical

in order to maintain diversity.

Recently, RIACO, EIACO and MIACO algorithms have been

extended from their dynamic travelling salesman problem with

traffic factors developments [38] to solve the DVRP with traf-

fic factors. Within RIACO [35], a random immigrant is gen-

erated as follows. A randomly selected unvisited customer is

selected until a feasible route is completed (i.e., just before the

capacity constraint is violated), and then a new route is started.

This process is repeated until all customer demands are satis-

fied. Within EIACO [35], the best ant of the previous environ-

ment is used as the base to generate elitism-based immigrants

as follows. The depot objects are removed from the best ant’s

solution and the inver-over operator [51] is applied in the way

similar to the elitism-based immigrants scheme used in EIACO

on the dynamic travelling salesman problem [38]. Then, the de-

pot objects are inserted back to the solution such that the capac-

ity constraint is satisfied. Similarly, memory-based immigrants

are generated for MIACO using a best ant extracted from the

memory [36].

In this paper, we further develop the RIACO, EIACO and

MIACO algorithms to address DVRPs, where the generation

of immigrants is designed especially for the DVRP, rather than

transferring the ideas from the dynamic travelling salesman

problem to the DVRP directly. More details will be described

in Section 5, after the description of a recently proposed bench-

mark generator [40] used to generate DVRPs with different

properties in the next section.

4. Dynamic vehicle routing problem benchmark

4.1. Generate dynamic test cases

In order to generate dynamic routing problems, we have re-

cently proposed the DBGP [40], which can convert any static

permutation-encoded benchmark problem instance to a dy-

namic environment. In cases where the optimum of the bench-

mark problem instance is known, it will remain known during

the environmental changes. DBGP shifts the population of the

algorithm to search to a new location in the fitness landscape.

Other existing DVRP benchmark generators, e.g., the DVRP

with stochastic demands and the DVRP with traffic factors,

modify the fitness landscape and the optimum value is changed

in every dynamic change.

For the dynamic cases generated by the DBGP, one can ob-

serve “how close to the moving optimum an algorithm performs

when a change occurs”, whereas for the dynamic cases gener-

ated by other existing benchmark generators, it is impossible to

do that. However, since a DOP can be considered as a series

of static problem instances, a direct way is to solve each one to

optimality, which may be non-trivial due to theNP-hardness of

most combinatorial optimization problems, especially for large-

size problem instances. It may be possible for small-size prob-

lem instances, but then the usefulness of benchmarking will be

reduced.

Considering the VRP described in Section 2, each node (or

object) i ∈ N has a location defined by (x, y) and each link

(i, j) ∈ A is associated with a non-negative distance di j. Usu-

ally, the distance matrix of a problem instance is defined as

D = (di j)n×n. DBGP generates the dynamic case as follows.

Every f iterations a random vector ~V(T ) is generated that con-

tains exactly m× n objects of the VRP problem instance, where

T = ⌈t/ f ⌉ is the index of the period of change, t is the iteration

count of the algorithm, f determines the frequency of change,

n is the size of the problem instance and m determines the mag-

nitude of change. More precisely, m ∈ [0.0, 1.0] defines the

degree of change, in which only the first m × n of ~V(T ) ob-

ject locations are swapped. Then a randomly re-ordered vector
~U(T ) is generated that contains only the objects of ~V(T ). There-

fore, exactly m×n pairwise swaps are performed in D using the

two random vectors (~V(T )⊗ ~U(T )), where “⊗” denotes the swap

operator. The pseudocode of DBGP is given in Algorithm 1.
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Algorithm 1 DBGP

1: Read initial benchmark problem of size n

2: ComputeDistances(D)

3: i← 0

4: repeat

5: DoOptimization(i) //e.g., with ACO

6: i← i + 1

7: if ( f %i = 0) then

8: num swaps← m × n

9: for ( j = 1 to num swaps) do

10: V[ j] ⊗ U[ j]

11: end for

12: ComputeDistances(D)

13: end if

14: until (optimization not terminated)

Figure 1: Illustration of the generation of random and cyclic DVRPs using the

DBGP.

4.2. Random vs cyclic dynamic environments

The above way for generating dynamic cases for DVRPs oc-

curs in a random pattern. Random DVRPs can be used for test-

ing all ACO algorithms. Another variation of a dynamic envi-

ronment is where previous environments will appear again in

the future. Such dynamic environments are quite common in

real-world scenarios and are essential when algorithms that are

enhanced with memory structures are investigated because their

performance heavily depends on such dynamic cases [5, 56].

Cyclic DVRPs can be further generated by the DBGP

as follows. First, K random vectors (~V(0), . . . , ~V(K − 1))

are generated with their corresponding re-ordered vectors

( ~U(0), . . . , ~U(K − 1)), subject to the magnitude value m, as the

base states of the search space. Second, the initial base state

(~V(0) ⊗ ~U(0)) is applied in D. Then, the environment moves

among these base states in a fixed logical ring. Hence, ev-

ery f iterations the dynamic changes of the previous base state

(~V(T − 1) ⊗ ~U(T − 1)) are reversed, which will cause D to re-

turn to its original state, and then the new dynamic changes are

applied from the next base state (~V(T ) ⊗ ~U(T )). In this way,

it is guaranteed that the environments generated from the base

states will re-appear. For example, after K dynamic changes the

previous environments will begin to re-appear. Fig. 1 illustrates

the generation of random and cyclic DVRPs using the DBGP.

4.3. Real-world application model

The DVRP generated from the DBGP as discussed above is

in fact a DVRP with stochastic demands because the swap be-

tween two objects causes a change to the demands associated

with these objects. The existing DVRP with stochastic demands

models the following real-world situation. The vehicles may

start their route as planned to distribute a number of goods to

the customers. During the execution, a customer may notify the

central depot that it needs more or less goods. Hence, the cus-

tomers’ demands change. However, the vehicles have already

started their route considering the old demands. Therefore, a

new route needs to be planned to satisfy the new demands of

customers.

The difference of the existing model from the DBGP model

lies in that in the former model, the demands arrive incremen-

tally. For example, at the first stages of execution a predefined

number of customer demands is visible. After a few stages,

other customer demands become visible, and so on. In the latter

model, all the customer demands are available from the begin-

ning but they change during the execution.

Of course, in the real world, the demands are not only

swapped between two customers. But, the DBGP still models

the aforementioned real-world scenario. The reason that de-

mands are pairwise-swapped in the model is for the sake of

benchmarking. For example, when comparing algorithms on

the DVRP with stochastic demands or the DVRP with traffic

factors, the optimum value is unknown. Hence, even though

one can see that one algorithm performs better than the other,

it may be the case that both algorithms converge far away from

the optimum. With the DBGP, the optimum value remains the

same over environmental changes and, thus, one can see how

close to the optimum an algorithm converges as well as compar-

ing the performance between different algorithms. Apart from

the comparison benefits, it is possible to assess the difficulty

of a DOP. For instance, in case all the algorithms perform far

away from the optimum on a particular DOP, and closer to the

optimum on another DOP, it gives an indication that the former

DOP is more difficult to solve than the latter one. Finally, the

DBGP can be adopted easily to algorithms due to its simplicity.

5. Proposed immigrants schemes for the DVRP

5.1. Framework

Conventional ACO algorithms are constructive heuristics.

The solutions generated by the ants are not stored in an actual

population, but only in the pheromone trails, which are used

by the ants of the next iteration. In contrast, evolutionary al-

gorithms consist of an actual population of feasible solutions,

which is directly transferred from one iteration to the next us-

ing selection [28, 34]. Search operators (i.e., crossover and mu-

tation) are used in evolutionary algorithms to generate the new

population of solutions.

The investigated framework of ACO algorithms used to

tackle DVRP maintains an actual population of the best ants of

every iteration [35, 36]. The aim of the framework is to main-

tain the diversity within the population and transfer knowledge
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Figure 2: Illustration of the integration of the proposed ACO algorithms with

the DBGP and the DVRP problem instance.

from previous environments to the pheromone trails of a new

environment. More precisely, the framework re-generates the

pheromone information for every iteration of running the al-

gorithm, considering information only from the previous envi-

ronment and extra information from the newly generated immi-

grant ants. Therefore, a short-term memory, denoted kshort(t),

of size ks is used where all ants stored from iteration t − 1 are

replaced by the best ks ants of the current iteration t. Further-

more, a number of immigrant ants are generated to replace the

worst ants in the short-term memory. The overall ACO frame-

work, integrated with the DBGP for the DVRP, is illustrated in

Fig. 2.

Initially, all the pheromone trails are equally set to τ0 =

1/Cnn, where Cnn is the quality of a solution constructed by

a nearest neighbour heuristic and kshort(0) is empty.

5.2. Constructing solutions

A population of µ ants start the solution construction from the

depot since vehicles are supposed to start from the depot. Each

ant selects the next customer to visit according to a probability

defined by the pheromone trails and heuristic information as

follows:

pk
i j =























[τi j]
α
[ηi j]

β

∑

l∈Nk
i

[τil]
α[ηil]

β , if j ∈ Nk
i
,

0, otherwise,

(7)

where pk
i j

is the probability of ant k to visit customer j when

located to customer i, τi j is the existing pheromone trail on the

link between customers i and j, ηi j is the heuristic information

available a priori (i.e., 1/di j),N
k
i

denotes the neighbourhood of

unvisited customers for ant k when the current customer is i, α

and β are two parameters that determine the relative influence

of τ and η, respectively.

When the choice of the next customer would lead to an in-

feasible solution (i.e., violating the maximum capacity of the

vehicle) the depot is chosen, meaning that the vehicle will re-

turn to the depot, and a new vehicle route should start. This

process is repeated until all customers’ demands are satisfied

and finally an ant constructs a feasible VRP solution. The num-

ber of routes in a VRP solution defines the number of vehicles

used. An iteration t is completed when all ants have constructed

feasible solutions and a population P(t) is generated.

5.3. Pheromone update

The difference of the ACO framework used in [35, 36] from

the conventional ACO framework lies in that the short-term

memory is associated with the pheromone matrix. At the end

of an iteration, the ks best ants of P(t) are added to kshort(t). For

each ant k that enters kshort(t), a positive pheromone update is

performed, as follows:

τi j ← τi j + ∆τ
k
i j,∀ (i, j) ∈ T k, (8)

where T k is the tour of ant k ∆τk
i j
= (τmax−τ0)/ks is the constant

amount of pheromone that ant k deposits to the correspond-

ing trails, τmax and τ0 are the maximum and initial pheromone

value, respectively. Accordingly, a negative pheromone update

is performed to each ant in kshort(t − 1) when it is removed to

make space for ants in kshort(t), as follows:

τi j ← τi j − ∆τ
k
i j,∀ (i, j) ∈ T k, (9)

where T k and ∆τi j are defined as in Eq. (8). This pheromone

update policy is applied because no ant should survive in more

than one iteration due to the dynamic environment.

Additionally, immigrant ants replace the worst ants in the

short-term memory every iteration and further adjustments are

performed to the pheromone trails, using Eq. (8) and (9), since

the short-term memory changes. The main concern when deal-

ing with immigrants schemes is how to generate immigrant

ants that should represent feasible VRP solutions, which is de-

scribed below.

5.4. Diversity maintaining schemes

5.4.1. Random immigrants

Traditionally, immigrants are randomly generated and re-

place the worst ants in the population to maintain the diversity

of the population. Here, a random immigrant ant for the DVRP

is generated as follows. First, the depot is added as the starting

point; then, an unvisited customer is randomly selected as the

next point. This process is repeated until the current route of

customers (starting from the most recent visit to the depot) vio-

lates the capacity constraint of the vehicle, or the depot is added

as a component into the current route. When the capacity con-

straint is violated, the depot is added before the last customer

selected for the current route and another vehicle route starts.

When all customers’ demands are satisfied, one feasible VRP

solution is obtained. The difference of this random immigrant

scheme from the one used in [35] lies in that the depot object
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Figure 3: Illustration of immigrants generated in EIACO and MIACO for the

DVRP.

also has chances to be added even when the capacity constraint

is not violated.

Considering the investigated framework described above, be-

fore the pheromone trails are updated, ri×ks random immigrants

are generated to replace the worst ants in kshort(t), where ri is

the immigrants replacement rate and ks is the size of short-term

memory. Algorithm 2 presents the pseudocode of the RIACO

investigated in this paper. RIACO is expected to handle well

dynamic environments that change quickly and severely due to

the diversity generated via random immigrants. This is because

when the changing environments are not similar, it is better to

randomly increase the diversity instead of knowledge transfer,

which was confirmed for the dynamic travelling salesman prob-

lem [38]. Some preliminary experiments on the DVRP showed

that RIACO totally disturbs the optimization process [35].

5.4.2. Elitism-based immigrants

EIACO generates diversity via transferring knowledge from

the best ant of the previous environment. An elitism-based im-

migrant ant for the DVRP is generated as follows. The best

ant of the previous environment is selected in order to use it

as the base to generate elitism-based immigrants. Swaps are

performed between the customers with a mutation probability

pi
m for each vehicle route of the VRP solution. Swaps between

customers that belong to different routes are not allowed be-

cause it may lead to an infeasible solution. Fig. 3 illustrates the

generation of an elitism-based immigrant for the DVRP. One

difference of this elitism-based immigrant from the one used in

[35] is that the depot objects remain to their position and the

swap operator is applied. Another difference is that the elite

ant used in [35] was the iteration-best ant just before a dynamic

change, i.e., the best from kshort(t − 1), whereas in this paper it

is the best-so-far ant of the previous environment. Note that the

best-so-far ant is a special ant and may not necessarily belong

to the current population of ants.

Considering the investigated framework described above, on

iteration t, the best-so-far ant from the previous environment

P(t − 1) is used as the base to generate ri × ks elitism-based

immigrants, where ri and ks are defined as in the RIACO

above. Algorithm 2 also presents the pseudocode of EIACO.

The elitism-based immigrants replace the worst ants in kshort(t)

before the pheromone trails are updated. EIACO is expected

Algorithm 2 RIACO and EIACO

1: t ← 0

2: P(0)← InitializePopulation(µ)

3: InitiliazePheromoneTrails(τ0)

4: kshort(0)← empty

5: sbs ← empty solution

6: while (termination condition not satisfied) do

7: P(t)← ConstructAntSolutions

8: kshort(t)← AddBestAnts(ks)

9: if (RIACO is selected) then

10: GenerateRandomImmigrants(ri)

11: k′
short

(t)← ReplaceAntsWithImmigrants

12: end if

13: if (EIACO is selected) then

14: selite ← FindBest(P(t − 1))

15: GenerateElitismBasedImmigrants(selite′,ri)

16: k′
short

(t)← ReplaceAntsWithImmigrants

17: end if

18: UpdatePheromone(k′
short

(t))

19: sib ← FindBest(P(t))

20: if ( f (sib) < f (sbs)) then

21: sbs ← sib

22: end if

23: t ← t + 1

24: end while

25: return sbs

to perform well on dynamic environments that are similar due

to the knowledge transfer via elitism-based immigrants. This

was confirmed for the dynamic travelling salesman problem

[38]. Some preliminary experiments on the DVRP showed that

EIACO outperforms RIACO in all dynamic test cases and that

elitism-based immigrants improve the performance of ACO

significantly [35].

5.4.3. Memory-based immigrants

MIACO maintains a long-term memory, denoted as klong(t),

structure of limited size kl, which is updated by replacing the

closest ant in klong(t) with the best-so-far ant of P(t). The metric

to define how close ant p is to ant q is defined as follows:

M(p, q) = 1 −

(

cEpq

n + avg(nVp
, nVq

)

)

, (10)

where cEpq
is the number of common edges (arcs) between ants

p and q, n is the size of the problem instance, nVp
and nVq

are

the number of vehicles of ants p and q, respectively. A value

M(p, q) closer to 0 means that the two ants are similar.

Initially, klong(0) contains random VRP solutions. Therefore,

the metric in Eq. (10) is triggered when all the random solu-

tions are replaced. Every iteration t, the ants in klong(t) are

repaired/re-evaluated in order to be valid with the newly gener-

ated environment in case a dynamic change occurs. Moreover,

the solutions stored in the memory are used as detectors to de-

tect an environmental change. If a dynamic change occurs, the

cost of any solution stored in klong(t) at iteration t + 1 will be

7



Algorithm 3 UpdateMemory(klong(t))

1: if (t = tM) then

2: smb ← FindBest(P(t))

3: end if

4: if (dynamic change is detected) then

5: smb ← FindBest(P(t − 1))

6: end if

7: if (still any random ant in klong(t)) then

8: ReplaceRandomWithBest(smb,klong(t))

9: else

10: scm ← FindClosest(smb,klong(t))

11: if ( f (smb) < f (scm)) then

12: scm ← smb

13: end if

14: end if

different when it is re-evaluated. In this way, a dynamic change

is detected.

The long-term memory is updated whenever a dynamic

change is detected, where the best-so-far ant from P(t − 1) re-

places the closest ant in klong(t) if its solution quality is better.

However, the update does not depend only on the detection of

dynamic changes since in some real-world applications it is dif-

ficult (or impossible) to detect changes. Therefore, instead of

updating long-term memory only in a fixed time interval, e.g.,

every f iterations, long-term memory is also updated in a dy-

namic pattern and the best-so-far ant from P(t − 1) replaces the

closest ant in klong(t) as explained previously. For the dynamic

pattern, for each update of the long-term memory, a random

number in [5, 10] (i.e., rand(5, 10)) is generated, which indi-

cates the next update time. For example, if the memory is up-

dated at iteration t and no change has been detected before itera-

tion tM = t + rand(5, 10), the next update will occur at iteration

tM [56]. The ants that replace the closest ants in the memory

for this paper are the best-so-far ants for both cases (i.e., up-

date due to change detection and update due to the dynamic

pattern), whereas in [36] they are the best ant from kshort(t − 1)

and the iteration best ant for the two cases, respectively. The

update procedures of the long-term memory for every iteration

are presented in Algorithm 3.

MIACO generates diversity similarly to EIACO. The differ-

ence lies in that in MIACO the memory-best ant is selected as

the base to generate memory-based immigrants. A memory-

based immigrant ant for the DVRP is generated in exactly the

same way as in EIACO (see Fig. 2). MIACO combines the mer-

its of both memory schemes to guide the population directly to

an old environment already visited and immigrants schemes to

maintain diversity. MIACO stores the best solutions of pre-

viously optimized environments and reuses them to generate

memory-based immigrants. It is very important to store dif-

ferent solutions in the long-term memory which represent dif-

ferent environments that might be useful in the future. This is

achieved by the replacement strategy described in Eq. (10).

Considering the investigated framework described above, on

iteration t, the best ant from klong(t) is used as the base to gener-

Algorithm 4 MIACO

1: t ← 0

2: P(0)← InitializePopulation(µ)

3: InitializePheromoneTrails(τ0)

4: kshort(0)← empty

5: klong(0)← InitializeRandomly(kl)

6: tM ← rand(5, 10)

7: sbs ← empty solution

8: while (termination condition not satisfied) do

9: P(t)← ConstructAntSolutions

10: kshort(t)← AddBestAnts(ks)

11: if (t = tM or dynamic change is detected) then

12: UpdateMemory(klong(t)) using Algorithm 3

13: tM ← t + rand(5, 10)

14: end if

15: selite ← FindBest(klong(t))

16: GenerateMemoryBasedImmigrants(selite′,ri)

17: k′
short

(t)← ReplaceAntsWithImmigrants

18: UpdatePheromone(k′
short

(t))

19: sib ← FindBest(P′(t))

20: if ( f (sib) < f (sbs)) then

21: sbs ← sib

22: end if

23: t ← t + 1

24: klong(t)← klong(t − 1)

25: end while

26: return sbs

ate ri×ks memory-based immigrants, where ri and ks are defined

as in the RIACO above. These immigrants replace the worst

ants in kshort(t) before the pheromone trails are updated. Al-

gorithm 4 presents the pseudocode of MIACO. The algorithm

is expected to do well in dynamic environments that are simi-

lar because of the knowledge transfer via memory-based immi-

grants (similar to elitism-based immigrants). Moreover, in case

where the changing environments reappear, the memory guid-

ance may speed up the re-optimization even more. This was

confirmed for the dynamic travelling salesman problem [38].

Some preliminary experiments on the DVRP showed that MI-

ACO performs better than other ACO approaches in cyclic en-

vironments [36]. However, it was not investigated whether the

good performance of MIACO is only for cyclic dynamic en-

vironments, or only for random dynamic environments, or for

both types of dynamic environments. This will be investigated

in this paper.

6. Experimental study

6.1. Experimental setup

In the experiments, all the algorithms were tested on the

DVRP instances that are constructed from three stationary

benchmark VRP1 instances taken from real life vehicle routing

applications, which are visually illustrated in Fig. 4. F-n45-k4,

1Available in http://neo.lcc.uma.es/vrp/
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F-n45-k4 F-n72-k4 F-n135-k7

Figure 4: Topological structure of the three VRP benchmark instances used to generate dynamic environments (the square denotes the depot and the circles denote

the customers.

F-n72-k4 and F-n135-k7 benchmarks have optimum values of

724, 237 and 1162, respectively [17]. Problems F-n45-k4 and

F-n135-k7 represent grocery deliveries from the Peterboro and

Brarmalea, Ontario terminals, respectively, of National Grocers

Limited. Problem F-n72-k4 is concerned with the delivery of

tires, batteries and accessories to gasoline service stations from

Exxon in USA. F-n72-k4 is special in the sense that: all cus-

tomers are located far away from the depot; some clients have

very large demands making the capacity constraint crucial; and

the customers are clustered as defined in [17].

For each stationary problem instance, we generate dynamic

environments using the DBGP generator2. The frequency of

change was set to f = 10 and f = 100, indicating environ-

mental changes of high and low frequencies, respectively. The

magnitude of change was set to m = 0.1, m = 0.25, m = 0.5,

and m = 0.75, indicating the degree of environmental changes

from small, to medium, and to large, respectively. As a re-

sult, eight DOPs (i.e., two values of f × four values of m) were

generated from each stationary VRP instance in order to sys-

tematically analyse the adaptation and searching capabilities of

each algorithm on the DVRP. Both random and cyclic DVRPs

are generated in which the base states of cyclic DVRPs was set

to K = 4. An observation of the best-so-far ant after a dynamic

change was recorded every iteration and used to evaluate the

performance. Therefore, the overall offline performance [29] is

defined as follows:

P̄OFF =
1

E

E
∑

i=1

















1

R

R
∑

j=1

P∗i j

















, (11)

where E is the total number of iterations, R is the number of

runs, and P∗
i j

is the best-so-far tour cost (after a change) of iter-

ation i of run j.

Moreover, the diversity of the population was recorded every

iteration. The population total diversity [38] of ACO on a DOP

2The implementation of the investigated ACO algorithms integrated

with the DBGP is available from http://www.tech.dmu.ac.uk/

~mmavrovouniotis

Table 2: Parameter settings for the algorithms investigated

Algorithm α β ρ ks kl µ

RIACO 1 5 - 6 - 30

EIACO 1 5 - 6 - 30

MIACO 1 5 - 6 3 27

ASrank-CVRP 1 5 0.3 - - 30

ACS-DVRP 1 5 0.1 - - 29

M-ACO 1 5 - - 3 20

MMASR 1 5 0.5 - - 29

is defined as:

T̄DIV =
1

E

E
∑

i=1

















1

R

R
∑

j=1

DIVi j

















, (12)

where E and R are as defined in Eq. (11) and Divi j is the popula-

tion diversity at iteration i of run j, which is defined as follows:

DIVi j =
1

µ(µ − 1)

µ
∑

p=1

µ
∑

q,p

M(p, q), (13)

where µ is the population size and M(p, q) is the similarity met-

ric defined in Eq. (10). For each algorithm 1000 iterations were

allowed and 30 independent runs were executed with the same

set of random seeds.

In order to compare the proposed algorithms (RIACO,

EIACO and MIACO), several other peer ACO algorithms for

the DVRP are considered, which are described as follows:

• ASrank-CVRP [6]: the first ACO algorithm applied to the

basic VRP under stationary environments. Since ASrank-

CVRP can be applied directly to DOPs, this algorithm is

applied to the DVRP.

• ACS-DVRP [41]: the first ACO algorithm applied to the

DVRP with stochastic demands. It is an extension of the

MACS-VRPTW algorithm that has state-of-the-art results

in the VRP under stationary environments. When a dy-

namic change occurs, a pheromone conservation is per-

formed to regulate previously generated pheromone trails.
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Table 3: Offline performance of ACO algorithms in random DVRPs

Algorithms F-n45-k4 F-n72-k4 F-n135-k7

f = 10, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

ASrank-CVRP 891.76 949.55 995.94 1011.63 302.11 324.84 352.82 365.53 1462.96 1550.41 1635.47 1664.46

ACS-DVRP 824.38 824.08 823.99 823.78 296.53 296.71 296.63 296.57 1385.62 1385.64 1384.62 1384.46

M-ACO 809.90 829.30 840.11 842.29 287.49 292.79 295.83 296.64 1357.10 1385.56 1401.68 1407.27

MMASR 818.20 818.38 818.37 818.52 294.20 294.27 294.27 294.23 1363.11 1364.11 1363.49 1363.49

RIACO 806.51 817.20 824.98 826.29 289.78 291.44 292.65 292.86 1342.80 1353.64 1361.78 1363.69

EIACO 804.88 815.38 826.36 827.93 285.25 289.34 291.57 291.98 1324.93 1349.47 1364.64 1369.28

MIACO 806.83 818.46 830.23 832.13 286.04 290.59 293.35 294.07 1333.83 1355.97 1373.73 1379.00

f = 100, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

ASrank-CVRP 916.10 962.11 983.84 972.29 290.76 295.08 304.77 308.78 1375.42 1398.67 1421.08 1419.08

ACS-DVRP 807.80 808.07 808.08 807.62 288.53 288.34 288.43 288.26 1351.98 1352.12 1352.33 1352.61

M-ACO 801.81 804.65 808.34 807.66 272.99 274.59 275.87 275.82 1287.95 1299.78 1311.63 1315.98

MMASR 803.15 802.97 803.51 803.69 273.99 274.21 273.92 274.29 1296.62 1296.59 1296.79 1295.96

RIACO 800.80 801.89 804.26 804.27 279.65 275.92 279.94 279.60 1304.33 1307.52 1310.17 1309.36

EIACO 800.10 802.04 804.73 804.27 271.94 270.61 275.27 275.22 1275.59 1286.44 1292.68 1296.08

MIACO 800.84 803.63 805.17 806.67 274.22 276.46 278.20 277.83 1290.60 1297.93 1303.76 1309.24

Table 4: Offline performance of ACO algorithms in cyclic DVRPs

Algorithms F-n45-k4 F-n72-k4 F-n135-k7

f = 10, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

ASrank-CVRP 851.66 878.74 915.08 916.73 281.58 299.61 312.92 313.48 1398.11 1464.67 1488.55 1500.47

ACS-DVRP 824.53 824.00 823.80 823.86 296.59 296.71 296.56 296.46 1385.49 1385.42 1385.45 1384.72

M-ACO 814.74 830.61 842.02 843.13 286.23 292.37 295.87 296.56 1353.64 1379.18 1403.94 1409.14

MMASR 818.31 818.28 818.42 818.72 294.31 295.98 294.07 295.77 1372.93 1363.11 1363.15 1363.41

RIACO 808.74 817.20 826.09 826.09 289.25 290.91 292.48 292.39 1344.96 1352.38 1359.92 1363.94

EIACO 814.31 817.39 827.68 828.99 284.06 288.82 291.18 291.54 1321.43 1345.27 1362.93 1369.84

MIACO 813.41 813.73 822.70 825.35 283.08 288.22 289.29 289.72 1320.35 1338.33 1354.38 1362.56

f = 100, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

ASrank-CVRP 918.87 958.38 966.54 970.84 283.63 292.31 302.14 303.15 1367.31 1396.71 1407.66 1410.67

ACS-DVRP 808.05 807.97 807.76 807.87 288.47 288.78 288.45 288.16 1352.70 1352.56 1352.21 1351.90

M-ACO 802.14 805.17 808.28 808.91 272.49 274.86 275.24 276.24 1289.24 1299.45 1314.23 1316.91

MMASR 803.08 803.93 803.05 802.53 273.87 273.98 273.96 273.90 1296.39 1296.93 1297.23 1297.67

RIACO 800.80 803.06 804.38 804.74 279.46 276.08 279.81 279.65 1306.86 1306.50 1308.16 1309.98

EIACO 801.75 802.10 803.56 804.67 271.87 271.33 274.85 275.07 1273.62 1287.56 1292.89 1295.10

MIACO 802.23 802.32 804.86 803.70 273.26 276.13 275.86 275.76 1287.65 1294.24 1301.00 1300.30

• MMASR [37]: one of the best performing ACO algo-

rithms on several combinatorial optimization problems.

Recently, it has been used on dynamic routing problems.

A mechanism is used to detect environmental changes in

order to perform pheromone re-initialization and start the

optimization process from scratch.

• M-ACO [39]: a memetic algorithm that uses the same

framework with the population-based ACO [26]. How-

ever, before entering the population-list, the best ant passes

from several local search improvements based on simple

and adaptive swaps. It also has a diversity scheme, i.e.,

triggered random immigrants, where a random immigrant

ant enters the population-list whenever all the ants in the

population-list are identical.

All the algorithms are benchmarked on the different dynamic

test cases generated. The algorithmic parameters used in the ex-

periments are presented in Table 2. In order to have a fair com-

parison all the algorithms perform the same number of function

evaluations in every algorithmic iteration. Hence, the popula-

tion size µ of the ACO algorithm was set accordingly. For ex-

ample, MIACO, ACS-DVRP, M-ACO andMMASR use extra

function evaluations (from detectors) in order to detect dynamic

changes. Therefore, the population size was set according to

the number of detectors used. Furthermore, M-ACO perform

7 local search steps for solution improvements. The immigrant

replacement rate for RIACO, EIACO and MIACO was set to

ri = 0.4 and the immigrant mutation probability for EIACO

and MIACO was set to pi
m = 0.01.

6.2. Results of comparing proposed ACO algorithms

The experimental results regarding the performance of RI-

ACO, EIACO and MIACO are presented in Table 3 and Ta-

ble 4 for random DVRPs and cyclic DVRPs, respectively. The

corresponding statistical tests are presented in Table 5, where

Kruskal–Wallis tests were applied followed by posthoc paired

comparisons using Mann–Whitney tests with the Bonferroni

correction. In Table 5, the results are shown as “−”, “+” or “∼”

when the first algorithm is significantly better than the second

one, when the second algorithm is significantly better than the

first one, or when the two algorithms are not significantly dif-

ferent, respectively. In order to better understand the behaviour

of the algorithms in dynamic environments, their offline perfor-

mance against iterations is plotted in Fig. 5 on cyclic DVRPs

with f = 10 and m = 0.25 for the last ten environmental

changes and in Fig. 6 on random DVRPs with f = 100 and
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Table 5: Statistical test results of comparing the offline performance of ACO algorithms in random and cyclic DVRPs

Statistical tests F-n45-k4 F-n72-k4 F-n135-k7

Environment Dynamics f = 10 f = 100 f = 10 f = 100 f = 10 f = 100

Random, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

RIACO⇔EIACO + + − − ∼ ∼ ∼ ∼ + + + + + + + + + + − − + + + +

RIACO⇔MIACO ∼ ∼ − − ∼ ∼ ∼ − + + − − + ∼ + + + − − − + + + ∼

EIACO⇔MIACO − − − − ∼ ∼ ∼ − ∼ − − − − − − − − − − − − − − −

RIACO⇔ASrank-CVRP − − − − − − − − − − − − − − − − − − − − − − − −

RIACO⇔ACS-DVRP − − ∼ − − − − − − − − − − − − − − − − − − − − −

RIACO⇔M-ACO − − − − ∼ ∼ − − + ∼ − − + + + + − − − − + + − ∼

RIACO⇔MMASR − − + + − ∼ ∼ ∼ − − − − + + + + − − − ∼ + + + +

EIACO⇔ASrank-CVRP − − − − − − − − − − − − − − − − − − − − − − − −

EIACO⇔ACS-DVRP − − + + − − − − − − − − − − − − − − − − − − − −

EIACO⇔M-ACO − − − − − ∼ − − − − − − ∼ − ∼ ∼ − − − − ∼ − − −

EIACO⇔MMASR − − + + − ∼ + ∼ − − − − − − + ∼ − − + + − − ∼ ∼

MIACO⇔ASrank-CVRP − − − − − − − − − − − − − − − − − − − − − − − −

MIACO⇔ACS-DVRP − − + + − − − − − − − − − − − − − − − − − − − −

MIACO⇔M-ACO − − − − ∼ ∼ ∼ ∼ ∼ − − − + + + + − − − − ∼ ∼ ∼ ∼

MIACO⇔MMASR − ∼ + + − ∼ ∼ + − − − ∼ ∼ + + + − − + + ∼ ∼ + +

Cyclic, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

RIACO⇔EIACO − ∼ − − ∼ ∼ ∼ ∼ + + + + + + + + + + − − + + + +

RIACO⇔MIACO − + + ∼ ∼ ∼ ∼ ∼ + + + + + ∼ + + + + + ∼ + + + +

EIACO⇔MIACO ∼ + + + ∼ ∼ ∼ ∼ ∼ ∼ + + ∼ − ∼ ∼ ∼ + + + − − − −

RIACO⇔ASrank-CVRP − − − − − − − − + − − − − − − − − − − − − − − −

RIACO⇔ACS-DVRP − − + + − − − − − − − − − − − − − − − − − − − −

RIACO⇔M-ACO − − − − ∼ ∼ − − + ∼ − − + + + + ∼ − − − + + ∼ ∼

RIACO⇔MMASR − − + + − ∼ ∼ + − − − − + + + + − − − ∼ + + + +

EIACO⇔ASrank-CVRP − − − − − − − − ∼ − − − − − − − − − − − − − − −

EIACO⇔ACS-DVRP − − + + − − − − − − − − − − − − − − − − − − − −

EIACO⇔M-ACO − − − − − ∼ − − ∼ − − − ∼ − ∼ ∼ − − − − − − − −

EIACO⇔MMASR − ∼ + + ∼ − ∼ + − − − − − − ∼ + − − ∼ + − − ∼ ∼

MIACO⇔ASrank-CVRP − − − − − − − − ∼ − − − − − − − − − − − − − − −

MIACO⇔ACS-DVRP − − ∼ ∼ − − − − − − − − − − − − − − − − − − − −

MIACO⇔M-ACO ∼ − − − ∼ ∼ ∼ − ∼ − − − ∼ + ∼ ∼ − − − − ∼ ∼ − −

MIACO⇔MMASR − − + + ∼ − + + − − − − ∼ + + + − − − ∼ − ∼ ∼ ∼

m = 0.25 for the first five environmental changes, respectively.

The corresponding dynamic total diversity of the algorithms

against iterations on DVRPs is plotted in Fig. 7. From the

experimental results, several observations regarding the weak-

nesses and strengths of the proposed algorithms can be made

and analysed below.

First, RIACO significantly outperforms EIACO in most ran-

dom and cyclic DVRPs with f = 10 and m = 0.5, and with

f = 10 and m = 0.75, whereas EIACO significantly outper-

forms RIACO in most random and cyclic DVRPs with f = 10

and m = 0.1, and with f = 10 and m = 0.75; see the com-

parisons regarding RIACO ⇔ EIACO in Table 5. This is be-

cause EIACO requires the changing environments to be similar

in order for the knowledge transferred from the previous en-

vironment via elitism-based immigrants to be suitable for the

newly generated environment. Differently, RIACO often main-

tains higher diversity than EIACO, which can be observed from

Fig. 7, that is useful in changing environments where knowl-

edge transfer is inconvenient (e.g., on severely and quickly

changing environments).

Second, EIACO significantly outperforms RIACO in most

random and cyclic DVRPs with f = 100; see the compar-

isons regarding RIACO ⇔ EIACO in Table 5. This is be-

cause EIACO has enough time to gain knowledge from pre-

vious environment and transfer it to the newly generated en-

vironment. The effect of the elitism mechanism can be ob-

served from Fig. 6, where EIACO maintains a better solu-

tion quality than other ACO algorithms in most environmental

changes. Furthermore, EIACO significantly outperforms MI-

ACO in most random DVRPs with f = 100, whereas it has

comparable performance in most cyclic random DVRPs with

f = 100. Even though both EIACO and MIACO generate im-

migrants that transfer knowledge from previous environments,

the memory best ant in MIACO may misguide the population

into non-promising areas. On the other hand, the best ant of

the previous environment in EIACO requires enough time to

express its effect in DVRPs.

Third, MIACO significantly outperforms RIACO and

EIACO in most cyclic DVRPs with f = 10, whereas RIACO

and EIACO significantly outperform MIACO in most random

DVRPs with f = 10; see the comparisons regarding RIACO⇔

MIACO and EIACO⇔MIACO in Table 5. This is because MI-

ACO can move the population directly to a previously visited

environment via memory-based immigrants. This can be ob-

served from Fig. 6, where MIACO is able to maintain better per-

formance over EIACO. Furthermore, EIACO significantly out-

performs MIACO in most cyclic DVRPs with f = 100, whereas

MIACO outperforms EIACO in cyclic DVRPs with f = 10.

This can be explained by the generated cyclic environments.

For example, the number of base states used in the generated

11



 800

 820

 840

 860

 880

 900

 920

 940

900 910 920 930 940 950 960 970 980 990 1000

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

F-n45-k4 (Cyclic),  f = 10,  m = 0.25

ASrank-CVRP
ACS-DVRP

M-ACO
MMASR
RIACO
EIACO

MIACO

 270

 280

 290

 300

 310

 320

 330

 340

900 910 920 930 940 950 960 970 980 990 1000

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

F-n72-k4 (Cyclic),  f = 10,  m = 0.25

ASrank-CVRP
ACS-DVRP

M-ACO
MMASR
RIACO
EIACO

MIACO

 1300

 1350

 1400

 1450

 1500

 1550

900 910 920 930 940 950 960 970 980 990 1000

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

F-n135-k7 (Cyclic),  f = 10,  m = 0.25

ASrank-CVRP
ACS-DVRP

M-ACO
MMASR
RIACO
EIACO

MIACO

Figure 5: Dynamic offline performance of ACO algorithms in cyclic DVRPs with f = 10 and m = 0.25 for the last ten environments.

cyclic DVRP for this study was set to K = 4. Hence, the chang-

ing environment cycles 2.5 and 25 times, when f = 100 and

f = 10, respectively, for G = 1000 iterations(i.e., (G/ f )/K).

As a result, MIACO cycles more times when f = 10, and the

knowledge stored in the memory becomes more accurate. MI-

ACO requires enough cycles of the changing environment to

express its effect on DVRPs.

Generally, the observations of RIACO, EIACO and MIACO

in this paper are different from the ones in [35, 36]. In the previ-

ous papers [35, 36], the performance of the algorithms was un-

expected, even though the DVRP with traffic factors was used,

since EIACO and MIACO had better performance than RIACO

in all dynamic test cases. This is because the immigrant ants

were extended from the dynamic travelling salesman problem

to the DVRP directly, whereas in this paper they are developed

especially for the DVRP. For example, the resulting immigrant

in EIACO now has more chances to be similar to the elite ant

since the depot object remains unchanged and the different ve-

hicle routes are mutated independently (see Fig. 3); or the re-

sulting immigrant in RIACO now may cover some routes that

are less attractive but may be useful to the newly generated en-

vironment.

Finally, the proposed algorithms and most of the existing al-

gorithms (except ASrank-CVRP) converge into near to the opti-

mum solutions. ASrank-CVRP performs far away from the opti-

mum because it was proposed for stationary environments and

does not have any enhancements to address DOPs. This can be

observed from Fig. 6 in which the algorithm performs similar

12
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Figure 6: Dynamic offline performance of ACO algorithms in random DVRPs with f = 100 and m = 0.25 for the first five environmental changes.

with its competitors on the first environment and moves away

as the environment changes. This confirms our claim that con-

ventional ACO algorithms cannot track the moving optimum

efficiently. Furthermore, on DVRPs with small values of m and

f the algorithms perform closer to the optimum. As the m and

f values increase the algorithm are moving away from opti-

mum. This indicates that quickly changing environments and

severely changing environments are more difficult to address.

This is natural because the algorithms may not have enough

time to converge and the knowledge transferred may misguide

the searching process in quickly and severely changing environ-

ments, respectively.

6.3. Results of comparing RIACO against other peer algo-

rithms

RIACO outperforms M-ACO andMMASR in most DVRPs

with f = 10 whereas it is outperformed in most DVRPs with

f = 100, both random and cyclic. This is because RIACO may

disturb the optimization process due to too much randomiza-

tion, especially when enough re-optimization time is available,

e.g., on DVRPs with f = 100. This can be observed in Fig. 7,

where RIACO maintains higher diversity levels on DVRPs with

f = 100 over other ACO algorithms that transfer knowledge

via previous pheromone trails. Even thoughMMASR does not

transfer knowledge, it also outperforms RIACO in most DVRPs

with f = 100. This is natural because the global re-initialization

of pheromone trails has enough time to re-optimize to the newly

13



 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

900 910 920 930 940 950 960 970 980 990 1000

T
ot

al
 D

iv
er

si
ty

Iteration

F-n45-k4,  f = 10,  m = 0.25

ASrank-CVRP
ACS-DVRP

M-ACO
MMASR
RIACO
EIACO

MIACO

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

900 910 920 930 940 950 960 970 980 990 1000

T
ot

al
 D

iv
er

si
ty

Iteration

F-n72-k4,  f = 10,  m = 0.25

ASrank-CVRP
ACS-DVRP

M-ACO
MMASR
RIACO
EIACO

MIACO

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

900 910 920 930 940 950 960 970 980 990 1000

T
ot

al
 D

iv
er

si
ty

Iteration

F-n135-k7,  f = 10,  m = 0.25

ASrank-CVRP
ACS-DVRP

M-ACO
MMASR
RIACO
EIACO

MIACO

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0 100 200 300 400 500

T
ot

al
 D

iv
er

si
ty

Iteration

F-n45-k4,  f = 100,  m = 0.25

ASrank-CVRP
ACS-DVRP

M-ACO
MMASR
RIACO
EIACO

MIACO

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0 100 200 300 400 500

T
ot

al
 D

iv
er

si
ty

Iteration

F-n72-k4,  f = 100,  m = 0.25

ASrank-CVRP
ACS-DVRP

M-ACO
MMASR
RIACO
EIACO

MIACO

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0 100 200 300 400 500

T
ot

al
 D

iv
er

si
ty

Iteration

F-n135-k7,  f = 100,  m = 0.25

ASrank-CVRP
ACS-DVRP

M-ACO
MMASR
RIACO
EIACO

MIACO

Figure 7: Dynamic population diversity of ACO algorithms in quickly changing cyclic DVRPs (top) and slowly changing random DVRPs (bottom) for the last ten

and first five environmental changes, respectively.

generated optimum. Furthermore, RIACO clearly outperforms

ASrank-CVRP and ACS-DVRP in almost all DVRPs, both ran-

dom and cyclic. ASrank-CVRP and ACS-DVRP use pheromone

evaporation and may destroy knowledge from the previous en-

vironment or may not be able to eliminate pheromone trails that

bias ants into non-promising areas. This can be observed from

Fig. 6, where the performance of ASrank-CVRP is degraded af-

ter the first environmental change.

6.4. Results of comparing EIACO against other peer algo-

rithms

EIACO outperforms ASrank-CVRP and ACS-DVRP in al-

most all DVRPs, both random and cyclic, for the same reasons

explained previously. Moreover, EIACO outperforms M-ACO

and MMASR in most DVRPs, both random or cyclic. More

precisely, in DVRPs with f = 10, EIACO is able to trans-

fer knowledge more effectively than its competitors due to the

diversity maintenance mechanism via the elitism-based immi-

grants, which helps to accept the knowledge transferred. This

can be observed in Fig. 7, where the diversity maintenance

mechanisms of the competitors are not very effective because

the diversity level after a dynamic change is decreased dramat-

ically (exceptMMASR). Therefore, when the diversity is de-

creased, meaning that the population converged towards a so-

lution, it will be difficult to accept the knowledge transferred

in order to locate the moving optimum after a dynamic change.

Similarly, in DVRPs with f = 100, EIACO has even more time

to transfer knowledge from previous environments and express

its effect. This can be observed in Fig. 6, where EIACO con-

verges faster than other algorithms and to a better solution (after

a few environments).

6.5. Results of comparing MIACO against other peer algo-

rithms

MIACO outperforms ASrank-CVRP and ACS-DVRP in al-

most all dynamic test cases, both random and cyclic, for the

same reasons described previously. The performance of MI-

ACO on random DVRPs is similar to or slightly worse than the

performance of EIACO. This is due to the fact that MIACO is

a generalization of EIACO. Furthermore, MIACO outperforms

M-ACO andMMASR on most cyclic DVRPs with f = 10, but

it is comparable on most cyclic DVRPs with f = 100. As it

was explained previously, the more times the environment cy-

cles, the better the performance of MIACO is; which can be

observed in Fig. 5, where MIACO is able to maintain better

solution quality than other algorithms.

6.6. Sensitivity analysis on the effect of parameters ri and pi
m

There are several key parameters within the proposed ACO

algorithms, such as the immigrants replacement rate ri, which

determines the number of immigrant ants introduced to the cur-

rent short-term memory, and the mutation probability pi
m within

the elitism-based immigrants, which determines the level of di-

versity generated by the immigrants. In the basic experiments,

we have set ri = 0.4 for RIACO, EIACO and MIACO, and

pi
m = 0.01 for EIACO and MIACO. In order to investigate the

effect of these parameters, we further carried out experiments

on RIACO, EIACO and MIACO on DVRPs with f = 100

and m = 0.1 and with f = 10 and m = 0.75. The value

of ri was set to ri ∈ {0.0, 0.2, 0.4, 0.6, 0.8} and the value of
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Figure 8: Offline performance of RIACO, EIACO and MIACO with different immigrants replacement rates in random DVRPs.

pi
m ∈ {0.05, 0.1, 0.3, 0.8}, while the remaining experimental set-

tings were the same as in the basic experiments. The experi-

mental results on random DVRPs with the aforementioned dy-

namic properties are plotted in Fig. 8, where the EIACO with

different pi
m values is denoted as EIACO(pi

m). From Fig. 8, sev-

eral observations can be drawn as follows.

First, the immigrants replacement rate ri does affect the per-

formance of relevant ACO algorithms. For example, the per-

formance of EIACO is improved on DVRPs with f = 100 and

m = 0.1 whereas the performance of RIACO is improved on

DVRPs with f = 10 and m = 0.75 when ri > 0. However, on

DVRPs with f = 10 and m = 0.75, the performance of EIACO

and RIACO is degraded and upgraded, respectively, as ri in-

creases, whereas on DVRPs with f = 100 and m = 0.75 the

performance of EIACO and RIACO is upgraded and degraded,

respectively. These observations further support the claims in

the basic experiments that different immigrants schemes per-

form well on DVRPs with different properties.

Second, the immigrants mutation probability pi
m also affects

the performance of relevant ACO algorithms. In most cases,

EIACO performs better than other EIACO with different pi
m

values even when the parameter ri is different. There is no

any significant difference between EIACO and EIACO(0.05).

However, as pi
m increases, e.g., EIACO(0.3) and EIACO(0.8),

the performance is degraded (except on F-n45-k4) since ran-

domization is promoted.

Generally, the two investigated parameters control the diver-

sity generated by the immigrants and their sensitivity depends

on the properties of a DOP, e.g., f and m, but also the type of the

algorithm. For example, the parameter ri in RIACO is very sen-

sitive since it may disturb the optimization process, whereas a

similar case occurs with the parameter pi
m in EIACO on DVRPs

with f = 100. In contrast, a higher value of ri in EIACO usually

improves the performance.

6.7. Experiments on DVRPs with traffic factors

In the basic experiments above the DBGP was used to gen-

erated DVRPs for benchmarking purposes. In this section, the

DVRP with traffic factors3 [35, 36] is considered that models a

more realistic scenario. The cost of each connection (i, j) ∈ A

is defined as di j × ti j, where di j is the normal distance travelled

defined in Eq. (2) and ti j represents the traffic factor between

customers i and j. Every f algorithmic iterations, a random

number (i.e., ti j = rand(FL, FU)) is generated to represent po-

tential traffic jams, where FL and FU are the lower and upper

bounds of the traffic factor, respectively. Each connection has

a probability m to add traffic, whereas the remaining links are

set to ti j = 1 which indicates no traffic. Furthermore, in the

basic experiments the performance of ACO algorithms was in-

vestigated on DVRPs with fixed values of f and m for com-

parison purposes. However, real-world problems may involve

different periods and severities of change. In order to investi-

gate the performance of ACO algorithms in such environments,

further experiments were performed with random f and m val-

ues, which were randomly generated in [1, 100] and [0, 1] (i.e.,

f = rand(1, 100) and m = rand(0, 1)), respectively.

The experimental results regarding the offline performance of

ACO algorithms are presented in Table 6 with the correspond-

ing statistical test results performed in the same way as in the

3Note that the optimum values in these DOPs are unknown during the exe-

cution of the algorithms.
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Table 6: Offline performance and statistical test results on DVRPs with traffic

factor with f = rand(1, 100) and m = rand(0, 1)

DVRPs F-n45-k4 F-n72-k4 F-n135-k7

Offline Performance

ASrank-CVRP 1126.69 473.27 2695.42

ACS-DVRP 1118.71 469.58 2656.18

M-ACO 1177.52 466.98 2618.42

MMASR 1112.49 461.09 2626.73

RIACO 1106.19 436.11 2496.29

EIACO 1117.49 429.21 2483.48

MIACO 1120.38 433.46 2505.39

Statistical Test

RIACO⇔EIACO − + +

RIACO⇔MIACO − + ∼

EIACO⇔MIACO ∼ − −

RIACO⇔ASrank-CVRP − − −

RIACO⇔ACS-DVRP − − −

RIACO⇔M-ACO − − −

RIACO⇔MMASR − − −

EIACO⇔ASrank-CVRP − − −

EIACO⇔ACS-DVRP ∼ − −

EIACO⇔M-ACO − − −

EIACO⇔MMASR ∼ − −

MIACO⇔ASrank-CVRP − − −

MIACO⇔ACS-DVRP ∼ − −

MIACO⇔M-ACO − − −

MIACO⇔MMASR − − −

basic experiments. The dynamic behaviour of the algorithms

in F-n135-k7 and the m and f values used on each iteration

are presented in Figs. 9 and 10, respectively. The experimental

setup and parameter settings of the algorithms were the same as

in the basic experiments.

RIACO, EIACO and MIACO algorithms outperform their

competitors in almost all DVRPs. This observation basically

matches the results of the basic experiments. ASrank-CVRP is

outperformed in all test cases by its competitors. RIACO signif-

icantly outperforms EIACO and MIACO in F-n45-k4 whereas

it is significantly outperformed in F-n72-k4. EIACO signifi-

cantly outperforms RIACO and MIACO in F-n135-k7. From

Fig. 9, it can be observed that EIACO usually maintains better

performance in most environmental changes. In cases where

the magnitude of change drops significantly, e.g., after iteration

300, EIACO is outperformed byMMASR. This is natural be-

cause the knowledge transferred from elitism-based immigrants

may not be compatible in the new environments and a complete

restart of the algorithm is a better choice.

7. Conclusions

The DVRP has attracted less attention than the stationary

VRP. In general, combinatorial optimization problems with dy-

namic environments have attracted less attention than other
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DOPs in different domains. Existing benchmark generators for

the DVRP generate DOPs where the optimum is unknown dur-

ing the environmental changes, i.e., the DVRP with traffic fac-

tors. In this paper, we mainly use our recently proposed gen-

erator, i.e., the DBGP [40], which can generate DVRPs with

known optimum over the environmental changes. In this way,

one can observe how close to the optimum an algorithm per-

forms. To address the DVRP, ACO algorithms with immigrants

schemes (i.e., RIACO, EIACO and MIACO), which were re-

cently developed for the dynamic travelling salesman problem

[38], are re-designed specifically for the DVRP. The perfor-

mance of the algorithm is compared against several existing

peer ACO algorithms on different DVRP test cases.

From the experimental studies of benchmarking ACO algo-

rithms on DVRPs with different dynamic properties, the fol-

lowing concluding remarks can be drawn. First, immigrants

schemes enhance the performance of conventional ACO for

DVRPs. Random immigrants are able to generate diversity

whereas elitism- and memory-based immigrants are also able

to transfer knowledge. Second, different pheromone strategies

within ACO perform well on DVRPs with different proper-

ties. RIACO, EIACO and MIACO perform better on quickly,

slowly and cyclically changing DVRPs, respectively. Third,

the pheromone trails of previous environments are useful when

the changing environments are similar; otherwise, a global

re-initialization of the pheromone trails performs better, e.g.,

MMASR. Fourth, ACO algorithms that are enhanced to ad-

dress dynamic changes perform close to the optimum during the

environmental changes, whereas conventional ACO algorithms,

e.g., ASrank-CVRP, perform far away from the optimum. Fifth,

the internal parameters of the ACO algorithms, e.g., ri and pi
m,

affect the performance difference between RIACO, EIACO and

MIACO. However, their effect is much less significant than the

effect of the DOP properties, e.g., f and m. Sixth, too much di-

versity may disturb the optimization process and destroy previ-

ous knowledge gained by algorithms, e.g., random immigrants.

A good balance between the knowledge transferred and the di-

versity generated is vital to achieve good ACO performance in

DVRPs. Finally, the DVRPs that change quickly and severely

are more difficult to address than the DVRPs that change slowly

and slightly. This is natural because the algorithm may not have

enough time to re-optimize, or the changing environments may

be completely different to transfer knowledge.

For future work, it would be interesting to adapt the parame-

ters ri and pi
m of RIACO, EIACO and MIACO since they have

a significant impact on their performance. Another future work

is to integrate the dynamic time-linkage property to the DBGP

where the solution obtained by the optimizer at time t is depen-

dent on at least one earlier solution [4, 43]. Finally, it would be

interesting to consider other real-world problems, such as rout-

ing natural gas in buildings [49], optimal control of pumps in

water distribution networks [33], manufacturing optimization

problems [57, 58, 59, 60] and scheduling of trains and mainte-

nance tracks [1].
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