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Abstract—The main issue when using reinforcement learning
algorithms is how the estimation of the value function can be
mapped into states. In very few cases it is possible to use tables
but in the majority of cases, the number of states either can be too
large to be kept into computer memory or it is computationally
too expensive to visit all states. State aggregation models like the
self-organizing maps have been used to make this possible by
generalizing the input space and mapping the value functions
into the states. This paper proposes a new algorithm called TD-
GNG that uses the Growing Neural Gas (GNG) network to solve
reinforcement learning problems by providing a way to map value
functions into states. In experimental comparison against TD-
AVQ and uniform discretization in three reinforcement problems,
the TD-GNG showed improvements in three aspects, namely,
1) reduction of the dimensionality of the problem, 2) increase
the generalization and 3) reduction of the convergence time.
Experiments have also show that TD-GNG found a solution using
less memory than TD-AVQ and uniform discretization without
loosing quality in the policy obtained.

Keywords—Reinforcement Learning, Adaptive State Space Par-
titioning, Growing Neural Gas, Q-Learning

I. INTRODUCTION

Reinforcement learning algorithms are widely used in tasks
where the expected behavior is not known. In this kind of
problem, the only information available is a reinforcement
signal given by a critic [1]. It is the critic’s responsibility
to evaluate and encode in a reward signal the effect of
actions taken by the agent. This reward signal indicates how
“pleasurable” it is to perform a particular action at a given
state [2]. The agent should learn a sequence of actions that
maximizes the reward signal it receives in the long run. Actions
that lead to states which give the largest immediate rewards
may lead to others which do not [2].

The learning process of reinforcement learning algorithms
relies on estimating value functions for each state-action pair.
The value functions are estimations of the expected future
rewards that can be received by the agent. In tasks with
small state spaces, these value functions can be stored in a
table addressed by state-action pair. This approach however
suffers from the curse of dimensionality [3] where the search
space grows exponentially as the number of states and actions
increases. Another problem with this approach is the long time
spent by the agent to fill all table entries, since the agent needs
to continuously visit all states to make better estimates of the
value function [2].

Models that either approximate functions or perform some
type of state aggregation can be combined with reinforcement
learning algorithms as a way to reduce the large state space
problem. While reinforcement learning algorithms estimate the
value function of a state, models like multilayer perceptron and
growing neural gas generalize the input space and perform the
mapping of the value function into states.

One type of function approximation is CMAC [4], known
as tile-coding due to Sutton and Barto [2]. This model was
extensively used with success in many complex large domain
environments which include Dribble [5], Cart-pole [6], Keep-
away [7], Acrobot [2], Mountain Car [2] and many others.
In this approach, the state space is quantized in regions called
tiles forming a grid of tiles that is called a tiling. This approach
can contain various tilings which are overlapped by an offset
of 1

c
, where c is the number of tilings used. For each state, c

overlapped tiles are activated and the value function is obtained
by summing all the involving tiles [2]. This approach has some
drawbacks that have already been reported by Whiteson et al.
[8]. In their paper, two main limitations are exposed [8]: the
first is that tile-coding requires a human designer to figure
out the model, and the second is related to the degree of
generalization that is fixed throughout the learning process.
Research points out that performance increases only when
generalization is gradually reduced over time [9]. Furthermore
Vieira et al. [5] have shown that the amount of memory used
increases with the number of states hence, imposing difficulties
on convergence for very large spaces.

State aggregating algorithms like Kohonen maps [10] and
Growing Neural Gas [11] can be used in reinforcement learn-
ing problems on large domains. Mountain car [12], robot nav-
igation [13]–[15], puddle world [16], cart centering [17] and
arm-control [18], [19] are examples of that nature. Basically
most of these models are made by two Self Organizing Maps
(SOM) networks; one is used to map the state space and the
other is used for searching the action space [12], [18], [19].

One drawback when using SOM is the need to determine
the number of nodes; too many nodes can slow down the
learning considerably while too few nodes may not be enough
to find a good solution. The goal is to have new nodes
being added in the course of learning until some degree of
convergence is reached. Several papers have been published
focussed on this aspect. In [16], Baumann et al. presents the
GNG-Q+ model to partition the state space by aggregating
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similar states. In this approach, nodes maintains a table which
contains the actions value of the region represented by its
centroid. At each iteration, Q-Learning is applied to the current
approximation and, if an update causes a change in the policy,
then a local error variable is incremented. The addition of new
nodes occurs in regions where the local error variable exceeds
a predefined threshold. One problem with this approach is
related to the movement of existing nodes and to the addition
of new nodes. To gather sufficient information about where
to either add or move nodes, this process occurs only when
an episode is finished. Thus, the node movement and the
refinement process tend to be very slow, once that many steps
will be necessary until a satisfactory representation of the
state space be reached. This characteristic slows down the
training phase considerably and can be a serious constraint
to its application in real world.

Another approach that can adaptively partition the state
space was presented by Lee et al. [20]. In this work, a vector
quantization called TD-AVQ is used to adaptively partition the
state space by tracking the accumulated reward received by the
agent in one region before it activates a different region. If this
accumulated reward surpasses a predefined threshold θ and the
actual state s is at a distance greater than a constant parameter
ρ, the state space is partitioned with the addition of a new
codeword at s. The Q-Learning is not applied while a different
region is not activated and in the meanwhile the rewards
are discarded and only transition rewards are considered. In
this case, the agent will not know the real cost to reach a
different region. This problem potentially prevents the use of
this approach in environments where different rewards can be
received in the same episode as, for example, in puddle world.

This paper presents TD-GNG, a new single layered algo-
rithm based on Growing Neural Gas (GNG) that only grows
when required. At each iteration, the algorithm looks for nodes
that have value functions saturated and add new ones in places
nearby. Thus, nodes with saturated value function tends to
stabilize leading the network to good solutions. At this point
no nodes are added. In TD-GNG, there is no need of the
environment model. It operates in on-line fashion, therefore
there is no need to store the experience. Experiments have
shown that the proposed algorithm was capable of finding good
solutions with few nodes. Also, the growth was well controlled
leading the network to a good representation of the input space
and value functions.

This paper is organized as follows. Section II presents
some background of Temporal Difference algorithms that were
used to build the proposed model, which is described in
Section III. The testbed environments are presented in Section
IV. Experiments on Section V compare the performance of
TD-GNG, TD-AVQ and uniform discretization on three well
known environments with continuous state. Section VI presents
final considerations and the conclusions.

II. TEMPORAL DIFFERENCE

In reinforcement learning problems, the agent must es-
timate a value function for each visited state and perform
actions that leads to states where the value function is maximal.
In these states, the agent will receive larger rewards. In
other words, the agent must learn a behavior policy π that

maximizes the sum of future rewards r over the time t, i.e.,
V π(st) =

∑

∞

k=0 rt+k. The value function V π reflects the
expected return that will be received by following a policy
π. A discount factor denoted by γ can be used to bound the
return value in such a way that if γ < 1, the infinite sum will
have a finite value. The agent will take future rewards into
account more strongly as γ approaches one [2].

One way to estimate the value function is by Temporal
Difference methods [21]. Learning by Temporal Difference
refer to models that can learn without waiting for a final
outcome. This kind of learning is very useful in problems
where the experience does not break into episodes. In this
kind of problems, interaction continues indefinitely, making it
impracticable to wait until the end to start the learning process
[2]. Q-Learning [22] is a temporal difference algorithm that
can incrementally estimate the value function of a state-action
pair by computing

Q(s, a) = Q(s, a) + α[r + γmaxbQ(s′, b)−Q(s, a)] (1)

after every transition from a non-terminal state. In Equation 1,
s′ is the next state following s, a is the action performed in
s, b is the greedy action in s′, α is a step-size constant that
indicates the learning rate, r is the reward received in s and γ
is a constant parameter that indicates the discount factor.

To accelerate the learning process, a mechanism called El-
igibility traces [23] can be combined with temporal difference
algorithms. This mechanism consists in propagating a portion
of the reward received in one state to all predecessors states,
in the sense that recent states receive more credit or blame
then old states. The implementation of this mechanism is made
with the addition of a memory (e) with the same size as the
Q-table and addressed by state-action pair. At each time step,
the eligibility of the current state-action pair is incremented by
one and all others are decremented by a fraction, a constant
parameter λ.

The pseudo-code of Q-Learning with Eligibility traces
(Q(λ)) is presented on Algorithm 1.

III. PROPOSED ALGORITHM

The proposed algorithm combines the GNG network with a
modified Q(λ) algorithm. The modified Q(λ) is used for com-
puting the value functions while the modified GNG algorithm
performs the mapping of these values into the state space. The
algorithm works by dividing a large set of states into groups,
each having the estimation of the reward of regions represented
by their centroid points. Each group is represented by one node
that has its own action-table and e-table. The action-table has
the estimation of the reward for each possible action and the
e-table is used for eligibility traces.

The algorithm consists of 3 stages called Adaptation,
Refinement, and Behavior and Learning, described in the
following subsections.

A. Adaptation

Growing Neural Gas (GNG) is an incremental network
model able to learn the important topological relations in a
given input vector space by continuously adding new nodes
into its network which starts with two connected nodes [11].
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Algorithm 1: Pseudo-code of Q-Learning with eligibility
traces as described in [2].

Data: Initialize Q(s, a) arbitrarily and e(s, a) = 0, for
all s, a

1 repeat for each episode:
2 Initialize s, a;
3 repeat for each step of episode:
4 Take action a, observe r, s′;
5 Choose a′ from s′ using policy derived from

Q(e.g., ϵ-greedy);
6 a∗ ← argmaxbQ(s′, b) (if a′ ties for the max,

then a∗ ← a′);
7 δ ← r + γQ(s′, a) + 1;
8 e(s, a)← e(s, a) + 1;
9 forall pair (s, a) do

10 Q(s, a)← Q(s, a) + αδe(s, a);
11 if a′ = a∗ then
12 e(s, a)← γλe(s, a)
13 else
14 e(s, a)← 0
15 end
16 end
17 s← s′;
18 a← a′;
19 until s is terminal;
20 until;

At each iteration, nodes can be connected, moved towards
an input signal or added after a certain number of iterations.
Nodes are either placed in regions that are not well represented
or removed from regions where the activity is too low. A
local accumulated error variable and edges are used for these
purposes.

In the modified GNG algorithm, nodes are moved to-
wards regions where the probability of receiving rewards
are high. These regions are identified by evaluating the
value function with the condition r + γargmaxaQ(w′, a) >
argmaxbQ(w, b) and moving nodes a fraction towards it. This
will result in a behavior where nodes tend to move towards
the goal state making a path to it.

As nodes represent knowledge about each region stored in
their action-tables, removing them means loss of that knowl-
edge. Thus, nodes aren’t removed in the proposed model. No
change was made in the manner of how nodes are connected.
The algorithm is activated when a new representation of the
environment’s state is perceived by the agent. The closest node,
according to the Euclidean distance, to this state is called the
winner and it is the one that has the right to respond to it.
The output of the winner node will be the next action to be
performed by the agent. Algorithm 2 presents the proposed
modified GNG algorithm.

B. Refinement

For the addition of new nodes, a threshold is used in places
represented by nodes where actions value exceeds it. Instead of
using a fixed threshold, the algorithm estimates the maximum
value that actions value can assume. If a discount factor is used
action-value functions will have a limit that can be calculated

Algorithm 2: Modified GNG algorithm.

1 Function GNG(s, s′)is
Input: actual state s and next state s′

2 Find the nearest node w and the second-nearest
node l to s;

3 Find the nearest node w′ to s′;
4 if r+ γargmaxaQ(w′, a) > argmaxbQ(w, b) then
5 Move the winner node w and all its neighbors n

a fraction ew and en toward the state s;
6 end
7 if w and l are connected by an edge then
8 Set the age of this edge to zero;
9 else

10 Create a new edge between w and l;
11 end
12 Increment the age of all edges emanating from w;
13 Remove edges with an age larger than amax;
14 Decrease parameters ew and en;
15 end

using the equation,

Q(s, a) ≤

∣

∣

∣

∣

rt
(1− γ)

∣

∣

∣

∣

(2)

Equation 2 is only true if r is constant over time which is true
only in special cases, e.g, the agent gets stuck in a region and
is unable to get out since the number of nodes are insufficient
to represent a good solution. In this case, the action-value
function will saturate and no learning will occur. This can
be avoided if new nodes are added in these regions before the
saturation of the action-value function by defining a threshold
described by the following equation,

θ =

(

rt+1 + γ1rt+2 + · · ·+
γn−1rt+n

(1− γ)

)

c (3)

where c is a constant parameter with a value between 0 and
1. This parameter defines the maximum value that an action-
value function can assume before new nodes are added.

C. Behavior and Learning

One of the main problems when combining reinforcement
learning algorithms with models that discretize the state space
is the loss of the convergence property. Figure 1 (a) shows
a particular case on a small gridworld where reinforcement
learning algorithms are unable to find a solution. The envi-
ronment was split in 4 regions numbered and delimited by
two solid thick lines. In the fourth region, to reach the goal
two different actions which depends on the agent’s position
are needed: at position (3, 4) the best action would be to go
right while at position (4, 3) the best action would be to go
up. However, this behavior is impossible to reach since these
two particular states are in the same region and therefore will
share the same action-value function. Instead of performing
a uniform discretization, the environment can be split in a
more efficient way as shown on Figure 1 (b). In this case, the
environment was split in 2 regions providing a more simple
and efficient partition schema of the state space, whereas the
optimal behavior can now be reached.
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Fig. 1. Uniform and a non-uniform discretization on small gridworld.

In the example of Figure 1 (a), to reach the goal the agent
needs to know where it came from to determine its next action.
For example, if agent reaches the region 4 from state (1, 3) the
next action must be to go right but if it came from state (3, 1)
the next action must be to go up. In this case, the agent has
a “dependence of path”, in contrast with the “independence
of path” of environments that have the Markov property [2].
This problem can happen in the majority of reinforcement
learning algorithms, which discretize the state space. In order
to minimize the loss of the Markov property, the proposed
approach prevents the agent from using different actions in the
same region. For this to happen, learning only occurs when
either a different region is activated or the episode ends. If
one region is activated for a long period of time, than its value
function will saturate and then a new node will be added. This
helps the agent keep track of actions that lead to different
regions and, meanwhile, the agent accumulates the rewards.
This modification in the Q-Learning algorithm turns it to a
special kind of algorithm called n-step TD prediction [2],

Q(w, a) = Q(w, a) + α[R(n) −Q(w, a)]e(w, a) (4)

In Equation 4 the terms Q(w, a) and e(w, a) mean the
action-table and eligibility traces memory of node w, re-
spectively. The term R(n) is the n-step return that can be
expanded to

∑n
i=1 γ

i−1rt+1 + γnargmaxbQ(w′, b), where n
is the number of steps until either the agent reaches a different
region activated by w′ instead of that activated by w or the
episode ends. The decay of eligibility traces is determined by
the number of the n steps until the change of the current active
region as described bellow,

et(w, a) =

{

1 if w = wt and a = at
(γλ)net−1(w, a) otherwise

(5)
for all w, a.

Algorithm 3 shows the complete algorithm and in Figure
2 the learning scheme is presented.

IV. TESTBED ENVIRONMENTS

This section describes three testbed environments used to
evaluate the proposed algorithm. The first testbed is called
Mountain Car. In this task, a car is placed between two hills
without enough energy to reach the goal state at the top of
the right hill. The only way to reach the goal state is driving
the car up the left hill as a way to get more energy. Figure 3
illustrate the Mountain Car environment.

!"#$%&"'(")

!"#$%

*+,(-%"$".

&#'%
(#'%

&#
(#

)#

*

+#'%,-./.).0
%)

,10

) )

-2113&.,-.0

(#

#

Fig. 2. Learning scheme of TD-GNG.
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Fig. 3. Mountain Car.

The agent can perform two actions, which leads the car
to left (at = −1) or right (at = 1), a reward of -1 is given
on all time steps until it reaches the goal position in which it
receives a reward of 0. The state of the environment is given
by two continuous variables that describe the position (xt)
and velocity (xt) of the car and are updated by the following
equations as described by Singh and Sutton [24],

xt+1 = xt + xt+1 (6)

xt+1 = xt + 0.001at − 0.0025× cos (3xt) (7)

and bounded by

xt+1 = min (max (−1.2, xt+1), 0.5) (8)

xt+1 = min (max (−0.07, xt+1), 0.07) (9)

When the car reaches the top of the left hill, the velocity is
reset to zero, which simulates the presence of an inelastic wall.
If the car reaches the top of the right hill, then the episode is
terminated. Each episode starts at a random state.

In the second task, the agent is situated in a continuous
two-dimensional state environment called puddle world. The
objective of the agent in this task is to reach the goal region
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Algorithm 3: TD-GNG

1 repeat for each episode
2 Initialize w, a;
3 repeat for each step of episode:
4 Take action a, observe r, s′;
5 Find the nearest node w′ to s′;
6 R← R+ γnr;
7 n← n+ 1;

8 if R+ γnQ(w′, a) ≤
(

R+ γnr
1−γ

)

c then

9 Place at position s′ a new node k;
10 w′ ← k;
11 end
12 if w ̸= w′ then
13 Choose a′ from w′ using policy derived

from Q(e.g., ϵ− greedy);
14 a∗ ← argmaxbQ(w′, b) (if a′ ties for the

max, then a∗ ← a′);
15 δ ← R+ γnQ(w′, a∗)−Q(w, a);
16 e(w, a)← 1;
17 forall pair (w, a) do
18 Q(w, a) = Q(w, a) + αδe(w, a);
19 if a′ = a∗ then
20 e(w, a)← (γλ)ne(w, a)
21 else
22 e(w, a)← 0
23 end
24 end
25 n← 0;
26 R← 0;
27 a← a′;
28 end
29 GNG(s, s′); // refers to Algorithm 2
30 w ← w′;
31 until s is terminal;
32 until;

at right bottom corner with 0.05 of size along each of the
two dimensions. At each time step, the agent can move in
four directions (left, right, up and down) and is rewarded by
-1 except if is in the puddle which receives an additional
penalty. As described in [25], these penalties were -400 times
the distance into the puddle (distance to the nearest edge).
The puddles were 0.1 in radius and were located at center
points (.1, .75) to (.45, .75) and (.45, .4) to (.45, .8). The
episode is terminated and the agent receives a reward of 0 if
its location is in the goal region. A random Gaussian noise
with standard deviation 0.05 is also added into movements to
add more difficulty to the task. The environment described is
shown in Figure 4.

The third and last environment used in our experiments is
a 20x20 two-dimensional maze as showed on Figure 5. In this
task the agent has to solve a maze by reaching the goal state
fixed at position (19, 2). At each time step, the agent receives
a reward of -1 until it reaches the goal state where it receives
a reward of 0. The agent starts at a random position and can
perform four actions (left, right, up, down), if one of these
actions moves it into the wall or out the limits of the world,
the position of the agent is not changed and will receive a
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Fig. 4. Puddle World.

reward of -1.
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Fig. 5. 20x20 Maze.

V. RESULTS AND DISCUSSION

To evaluate the proposed model, performance was mea-
sured on the three experimental environments described in
Section IV and compared with uniform discretization and
TD-AVQ algorithm with and without merging codewords. In
mountain car and 20x20 maze environments, the performance
metric was the number of steps until the agent reach the goal
state. In the puddle world task, the accumulated reward was the
performance metric chosen since the shortcut path may not be
the best because it is possible for the agent to reach the goal
state through puddles with larger penalties. All experiments
were run ten times and the performance was averaged and
plotted.

For TD-GNG, the following parameter settings were ap-
plied in all experiments: α = 0.1, γ = 0.999, E = 0.1,
λ = 0.9, ew = 0.01, en = 0.001, amax = 100, θ = 0.5, with
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exception of the mountain car environment were E = 0 was
set. In this environment, a long sequence of actions is needed to
reach the goal and a random action can ruin all this sequence,
so exploration has not been used. For uniform discretization,
several configurations for the discretization of the state space
were tested. Best results were found when the state space was
discretized in 8 × 8 regions for mountain car and 20 × 20
regions for puddle world and maze environments. Also, several
configurations for α, λ, E and γ were tried and best initial
results were found when α = 0.1, λ = 0.9 and γ = 0.95.
The E parameter was set to 0.1 in 20x20 maze and puddle
world and 0 in the mountain car environment. After searching
the parameters space of TD-AVQ, the following settings were
common on the three environments: α = 0.1, γ = 0.95, E = 0
for mountain car and E = 0.1 for the remaining, and λ = 0.9.
The parameters θ and ρ were 5 and 0.1 for puddle world, and
15 and 0.01 for 20x20 maze and mountain car.

Figures 6 to 8 shows the averaged performance and the
growth of the models on mountain car, 20x20 maze and puddle
world. In general, all experiments show that TD-GNG achieved
a better performance than TD-AVQ and uniform discretization.
In the beginning of the learning process, when few nodes
are representing the state space, all adaptive algorithms take
more time to reach the goal. Only after the first episodes in
the learning process when new features have already been
added and the state space is well represented, the model’s
performance improves considerably. This happens with most
adaptive models which start with a coarse representation of the
state space.

In all experiments TD-GNG was capable of finding a near
optimal policy in less than 50 episodes. The TD-AVQ with and
without merge, reached similar results in mountain car task
but in 20x20 Maze the convergence was reached after 250
episodes. As expected, TD-AVQ was unable to find a good
policy in the puddle world task and, in some episodes, the
agent was unable to reach the goal and the episode needed to be
restarted. This can be seen when the accumulated rewards have
some peaks as shown in Figure 8. The uniform discretization
showed the worst performance in all experiments, even in
the first episodes when the adaptive methods did not have
yet an adequate representation of the input space. In uniform
discretization, some similar regions may have been separated,
causing an increase in the number of distinct regions to visit
therefore making the algorithm spend more time to find a near-
optimal policy than in the proposed model. Random Gaussian
noise added to the agent actuator in the puddle world task
showed that TD-GNG was robust against it, which is an
important characteristic, since it is a very common type of
noise affecting actuators and sensors in the actual world.

In the proposed model nodes are added very quickly in the
beginning of learning because the actual number of nodes at
start are insufficient to represent the input space and therefore
its action-value functions saturate more quickly, but after some
episodes, the growth tends to converge and the performance
begins to improve. In all experiments, the amount of nodes
was less than the number of codewords used by TD-AVQ,
even when merging of codewords was used. The amount
of nodes used by TD-GNG to solve the 20x20 maze (see
Figure 9 (a)) was approximately 80 from the total of 302
valid states, a reduction of approximately 74% without loosing

TABLE I. MEMORY (KB) SPENT BY TD-GNG, TD-AVQ WITH AND

WITHOUT MERGING IN LEARNING FOR 500 STEPS OVER 10 RUNS.

Memory usage
Algorithm Environment Memory average Standard deviation

TD-GNG
Mountain Car 0.2 kb 0.01
Puddle-World 1 kb 0.05
Maze 20x20 1 kb 0.11

TD-AVQ with
Merging

Mountain Car 0.36 kb 0.04
Puddle-World 0.75 kb 0.03
Maze 20x20 1.85 kb 0.1

TD-AVQ without
Merging

Mountain Car 0.46 kb 0.04
Puddle-World 0.78 kb 0.03
Maze 20x20 2.12 kb 0.06

Uniform
Discretization

Mountain Car 0.8 kb 0
Puddle-World 6 kb 0
Maze 20x20 6 kb 0

performance. In TD-AVQ model without merging, the amount
of codewords used for the 20x20 maze was near 140 and near
120 when merging codewords was used but there was a slightly
decrease in the performance when merging of codewords was
used. In the mountain car problem, that have continuous state
variables, the proposed model was also able to make a good
representation of state space with few nodes that were smaller
than the number of codewords used by TD-AVQ. In average,
the numbers of nodes utilized by the proposed model were
25 and 80 nodes against 59 and 50 codewords utilized by
TD-AVQ without merging, and against 46 and 49 codewords
utilized by TD-AVQ with merging for mountain car and puddle
world (see Figure 9 (b)), respectively. In puddle world, TD-
AVQ uses less codewords than nodes but the performance was
relatively worse than in TD-GNG.

Another point investigated was the total amount of memory
used, presented at Table I. In the training process both TD-
AVQ methods and uniform discretization spent more memory
than TD-GNG in two of the three tested environments. Since
TD-AVQ uses more codewords than nodes, the memory it used
was greater than TD-GNG did. The same happens with the
uniform discretization, where the state space was partitioned
in more regions than nodes. However, TD-GNG was quicker
in reaching a near-optimal policy than the other tested methods
in all experiments carried-out. This indicates that the proposed
model maps the input space more efficiently.

VI. CONCLUSION

Empirical results have shown that the algorithm proposed
in this paper improves the applicability of reinforcement
learning in complex environments by reducing the size of
the state space. With the aggregation of similar states, the
proposed model was capable of solving problems with both
continuous and discrete state variables, reaching a good rep-
resentation of the state space with few nodes representing a
much larger amount of states. Despite having achieved similar
performances on the mountain car problem, the proposed
TD-GNG has solved it consuming much less computational
resources than the TD-AVQ did. This feature allows its use
in embedded applications where the amount of memory is
critical. In the 20x20 maze, using less resolution than TD-AVQ
and uniform discretization, the proposed algorithm reached
convergence more quickly. In the puddle world problem, while
the TD-AVQ was incapable of converging, the TD-GNG has
converged in less than 200 episodes. The growth of the network
seems to be well controlled, showing to converge as the
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Fig. 6. Performance and Model Growth in mountain car.
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Fig. 7. Performance and Model Growth in 20x20 maze.
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Fig. 9. State space partition performed by TD-GNG in Puddle World and 20x20 Maze environments.

performance increases. The proposed algorithm has shown to
be less sensitive to variation in parameters such that in all
experiments the same settings were used. In all experiments the
TD-GNG algorithm has shown to be capable of reducing the
dimensionality of the problem, increasing the generalization,
and reducing the convergence time of RL algorithms.
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