
Published in KI - Künstliche Intelligez 29(4):1–10 (2015).
The final publication is available at Springer via http://dx.doi.org/10.1007/s13218-015-0356-1 .

Autonomous Learning of State Representations for Control
An emerging field aims to autonomously learn state representations for
reinforcement learning agents from their real-world sensor observations.

Wendelin Böhmer · Jost Tobias Springenberg · Joschka Boedecker ·
Martin Riedmiller · Klaus Obermayer

Received: 03.02.2015 / Accepted: 05.03.2015 / Published online: 19.03.2015

Abstract This article reviews an emerging field that

aims for autonomous reinforcement learning (RL) di-

rectly on sensor-observations. Straightforward end-to-

end RL has recently shown remarkable success, but re-

lies on large amounts of samples. As this is not feasible

in robotics, we review two approaches to learn interme-

diate state representations from previous experiences:

deep auto-encoders and slow-feature analysis. We an-

alyze theoretical properties of the representations and

point to potential improvements.

Keywords end-to-end reinforcement learning ·
representation learning · deep auto-encoder networks ·
slow feature analysis · autonomous robotics

1 Introduction

Feature engineering is an important part in solving ma-

chine learning problems. In the case of reinforcement

learning agents for real-world control tasks, this task

can be especially challenging as it involves finding rep-

resentations from raw sensor measurements (such as

images or laser scan data) which are rich enough to

describe the full state of the agent (and its environ-

ment), while still being compact enough to enable fast

convergence of the learning algorithm.

Taking learning in robotics applications as an example,

the agent is faced with sensory data in form of a stream

of relatively high dimensionality, e.g. from 4− 7 values

This work was partially funded by the German science foun-
dation (DFG) within the priority program SPP 1527.

W. Böhmer · K. Obermayer
Neural Information Processing Group,
Technische Universität Berlin, Sekr. MAR 5-6
Marchstrasse 23, 10587 Berlin, Germay
E-mail: wendelin@ni.tu-berlin.de

J. T. Springenberg · J. Boedecker · M. Riedmiller
Machine Learning Lab, Universtät Freiburg

of joint angles plus their velocities (and possibly accel-

erations) for robotic arms, up to 50+ joint angle values

on very complex robots, hundreds of sensor values mea-

sured by pressure-sensitive robotic skins, or on the order

of thousands to millions of pixels from camera images,

nowadays often augmented with depth information.

As mentioned, the challenge is to extract meaning-

ful bits of information, i.e. a low-dimensional repre-

sentation relevant to the learning task from this high-

dimensional load of data. Traditionally, an approach to

achieve this is to use the insights of the system designer

into the task at hand, and specify the most important

task variables explicitly. Algorithms for extracting their

values from the data stream are then usually hand-

coded, and parameters are tuned manually. A concrete

example from a robotic soccer application is the ex-

traction of task variables for learning to dribble a soc-

cer ball. In [44], the authors specified the velocities in

x and y direction, rotation speed, and heading angle

of the robot (with respect to some target) as the rel-

evant pieces of information, which could be extracted

from the raw data of the camera (using hand coded

computer vision approaches) and odometry sensors of

a robot in the RoboCup MidSize Soccer League. This

representation contained sufficient information in or-

der for the robot to learn quick, space-efficient turns

with the ball without loosing it in the process. Similar

hand-coded feature extraction pipelines underpin most

successful applications of RL to robotics (we refer the

interested reader to [21] for a recent review).

However, it is often a tedious, time-consuming pro-

cess to find these useful features for a task at hand since

the design choices underlying this step typically do not

generalize over different tasks or control domains. An-

other limiting factor can be the experience of the sys-

tem designer who needs to have enough insight into the

problem in order to decide what constitutes useful fea-

tures. Methods that learn representations from data au-

tomatically have emerged as a promising alternative; in

http://dx.doi.org/10.1007/s13218-015-0356-1


2 Böhmer, Springenberg, Boedecker, Riedmiller and Obermayer

particular, automatic feature learning with deep convo-

lutional neural networks is now the dominating method

when it comes to image classification problems. In the

field of robotics, these methods have found application

as well, as we describe below. Note that despite the

focus on one sensory modality in our examples, i.e. im-

age data, similar problems arise for other modalities,

such as tactile information used for solving robot con-

trol problems with contacts and even simple readings

from joint encoders.

In the following, we will first present representation-

free approaches, followed by deep auto-encoder networks

and slow feature analysis as emerging techniques to

learn state representations. A comparison of approx-

imation properties and practical concerns in learning

representations is completed by a discussion of open

questions and promising directions of future research.

2 End-to-end reinforcement learning

The most direct approach to avoiding tedious hand

crafting of representations is to learn a non-linear con-

trol policy directly operating on the raw sensory inputs

(often referred to as end-to-end learning). The goal of

end-to-end learning in RL is to directly train a non-

linear function approximator that represents the target

function (e.g. a Q-function or a policy π) we care about.

One prominent recent example of this line of work

is the Deep Q-Networks (DQN) approach by [37]. Here

the authors learn a policy for playing several ATARI

games with human level performance directly from pixel

images captured from an ATARI simulator. DQN trains

a convolutional neural network (CNN) to approximate

the highly non-linear Q-function with an online gra-

dient descent approach from a large amount of inter-

actions with the system. Formally this minimizes the

squared Bellman error [2,51,19], of function Q̃θ with

parameters θ, for all training samples {zt, at, rt}nt=1:

min
θ

n−1∑
t=1

(
rt + γmax

a
Q̃θ(z

t+1, a)− Q̃θ(zt, at)
)2
, (1)

where zt ∈ Z ⊂ IRd denotes the sensor observation at

time t at, rt the chosen action and collected reward and

γ is the discounting factor.

It should be noted, that the idea of using neural

networks as non-linear (Q)-value function approxima-

tors has a long history in RL. Successes have, however,

mainly been restricted to complicated control problems

with low-dimensional inputs [43] and simple toy exam-

ples1 [45,28]. There are several factors allowing DQN

1 Perhaps with the exception of TD-Gammon [53], which
relied heavily on a well chosen representation as input.

to succeed where previous attempts failed: (i) the ad-

vent of modern GPU computing allows for training ex-

tremely large neural networks on huge datasets (sev-

eral million example images were used to train DQN).

(ii) DQN makes use of a large deep CNN as compared

to traditional shallow neural networks, thus having a

large representational power while constraining repre-

sentable functions with insights from image processing.

(iii) DQN uses experience replay to circumvent sam-

pling problems2 that plague online RL.

In the last years several researchers have also consid-

ered end-to-end learning of behavioral policies π, rep-

resented by general function approximators. First at-

tempts towards this include an actor-critic formulation

termed NFQ-CA [14], in which both the policy π and

the Q-function are represented using neural networks

and learning proceeds by back-propagating the error

from the Q-network directly into the policy network

– which was, however, only applied to low dimensional

control problems. Closely connected to NFQ-CA, recent

work on policy gradient algorithms revealed a princi-

pled formulation for end-to-end learning of deep neural

network policies using a deterministic policy gradient

formulation [48]. Notably, this approach was success-

fully applied to control the high-dimensional problem

of controlling a 30-DOF robotic arm. Other recent at-

tempts towards learning neural network policies include

applications of joint trajectory optimization and neu-

ral network policy learning for robotics problems (see

e.g. [27,38]) as well as playing Go from raw visual input

[32] and learning attention policies for object recogni-

tion [36].

The main advantage of end-to-end learning for RL

is that it results in policies, without the need for inter-

mediate representation learning. The main drawback is

that end-to-end learning of deep neural network policies

from raw visual input often requires thousands or even

millions of samples, making these approaches extremely

data hungry. This is often not feasible in robotics.

3 Deep representation of states

Keeping the number of necessary training samples low

is also the key motivation for heuristic representations.

Faced with some (usually continuous) set of possible

observations Z ⊂ IRd from d sensors, an expert uses his

considerable knowledge of the task to specify a mapping

φ : Z → X into a p dimensional representation X ⊂
IRp. This “knowledge”, however, has been inferred from

previous experiences.

2 Sampling from trajectories with changing policies leads
to non-stationary training distributions and prevents conver-
gence in online gradient descent algorithms.



Autonomous Learning of State Representations for Control 3

t

g
ra

d
ie

n
t 
d
e
s
c
e
n
t

id
e
n
ti
ty

target: reconstruction

input: vector of pixel values

feature space

low-dimensional
high-dimensional

bottle

neck

Deep Autoencoder

action a

improved by

Reinforcement

Learning

system

policy

maps feature

vectors to

actions

IEEE-1394b
camera

carrera slotcar track

a) b)

c)

Fig. 1 Depiction of the experimental setup for learning with
DFQ for (a) the slot-car scenario [25] and (b) the visual pole
task [35]. (c) detailed visualization of representation learning
and Q-learning as performed by DFQ.

Analogously, an autonomous robot could infer such

a mapping from experiences in previous tasks or passive

observations. While numerous unsupervised learning al-

gorithms exist in literature, which could be employed

to learn such a representation, the high-dimensionality

of the sensory input in the problems we consider makes

effective representation learning difficult. This is why

only few learning algorithms have been successful in

this setting [26,25,16,5].

To exemplify this, let us take a look at one such

approach, that was successfully applied to learn a sen-

sory representation for control of a slot-car racer on a

track [25], as well as an inverted pendulum [35], us-

ing pixel information extracted from a high-resolution

camera only: the deep fitted Q (DFQ) algorithm. The

general setup of DFQ for both problems is depicted in

Figure 1. It consists of an unsupervised learning compo-

nent, that first learns to extract the necessary informa-

tion from the images, as well as a reinforcement learn-

ing component, that carries out the task (steering the

slot-car around the track or swinging up the pendulum)

based on the learned representation. The figure already

illustrates several key aspects necessary for successful

learning:

1. Since control requires interaction with a real sys-

tem, learning has to be data efficient. Only a few

hundred experiments (resulting in few thousand ob-

servations) can be carried out without causing ex-

cessive wear of the system.

2. In order to enable efficient reinforcement learning,

the learned representation φ(z) ∈ X ⊂ Rp has to be

of low intrinsic dimensionality p.

3. We assume that each observation z ∈ Z captures all

information necessary to describe the state of the

system we aim to control.

4. How the state is represented in X depends on an

optimization problem, in the case of DFQ an auto-

encoder [15,3] of the observations Z.

The DFQ algorithm employs deep neural networks to

represent both the encoder φ : Z → X and the inverse

decoder ψ : X→ Z. Pre-training with the auto-encoder

minimizes the least-squares reconstruction error of all

training samples {zt}nt=1 ⊂ Z for the first layer:

min
φ,ψ

n∑
t=1

∥∥∥ψ(φ(zt)
)
− zt

∥∥∥2
2

s.t. p� d . (2)

After convergence, the parameters of the trained layer

are frozen and its output is used as reconstruction tar-

gets for the next layer. Reducing the number of ar-

tificial neurons on each successive layer yields a low-

dimensional representation X, that is able to recon-

struct the observation and thus must contain the state.

After this layer-wise training all weights of the com-

plete, stacked, auto-encoder are jointly fine-tuned to

improve the reconstruction (post-training).

After learning the encoder network φ, a fitted Q al-

gorithm is applied to learn an approximate Q function

Q̃ : X → IR of the control problem3. A plethora of

function approximators can be utilized to represent Q̃.

In the case of DFQ, a clustering based algorithm was

used. When applied to the slot-car task and the visual

pole swing-up task, this algorithm successfully learns a

controller solving the task from raw sensory input. In

the case of the slot-car racer the policy is competitive

to an experienced human on this task (see Table 1 for

a performance comparison).

Similar to other successful applications of unsuper-

vised representation learning to RL, the DFQ approach

has several potential weaknesses which we will further

discuss in Section 7: (i) in contrast to end-to-end learn-

ing, the state representation learned by DFQ is not

reward-based and we hence cannot expect the result-

ing representation to be “goal directed”; (ii) learning

auto-encoders for inputs with high variability (i.e. many

objects of relevance) can be hard. Both problems could

potentially be addressed by adding explicit regulariza-

tion terms to the formulation from Eq. (2). An interest-

ing recent attempt in that direction is described in [17].

Additionally recent research in the machine learning

3 The back-propagated Bellman-error could potentially
also be used to fine-tune the representation, but both [25]
and [35] chose not to adapt the representation to the task.



4 Böhmer, Springenberg, Boedecker, Riedmiller and Obermayer

Performance on Slot-Car
Controller Time per round Crash-free
Random - No
Constant velocity 6.408s Yes
Experienced Human ≈ 3s Yes
DFQ 1.869s Yes

Performance on visual swing-up
Controller Average reward Success
Random −1 No
Fitted-Q (True State) −0.15± 0.01 Yes
DFQ −0.205± 0.075 Yes

Table 1 Performance of the DFQ Algorithm on the slot-
car benchmark (top) and on the visual swing-up task (bot-
tom) over 20 trials. The best performance is marked bold. On
the swing-up task DFQ performs about as good as a policy
learned using fitted-Q iteration using the true state informa-
tion (pole angular position and velocity). On the slot-car task
DFQ completes a successful lap faster than an experienced
human. Tables adapted from [25,35].

community has resulted in several auto-encoder vari-

ants and deep probabilistic models that might be easier

to train (thus addressing problem (ii)) [54,20,42].

Despite these drawbacks DFQ also comes with ad-

vantages over end-to-end learning: since the auto-encoder

merely learns to reconstruct sampled observations and

it can be fed with samples generated by any sampling

policy for any task, is thus less susceptible to non-

stationarity of the training data. And more importantly,

since the learned non-linear embedding into the repre-

sentation space X is low-dimensional, an RL algorithm

based on X can succeed using only few samples.

4 Slow feature analysis as state representation

Less restricted by the pitfalls of non-linear optimiza-

tion, the field of discrete RL has developed their own

methodology to learn representations. These fall roughly

in two categories: reward-based and subspace-invariant

features [39]. The first type aims to represent the propa-

gated reward (Krylov-bases [41], BEBF [40] and BARB

[33]). This allows context-dependent representations,

but prohibits the (re-)use of samples from other sources.

The second type is reward independent and can trans-

fer knowledge from previous tasks [52]. In the following

we will introduce two prime examples of such represen-

tations to compare them in theory and practice.

Proto-value functions (PVF, [34]) use Laplacian eigen-

maps (LEM, [1]), a technique from spectral clustering

[47], to provide a state representation X. The learned

features are the smallest eigenvectors of a connectivity

graph, that is generated from a random-walk through

the discrete state space. As this graph is identical for

all tasks with the same transition model, PVF can use

training data from previous tasks to reduce training

time [11,12], similar to shaping [49]. Motivated by spec-

tral clustering, a continuous extension of PVF extracts

the eigenvectors of a k-nearest-neighbor graph [34], to

apply PVF to high-dimensional observation spaces.

Recent work demonstrated that the unsupervised

technique slow feature analysis (SFA, [57,56]) approxi-

mates LEM in a similar way as PVF [50]. In difference

to PVF, however, the spectral encoding of SFA repre-

sentations is based on the transition probability rather

than the connectivity of states [5]. Instead of extracting

eigenvectors explicitly, SFA minimizes the slowness of

an observed sequence of observations {zt}nt=1 in X:

min
{φi}

p∑
i=1

n−1∑
t=1

(
φi(z

t+1)− φi(zt)
)2

︸ ︷︷ ︸
slowness of φi

, (3)

under some constraints to avoid trivial or correlated

solutions [57]. This objective can be implemented with

non-linear function classes, for example, deep convolu-

tion neural networks [57,13] or sparse kernel methods

[4]. Both methods need to be implicitly or explicitly

regularized, though, as SFA is prone to over-fitting.

4.1 Theoretical analysis

Analysis of unrestricted SFA solutions and experiments

in simulated environments have demonstrated that non-

linear SFA is able to extract the underlying three di-

mensional state space of a wheeled robot in a static en-

vironment [13]. Furthermore, the learned feature space
approximates a Fourier-basis in this space, which is

known to be a universal basis for continuous functions.

In this light it is not surprising that there have been

many successful attempts using non-linear SFA to learn

RL representations from observations, ranging from sim-

ple top-down perspective pixel-environments [26,30] to

simulated and real-world first-person perspective robot

experiments [5].

From a theoretical point of view, SFA and PVF both

approximate subspace-invariant features. This classifi-

cation has its origin in the the analysis of approxima-

tion errors in linear RL [39]. Here subspace-invariant

features induce no errors when the future reward is

propagated back in time. It can be shown that under

these conditions the least-squares temporal difference

algorithm (LSTD, [9]) is equivalent to supervised least-

squares regression of the true value function [5]. How-

ever, this is only possible for the class of RL-tasks with

a self-adjoint transition model. As this class is very

rare, both SFA and PVF substitute a self-adjoint ap-



Autonomous Learning of State Representations for Control 5

40 120 200 320 400
−80

−70

−60

−50

−40

−30

−20

Size of Feature Space Φ

M
e

a
n

 A
c
c
u

m
u

la
te

d
 R

e
w

a
rd

LSPI with Limit Sampling on Theoretic Features

PVF

SFA

40 120 200 320 400
−80

−70

−60

−50

−40

−30

−20

Size of Feature Space Φ

M
e

a
n

 A
c
c
u

m
u

la
te

d
 R

e
w

a
rd

LSPI with Random Sampling on Learned Features

Optimal

Fig. 2 Performance of LSPI [23] (y-axis) with learned SFA and PVF representations of varying size (x-axis), in the discrete
puddle-world task. In the left plot representations and policy iteration are based on all state-action pairs, whereas the right
plot uses a randomly drawn Markov chain as training set. Mean and standard deviation are w.r.t. state space sizes {20 ×
20, 25× 25, . . . , 50× 50}. The dotted line marks the performance of the optimal policy. Figure modified from [5].

proximation of the transition model to compute almost

subspace-invariant representations4.

An analysis of the optimal solution5 shows that SFA

approximates eigenfunctions of the symmetrized tran-

sition operator [50]. Moreover, with a Gaussian prior

for the reward, one can show that SFA representations

minimize a bound on the expected LSTD error of all

tasks in the same environment [5]. However, as the so-

lution depends on the sampling distribution, straight

forward application for transfer learning is less obvious

than in the case of PVF. Future works may rectify this

with some sensible importance sampling, though.

4 See [5] for a comparison of SFA/PVF subspace-
invariance.
5 In the limit of infinite training samples, the optimization

problem can be analyzed by function analysis in L2(Z, ξ).

2 32 256 2048
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size of Feature Space 

F
ra

c
ti
o
n
 o

f 
S

u
c
c
e
s
s
fu

l 
T
e
s
t

T
ra

je
c
to

ri
e
s

Sparse Kernel PCA

kNN PVF, k=25

Sparse Kernel SFA

Fig. 3 Mean and standard deviation of the navigation per-
formance in 10 independent training sets (y-axis) in a simu-
lated robot navigation task based on first-person perspective
images. The LSPI representations of varying size (logarith-
mic x-axis) have been learned by continuous sparse kernel
SFA, PCA and PVF. Dotted lines represent the 80%, 90%
and 100% performance levels. Figure modified from [5].

4.2 Empirical comparison

All theoretical arguments presented in this section hold

strictly for LSTD only, that is, become invalid when

for example least squares policy iteration (LSPI, [23])

changes the policy. How do SFA/PVF perform here?

The left side of Figure 2 compares the LSPI per-

formance (mean accumulated reward) of SFA and PVF

representations in discrete puddle-world tasks [8] of var-

ious sizes. Details can be found in [5]. The training

set contained all state-action pairs and shows there-

fore the best possible performance. As number of fea-

tures increases (x-axis), both representations similarly

approach the optimal performance (dotted line). Un-

der ideal conditions both representations are thus co-

equal. A different picture emerges when the training set

is drawn by a random walk, as shown on the right side

of Figure 2. Here the SFA representation caves in only

slightly, whereas PVF essentially fails6.

In the more realistic scenario of first-person perspec-

tive images from a wheeled robot, rendered in a virtual

environment, the difference is less obvious but still vis-

ible. Figure 3 shows the LSPI performance (fraction of

successful test-trajectories) based on sparse kernel SFA

[4], sparse kernel PCA [46] and PVF of a k-nearest-

neighbor graph [34]. All algorithms used the same set

of 4000 support vectors with the same Gaussian kernel.

For further details see [5]. Note that SFA representa-

tions reach both the 80% and 90% performance levels

with only a quarter of the representation size required

by both PVF and PCA, which behave very similar.

In summary, SFA and PVF approximate subspace-

invariant features, which are especially suited for linear

algorithms like LSTD. In particular SFA seems to be

one of the prime contestants for good representations.

6 It is not entirely clear why empirical PVF fail here. One
can observe that ideal PVF features have higher frequencies
than SFA’s, which may be harder to estimate empirically.



6 Böhmer, Springenberg, Boedecker, Riedmiller and Obermayer

5 Properties of good state representations

This section will compare the properties of a represen-

tation, with no concern how they are learned. In gen-

eral, approximate RL methods based on a value func-

tion have common demands on the representation X:

(a) X must be Markov (no partial observability),

(b) X must be able to represent the true value of the

current policy well enough for policy improvement,

(c) X must generalize the learned value-function to un-

seen states with similar futures and

(d) X must be low dimensional for efficient estimation.

All discussed methods aim to construct such a repre-

sentation X from a high-dimensional observation space

Z with a non-linear mapping φ : Z→ X. If Z is only par-

tially observable, however, X cannot have the Markov

property (a). There are several possibilities to make Z

Markov, for example temporal embedding [37], liquid

state machines [31], belief states [18] or predictive state

representations [29,55], which each come with their own

disadvantages. Temporal embedding, for example, im-

plicitly increases the state space uneccessarily by the

history of actions. An adequate discussion of these tech-

niques is beyond the scope of this article and we will in

the following assume that Z has the Markov property.

5.1 Isomorphic representations

We intend to train the representation with data from

previous tasks or passive observations, without knowl-

edge of the reward function we will face. As each state

may be rewarding, each state must therefore be distin-
guishable in X to represent the value function of the

current policy. In this case, any representation X must

be an isomorphism of Z. The only conceptual difference

between isomorphic X is the metric that measures how

similar two states are in training and generalization.

For example, take the set of all images Z a camera can

record in a specific environment. If this environment is

static and diverse enough, each image z ∈ Z will corre-

spond to exactly one camera position x ∈ X and vice

versa. X is therefore an isomorphism of Z. Note the

conceptual equivalence to auto-encoders in Section 3.

Representation X does not have to be a vector-space,

though. The mapping φ : Z → X can also define a

manifold of representations X, embedded in some p di-

mensional feature space IRp. For linear RL algorithms

(like LSTD) such a representation is necessary to ful-

fill demand (b). The embedding must provide a func-

tional basis of the underlying state, able to approximate

the value function sufficiently. An example would be a

Fourier expansion of the above camera positions [22].

As mentioned in Section 4, non-linear SFA will approx-

imate this feature space [13], which explains the good

performance with linear RL algorithms [5].

5.2 Representations encode metrics

Non-linear algorithms like neural fitted Q-iteration (NFQ

[43]) or deep Q-networks (DQN [37]), on the other hand,

can in principle work on any isomorphic representation

X. These algorithms will nonetheless benefit in train-

ing and generalization from some embeddings. The rea-

son is the aforementioned metric. For example, when a

robot navigates between multiple rooms, the underly-

ing space of positions is two-dimensional. Positions on

both sides of a wall would appear to be very similar,

but yet have dissimilar values. Any approximate RL

algorithm will benefit from a representation that maps

these two points far away from each other, but keeps

positions the robot can immediately travel to similar.

The Euclidean metric in feature space X ⊂ IRp

should therefore be proportional to the travel-distances

between states. In stochastic environments one can only

compare probability distributions over future states

based on a random policy, called diffusion distances. It

can be shown that SFA approximates eigenfunctions of

the symmetrized transition operator, which encode dif-

fusion distances [5]. SFA features are therefore a good

representation for non-linear RL algorithms as well.

In summary, SFA representations X seem in principle

the better choice for both linear and non-linear RL:

non-linear SFA extracts eigenfunctions of the transition

model Pπ, which are the same for every isomorphic ob-
servation space Z, encode a diffusion metric that gener-

alizes to states with similar futures and approximates a

Fourier basis of the (unknown) underlying state space.

6 How to learn good state representations

Section 5 argued that SFA representations have out-

standing properties for RL. However, in this section we

will discuss conceptual problems that limit SFAs appli-

cability and how deep networks can overcome them.

6.1 Slowness and representation size

Learning SFA representations provides challenges that

reduce the practical benefits considerably. Slowness

(Equation 3) is in the limit of an infinite training set

min
{φi}

p∑
i=1

IE

[(
φi(z

′)− φi(z)
)2∣∣∣∣ z ∼ ξ(·)

z′ ∼ Pπ(·|z)

]
. (4)



Autonomous Learning of State Representations for Control 7

SFA features depend therefore on the distribution ξ of

the training samples z ∈ Z and on the sampling pol-

icy π. Empirical studies suggest that both should be

as close to uniform distributions as possible [5], which

is not feasible if one reuses data from previous tasks.

The effect could in principle be balanced out by impor-

tance sampling, and optimal importance weights are a

promising field of future research.

Moreover, a Fourier basis as approximated by SFA

grows exponential in the underlying state dimension-

ality. Linear algorithms, which depend on this basis to

approximate the value function, are therefore restricted

to low dimensional problems with few or no variables

unrelated to the task. Non-linear RL algorithms, on the

other hand, could work in principle well with only the

first few SFA features of each state-dimension/variable.

The order in which these variables are encoded as SFA

features, however, depends on the slowness of that vari-

able. This can in practice lead to absurd effects. Take

our example of a wheeled robot, living in a naturally

lit room. The underlying state space that the robot can

control is three-dimensional, but the image will also de-

pend on illumination, that is, the position of the sun.

As the sun is by far the slowest variable, the major-

ity of SFA features will encode its position and (non-

existing) interactions with other state variables. This

effect makes most of the representation X unrelated to

the controllable state in the presence of slow distractors.

6.2 Slowness and deep networks

In contrast, deep auto-encoder networks, as introduced

in Section 3, do not suffer the above problem. They en-

code the state-variables according to their influence in

reconstructing observations z ∈ Z, not the slowness of

their representation x ∈ X. On the negative side, deep

representations encode metrics that can be arbitrar-

ily bad for function approximation. Also, auto-encoders

minimize the squared error over all input dimensions of

Z equally. This can produce incomplete representations

if a robot, for example, combines observations from a

camera with measurements from multiple joints. Due

to the large number of pixels, small improvements in

the reconstruction of the image can outweigh large im-

provements in the reconstruction of the joint positions.

Recently an interesting compromise has been pro-

posed: training a neural network with an objective that

combines slowness with predictability of the successive

state [16]. The learned representations are similarly com-

pact as those from an auto-encoder, but encode a dif-

fusion metric. Figure 4 compares these representations

at the example of the slot-car task (see Figure 1). The

right plot shows how the above objective captures the

s
ta

te
 d

im
 3

Fig. 4 Representations of the slot-car task (Fig. 1) learned
by a deep auto-encoder from physical experiments (left,
from [25]) and by a neural network trained with the objec-
tives slowness and predictability from a simulated experiment
(right, from [16]). Plots reproduced with authors permissions.

circular state metric of the task, which we attribute

to its slowness term. The representation of the auto-

encoder in the left plot, on the other hand, maps various

dissimilar states close-by each other, which complicates

the approximation of different values in these states.

Furthermore, one can also extend this framework to

suppress state-variables not related to the task by en-

forcing the predictability of rewards [17]. This demon-

strates one possible way to deal with slow distractors.

6.3 Conclusion

We discussed two basic approaches to learn state repre-

sentations from observations, slow-feature analysis and

deep auto-encoder networks. SFA construct representa-

tions with a metric and embedding that is especially

suited for linear RL, but also works very well with

non-linear RL algorithms. The same properties curse

SFA with huge feature spaces, when faced with a high-

dimensional underlying state space. Deep networks, on

the other hand, produce very compact representations.

These do not control the encoded metric, which often

complicates value approximation considerably.

Future works may train deep auto-encoder networks

similar to [25], that enforce a suitable metric on the rep-

resentation layer, similar to [16,17]. This could marry

the generalization of deep networks with the preferable

representation properties of SFA.

7 Outlook

This article presented the emerging field of autonomously

learning state representations directly from observations.

There are still many unresolved questions; in the follow-

ing we will present some of the most pressing concerns

and most promising research directions.



8 Böhmer, Springenberg, Boedecker, Riedmiller and Obermayer

7.1 Unsolved problems of learning representations

In our opinion, the biggest challenge today is the curse-

of-dimensionality of observed manifold Z ⊂ IRd. No-

tice that the dimensionality d of observation space IRd

does not pose a problem, if the underlying state space

S is low-dimensional. Adding sensors or pixels does not

change the isomorphic state and methods like SFA will

approximate the same representation. If the underlying

state S is high dimensional, on the other hand, the dis-

cussed learning methods need to sample all regions of S.

We believe this to be the main reason why unsupervised

learning of deep representations does not work for large

environments like ATARI games [37], which remain the

domain of end-to-end reinforcement learning.

Take the example of uncontrollable distractors like

blinking lights or activity outside a window. Each dis-

tractor is an independent variable of the isomorphic

state S, and to learn an isomorphic representation X

requires thus samples from all possible combinations of

these variables. The required training samples grow ex-

ponentially in the number of distractors. By sacrificing

isomorphy, one could suppress some of those variables

similar to [17] and thus reduce the training set drasti-

cally. However, it is not clear how to identify control-

lable variables without restricting representable tasks.

As discussed for SFA in Section 6, all successful

methods rely on averages over a training set. If the

training distribution ξ or sampling policy π are biased,

as one would expect when the observations are gener-

ated from previous tasks, large parts of the state space

S would be inadequately encoded. Auto-encoders (see

Section 3) are less affected by this, as they do not de-

pend on the sampling policy. A training set uniformly

sampled in S (not in Z) would probably yield the most

general representations [5]. If one could estimate such a

distribution, its inverse would yield optimal importance

sampling weights. Alternatively, one could change the

objectives from the L2 to the L∞ norm. However, op-

timization in this norm is usually more expensive.

7.2 Factored representations and symbolic RL

If we can overcome the above challenges with some

mapping φ : Z→ X, we will still face a major underly-

ing problem: it is not feasible to learn tasks in a repre-

sentation X of the full isomorphic state S of most envi-

ronments. S may simply be too large for sampling. Take

the example of a household robot living in a kitchen:

each object in the room represents multiple variables

of S that the robot can interact with and that may be

necessary for one of the many tasks the robot faces. On

the other hand, solving such a task in a representation

X̂ of some subset Ŝ ⊂ S could be feasible, as most of

these tasks depend only on few variables.

Z
map7−→ S

task7−→ Ŝ
model7−→ X̂

rl7−→ Q̂ .

Learning a representation can thus be seen as learn-

ing a map φ into a set of almost independent variables

si, which compose the isomorphic world state s ∈ S.

Some separate procedure could then choose a small sub-

set of variables Ŝ ⊂ S that is sufficient to solve the

task at hand. A direct approach Q̂ : Ŝ → IR to learn

the Q-value still requires many samples to estimate the

transitions and interactions of variables. Instead, one

could learn independent transition models for each si
and interaction models between variables. For example,

dishes and tables can be manipulated independently,

unless one is placed upon the other. Except for those

few states, the joint transition model is factorized [7].

For each selection Ŝ, one can therefore generate a rep-

resentation X̂ that encodes the metric of the joint tran-

sition model (with or without interactions) and learn

Q̂ : X̂→ IR, if possible by exploiting factorization [6].

Moreover, a group of variables can also be seen as

an instance of a class of objects. Similar to clustering,

classes could be learned by enforcing that all variables

obey a small set of transition models. In a world of

dishes and tables, for example, most transitions should

be well predictable using only two transition models.

Labeling each variable as part of one object also allows

to use symbolic RL algorithms (e.g. relational RL [10,

24]) to select the subset Ŝ. It may be a long shot, but

one could imagine a hierarchical framework that plans

far ahead using symbolic RL and solves detailed sub-

problems in metric subspaces.

Most important, however, is the possibility to regu-

larize the optimization of φ : Z → S by sparse transi-

tion models. In the face of large underlying state spaces

S, regularization is necessary to keep the demand for

samples feasible. If one learns the state S and its transi-

tions at the same time, the sparsity of the above transi-

tion models would strongly constrain the possible map-

pings φ and therefore require much less training sam-

ples. Such a joint optimization will be challenging, but

has the potential to break the curse-of-dimensionality.

Acknowledgements We would like to thank Sebastian Höfer
and Rico Jonschkowski for many fruitful discussions.

References

1. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimen-
sionality reduction and data representation. Neural Com-
putation 15(6), 1373–1396 (2003)



Autonomous Learning of State Representations for Control 9

2. Bellman, R.E.: Dynamic programming. Princeton Uni-
versity Press (1957)

3. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.:
Greedy layer-wise training of deep networks. In: Ad-
vances in Neural Information Processing Systems (2007)

4. Böhmer, W., Grünewälder, S., Nickisch, H., Obermayer,
K.: Generating feature spaces for linear algorithms with
regularized sparse kernel slow feature analysis. Machine
Learning 89(1-2), 67–86 (2012)

5. Böhmer, W., Grünewälder, S., Shen, Y., Musial, M.,
Obermayer, K.: Construction of approximation spaces for
reinforcement learning. Journal of Machine Learning Re-
search 14, 2067–2118 (2013)

6. Böhmer, W., Obermayer, K.: Towards structural
generalization: Factored approximate planning.
ICRA Workshop on Autonomous Learning (2013).
URL http://autonomous-learning.org/wp-content/

uploads/13-ALW/paper_1.pdf
7. Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic

planning: Structural assumptions and computational
leverage. Journal of Artificial Intelligence Research 11,
1–94 (1999)

8. Boyan, J.A., Moore, A.W.: Generalization in reinforce-
ment learning: safely approximating the value function.
In: Advances in Neural Information Processing Systems,
pp. 369–376 (1995)

9. Bradtke, S.J., Barto, A.G.: Linear least-squares algo-
rithms for temporal difference learning. Machine Learn-
ing 22(1/2/3), 33–57 (1996)

10. Džeroski, S., Raedt, L.D., Drissens, K.: Relational rein-
forcement learning. Machine Learning 43, 7–52 (2001)

11. Ferguson, K., Mahadevan, S.: Proto-transfer learning in
Markov decision processes using spectral methods. In:
ICML Workshop on Transfer Learning (2006)

12. Ferrante, E., Lazaric, A., Restelli, M.: Transfer of task
representation in reinforcement learning using policy-
based proto-value functions. In: International Joint Con-
ference on Autonomous Agents and Multiagent Systems
(2008)

13. Franzius, M., Sprekeler, H., Wiskott, L.: Slowness and
sparseness leads to place, head-direction, and spatial-
view cells. PLoS Computational Biology 3(8), e166
(2007)

14. Hafner, R., Riedmiller, M.: Reinforcement learning in
feedback control. Machine Learning 27(1), 55–74 (2011)

15. Hinton, G.E., Salakhutdinov, R.R.: Reducing the di-
mensionality of data with neural networks. Science
313(5786), 504–507 (2006)

16. Jonschkowski, R., Brock, O.: Learning task-specific
state representations by maximizing slowness and
predictability (2013). URL http://www.robotics.

tu-berlin.de/fileadmin/fg170/Publikationen_pdf/

Jonschkowski-13-ERLARS-final.pdf
17. Jonschkowski, R., Brock, O.: State representation learn-

ing in robotics: Using prior knowledge about physical in-
teraction. In: In Proceedings of Robotics: Science and
Systems (2014)

18. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Plan-
ning and acting in partially observable stochastic do-
mains. Artificial Intelligence 101, 99–134 (1998)

19. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforce-
ment learning: a survey. Journal of Artificial Intelligence
Research 4, 237–285 (1996)

20. Kingma, D.P., Welling, M.: Auto-encoding variational
bayes. In: ICLR (2014)

21. Kober, J., Bagnell, D., Peters, J.: Reinforcement learning
in robotics: A survey. International Journal of Robotics
Research 32(11), 1238–1274 (2013)

22. Konidaris, G.D., Osentoski, S., Thomas, P.: Value func-
tion approximation in reinforcement learning using the
Fourier basis. In: Proceedings of the Twenty-Fifth Con-
ference on Artificial Intelligence (2011)

23. Lagoudakis, M.G., Parr, R.: Least-squares policy itera-
tion. Journal of Machine Learning Research 4, 1107–1149
(2003)

24. Lang, T., Toussaint, M.: Planning with noisy probabilis-
tic relational rules. Journal of Artificial Intelligence Re-
search 39, 1–49 (2010)

25. Lange, S., Riedmiller, M., Voigtlaender, A.: Autonomous
reinforcement learning on raw visual input data in a real
world application. In: International Joint Conference on
Neural Networks, Brisbane, Australia (2012)

26. Legenstein, R., Wilbert, N., Wiskott, L.: Reinforce-
ment learning on slow features of high-dimensional input
streams. PLoS Computational Biology 6(8), e1000,894
(2010)

27. Levine, S., Abbeel, P.: Learning neural network poli-
cies with guided policy search under unknown dynamics.
In: Advances in Neural Information Processing Systems
(2014)

28. Lin, L.J.: Reinforcement learning for robots using neu-
ral networks. Ph.D. thesis, Carnegie Mellon University,
Pittsburgh, PA, USA (1992)

29. Littman, M.L., Sutton, R.S., Singh, S.: Predictive repre-
sentations of state. In: In Advances In Neural Information
Processing Systems 14 (2001)

30. Luciw, M., Schmidhuber, J.: Low complexity proto-value
function learning from sensory observations with incre-
mental slow feature analysis. In: International Conference
on Artificial Neural Networks and Machine Learning, vol.
III, pp. 279–287. Springer-Verlag (2012)

31. Maass, W., Natschlaeger, T., Markram, H.: Real-time
computing without stable states: A new framework for
neural computation based on perturbations. Neural Com-
putation 14(11), 2531–2560 (2002)

32. Maddison, C.J., Huang, A., Sutskever, I., Silver, D.: Move
evaluation in go using deep convolutional neural net-
works. arXiv preprint arXiv:1412.6564 (2014)

33. Mahadevan, S., Liu, B.: Basis construction from power
series expansions of value functions. In: Advances in
Neutral Information Processing Systems, pp. 1540–1548
(2010)

34. Mahadevan, S., Maggioni, M.: Proto-value functions: a
Laplacian framework for learning representations and
control in Markov decision processes. Journal of Machine
Learning Research 8, 2169–2231 (2007)

35. Mattner, J., Lange, S., Riedmiller, M.: Learn to swing up
and balance a real pole based on raw visual input data.
In: Proceedings of the 19th International Conference on
Neural Information Processing (5) (ICONIP 2012), pp.
126–133. Dohar, Qatar (2012)

36. Mnih, V., Hees, N., Graves, A., Kavukcuoglu, K.: Recur-
rent models of visual attention. In: Advances in Neural
Information Processing Systems (2014)

37. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., Riedmiller, M.: Playing
atari with deep reinforcement learning. In: NIPS Deep
Learning Workshop (2013)

38. Mordatch, I., Todorov, E.: Combining the benefits of
function approximation and trajectory optimization. In:
Proceedings of Robotics: Science and Systems (RSS)
(2014)

39. Parr, R., Li, L., Taylor, G., Painter-Wakefiled, C.,
Littman, M.L.: An analysis of linear models, linear value-
function approximation, and feature selection for rein-

http://autonomous-learning.org/wp-content/uploads/13-ALW/paper_1.pdf
http://autonomous-learning.org/wp-content/uploads/13-ALW/paper_1.pdf
http://www.robotics.tu-berlin.de/fileadmin/fg170/ Publikationen_pdf/Jonschkowski-13-ERLARS-final.pdf
http://www.robotics.tu-berlin.de/fileadmin/fg170/ Publikationen_pdf/Jonschkowski-13-ERLARS-final.pdf
http://www.robotics.tu-berlin.de/fileadmin/fg170/ Publikationen_pdf/Jonschkowski-13-ERLARS-final.pdf


10 Böhmer, Springenberg, Boedecker, Riedmiller and Obermayer

forcement learning. In: International Conference on Ma-
chine Learning (2008)

40. Parr, R., Painter-Wakefield, C., Li, L., Littman, M.: An-
alyzing feature generation for value-function approxima-
tion. In: International Conference on Machine Learning
(2007)

41. Petrik, M.: An analysis of Laplacian methods for value
function approximation in MDPs. In: International
Joint Conference on Artificial Intelligence, pp. 2574–2579
(2007)

42. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic
backpropagation and approximate inference in deep gen-
erative models. In: International Conference on Machine
Learning (2014)

43. Riedmiller, M.: Neural fitted q iteration - first experi-
ences with a data efficient neural reinforcement learn-
ing method. In: 16th European Conference on Machine
Learning, pp. 317–328. Springer (2005)

44. Riedmiller, M., Gabel, T., Hafner, R., Lange, S.: Rein-
forcement learning for robot soccer. Autonomous Robots
27(1), 55–74 (2009)

45. Sallans, B., Hinton, G.E.: Reinforcement learning with
factored states and actions. Journal of Machine Learning
Research 5, 1063–1088 (2004)

46. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear com-
ponent analysis as a kernel eigenvalue problem. Neural
Computation 10(5), 1299–1319 (1998)

47. Shi, J., Malik, J.: Normalized cuts and image segmenta-
tion. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 22(8), 888–905 (2000)

48. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D.,
Riedmiller, M.: Deterministic policy gradient algorithms.
In: The 31st International Conference on Machine Learn-
ing (ICML 2014) (2014)

49. Snel, M., Whiteson, S.: Multi-task reinforcement learn-
ing: Shaping and feature selection. In: European Work-
shop on Reinforcement Learning, pp. 237–248 (2011)

50. Sprekeler, H.: On the relationship of slow feature analysis
and Laplacian eigenmaps. Neural Computation 23(12),
3287–3302 (2011)

51. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An
Introduction. MIT Press (1998)

52. Taylor, M.E., Stone, P.: Transfer learning for reinforce-
ment learning domains: A survey. Journal of Machine
Learning Research 10, 1633–1685 (2009)

53. Tesauro, G.: Temporal difference learning and td-
gammon. Commun. ACM 38(3), 58–68 (1995)

54. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Man-
zagol, P.A.: Stacked denoising autoencoders: Learning
useful representations in a deep network with a local
denoising criterion. J. Mach. Learn. Res. (JMLR) 11,
3371–3408 (2010)

55. Wingate, D., Singh, S.P.: On discovery and learning of
models with predictive representations of state for agents
with continuous actions and observations. In: Interna-
tional Joint Conference on Autonomous Agents and Mul-
tiagent Systems, pp. 1128–1135 (2007)

56. Wiskott, L.: Slow feature analysis: a theoretical analysis
of optimal free responses. Neural Computation 15(9),
2147–2177 (2003)

57. Wiskott, L., Sejnowski, T.: Slow feature analysis: unsu-
pervised learning of invariances. Neural Computation
14(4), 715–770 (2002)



Autonomous Learning of State Representations for Control 11

Wendelin Böhmer received his

Diploma in computer science from

the Technische Universität Berlin,

Germany, in 2009, where he also

started as a PhD student in Klaus

Obermayers neural information pro-

cessing group. He received a scholar-

ship of the Human Centric Commu-

nication Center and worked later
on two DFG funded project within SPP-1527 au-

tonomous learning. He wrote 2 journal papers about

slow feature analysis as representation and participated

in two articles about cognitive modeling.

His research focuses on generalization to unseen situa-

tions in autonomous reinforcement learning. His inter-

ests are primarily in representations and computational

issues, but extend to applications in robotics, games

and cognitive modeling as well.

Klaus Obermayer received his

Diplom degree in physics in 1987

from the University of Stuttgart,

Germany, and the Dr. rer. nat. de-

gree in 1992 from the Department of

Physics, Technical University of Mu-

nich, Germany. From 1992 and 1993

he was a postdoctoral fellow at the

Rockefeller University, New York, and the Salk Insti-

tute for Biological Studies, La Jolla, USA. From 1994

to 1995 he was member of the Technische Fakultät, Uni-

versity of Bielefeld, Germany. He became associate pro-

fessor in 1995 and full professor in 2001 at the Depart-

ment of Electrical Engineering and Computer Science

of the Berlin University of Technology, Germany. He

is head of the Neural Information Processing Group

and member of the steering committee of the Bern-

stein Center for Computational Neuroscience Berlin. He

was member of the governing board of the International

Neural Network Society from 2004 - 2012 and was Vice-

President of the Organisation for Computational Neu-

roscience from 2008-2011. From 1999-2003 he was one

of the directors of the European Advanced Course of

Computational Neuroscience.

His current areas of research are computational neuro-

science, artificial neural networks and machine learning,

and the analysis of neural data. He co-authored more

than 250 scientific publications.

Tobias Springenberg is a PhD

student in the machine learning

lab at the University of Freiburg,

Germany, supervised by Prof. Mar-

tin Riedmiller. Prior to starting his

PhD, Tobias studied Cognitive Sci-

ence at the University of Osnabrück,

earning his BSc in 2009. From 2009-

2012 he then went to obtain a MSc
in Computer Science from the University of Freiburg,

focusing on representation learning with deep neural

networks for computer vision problems.

His research interests include machine learning, es-

pecially representation learning, and learning efficient

control strategies for robotics.

Joschka Boedecker studied com-

puter science at the University of

Koblenz-Landau, Germany, and ar-

tificial intelligence at the University

of Georgia, USA. He did his PhD

in engineering at the department of

adaptive machine systems at Osaka

University, Japan, receiving the de-

gree in 2011. From 2011-2012, he

continued to work at the same department as a postdoc-

toral researcher, before starting his second, and ongo-

ing postdoc at the Machine Learning Lab, department

of computer science, at University of Freiburg in early

2013.

His research interests include machine learning, espe-

cially (recurrent) neural networks and reinforcement

learning, as well as learning for robotics.

Martin Riedmiller studied Com-

puter Science at the University of

Karlsruhe, Germany, where he re-

ceived his PhD in 1996. In 2002

he became a professor for Compu-

tational Intelligence at the Univer-

sity of Dortmund, from 2003 to 2009

he was heading the Neuroinformat-

ics Group at the University of Os-

nabrück. Since April 2009 he is a

professor for Machine Learning at the Albert-Ludwigs-

University Freiburg. He was participating with his

teams in the RoboCup competitions from 1998 to 2009,

winning 5 world championship titles and several Euro-

pean championships.

His research interests include machine learning, neural

networks, reinforcement learning and robotics.


	Introduction
	End-to-end reinforcement learning
	Deep representation of states
	Slow feature analysis as state representation
	Properties of good state representations
	How to learn good state representations
	Outlook

