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Abstract

The convergence property of reinforcement learning has been extensively investigated in the field of machine learning, however, its
applications to real-world problems are still constrained due to its computational complexity. A novel algorithm to improve the
applicability and efficacy of reinforcement learning algorithms via adaptive state space partitioning is presented. The proposed
temporal difference learning with adaptive vector quantization (TD-AVQ) is an online algorithm and does not assume any a priori
knowledge with respect to the learning task and environment. It utilizes the information generated from the reinforcement learning
algorithms. Therefore, no additional computations on the decisions of how to partition a particular state space are required. A series
of simulations are provided to demonstrate the practical values and performance of the proposed algorithms in solving robot motion

planning problems.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Reinforcement learning (RL) deals with the problem
encountered by an autonomous agent learning to
achieve a goal through interactions with its environ-
ment. This learning method uses the experience accu-
mulated by the agent to improve the performance index
with respect to a particular task. Applications of RL
methods abound, mostly in the fields of game playing
(Tesauro, 1992, 1994), robotics (Riedmiller, 1996),
scheduling (Zhang and Dietterich, 1996) and inventory
control (Mahadevan et al., 1997). Although the con-
vergence property of RL has been widely investigated by
machine learning researchers (Sutton, 1988; Watkins
and Dayan, 1992; Dayan, 1992; Dayan and Sejnowski,
1994; Jaakkola et al., 1994; Tsitsiklis, 1994; Bertsekas
and Tsitsiklis, 1996), its applications to practical
problems are still constrained by the curse of dimen-
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sionality (Bellman, 1957). This constraint is due to the
exponential increase in the number of admissible states
with the dimensionality of state space. As a result,
practical applications, especially in solving real-time
control problems with RL methods, are hindered by the
required computational workload.

Since most theoretical results of RL algorithms
consider problems with discrete and finite state spaces,
this investigation studies the discretization process that
transforms an RL problem with continuous state space
into one with discrete state space. A novel algorithm
employing adaptive vector quantization (AVQ) is
developed to partition the state space incrementally as
the autonomous agent interacts with its environment. It
does not assume any a priori knowledge with respect to
the learning task and environment. The AVQ algorithm
utilizes the information generated from the RL algo-
rithms and, therefore, does not require additional
computations on the decisions of how to partition a
particular state space.

A review of reinforcement learning is presented in
Section 2. The proposed AVQ algorithm for the
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adaptive partitioning of the state space is described in
detail in Section 3. The characteristics and performance
of the AVQ algorithm are investigated via a series of
navigation tasks in Section 4. Finally, the application of
AVQ to the peg-in-hole task is presented in Section 5
and a conclusion is drawn in Section 6.

2. Reinforcement learning

A discrete time-, action- and state-space reinforce-
ment-learning model is presented in this section. In a
typical reinforcement learning model (Kaelbling et al.,
1996), a learning agent is connected to its environment
via perception and action (Fig. 1). The state of the
environment at time ¢ is denoted by x, € S, where S is
the set of admissible states. The agent selects an action
u; € U(x,), where U(x,) is the set of admissible actions in
state Xx,, according to a control policy. The control
policy y, : S — U specifies each admissible action as a
function of the observed state. At the next time step
(t+ 1), after executing the action, it receives an
immediate reward according to the reward function
g(Xs, 0y, Xpg1).

The aim of the learning agent is to develop an optimal
control policy, and its associated optimal state trajec-
tory, with respect to a particular measure. The system
dynamics and constraints are not known a priori.
Instead, the actual system is directly accessible to the
learning agent. Therefore, the agent must actively apply
perturbation to the system in order to acquire the
necessary information.

Solving a reinforcement learning problem involves
computational algorithms of searching for the optimal
policy u* that maximizes the total expected reward. This
is achieved by estimating the action value function
0"(x,u), Vx € S and Vu € U(x), which is the total
expected reward of starting at state x, taking action u,
and thereafter following policy u. For an infinite horizon
problem, where the terminal time T approaches infinity,
the action value function is given by

T—1
0"(x,u) = lim E{Z y’g(x,,u,,x,+])}, (1)
T—oo pay
Reward P
Function [~
A
A 4
; u X
Learning ' » Environment -
Agent

Fig. 1. The reinforcement learning model.

where 0 <y <1 is the discount factor. The optimal action
value function Q*(x,u) is defined as

O*(x,u) = max Q*(x,u), VxeS, ue Ux). 2)
I

In fact, the estimation of action value function plays a
critical role in all reinforcement learning problems. It is
because once the optimal action value function is found,
the corresponding optimal policy can be determined
with relatively little computation by adopting a greedy
policy with respect to the optimal action value function.
A greedy control policy is defined as one that always
chooses actions that lead to the maximum next-state
value. The value of any state is the largest of all action
values for that particular state, i.e.,

VH(x) = max Q*(x,u), VxeS. (3)
ueU(x)

All practical RL algorithms aim at estimating the state
value, i.e., the total expected reward of being at a
particular state and following a particular control
policy. Since an analytical model of the system or
environment is not available, any algorithms that try to
predict the state value must rely on the training data
generated from the actual system. A class of incremental
learning procedures for this particular prediction
purpose is called temporal difference (TD) method
(Sutton, 1988).

Temporal credit assignment problem is relevant to
any planning problems in which a series of actions are
taken before attaining the terminal state (Sutton and
Barto, 1998). One way to tackle the temporal credit
assignment problem is to incorporate eligibility trace
into TD methods. The eligibility {(x) of a state x is the
degree to which it has been visited in the recent past.
With eligibility trace, one can distribute the immediate
reinforcement signal to all the states that have been
recently visited, according to their eligibility. The
eligibility trace can be updated online with the following
update rule:

;L 1
() = { {x) +

AL(x) otherwise.

if X = current state,

(4)

Denoted by TD(A), temporal difference with eligibility
trace converges faster for large /4 (Dayan et al., 1994).
Although TD(/) is a powerful algorithm of solving
learning tasks autonomously (Tesauro, 1994; Riedmil-
ler, 1996; Zhang and Dietterich, 1996, Mahadevan et al.,
1997), it applies to problems with discrete state- and
action-spaces. As a result, any problems in continuous
domain must be transformed into discrete domain
before TD(4) can be applied. The next section discusses
such transformation process and presents the adaptive
vector quantization (AVQ) algorithm for the partition-
ing of continuous state spaces.
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3. Adaptive state space partitioning with vector
quantization

Solving a reinforcement learning problem with TD
learning methods relies on the estimation of the optimal
value function. In general, the optimal value function is
not analytical and, hence, cannot be represented by a
closed form analytical function. For the purpose of
computation, the look-up table method provides an
avenue to store a general function. For tabular
representation of the value function, one would repre-
sent the value function as an array of real numbers
indexed by the states of the problem. Since most real-life
problems involve continuous state variables, a discreti-
zation process is essential to the application of TD
learning methods. In essence, the discretization process
partitions the continuous state space into a finite
number of subsets. Each individual subset represents a
discrete state of the agent.

One of the most appealing features of a reinforcement
learning agent is autonomy. It must be capable of
achieving the goal, defined in terms of the reward
function, with minimum supervision from human
operators. Ideally, it must also be able to adapt to the
changing environment in order to fulfill the designated
task. Therefore, the partitioning of the state space
should be performed as part of the learning task, instead
of being fixed at the start of the learning process. In this
way, the agent learns a suitable partitioning for a
particular task as it gains more information from the
environment.

The objective of adaptive state space partitioning is to
develop an efficient online algorithm for the discretiza-
tion of a continuous state space. Concurrently, the TD
learning algorithms are applied to this discretized state
space. Hence, both the discretization process and the
TD learning algorithm are carried out simultaneously
based on the real-time sensory feedback signals gathered
as the agent interacts with its environment.

The design of a discretization mapping plays a critical
role in solving practical reinforcement learning problems
with TD methods. The convergence property of TD
methods with state space discretization is of prime
importance. Moreover, computational cost is also an
important issue if TD methods are to be employed for
real-time robot control. The control loop frequency of a
robot controller influences its overall performance to a
large extent. It is often the case that high-level planning
or intelligent control routines are implemented in
parallel with the low-level, but equally important, PID
control laws. In other words, the controller is required
to handle additional computational operations due to
the intelligent control sub-routines. Therefore, any
online planning sub-routines should not induce exces-
sive computations otherwise the servo rate would be
comprised. In the light of this concern, the computa-

tional operations required for the implementation of
discretization mapping must be minimized. The nearest
neighbor vector quantizer is a favorable candidate for
this purpose.

3.1. Nearest neighbor vector quantization

Vector quantization is a generalization of scalar
quantization to that of a vector. It is a widely employed
encoding technique in signal compression for storage
and telecommunication (Gray, 1984). Nearest neighbor
vector quantization is a method of partitioning the state
space into a set of disjoint regions.

A nearest neighbor quantizer, also called Voronoi
quantizer, y, maps a vector, x € R", where N is the set of
real number, onto a finite set of codewords (also called
codebook vectors), C = {¢;,¢,¢3,...,¢,} and ¢; € R"
for i=1,2,...,m, ie., Y : R* — C where C Cc R". In
essence, this mapping divides the n-dimensional real
space N" into m disjoint regions called Voronoi cells R;
fori=1,2,...m,1ie.,

R ={x € W" 1 (x) = ¢;}. )

The union of all the Voronoi cells corresponds to the
domain of the mapping, , U;R; = R"and R; N R; = 0, for
i#j. If the member vectors of the codebook are
determined, the mapping, Y/(x), is defined by the nearest
neighbor rule,

Ri={x:|x—¢llI<[Ix—¢ll}, Vi#j. (6)

The major advantage of nearest neighbor vector
quantizer is that the partition is completely determined
by the set of codewords C and the mapping {y may be
implemented with a few computational operations. By
mapping any particular continuous state vector, X, into
one of the codewords, ¢;, the total number of admissible
states is greatly reduced.

Designing a nearest neighbor vector quantizer
amounts to defining the set of codewords. If the optimal
value function is known a priori, each region defined by
the corresponding codeword should include all the states
with approximately the same value. However, rather
than providing a closed form solution, TD learning is a
computational algorithm that iteratively improves its
estimate of the value function. Therefore, the codewords
have to be defined and adjusted along with the TD
operations to reflect the most recent estimate of the
value function. Two fundamental codeword manipula-
tions are considered in the next section, namely, the
appending and merging of codewords.

3.2. Adaptive vector quantization

3.2.1. Defining codewords
To partition the state space is equivalent to approx-
imating the value function with piecewise constant
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functions because any perception vectors that fall into a
particular cell is viewed as identical. In other words, they
share the same action value profile. The aim of the
proposed partitioning algorithm is to group together
states with similar action value profile and next state
transition probabilities. This notion is implemented in
the following operations.

First, a new quantity called the accumulated reward
(accReward) must be defined. The accumulated reward
with respect to a particular action is the sum of the total
rewards received by continuously taking the same action
within a particular cell.

At the beginning, the codebook is initialized to consist
of just one codeword, which may, for example,
correspond to the initial or goal state. In other words,
the learning agent views the entire state space as a
homogeneous region when no a priori knowledge is
provided. Subsequently, the appending of new code-
words to the Voronoi quantizer is performed based on
two criteria:

1. The accumulated reward signal (accReward) exceeds
a certain threshold, y.

2. The Euclidean distance between the newly appended
and its nearest neighbor codeword must be greater
than a threshold value which corresponds to the
minimum resolution, 4.

The first criterion limits the variation of action value
within any particular cell. The second criterion main-
tains a predefined minimum resolution for practical
implementation reasons.

3.2.2. Merging codewords

As the agent continues to explore its environment, the
number of codewords would increase. It is, therefore,
essential to merge any similar codewords in order to
keep the size of the codebook to a minimum without
severely degrading its capability of searching for the
optimal control policy. Since the aim of state space
partitioning is to facilitate the search for an optimal
control policy, it is logical to suggest that the optimal
control action of every constituent generic state con-
tributing to a particular aggregate region or Voronoi cell
(R;) should be similar. However, it is very unlikely that
the optimal or even the near optimal action value
function and the associated optimal policy be available
with a few iterations of TD algorithms. Theoretically, it
converges to the optimal solution in an infinite number
of iterations. As a result, state or vector aggregation
based upon the optimal action alone is impractical.

TD algorithms maintain an estimate of the action
value profile, Q(x,u) Yu € U(x), for every encountered
state. Essentially, this profile shows the merit of every
admissible action relative to each other of the same
state. This action value profile provides a better
similarity measure among various states. Hence, states

X

Environment |« Effector
rY
u
.| Reward | 9 | D Learnin Q(x, u) | control
"] Function i 9 "l Policy
y
c
> AVQ [«

Fig. 2. The TD-AVQ control scheme.

with similar action value profiles should be combined to
form an aggregate state. The merging criterion of a pair
of nearest neighbor codewords is.

Any pair of nearest neighbor codewords are merged
into one if the mean square difference between the
action value profiles is less than a threshold, p.

Adaptive vector quantization is designed to imple-
ment the online partitioning of state space according to
the action value profiles, which are estimated by RL
algorithms. In other words, the partition is dependent
upon the RL algorithms employed. The temporal
difference learning with adaptive vector quantization
(TD-AVQ) control scheme is shown in Fig. 2 and the
complete algorithm is shown in Fig. 3. In the following
sections, a number of simulated experiments are
performed to demonstrate the properties and efficacy
of the TD-AVQ algorithm.

4. Navigation tasks

This section elucidates the TD-AVQ algorithm via a
series of maze navigation tasks (Lau et al., 2002). The
maze navigation task is simulated with the Nomad 200
(Nomadic Technologies, Inc., 1997) mobile robot
simulator (Fig. 4). The Sensus 300 proximity system,
which has 16 sonar and infrared ranging sensors
providing 360° coverage, enables the mobile robot to
detect any obstacles around it. The perception state of
the mobile robot is defined to be the x- and y-
coordinates of its current position, i.e., Xx=[x-coordi-
nate, y-coordinate]. This perception state is mapped to a
member of the codebook, C, for subsequent TD(A)
learning. The admissible action of the mobile robot is
one unit movement in one of the four compass
directions, i.e., U = {North, East, South, West}. The
control policy is derived based on the current estimate of
the action value function and an undirected exploration
strategy called e-greedy policy (Thrun, 1992). In brief,
the e-greedy policy selects action stochastically and
the probability distribution of the selected action is
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Define accumulated reward threshold (x) and minimum resolution (4)
Initialize the first codeword c; (e.g. ¢; = initial state)

Initialize Q(cy, u) =0, 0u

Initialize eligibility trace {( ¢y, u) =0, O u

accReward :=0
Initialize Xy, Uy

Repest
execute action U,

observe immediate reward g and next state X1
determine activated codeword ¢ V/(X+1) using the nearest neighbor rule:

Xt =G <X =G |, O #i

determine uy, for ¢, using the e-greedy policy derived from Q(C1, U)

ifo=c
accReward +=g

if  (accReward >y and ||C; - Xl > A)
append the new codeword C,gy = Xp41
initialize and append Q(Cpew, U) and {( Cews 1), O U

accReward :=0

7:=9(C, Uy, Ca) +Y Q(Crras Uesa) - Q(Co Uy)
update the eligibility trace of current codeword-action pair:

den u) =4, u) +1
refine the estimate of action value function using the TD learning rule:

Q(c,u) :=Q(c,u) +ard(c,u), dc,u

{(c,u) :=yA{c,u),0c,u

Ct+1 -= Crew
ese
Uter == U
end
else
calculate the TD error:
decay €eligibility trace:
accReward :=0
end

C = Crag AN Uy 1= Upeg

until end of trial

Define the codewords merging threshold (p)

Foralc,gOC

lf(uci—q||<||ci—ch||,Dh:zti.nano!{Z[Q(i,U)-Q(i,U)]2 <p}

append anew codeword ¢, = (G + ¢;)/2
initialize and append Q(c,, u) :=[Q(c;, u) + Q(g, u)]/2, Ou

remove g, ¢, Q(c;, u), Q(c;, u), Ou

End

Fig. 3. The complete TD-AVQ algorithm.

determined according to the recent estimate of the
action value function. With a probability of g, the
mobile robot selects uniformly among all the admissible
actions and the action with the highest estimated value
will be selected with a probability of 1 — e.

The state space partition and the highest-valued
action of each Voronoi cell after 1000 trials are shown

in Fig. 5a. A sampled path from a start to the goal
position is also shown. By inspection, this partition and
the associated optimal actions can direct the mobile
robot to the goal position from almost everywhere
within the maze. However, the shortest path to
destination is not always guaranteed, such as starting
in cell 4. This is mainly due to the drawback of
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Fig. 4. Nomad 200 Robot simulator.

undirected exploration strategy as discussed in (Thrun,
1992) and the coarse resolution on state space. Never-
theless, this is an inevitable cost of coarsely partitioning
the state space. To find the shortest path, one must allow
maximum resolution on the position coordinates, which
results in more than 100 states. However, the adaptive
partitioning algorithm, TD-AVQ, produces only 22
aggregate states. Each Voronoi cell in Fig. 5a represents
an aggregate state. In fact, the total number of the
codewords depends on the structure of the maze. Given
a particular area of the maze, the more barriers there
are, the more codewords are required to partition the
state space in order to correctly reflect the complexity of
the maze. This is reflected by the smaller and greater
number of Voronoi cells around the goal position and
obstacles where distinctive optimal actions are needed.
On the other hand, cells with larger area are observed in
the regions of free space where a large number of states
share the same optimal action.

As shown in Fig. S5a, there are regions in which
following the highest-valued action could not lead to the
goal. This is due to the fact that this failed region is not
adequately explored. The actual location of each code-
word and, hence, the resulting state space partition
depends on the current estimate of the action value
function to a large extent. With the TD learning
algorithm, the value update operation is applied to
any state in any order using any information that is
obtained by observing the mobile robot performing the
task in real time. Therefore, the frequency with which
the estimated action value is updated for any state is
highly dependent on the exploration strategy.

In order to eliminate any failed regions, every part of
the maze must be visited. To support this argument, the
navigation task is extended and trained for an extra 200
trials. In order to establish the validity of the partition-
ing scheme, the starting position is reset within the failed

barrier or obstacle
Voronoi cell boundary

o1 Codebook vector position and its number
O— O sampletrajectory

Highest-valued action within each Voronoi cell

i i Failed region

. _2; - 24 23 t copl

P

-> > 20 o
, 18 T

T.17
16
L]

STAR]

SRR I

Ll

(b)

barrier or obstacle

........................... Voronoi cell boundary
o1 Codebook vector position and its number
O——— (O Sampletrgjectory

Highest-valued action within each VVoronoi cell

Fig. 5. (a) State space partition on a maze as developed by TD-AVQ
after 1000 trials. (b) State space partition on a maze as developed by
TD-AVQ after 1200 trials.

region. As shown in Fig. 5b, a new codeword situated
inside the failed region is appended to the codebook and
the highest-valued action of the region can lead to the
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goal. In addition, the positions of other codewords are
changed. This reflects the fact that the partitioning
scheme is dependent upon the current estimate of the
action values. As the estimate of action value function
varies when TD learning algorithm is applied, so does
the partitioning scheme of the state space.

A second navigation task is performed to show that
adaptive state space partitioning facilitates TD learning
for model-free path planning problems. The main focus
of interest is on problems where there are critical regions
in the working environment that require finer resolu-
tions than other non-critical regions. This is demon-
strated through a specially designed maze navigation
task.

Fig. 6a shows the state space partition of a specially
designed maze with critical region as developed by the
TD-AVQ algorithm after 5000 trials. By closely
examining the partition, the following observations are
made. A large number of cells with small area scatter
around the hole, along the barrier and the maze
boundaries. To the contrary, a few cells with large area
cover much of the obstacle-free space.

4.1. Comparison with uniform discretization

To investigate the relative merit of AVQ over uniform
discretization, the same navigation task is repeated with
uniform state space partition. The same TD methods
and parameters are used to solve the navigation task. To
adopt a fixed-grid uniform discretization of the state
space, the resolution of the entire state space would be
determined by the width of the hole on the barrier. This
results in nearly 1500 states in total. During the entire
learning process, which comprises 10,000 trials with
maximum steps of 1000, the mobile robot has never
succeeded in reaching the goal line. In other words, it
fails completely in this navigation task.

The exploration strategy adopted in this experiment
causes the mobile robot to take random and explorative
actions earlier in the learning process. The reward
function is designed such that there would not be any
significant reward except hitting the goal line. Therefore,
it is by reaching the goal line that the mobile robot may
deduce which actions and states would yield better
rewards in the long run. If, however, the mobile robot
cannot reach the goal line for once, it would receive the
same reward irrespective of what action it takes in any
states. To sum up, the mobile robot must reach the goal
line at least once before it starts taking exploitative
actions. Unfortunately, the probability of passing
through the hole and reach for the goal by performing
a random walk on the uniformly discretized state space
is very small.

In a deterministic environment with N states and m
admissible actions for each state, there are m™ possible
control policies. In this specially designed maze, the

State space partition
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Fig. 6. (a) The state space partition for a maze with critical region as
developed by TD-AVQ after 5000 trials. (b) The state space partition
for the maze with an opening on the barrier as developed by TD-AVQ
without merging operations after 5000 trials. The total number of cells
is 204 after 5000 trials.

shortest distance from the starting line to the goal line is
60 units. As a result, the agent must take at least 60
correct actions in order to reach the goal. By choosing
randomly from the 4 admissible actions in each state,
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i.e., performing a random walk, the probability of
reaching the goal line in 60 steps is 0.25% ~ 0.

The advantage of adaptive state space partitioning
over uniform partitioning is mainly due to the reduction
in the number of distinguishable states. While uniform
partitioning generates a discrete space with 1500 states,
AVQ algorithm produces just over 90 aggregate states
(see Fig. 6a), i.e., more than 93% reduction. The benefits
are twofold. First, since the entire state space comprises
a much smaller number of distinguishable states, the
chances of visiting all the states and taking every
admissible action in each state are dramatically in-
creased even by adopting random walk exploration
strategy. This improves the optimality of the control
policy.

Secondly, the number of state transitions, or stages,
required to reach the goal is decreased due to the overall
reduction in the number of distinguishable states. As
shown in Fig. 6a, AVQ partitioning turns this shortest
path problem into a 15-stage decision problem (since it
visits 15 cells to arrive at the goal), comparing with more
than 60 stages for uniform partitioning scheme. This
reduction in the number of stages has a profound effect
on the operation of TD learning algorithm. The number
of possible control policies is reduced exponentially
from 4% to 4'°. Since the computational complexity of
solving a K-stage planning problem with N states and m
admissible actions for each state is directly proportional
to KmN. By adopting AVQ partitioning algorithm, the
computational complexity is significantly decreased due
to the reduction in the stage (K) and the number of

LS.K Lee, HY.K Lau | Engineering Applications of Artificial Intelligence 17 (2004) 577-588

states (N). For this particular navigation task, the
complexity is reduced by 98.5% compared to uniform
grid partitioning.

This suggests that a feasible solution for the naviga-
tion problem can be found by adopting the AVQ
algorithm to facilitate TD learning, whereas fixed-grid
uniform partitioning of the state space fails completely.
The AVQ algorithm requires the action value profile as
the similarity measure for state aggregation. This action
value profile is readily available form the TD learning
operation. Therefore, one can actually utilize the
information generated by the TD learning algorithms
to help partitioning of the state space. This, in turn,
facilitates the TD learning process itself.

4.2. The effect of merging codewords

To investigate the effect of merging codebook vectors,
a control experiment is carried out. The TD-AVQ
algorithm (shown in Fig. 3) is used to solve the same
navigation problem except that the merging operation is
left out. The state space partition so developed is shown
in Fig. 6b. By comparing this result with Fig. 6a, the
major difference lies in the cells along the boundaries
and barriers. With merging operations, cells in those
regions are merged. Fig. 7 compares the total number of
cells at the end of each trial. While the number of cells
quickly rises up to above 200 and levels off without
merging, the number goes up and then decreases to
below 100 with merging. However, the number of cells
contributing to the optimal trajectory is similar for both

250 T T T T

200

150 I

Number of cells

100

50 |

0 1 1 1 1

With merging

500

1000 1500 2000 2500 3000 3500 4000 4500 5000

Trials

Fig. 7. The effect of codeword merging operation on the number of Voronoi cells. This figure shows that without merging routine, the number of
cells rises up quickly to around 200 and then levels off. With codewords merging routine, the total number of cells gradually drops back to below 100
after rising up to 200 at the beginning. Codewords merging operation is performed every 500 trials.
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Fig. 8. (a) Learning curves for TD-AVQ in solving the navigation problem. (b) Learning curves for TD-AVQ without merging in solving the

navigation problem.

cases. Since the merging operation is performed between
trials, it does not add to the workload in the real-time
task.

Fig. 8 shows the learning curves for TD-AVQ for
both with and without codeword merging operations. In
terms of learning capability, both variants perform
equally well.

5. Peg-in-hole task

To demonstrate the efficacy of adaptive path planning
in practical problems, the TD-AVQ algorithm is used to
solve a two-dimensional version of the peg-in-hole
insertion task in a simulated environment (Lee and
Lau, 2000; Lau and Lee, 2001). In particular, the TD-
AVQ algorithm is employed to generate a reference
trajectory for the robot controller without any a

y

F
z ¥
State vector:

X = [Xpeg: Ypep I £y Me]

Force/Torque
sensor

Gripper

Control action:
Direction of movement, ¢

Fig. 9. The peg-in-hole task.

priori information regarding the structure of the entire
workspace.

With respect to Fig. 9, a set of feedback signals
are provided to the TD-AVQ trajectory planner. It
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comprises the position of the manipulator (Xpeg, Vpeg) information regarding the geometry of the workspace
and the force/torque signals (Fy, F,, M.) as sensed by a and the exact position of the hole. Therefore, the
wrist-mounted tactile sensor. These signals constitute a behavior of the learning agent is biased towards
perception state vector X=|[Xiobot» Vrobots Fx» £y M:] exploration by choosing the value of ¢ to be close to 1
characterizing the state of the manipulator at any at the beginning of the training process. As a result, it
moment. At the start of each time step, the current spends a lot of time wandering and exploring the
perception state vector is fed to the planner/controller. workspace before finally arrives at the hole or even fails
The TD-AVQ trajectory planner computes a reference completely. As it gains more information about the
motion command indicating the direction of movement structure of the workspace by actually performing the
with respect to the center of the end-effector, ¢. The set task, it gradually improves the performance by taking
of admissible actions is U = {0°,45°,90°,135°, 180°, the highest valued action for each perceived state. This is
225°,270°,315°}. The manipulator moves with constant achieved by reducing the value of ¢ towards O.
speed in the direction given by ¢. The peg is 8 units long Consequently, the insertion time falls below 100 time
and 4 units wide, while the hole is 4 units wide. Thus, the steps after 8000 trials. Thereafter, this simulated control
clearance between the peg and the hole is zero. The algorithm performs consistently in completing the
dimension of the workspace is 64 units wide and 30 units insertion task within 100 time steps in the remaining
high. The e¢-greedy exploration strategy is adopted in training runs. Fig. 12 shows the rate of successful
this experiment. insertion over 100 consecutive training runs. The
After 10,000 training runs, the position space parti- successful rate approaches 100% after 8000 trials and
tion for the peg-in-hole task is shown in Fig. 10. Since stays above 95%, thereafter. Since the peg is randomly
the state vector comprises 5 state variables, a state space placed at the start of each trial, this result indicates that
partition cannot be drawn. However, the position space the peg-in-hole task with positional uncertainties can be
is a close approximation to the state space since the solved by TD-AVQ.
force/torque variables acquire non-zero values around A control experiment is performed to compare the
the hole only. relative performance between fixed grid and AVQ for
A learning curve showing the average insertion time state space partitioning. The results show that the
achieved by the controller is shown in Fig. 11. In the controller cannot achieve a single successful insertion
beginning, the learning agent does not possess any in 10,000 trials. The reason is simply because the state
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Fig. 10. The position space partition of the peg-in-hole task after 10,000 trials. Three samples paths from different starting positions are shown.
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Fig. 12. The rate of successful insertion in 100 trials for the peg-in-hole task.

space is too large. With fixed grid partitioning, there
are more than 19,000 distinguishable states. Adding to
the fact that there are 8 admissible actions to choose
from in each state, the chances of reaching the hole is
very slim.

6. Conclusions

Reinforcement learning provides a framework for
solving the decision problem faced by an autonomous
agent working in an unknown environment. However,
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the curse of dimensionality places a serious constraint
on its applicability to large state space problems. The
excessive computational workload hinders the applica-
tions of RL methods to real-time control tasks.

With a view to improve the applicability of RL, a
novel adaptive partitioning scheme, TD-AVQ, that
reduces the effective size of the state space for RL
problems is developed. The properties of the proposed
scheme are analyzed through a series of simulated
navigation and peg-in-hole tasks. Empirical results show
that on one hand the TD-AVQ algorithm reduces the
number of distinguishable regions in the state space, and
on the other hand is capable of solving the task. In
particular, for tasks with critical regions such as the
maze navigation and the peg-in-hole tasks, the number
of states is reduced by 93% compared to using uniform
grid partitioning. This causes a reduction in the number
of decision stages (K), which, in turn, leads to an
exponential decrease in the size of the control
policy space. As a result, the computational complexity
is reduced by 98.5% compared to uniform grid
partitioning.

The simulation results for the peg-in-hole task suggest
that a variable resolution method such as AVQ is
essential for the successful application of reinforcement
learning to problems with critical regions in the state
space. With uniform grid partitioning, the model of the
environment must be known in advance and the
required minimum resolution for the critical region
gives rise to an overly refined partitioning for the entire
state space. On the other hand, TD-AVQ does not
require any a priori knowledge of the environment. This
partitioning scheme utilizes the information gained from
the evaluation of action value function. To conclude,
TD-AVQ improves the applicability of RL algorithms
by reducing the overall computational complexity.
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