
HOW THE BRAIN MIGHT WORK:

A HIERARCHICAL AND TEMPORAL MODEL FOR LEARNING

AND RECOGNITION

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL

ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Dileep George

June 2008

c© Copyright by Dileep George 2008

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Bernard Widrow) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Brian A. Wandell)

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Nils J. Nilsson)

Approved for the University Committee on Graduate Studies.

iii

Acknowledgements

I am grateful to Jeff Hawkins for providing the intellectual framework behind this

thesis and for financially supporting a part of my graduate research. Neuroscience

is a vast field. Without the guidance provided by Jeff, I would have easily got lost.

His immense knowledge and intensity of thought have always been a constant source

of motivation. One of my favorite weekend routines has been leafing through Jeff’s

artificial intelligence and neuroscience library. Studying the astute observations that

he scribbled on those books over a period of 20 years has been a source of inspiration

and a reminder of the virtues of perseverance.

I would like to thank my official adviser, Bernard Widrow, for his guidance and

support throughout the course of this work. He agreed to an unusual arrangement –

I was allowed to spend all my time at the Redwood Neuroscience Institute (and later

at Numenta) while working on my dissertation. He read my early manuscripts and

patiently guided me to write with clarity. Anything readable in this thesis is because

of him.

I am grateful to Nils Nilsson for encouraging me to work on this dissertation

while working at Numenta. He read the early manuscripts of this thesis and made

several corrections and helpful suggestions. This thesis would not have been possible

without him. I would like to thank Brian Wandell for being my co-advisor and for the

helpful suggestions that improved the neuroscience parts of this thesis. He directed me

towards developing some of the theoretical aspects of hierarchical learning. Thanks

to Vinod Menon, John Pauly and Tom Dean for serving on my orals committee.

I am grateful to all my colleagues at Numenta. Bobby Jaros collaborated with

me in deriving the belief propagation equations for HTMs. I have always enjoyed

iv

the intense discussions with him. Jeff, Subutai and Jamie read early versions of the

chapters and made very helpful comments and corrections. I am grateful to Subutai

and Donna for giving me the flexibility to work on this thesis. Thanks to Tom Dean

for introducing me to the concept of inductive bias during his stint at Numenta. His

careful questioning brought some rigor to my thinking that I couldn’t have got from

anywhere else.

I would like to thank everybody at the erstwhile Redwood Neuroscience Institute.

I was fortunate to have access to Bruno Olshausen, Tony Bell, Fritz Sommer, Pentti

Kanerva and Bill Softky. Their insights, immense knowledge, and friendship have

been crucial to the development of this work. I have always enjoyed my discussions

with Kilian, Thomas and Matthias. I learned a great deal from the weekly seminars

and journal clubs at RNI. Thanks to all the anonymous reviewers of my rejected and

accepted papers. They led me in the right direction and introduced me to related

areas of work.

Thanks to my friends at Stanford for the wonderful time I have had with them

and for their constant encouragement. I was fortunate to have Jamie as a friend

during my first year at Stanford. He listened patiently and encouragingly to my wild

ideas for exploring neuroscience and helped me with the preparations for my PhD

qualifiers. Thanks to Dua, Arpi, Sam, Dinesh, Dos, Jayanth, Mukul, Nikhil, Sahoo,

Madhup, Navneet, Garima, Ashmi, Rishi, Raghav, Bipin, Ritesh and Kaustuv for

the numerous hikes, dinners and games. Thanks to Nitin Bakshi for being a constant

source of encouragement and inspiration right from my undergraduate days.

Thanks to the Eureka magazine for making me interested in science during my

grade school days. I feel fortunate to have had wonderful school friends who shared

this interest. Friends I haven’t met – Mohammed Sherif, Anil Kumar, and many oth-

ers – kept this interest alive by sending me books that I wouldn’t otherwise have access

to. Thanks to Priya for encouraging me to do a Ph.D., and thanks to Valyappachan

for giving me access to his personal library.

I would like to thank Bapi for his helpful comments on my early manuscripts.

Thanks to Deepa and Gigichettan for shouldering many responsibilities while I was

away from home. I am grareful to Panki for all the help he provides to my mother.

v

Special thanks are due to my lovely wife, Sudeshna, for believing in me and for

supporting me through my ups and downs at Stanford, RNI and Numenta. This

thesis would not have been possible without her.

Anything good that I have become is because of my mother. To me, she has always

been the epitome of perseverance, compassion, sacrifice and love. This dissertation is

dedicated to her.

vi

Contents

Acknowledgements iv

1 Introduction 1

1.1 Why study the neocortex? . 2

1.2 How should we study the neocortex? 4

1.3 The Memory-Prediction framework 5

1.4 Main contributions and organization 6

2 Introduction to HTM 8

2.1 Introduction . 8

2.1.1 Time and hierarchy in the vision problem 9

2.1.2 Hierarchical temporal memory 15

2.1.3 Organization of the rest of this chapter 17

2.2 The Pictures problem . 17

2.2.1 Pictures task . 19

2.2.2 Pictures training data . 20

2.2.3 Pictures HTM network structure 20

2.2.4 Stages of operation . 20

2.3 Operation of a node . 23

2.3.1 Learning in a node . 23

2.3.2 Sensing/Inference in a node 32

2.3.3 Experimental results of learning and sensing in a node 34

2.3.4 Temporal groups are zeroth order Markov chains 39

vii

2.4 Operation of nodes in a hierarchy . 39

2.4.1 Example two-level network . 41

2.4.2 Inputs for higher-level nodes 41

2.4.3 Memorization of patterns at the level-2 node 41

2.4.4 Patterns at higher-level nodes represent “coincidences” 45

2.5 Dealing with noise and ambiguity . 45

2.5.1 Learning with noisy inputs . 45

2.5.2 Sensing/Inference – general case 48

2.6 Recognition performance . 50

2.6.1 Training movies . 50

2.6.2 Testing images . 51

2.6.3 Recognition results . 52

2.6.4 How the system generalizes to translations, scaling and distortion 52

2.6.5 Generalization performance 55

2.7 Related work . 55

2.8 Summary and bigger picture . 57

3 Understanding Hierarchical Learning 60

3.1 Introduction . 60

3.2 Generating patterns from HTMs . 62

3.2.1 HTW network . 63

3.2.2 Structure of a node . 63

3.2.3 Generation from a single node 65

3.2.4 Generation of patterns from a hierarchy of nodes 66

3.3 Properties of hierarchical-temporal data 69

3.3.1 Temporal structure of data streams from a single node 71

3.3.2 Mutual information vs. temporal separation in the hierarchy . 73

3.3.3 Mutual information vs. structural separation in the hierarchy 74

3.3.4 Summary of the properties of HTW generated data 76

3.4 HTM Learning Problems . 77

3.5 Learning hierarchical temporal memory 78

viii

3.5.1 Learning the structure of an HTM network 79

3.5.2 Learning the states of a node 80

3.6 Classification problems . 82

3.7 Convolutional Neural Networks . 83

3.7.1 Mapping to hierarchical temporal memory 86

3.8 Generalization . 87

3.8.1 Generalization in HTMs . 87

3.8.2 Generalization: numerical example 89

3.9 Related work . 92

3.10 The world and the neocortex . 94

3.10.1 Hierarchical organization of systems in the world 95

3.10.2 Spatial and temporal hierarchies in the neocortex 96

4 A Theory of Cortical Microcircuits 98

4.1 Introduction . 98

4.2 Neocortex primer and working assumptions 101

4.3 Canonical cortical microcircuits . 103

4.4 Neocortex to HTM . 106

4.5 Belief propagation in HTM nodes . 107

4.5.1 Belief propagation equations for HTM nodes 108

4.6 Neuronal implementation of HTM belief propagation 111

4.6.1 Calculating the bottom-up likelihood of coincidence-patterns . 111

4.6.2 Efficiently calculating the bottom-up likelihood of Markov chains114

4.6.3 Calculating the belief over coincidence patterns 117

4.6.4 Calculating the messages that are to be passed to child nodes 120

4.7 Cortical Micro circuits for HTM Belief Propagation 121

4.7.1 Columnar organization . 124

4.7.2 Layer 4 stellate neurons implement the feed-forward probability

calculation over coincidence-patterns 126

4.7.3 Layer 1: The broadcast layer for feedback information and tim-

ing information . 128

ix

4.7.4 Layer 2/3 pyramidal cells: sequence memory, pooling over se-

quences, incorporating feedback information 128

4.7.5 Layer 5: implementation of belief calculation 131

4.7.6 Layer 6: computing the feedback messages for children 134

4.8 Applications of the derived cortical microcircuit 136

4.8.1 A model for the illusory contour effect 136

4.9 Activity reduction at lower levels . 141

4.10 Variations, omissions and extensions 143

4.11 Discussion . 147

A Belief Propagation in HTM Networks 150

A.1 Belief propagation equations for the static case 151

A.1.1 Notation . 151

A.1.2 Learned memory of a node . 153

A.1.3 Belief propagation computations 154

A.2 Belief propagation equations for the dynamic case 157

A.2.1 Notation . 157

A.2.2 Coincidence patterns and the Markov chains 158

A.2.3 Dynamic programming equations 159

B Feedback Propagation in HTM Networks 161

C Calculation of Generalization 164

C.1 Definitions . 164

C.2 Number of patterns that can be generated from a network 165

C.3 Probability of fully training the network 165

Bibliography 167

x

List of Tables

4.1 Belief propagation equations for an HTM node 112

xi

List of Figures

2.1 Unsupervised learning of object categories 10

2.2 Visualization of object manifolds . 11

2.3 Unsupervised segmentation of object manifolds 12

2.4 Temporal segmentation of object manifolds 13

2.5 A simple three-level HTM network 16

2.6 Euclidean distance does not measure perceptual similarity 18

2.7 Four frames of a training video . 19

2.8 Structure of the Pictures network . 21

2.9 A segment of the input sequence to a level-1 node 22

2.10 Normalized and un-normalized Markov graphs 25

2.11 A segment of the input sequence used to illustrate the temporal group-

ing in a node . 27

2.12 Normalized Markov graph from the illustrative experiment 28

2.13 Dendrogram constructed from the Markov graph used for the illustra-

tive experiment . 29

2.14 Temporal groups obtained by cutting the dendrogram 30

2.15 Temporal groups obtained by cutting the dendrogram at a different level 31

2.16 Summary of the operations that a node performs during learning . . . 32

2.17 Illustration of the learning process in a node 33

2.18 Patterns memorized by a level-1 node 35

2.19 Number of patterns as a function of the number of training images . . 36

2.20 A section of the normalized Markov graph learned in a level-1 node . 37

2.21 Twelve of the 58 temporal groups learned by a level-1 node 38

xii

2.22 Illustration of the intermediate values and outputs of a level-1 node in

sensing/inference . 40

2.23 Illustration of how nodes operate in a hierarchy 42

2.24 Illustration of how nodes operate in a hierarchy 43

2.25 Idealized picture of clustering the noisy input patterns 47

2.26 Details of inference operations in a node 49

2.27 Training images . 51

2.28 Test images . 53

2.29 Variation of perceptual strength with pattern distortion 54

2.30 Illustration of the generalization mechanism 54

2.31 Results of the experiment to test generalization performance 56

2.32 A spatial and temporal abstraction hierarchy 58

3.1 Patterns generated from an HTW network are used to analyze the general-

ization properties of an HTM network 62

3.2 Structure of an HTW node . 64

3.3 A two-level HTW network . 67

3.4 Structure of the HTW network used for the experiments in section 3.3. . 70

3.5 Transition probability matrix obtained from the data stream D1,1 of the

level-1 node 1, 1 . 71

3.6 Reordered transition probability matrix 72

3.7 Temporal mutual information of nodes at level-1, level-2 and level-3. . . . 73

3.8 Mutual information between data streams at levels 1, 2 and 3 75

3.9 Feature-detection and feature-pooling in convolutional neural networks 84

3.10 Mapping of the feature-detection and feature pooling layers of convolutional

neural nets to the HTM node. 86

3.11 Illustration of the source of generalization in HTMs 88

3.12 Results of the example to illustrate the generalization power that we gain

from using a hierarchy. 90

4.1 Organization of the neocortex . 104

4.2 Summary diagram of a canonical cortical circuit 105

xiii

4.3 An intuitive depiction of the inference operations of an HTM node. 108

4.4 Structure and flow of a reference HTM node 109

4.5 Circuit for calculating the bottom-up likelihood of coincidences 113

4.6 Circuit for calculating the bottom-up likelihood of Markov chains . . 114

4.7 Circuit for calculating the belief over coincidences 118

4.8 Circuit for calculating timed belief and feedback messages 120

4.9 The proposed cortical microcircuit . 123

4.10 Columnar organization of the microcircuit 125

4.11 The illusory contour effect . 137

4.12 Modeling the illusory contour effect 138

4.13 Activity reduction at lower levels . 142

A.1 A segment of an HTM network. 153

A.2 Block diagram of belief propagation operations in an HTM node for the

static case. 154

A.3 Block diagram of belief propagation computations within a node for the

dynamic case. 157

A.4 Timing of belief propagation messages in the dynamic case 158

B.1 Timing of belief propagation messages in the hierarchy 162

B.2 Feedback reconstruction of the noisy image of a ‘helicopter’ 163

xiv

Chapter 1

Introduction

Suppose you are traveling to India for the first time. You see a new contraption

that runs on three wheels. From your tourist guide you learn that it is called an

auto rickshaw. After this incident, you notice that roads in India are filled with auto

rickshaws. They come in different sizes, shapes, colors and adornments. After seeing

a few examples of auto rickshaws, you are able to correctly recognize all the other

auto rickshaws.

Our brains are learning systems. It is unlikely that evolution programmed in the

knowledge of auto rickshaws. You had to learn about them by getting exposed to

patterns. After seeing a few auto rickshaws, you are able to recognize novel auto

rickshaws although the patterns that correspond to those novel ones are not identical

or close to the patterns of the ones you first saw. This capability of learning systems

to recognize new patterns is termed generalization. The generalization capabilities of

human brains are yet to be matched by our algorithms.

There are two main goals of this thesis. One is to illuminate some principles re-

quired for the building of machines that learn, generalize and exhibit some form of

‘intelligence’. The other is to study how the neocortex works. These are not inde-

pendent goals. In the following sections, I will argue why both these goals go hand-

in-hand; understanding the neocortex is required for building intelligent machines

and having computational theories for building intelligent machines is required for

understanding how the brain works.

1

CHAPTER 1. INTRODUCTION 2

1.1 Why study the neocortex?

There are philosophical and anthropological reasons for studying the neocortex; un-

derstanding the neocortex is part of understanding what it is to be human. However,

there are also important computational and engineering reasons to study the neocor-

tex. Understanding the principles of operation of the neocortex is a necessary step

towards building intelligent machines.

The necessity of studying the brain can be argued from the point of view of ma-

chine learning. In machine learning, a researcher first constructs a parameterized

adaptive model for the data to be modeled. This initial model, constructed based on

domain knowledge, will have several parameters that can be tuned based on the train-

ing data. The researcher then devises algorithms that can adapt these parameters.

Typically, the parameters are tuned by adapting them to minimize an error criterion

[24, 10]. A model whose parameters are thus tuned can then be used to classify

novel patterns, predict future patterns, compress, reconstruct etc. However, despite

its mathematical elegance, this method hides some fundamental problems associated

with learning.

One aspect of learning is the sample complexity – the number of examples required

for training a model to a reasonable level of performance. If the hypothesis space for

a learning problem is very large, then the construction of a learned model can take a

large number of training examples and long training times. The No Free Lunch (NFL)

theorem, a fundamental result on search and optimization, addresses aspects about

the complexity of learning [50]. Intuitively, the NFL theorem for learning argues

that no learning algorithm has an inherent superiority over another algorithm for all

learning problems. If an algorithm is superior for a particular problem, it is only

because that algorithm exploited assumptions that are suitable for that problem.

The same algorithm will not do well on a problem that has assumptions different

from that of the original one. This means that, to make the algorithms effective, the

machine-learning researcher has to encode knowledge about the problem domain into

the initial model structure. The more prior knowledge that is put in, the easier it is

to learn. Does that mean we need to create a new model for each new problem that

CHAPTER 1. INTRODUCTION 3

we try to solve using machine learning? Clearly, such an approach would be very

human intensive.

On the other hand, humans and other mammals seem to solve these problems in

a different way altogether. The fact that humans can learn and adapt to problems

that did not exist when the initial model (the neocortex) was created is proof of

the generic nature of the mechanisms used by the human brain. Moreover, a large

number of researchers now conjecture that the neocortex is using fundamentally the

same algorithm for learning different modalities. This means that the same algorithm

is in operation for learning models for audition, vision, somatosensory perception and

language.

Although not proven conclusively, there is increasing amount of evidence for a

common cortical algorithm. The existence of a common cortical algorithm was con-

jectured first by a neuroscientist who studied cortical tissues of different mammals

[68]. The remarkable similarity of the cortical connectivity across different modalities

and even across different species was the reason for this conjecture. Experimental re-

sults on ferrets provided further support for this theory [103]. In these experiments,

the optical nerve fibers in the ferret were re-routed to the auditory area. With expo-

sure to visual patterns, the auditory area of the ferret developed visual receptive fields

and was able to demonstrate behavior using this “audio-vision”. Sensory substitu-

tion studies where the impression of visual patterns on to the somatosensory modality

gives rise to visual perception also lends support to the existence of a common cortical

algorithm [3, 2].

The combination of the common cortical algorithm and the NFL theorem produces

important implications for machine learning and for our quest to build intelligent

machines. On the surface, the NFL theorem seems to create problems for the idea

of a common cortical algorithm. How can one mechanism/algorithm do very well

on tasks as different as vision, audition and language? The answer comes from the

part of the NFL theorem that talks about the assumptions that need to be exploited.

The common cortical algorithm and the NFL theorem can be consistent with each

other provided we can exploit the same basic assumptions to learn vision, audition,

language etc. If the cortex is good at learning a wide variety of tasks using a common

CHAPTER 1. INTRODUCTION 4

mechanism, then there must be something common about these seemingly different

tasks. Evolution must have discovered this commonality and neocortex must be

exploiting that.

From the NFL theorem we conclude that a universal theory of learning is, in

essence, a universal theory of assumptions. The set of assumptions that a learner

uses to predict outputs, given inputs that it has not encountered, is known as the

inductive bias of that learning algorithm [66, 36]. The more assumptions we make,

the easier it becomes to learn. However, the more assumptions we make, the fewer

the number of problems we can solve. If we need to design an algorithm that can

be applied to a large class of problems, the question we need to ask is: What is

the basic set of assumptions that are specific enough to make learning feasible in a

reasonable amount of time while being general enough to be applicable to a large class

of problems? We are in luck if the same set of assumptions works for a large class of

problems.

This brings us to the question we raised at the beginning of this section. We should

study the neo-cortex because we need to find out the precise set of assumptions about

the world that should be encoded in our learning algorithms. First, the neo-cortex

is an existence proof that such a general set of assumptions exists. Second, studying

the neo-cortex in the right way will tell us more about these assumptions.

1.2 How should we study the neocortex?

The problem of reverse-engineering the neocortex is a daunting one. How should we

search for these universal assumptions? There are many anatomical and physiological

details in the brain; how is one to know what is important and what is not? What is a

mere implementation detail that biology has to employ because it has only neurons to

work with, and what is an important computational principle that cannot be missed?

A good strategy would be to study the neo-cortex and the world at the same time.

Studying the anatomy and physiology of the neocortex should give us important clues

about the nature of the assumptions made by the neocortex. While studying the

organization of the neocortex, we will have to look for general principles that can

CHAPTER 1. INTRODUCTION 5

be relevant from a learning point of view. We should select only those principles

for which we can find counterparts in the world. If an organization property in the

neocortex is matched to an organization property of the world, we can be reasonably

certain that we have found a principle that is relevant from a learning point of view.

1.3 The Memory-Prediction framework

Fortunately, Jeff Hawkins has already blazed the trails through his book entitled On

Intelligence [43]. In this book, Hawkins proposed a theory for the operation of the

cortex that is not only rooted in the assumptions of biology, but also makes sense from

a computational point of view. The theory, named Memory-Prediction framework,

is expressed in terms of computations done in biological circuits. The main points of

the Memory-Prediction framework can be summarized as follows:

1. The neocortex is constructing a model for the spatial and temporal patterns

that it is exposed to. The goal of this model construction is the prediction of

the next pattern on the input.

2. The cortex is constructed by replicating a basic computational unit known as the

canonical cortical circuit. From a computational point of view, this canonical

circuit can be treated as a node that is replicated several times.

3. The cortex is organized as a hierarchy. This means that the nodes – the basic

computational units – are connected in a tree shaped hierarchy.

4. The function of the cortex is to model the world that it is exposed to. This

model is built using a spatial and temporal hierarchy by memorizing patterns

and sequences at every node of the hierarchy. This model is then used to make

predictions about the input.

5. The neocortex builds its model of the world in an unsupervised manner.

6. Each node in the hierarchy stores a large number of patterns and sequences.

The pattern recognition method employed by the cortex is largely based on

storing lots of patterns.

CHAPTER 1. INTRODUCTION 6

7. The output of a node is in terms of the sequences of patterns it has learned.

8. Information is passed up and down in the hierarchy to recognize and disam-

biguate information and propagated forward in time to predict the next input

pattern.

The Memory-Prediction framework, as expressed in On Intelligence is a biological

theory. In this thesis, we work on the foundation established by Hawkins and develop

the algorithmic and mathematical counterparts of the Memory-Prediction framework.

We will call this by the name Hierarchical Temporal Memory (HTM)1. We will also

work back from the theory of HTM to biology in order to derive a mathematical

model for the microcircuits of the neocortex.

1.4 Main contributions and organization

This thesis makes three main contributions. These contributions are organized in

three chapters.

1. Learning and invariant recognition algorithms for hierarchical-temporal

data: This thesis introduces new algorithms, collectively called Hierarchical

Temporal Memory, that can be used to learn hierarchical-temporal models of

data. Temporal continuity is used to learn multiple levels of a hierarchy in an

unsupervised manner. The algorithms, when applied to a visual pattern recog-

nition problem, exhibit invariant recognition, robustness to noise, and gener-

alization. Inference in the hierarchy is done using Bayesian belief propagation

equations that are adapted to this problem setting. (Chapter 2)

2. Analysis of generalization in hierarchical-temporal models: This thesis

develops a generative model for HTMs. The data generated from this model is

used to analyze and quantify the generalization properties of HTMs. (Chapter

3)

1This term was coined by Hawkins and the basic concepts behind HTM was described in [44]

CHAPTER 1. INTRODUCTION 7

3. A mathematical model for cortical microcircuits: This thesis introduces

a mathematical model for cortical microcircuits based on the theory of Bayesian

belief propagation in Hierarchical Temporal Memory networks. The proposed

model has a laminar and columnar organization and matches many known

anatomical and physiological data. The derived cortical microcircuit is used

to explain the illusory contour response phenomenon, and the phenomenon of

activity reduction in the primary visual cortex as a result of object recognition

at higher levels. (Chapter 4)

Chapter 2

Hierarchical Temporal Memory: A

Visual Pattern Recognition

Example

2.1 Introduction

Vision is the primary sensory modality for humans and most mammals to interact

with this world. In humans, vision related areas occupy about 30 percent of the

neo-cortex. Light rays reflecting from physical objects enter through our eyes and

form an image on the retina in our eyes. Our brains then interpret these images to

make sense of the world. Although this seems virtually effortless and automatic, in

the process our brains solve many problems that are not yet solved by a computer.

One such problem is the problem of invariant visual pattern recognition. Humans

and most mammals can recognize images despite changes in location, size, lighting

conditions and in the presence of deformations and large amounts of noise. Several

attempts have been made to solve this problem on a computer. Many of the prior

attempts tried to solve the invariance problem by defining it as a classification prob-

lem. In most cases, the problem was defined as of having labeled examples from

a certain number of categories of objects. The examples within a category would

8

CHAPTER 2. INTRODUCTION TO HTM 9

include translations, deformations and size changes of objects belonging to that cat-

egory. Typically, a classifier would then be trained with these labeled examples. For

instance, multi-layer neural networks trained with back propagation were frequently

used for image classification. While these techniques seemed adequate to memorize

the training set, they often proved inadequate at generalizing what they have learned

to patterns that they have never seen.

Why did these techniques have only limited success? Several clues can be obtained

by analyzing how humans and other mammals solve the vision problem. Many of the

early research ignored the role of time in vision. Humans can recognize an object

from a single snap shot presentation of its image without integrating information

over multiple time steps. This could be the main reason why many researchers ig-

nored the temporal component of vision and thought of vision in terms of images and

not videos. Although humans can recognize with a snapshot, we are presented with

continuously varying data while we learn and we could be learning important general-

ization characteristics from that temporal information. Another important aspect of

mammalian learning is its unsupervised nature. Mammals do not train with labeled

data. Although the role of time in and the unsupervised nature of the vision problem

seem to be two separate aspects, they are two sides of the same coin.

2.1.1 Time and hierarchy in the vision problem

Learning or classification problems where labels are available for all the training

patterns are called supervised learning problems. Visual pattern recognition problems

are frequently treated as supervised learning problems. This could be due to the

tendency of humans to name all the objects in the world. However, a brief examination

of how other mammals might learn to do invariant visual pattern recognition will

reveal the unsupervised nature of the vision problem.

For example, consider a cat walking towards its bowl of milk. With each step the

cat takes, a different image of the bowl falls on the cat’s retina. The Euclidean dis-

tance between two consecutive images on the cat’s retina can be quite large. However,

the cat still knows that it is looking at the same bowl of milk even if it is not able to

CHAPTER 2. INTRODUCTION TO HTM 10

?

Tent

Cylinder

House

Figure 2.1: Unsupervised learning of object categories: Images belonging to three categories
– “tent”, “house” and “cylinder” – are shown on the left. Unsupervised learning of categories
involves separating these images into their categories shown on the right.

name it as a bowl of milk. Nobody taught the cat about milk bowls by making it flip

through pages of milk bowl pictures while shouting “milk bowl” in its ears. The cat

had to learn in a completely unsupervised manner that the different images of milk

bowl are actually caused by the same milk bowl.

The difficulty of this can be understood by looking at figure 2.1. On the left

are images of different objects - “tent”, “house” and “cylinder”. How can one, in an

unsupervised manner, cluster the objects that are perceptually similar to form groups

as shown on the right in figure 2.1? A naive application of similarity metrics at the

pixel level will not achieve the desired result because most often images from different

categories have more overlap in the pixel space compared to images from the same

category. Suppose one says that different images belonging to the same category are

scaled and translated versions of each other. How is the cat to discover that fact? If

scaling and translation are not pre-programmed within the cat’s brain, then the cat

will have to explore several other functions before it discovers that these images are

related by scaling and translation – an impossible task.

Suppose that the number of pixels on the cat’s retina is N . Then an input image

CHAPTER 2. INTRODUCTION TO HTM 11

Object
A

Object
B

Figure 2.2: Visualization of object manifolds: Images generated by objects can be consid-
ered as points in a high-dimensional space. All the images generated by the same object
can be thought to belong to the same manifold in this high-dimensional space. This figure
represents two such manifolds - one belonging to object A (“House”) and another belonging
to object B (“Cylinder”). The points on these manifolds correspond to different images
generated by the same object. The points belonging to the manifold of object A are shown
using white-filled circles and the ones belonging to the manifold of object B are shown using
black-filled circles. Intersecting points of manifolds correspond to identical views generated
by two different objects.

can be considered as a vector of dimension N . Different images created by an object

correspond to different points in an N -dimensional space. The set of points belonging

to the same object can be considered to belong to a manifold in the N -dimensional

space. These manifolds will contain an infinite number of points because they include

infinitesimal variations between images of the same object. Different objects belong

to different manifolds. The images of the milk-bowl that fall on the cat’s retina can be

thought of as samples from the milk-bowl manifold. This can be visualized as in figure

2.2. In figure 2.2, two manifolds, corresponding to objects A and B, are shown. The

different points on the manifold A correspond to different images generated by the

same object A. These images could, for example, correspond to viewing object A from

different angles, distances, lighting conditions etc. Similarly, the points on manifold

B correspond to different images generated by object B. If the cat has to learn that

CHAPTER 2. INTRODUCTION TO HTM 12

(A) (B)

(D)(C)

Figure 2.3: Unsupervised learning of objects would require separating the manifolds in a
high dimensional space. Given just the points on the manifolds of different objects without
their labels, there are several ways of splitting those points into manifolds. Figure (A) shows
unlabeled points in a high dimensional space. Figures (B) to (D) illustrate several ways to
split these points into two manifolds. Without further information than the one given in
figure (A), it is impossible to prefer one segmentation over another.

all the images that are generated by object A are the same while being different from

all the images generated by object B, it has to separate these two manifolds in an

unsupervised manner. And all that the cat has to work with is samples from these

manifolds.

The difficulty with separating these manifolds in an unsupervised manner is that

the manifolds of different objects intersect or come arbitrarily close to one another.

For example, some views of object A and object B can look the same. Those points

will be common to both manifolds. If we are given points on two intersecting manifolds

and not given the labels of these points, we will not be able to separate those manifolds

without being provided additional information. In figure 2.3, we show three different

CHAPTER 2. INTRODUCTION TO HTM 13

(A) (B)

Figure 2.4: This figure shows how temporal information can be used to segment object
manifolds. Temporal transitions are indicated using arrows. Figures (A) and (B) show
two different temporal transition patterns. Segmenting the underlying manifolds involves
identifying the points that are connected through temporal transitions. In both figures
empty circles are used to denote the points of the first object and filled circles are used to
denote the points of the second object.

segmentations of points from intersecting manifolds. We do not have any reason to

favor a particular segmentation over another. Therefore, if we treat images as points

in an N dimensional space, we cannot separate out the manifolds of objects in an

unsupervised manner.

Fortunately, our cat does not have to solve this problem in this manner. For the

cat, images in this world are presented continuously in time. When there is relative

motion between the cat and the milk bowl, different images of the milk bowl are

produced on the cat’s retina. However, these images occur close by in time. This

means that different images of the same object are likely to occur close by in time

compared to different images of different objects. Also, since motion in the physical

world obeys the locality and inertial laws of physics, two consecutive images are more

likely to come from the same object than from different objects. This information

is sufficient to unambiguously separate out the manifolds. Figure 2.4 shows how

temporal information helps us to separate points belonging to different manifolds.

Although two different images of the milk-bowl do not come labeled, the fact that

they occur close by in time can be used to learn that they are produced by the same

object. Thus, implicitly, time can be used as the supervisor to tell which patterns

CHAPTER 2. INTRODUCTION TO HTM 14

belong together and which patterns do not. 1

The identity of a manifold can be thought of as an invariant representation for an

object - different images of the object belong to the same manifold. When an object

undergoes different transformations in the world, the identity of its manifold remains

the same. Object recognition can be thought of as identifying the object manifold to

which an input image belongs.

Note that once these manifolds are learned and separated using temporal infor-

mation, recognition is easy for single snap-shots. It is only the separation of these

manifolds in an unsupervised manner that required temporal information. That said,

having temporal information during recognition could only help to improve the accu-

racy of recognition.

By using time as the supervisor we will be able to separate the manifolds of two

objects A and B. However, learning the manifold of object A will not help us in

learning the manifold for object B. Mammalian vision is extremely good at exploiting

the learning of one object to learn another. In many cases we can generalize to novel

views of an object that we have never seen before. Clearly, capturing this aspect of

mammalian vision involves more than just unsupervised learning and more than just

the use of time as the supervisor.

This is where hierarchy comes in to the picture. Most of the real world objects

share the same building blocks. Suppose that our system can learn the invariant repre-

sentations (i.e., manifolds) of these basic building blocks, and then learn the invariant

representations of larger building blocks in terms of the invariant representations of

the smaller building blocks. Then different objects can be learned as reconfigurations

of the invariant representations of the basic building blocks. By learning one object,

we also learn some building blocks for other objects. Moreover, the invariant repre-

sentations of the building blocks apply equally well to learn a new object. If we follow

this way of learning, the representations learned from one object can be used to learn

another object.

The above discussion can be distilled into two main points:

1A recent experiment by Cox, Meier, Oertelt and DiCarlo lab showed that position invariant
object recognition can be broken by changing the temporal statistics of presentation of the objects
[18]. This could support the argument that neocortex uses time as a supervisor

CHAPTER 2. INTRODUCTION TO HTM 15

• Use temporal information to see whether two different images (patterns) belong

to the same object manifold or not. Use this information to form invariant

representations

• Do the invariant learning in a hierarchy such that invariant representations

of object components are learned first and invariant representations of larger

objects are learned in terms of the invariant representations of these components

In addition to the ideas discussed above, there is another important aspect of

mammalian vision that is largely ignored in current vision research. This is the

sensori-motor nature of vision. In mammals, vision is actively linked to action and

many vision problems can be solved only with self-generated actions. For example,

our mental model of a milk bowl not only involves the visual part, but also includes

the memory of how the visual part will change if we make particular movements.

Although we are in complete agreement with the active vision approach, we think

that significant (though ultimately limited) progress can be made on the invariant

pattern recognition problem by exploiting the temporal and hierarchical aspect of

vision. Therefore, we will focus on those aspects in this work.

2.1.2 Hierarchical temporal memory

Based on the discussion above, in this thesis we will develop a new method to attack

the vision problem. In general this method can be thought of as a memory system

that exploits the hierarchical structure of the visual world. Rather than thinking of

the vision problem as a space-only problem, this method also exploits the temporal

dimension to learn invariant representations corresponding to sub-objects at every

level. Since this method is a memory system that exploits hierarchy and time, we

will call it by the name Hierarchical Temporal Memory (HTM).

An HTM system is organized as a network of nodes. Typically this network has

a tree shape. Figure 2.5 shows an HTM network with three levels. There are four

nodes at level one, 2 nodes at level two and one node at level three. Inputs to the

network are fed to the nodes at level one.

CHAPTER 2. INTRODUCTION TO HTM 16

2

1

3

4 5 6 7
Level 1

Level 2

Level 3

Inputs

Node

Figure 2.5: A simple HTM network that has 7 nodes arranged in a 3 level hierarchy.
The levels are numbered from level one to level three, with level one at the bottom of the
hierarchy and level three at the top. Inputs are fed to the nodes at the bottom level of the
hierarchy.

We will frequently use the term hierarchy to refer to the arrangement of nodes

in a network as shown in figure 2.5. The nodes that are closest to the inputs to

the network are at the bottom-level of the hierarchy and the nodes that are furthest

away from the sensory inputs are at the top-level of the network. In figure 2.5, the

network-inputs go directly to level-1 nodes and hence the level-1 nodes are at the

bottom-level. The top-level of the hierarchy has a single node – node-1. Thinking in

terms of hierarchical levels helps us identify the relative positions of two nodes with

respect to the input to the network. For example, a node that is hierarchically below

another node is closer to the inputs than the other node. Therefore, as you ascend

the hierarchy, you get farther and farther away from the inputs to the network.

The top level (level-3) of the network has a single node. The nodes which are

directly connected to a node and below that node in the hierarchy are called the child

nodes of that node. In the figure, nodes 4 and 5 are child nodes of node 2. Similarly,

nodes that are directly connected to and hierarchically above a node are called parent

nodes of that node. In the tree structure in figure 2.5, every node has at most one

CHAPTER 2. INTRODUCTION TO HTM 17

parent. Node 1 is the parent of node 2. Typically, inputs are fed to the bottom level

nodes in the hierarchy.

The nodes in the HTM network are the basic algorithm and memory modules

of the network. All nodes have inputs and outputs and contain algorithms that

are similar in nature. Nodes also contain memory. This memory is used to store

information about a node’s environment. The learning algorithms within a node

observe the input space and abstract some characteristics about it to be stored in the

nodes memory. In rough words, a node learns invariant representations of its input

space.

We will describe the mechanics of HTM using a simplified visual pattern recog-

nition problem. This simplified setting will help us concentrate on the important

aspects of HTM algorithms without getting bogged down by complexity. Using these

algorithms as the basis, we will understand the generalizations that need to be made

scale them to a general setting.

2.1.3 Organization of the rest of this chapter

This chapter is organized in eight sections. Section 2.2 defines the invariant pattern

recognition problem and describes the data-set and the HTM network used for the

rest of the chapter. Section 2.3 describes the operation of a node and section 2.4

describes how different nodes operate together in a hierarchy. Section 2.5 generalizes

the simplified descriptions of the earlier sections to the case of noisy inputs. Section

2.6 examines the recognition performance of a trained network. Section 2.7 discusses

related work and section 2.8 concludes the chapter with a summary and discussion.

2.2 The Pictures problem

In this section we will describe Pictures, our example problem for the rest of this

chapter. Pictures is a simplified visual pattern recognition problem.

CHAPTER 2. INTRODUCTION TO HTM 18

10.2

10.8

11.4

12.0

12.6

13.2

13.8

14.4

15.0

dog

helicopter

table lamp

1 2 3

4 5 6

7 8 9

do
g

he
lic

op
te

r

ta
bl

e
la

m
p

1

2

3

4

5

6

7

8

9

(A) (B)

Im
ag

e
Nu

m
be

r

Eu
cli

de
an

 D
ist

an
ce

Figure 2.6: (a) The left column of this image shows prototypical examples of three
categories - “dog”, “helicopter” and “table lamp”. On the right hand side are distorted
versions of those categories. Humans are good at recognizing the correct categories of those
distorted versions. (b) This figure shows the Euclidean distance between the prototype of
each category and the distorted images of all categories. For example, row 5 is the distance
of distorted image number 5 to the prototypes of “dog”, “helicopter” and “table lamp”. The
closest prototype is the one that is at minimum distance from the image. If we use Euclidean
distance as a measure of similarity, most of the images are misclassified. Image 4, which is
actually a “helicopter”, will be classified as a “table lamp”. It can be concluded from this
plot that a Euclidean distance measure does not inform us about perceptual similarity.

CHAPTER 2. INTRODUCTION TO HTM 19

t = 0 t = 1 t = 2 t = 3

Figure 2.7: This figure shows 4 consecutive frames from a training video. These frames
show the line-drawing of a “cat” moving from left to right. Each frame is of size 32 pixels
by 32 pixels.

2.2.1 Pictures task

Our goal is to learn invariant representations of a simplified set of binary image cat-

egories using an HTM network. Figure 2.6(a) shows some examples of these images.

These examples are of size 32 pixels by 32 pixels. The problem of invariant represen-

tation can be understood by looking at figure 2.6 (a) and (b). In figure 2.6 (a), on the

left side, are prototypical line drawings of a “dog”, “helicopter” and “table lamp”. In

the same figure, on the right hand side, are several deformations of these line draw-

ings. Humans can readily recognize the correct categories of these images despite

the different translations, scale changes and deformations. Although the images in

the same category appear “similar” to humans, this notion of similarity is hard to

quantify in order to be programmed in a computer. A measure of pixel similarity

across different images here show that (figure 2.6 (b)) the images that fall within the

same category can be more dissimilar in the pixel space compared to the ones that

fall within different categories. We will take recognizing image categories under a

wide variety of transformations, deformations and noise as our working definition of

the invariant recognition problem.

CHAPTER 2. INTRODUCTION TO HTM 20

2.2.2 Pictures training data

In the real visual world, transformations like translation, rotation and scaling occur

due to relative motion between objects and the viewer. To create the effect of trans-

formations created by continuous motions in our training data set, we need to create

movies out of our binary images. These movies need to contain all the transformations

that we want the learning system to be invariant to. Movies are created by animating

binary images with smooth translations, rotations and scale variations. Figure 2.7

shows 4 frames of a sample movie sequence. In this sequence, the “cat” object moves

to the right one pixel at a time. The visual world for our problem consists of such

simulated movies of binary line drawings.

2.2.3 Pictures HTM network structure

The HTM network we use to model this visual world is organized in a three-level

hierarchy. Figure 2.8 shows how our HTM network interfaces with this visual world.

Each frame of the movies of the visual world is presented on a retina of size 32 pixels

by 32 pixels. The nodes at level 1 are arranged in an 8x8 grid such that they cover

the 32x32 retina without overlap. Each level-1 node receives its input from a 4x4

pixel patch of the retina as shown in figure 2.8. A node at level two receives its inputs

from four level-1 nodes.

The effective input area from which a node receives its input is called its receptive

field. The size of the receptive field for the level-1 nodes in the figure 2.8 is 4x4. The

level-2 nodes have a receptive field of size 8x8 because their inputs come from 4 level-1

nodes and hence they indirectly get inputs from an 8x8 patch of the input image. In

the kind of hierarchical arrangement shown in figure 2.8, the size of the receptive field

of a node increases as we go up in the hierarchy. The single node at the top of the

tree covers the entire visual field, by pooling inputs from all of the lower nodes.

2.2.4 Stages of operation

For the ease of description, we think of the HTM network to be operating in two dis-

tinct stages - learning and sensing/inference. During the learning stage, the network

CHAPTER 2. INTRODUCTION TO HTM 21

Input Image

Level 1

Level 2

Level 3

32 pixels

32 pixels

a
b

A
B

c

d

C

D

Nodes

4x4 pixel patches
from input image

Figure 2.8: Structure of the HTM network for learning invariant representations for the
binary images world. Level one of the network has 64 nodes arranged in an 8x8 grid. Each
node is shown as a square. The input to a level-2 node comes from the outputs of 4 level-1
nodes as marked. The outputs from all the level-2 nodes go to a single level-3 node. Input
is fed to the nodes at level-1. The input image, a frame from the training videos, is of size
32 pixels by 32 pixels. This image is divided into adjoining patches of 4 pixels by 4 pixels
as shown. Each level-1 node’s input corresponds to one such 4x4 patch. Two nodes at
level-1 are marked (a) and (b). Squares marked (A) and (B) in the input image represent
the respective receptive fields of these nodes. Each level-1 node ‘sees’ only a small portion
of the input image. The squares marked by (C) and (D) correspond to the receptive fields
of nodes at level-2 marked (c) and (d).

CHAPTER 2. INTRODUCTION TO HTM 22

time

time

time

t=0 t=13

t=14t=26

t=27 t=39

Figure 2.9: This figure shows a segment of a long input sequence received by a level-1 node.
Each input pattern is a vector of 16 components and is shown as a 4x4 pixel array for easier
interpretation. Short sub-sequences of patterns can repeat within this long sequence. For
example, the 4-long sequence of a horizontal line moving up occurs twice within the shown
sequence of inputs.

is exposed to movies as we described above and the nodes in the network form repre-

sentations for the world using the learning algorithms we describe below. Once all the

nodes in the network have finished learning, the whole network can be switched to the

sensing mode. During the sensing/inference mode the HTM network recognizes the

category of an input image. Though the learning stage involves exposing the network

to movies from the visual world, we will restrict the sensing stage in our discussion to

static image recognition. During this stage, we present an image (a single snap shot)

and ask the network to identify the category of that image. This information will be

read out at the top of the network.

All nodes in the network use the same learning and sensing/inference algorithms.

Hence understanding the operation of the network involves two things – understanding

the operations within a node and understanding how a node operates with other nodes

in the hierarchy. The former is described in section 2.3 and the latter in section 2.4.

CHAPTER 2. INTRODUCTION TO HTM 23

2.3 Operation of a node

We describe the operation of a node with respect to a level-1 node in figure 2.8. This

will help us anchor our discussion using concrete examples.

The network in figure 2.8 is fed with movies of object motions. The input to the

network at any time is a visual image – a frame from the training movie. The field

of view of a level-1 node is a 4x4 pixel array from the visual image that is inputted

to the network. Visual objects move under the field of view of this node. Objects are

typically larger than the field of view. Therefore, the node “sees” only portions of

the objects. When objects move, they create different patterns in the field of view of

the node. Each pattern is a 16-pixel vector. Figure 2.9 shows a portion of an input

sequence to a level-1 node.

The node has two phases of operations. During the learning phase, the node

observes its input patterns and builds its internal representations. The node does not

produce any outputs during this phase. A node that has finished its learning process

is in the sensing/inference phase. During sensing/inference, the node produces an

output for every input pattern. We now describe the details of the learning and

sensing phases. We first describe this process for the case where the input patterns

are noise-free.

2.3.1 Learning in a node

The input to the node during the learning process is a long sequence of patterns. The

node operates on the input patterns one at a time. For every input pattern, the node

does three operations:

1. Memorization of patterns

2. Learning transition probabilities

3. Temporal grouping

The details of these operations are described below.

CHAPTER 2. INTRODUCTION TO HTM 24

Memorization of input patterns

The node has a memory that stores patterns within the field of view. This memory

permanently stores patterns and gives each pattern a distinct label, i.e., a pattern

number. Patterns that occur in the input field of view of a node are compared against

the patterns that are already stored in the memory. If an identical pattern is not in

the memory, then the input pattern is added to the memory and given a distinct

pattern number. The number that is given to a pattern is arbitrary and does not

reflect any property of the pattern.

We assume that patterns are stored in a node as the rows of a matrix. We use

C to represent this pattern memory matrix. Each row of the C matrix is a different

pattern. The individual patterns will be referred to by c1, c2 etc., depending on the

rows in which those patterns are stored.

Learning transition probabilities

The node constructs and maintains a Markov graph (figure 2.10). The vertices of this

Markov graph correspond to the stored patterns. Each vertex is given the label of

the pattern that it represents. As new patterns are added to the memory contents,

new vertices are added to the Markov graph.

The link between two vertices is used to represent the number of transition events

between the patterns corresponding to those vertices. When input pattern i is followed

by input pattern j for the first time, a link is introduced between the vertices i and

j and the number of transition events on that link is set to one. The number of

transition counts on the link from i to j is then incremented whenever a transition

from pattern i to pattern j is observed at the input of the node.

The Markov graph is normalized so that the links can become estimates of transi-

tion probabilities. Normalization is done by dividing the number of transition events

on the outgoing links of each vertex by the total number of transition events from

that vertex. This is done for all the vertices to obtain a normalized Markov graph.

The total transition probability from each node of a normalized Markov graph should

add to 1. The normalized Markov graph is updated continually to reflect the new

CHAPTER 2. INTRODUCTION TO HTM 25

10

7

10

4

4

3

1 2

5

6

7

8

4
4

7

9

3

4

3

1

2

1

3

(a)

1

1

1

0.57

4

3

1 2

5

6

7

8

1
1

1

9

0.3

0.4

0.3

0.25

0.5

0.25

0.43

(b)

Figure 2.10: (a) Shows an un-normalized Markov graph. The vertices of the graph are
numbered to correspond to patterns stored in the node. The arrangement of the vertices in
space does not have any significance. The links are labeled using the number of transition
events from one vertex to another. (b) The normalized Markov graph derived from (a).
Estimated probabilities of transitions from one pattern to another are indicated using the
labels on the links connecting the corresponding patterns.

CHAPTER 2. INTRODUCTION TO HTM 26

probability estimates.

Temporal grouping

The node partitions the set of vertices of the Markov graph into a set of temporal

groups. Each temporal group is a subset of the set of vertices of the Markov graph.

The partitioning is done such that the vertices of the same temporal group are highly

likely to follow one another.

The node uses a well-known clustering method called Agglomerative Hierarchical

Clustering (AHC) [54] to form the temporal groups. The AHC algorithm takes a set

of pattern labels and their pair-wise similarity measurements as inputs, and produces

clusters of pattern labels such that patterns in the same cluster are similar to each

other.

The probability of transition between two patterns is used as a measure of the

similarity between those patterns for the AHC algorithm. Clustering based on this

similarity metric puts patterns that are likely to follow one another into the same

cluster. Patterns that are unlikely to follow each other fall into different clusters.

Since each cluster is a set of patterns that are very likely to follow each other in time,

we call each cluster by the name temporal group.

AHC starts with all the stored patterns in separate clusters and then recursively

merges clusters with greatest similarity. This obtains a tree like structure called

dendrogram with a single cluster (which contains all patterns) at the top of the tree

and the individual patterns at the bottom (each pattern in its own cluster). The

desired clustering for temporal grouping lie somewhere in between the bottom and

the top of the dendrogram and can be obtained by defining a suitable criterion. For

example, one criterion could be to cut the tree at a level where the size of the largest

cluster does not exceed a particular value. The node has a design parameter that

sets the maximum number of clusters or temporal groups of the node. We obtain the

desired temporal groups by selecting a level of the dendrogram that gives the number

of temporal groups closest to and less than the configured maximum allowed number

of temporal groups.

We now illustrate the temporal grouping process on a simple input sequence to

CHAPTER 2. INTRODUCTION TO HTM 27

time

time

time
{subseq-3{subseq-1 {subseq-2{subseq-4

Figure 2.11: Part of the input sequence for the illustrative experiment described in the
section on temporal grouping. The long input sequence for this experiment is constructed
by switching randomly, with equal probabilities, between four three-long sub-sequences.
The sub-sequences are marked using the label “subseq”.

the node. The input sequence, shown in figure 2.11, is constructed by switching

randomly and repeatedly (with uniform probabilities) between four sub-sequences of

length three each as marked in the figure. The input sequence has 12 unique patterns.

These were memorized by the node and given labels c1, c2, · · · , c12. The normalized

Markov graph, obtained after exposing the node to a very long input sequence, is

shown in figure 2.12. A dendrogram corresponding to this Markov graph is shown in

figure 2.13. Figures 2.14 and 2.15 show the temporal groups obtained by cutting the

dendrogram at two different levels. Figures 2.16 and 2.17 summarize the operations

of the node during the learning phase.

The temporal groups within a node are updated as the markov transition proba-

bilities are updated. The above steps – recording of patterns in memory, forming the

normalized Markov graph, and temporal grouping – are performed for every time step

during the learning phase. The learning process can be stopped when the temporal

groups have sufficiently stabilized.

Another possibility would be to stage the three learning operations within the

node. For example, it is possible to first finish the memorization of all the training

patterns before forming the Markov graph. Similarly, the temporal grouping could

be done just once, after the normalized Markov graph probabilities have stabilized.

CHAPTER 2. INTRODUCTION TO HTM 28

8

1

7

3

12

9

10
1

10.25

11

4

6

5 2

1
1

0.25
0.25

1

1 0.25 1

1 0.25

0.25 0.250.25

0.25

0.25

0.25

0.25

0.25
0.25

0.25

0.25

c1
c2

c3

c4c5

c6

c7
c8

c9

c10

c11

c12

Figure 2.12: The normalized Markov graph that was learned for the input sequence de-
scribed in figure 2.11. The pattern corresponding to each vertex of the Markov graph is
shown within that vertex. The vertices are labeled c1 to c12. Note that this labeling is
arbitrary and does not reflect any property of the pattern.

CHAPTER 2. INTRODUCTION TO HTM 29

10 12 9 1 3 7 2 5 6 4 8 11

2

4

6

8

10

A A'

B B'

C C'

c1c2c3 c4 c5 c6 c7 c8 c9c10 c11 c12

Figure 2.13: This figure shows the dendrogram that is constructed for the normalized
Markov graph in figure 2.12. This dendrogram is constructed using the “linkage” routine
from MATLAB. The inverses of the probability values are used as the distance between
patterns.The Y axis of the dendrogram is a measure of the ‘distance’ between clusters. For
example, the link from c1 to [c3, c2] indicates the average ‘distance’ between c1 and the
cluster [c3, c2]. These distances, calculated by the MATLAB linkage routine, cannot be
directly interpreted in terms of the Markov graph edges. Several variants of linkage calcu-
lations exist. The obtained temporal groups are not sensitive to the particular method that
is chosen. The dotted lines A–A’, B–B’ and C–C’, correspond to cutting the dendrogram at
different levels. Infinite distances (corresponding to probability of transition equal to zero)
are replaced with the value 10 to make it feasible to display the dendrogram.

CHAPTER 2. INTRODUCTION TO HTM 30

g5

1

7

3

12

9

10
1

10.25

11

8 4

6

5 2

1
1

0.25
0.25

1

1 0.25 1

1 0.25

0.25 0.250.25

0.25

0.25

0.25

0.25

0.25
0.25

0.25

0.25

g2

g1

g3

g4

g7

g6

g8

c1
c2

c3

c4c5

c6

c7
c8

c9

c10

c11

c12

Figure 2.14: This figure shows the temporal groups obtained by cutting the dendrogram in
figure 2.13 at the level marked B–B’. Eight temporal groups are obtained. These temporal
groups are marked using dotted circles and given labels g1, · · · , g8.

CHAPTER 2. INTRODUCTION TO HTM 31

1

7

3

12

9

10
1

10.25

11

8 4

6

5 2

1
1

0.25
0.25

1

1 0.25 1

1 0.25

0.25 0.250.25

0.25

0.25

0.25

0.25

0.25
0.25

0.25

0.25

g2

g1

g3

g4

c1
c2

c3

c4c5

c6

c7
c8

c9

c10

c11

c12

Figure 2.15: This figure shows the temporal groups obtained by cutting the dendrogram in
figure 2.13 at the level marked C–C’. Four temporal groups are obtained. These temporal
groups are marked using dotted circles and given labels g1, · · · , g4.

CHAPTER 2. INTRODUCTION TO HTM 32

1. Memorize Patterns
Check whether the current input

pattern is already stored in
memory. If yes, identify its label. If

no, store in memory and give a
label.

2. Update Markov Graph
Based on the label of the pattern
that occurred in the previous time

step, and based on the current
pattern-label, update the markov-
graph and the normalized markov-

graph.

3. Update Temporal Groups
Partition the normalized markov-

graph to update the temporal
groups.

Figure 2.16: Summary of the operations that a node performs during learning. These
operations are performed for every time step during learning.

The second method is preferred as it involves less computation. This method will

be used for the rest of this chapter.

2.3.2 Sensing/Inference in a node

A node that has completed its learning process can now be used for sensing/inference.

The characteristics of the input to the node in sensing are identical to those during

learning. Objects move under the field of view of the node and the node “sees”

portions of those objects. The resulting patterns are the inputs to the node.

A node in sensing/inference produces an output for every input pattern. Although

it is possible for the node to use a sequence of patterns to produce an output, we make

the simplifying assumption that the outputs are produced based on instantaneous

CHAPTER 2. INTRODUCTION TO HTM 33

M
em

or
y

M
ar

ko
v

G
ra

ph

1 0 1 0 0 1 0
1 1 1 0 0 0 0C =

c1
c2

Le
ar

ni
ng

(a) This figure shows an intermediate stage of
the learning phase in a node. The inputs to
this node are patterns of length seven. The
node has stored two patterns in its memory.
Although the patterns are shown as binary
vectors, this need not be the case. The
markov-graph within the node has two
vertices corresponding to the two stored
patterns. The temporal grouping step has put
the two vertices in two different groups, g1
and g2

No
de

c2

c1

g1

g2

c2
c3

g1 g2

M
em

or
y

M
ar

ko
v

G
ra

ph

1 0 1 0 0 1 0
1 1 1 0 0 0 0
0 0 0 1 1 0 0C =

c1
c2
c3

c1

No
de

Le
ar

ni
ng

(b) At this point, the node has added another
pattern to the memory making the total
number of patterns equal to three. A new
vertex, corresponding to the new pattern, is
added to the markov-graph. The temporal
grouping step has produced two temporal
groups, with the 2 vertices in one group and
one vertex in the other.

c2

c3

In this figure, the node is at the end of its
learning process. The node has stored 5
patterns and the markov-graph has 5 vertices.
The temporal grouping method produced 2
temporal groups. These temporal groups are
marked using dotted-circles.

No
de

(c)

M
em

or
y

M
ar

ko
v

G
ra

ph

1 0 1 0 0 1 0
1 1 1 0 0 0 0
0 0 0 1 1 0 0
1 0 1 0 1 0 1
1 1 0 0 0 1 1

C =

c1
c2
c3
c4
c5

c2

c1 c4

c3

c5

g1 g2

Le
ar

ni
ng

g1

g2

Figure 2.17: Illustration of the learning process in a node. Figures (a),(b) and (c) show
different stages during the learning of a node. The node shown here is a fictitious one used
only for illustrative purposes. The patterns and the Markov graph of this node do not
correspond to any real problem situation.

CHAPTER 2. INTRODUCTION TO HTM 34

inputs. One result of this assumption is that the Markov graph is not used during

the sensing phase. It can be discarded once the temporal groups within the node are

finalized.

For every input pattern, the node produces an output vector that indicates the

degree of membership of the input pattern in each of its temporal groups. The current

input pattern generally does not perfectly match any of the patterns stored in memory.

Its closeness to every pattern stored in memory needs to be determined. Let di be the

distance of the ith stored pattern from the input pattern. The larger this distance, the

smaller the match between the input pattern and the stored pattern. We assume that

the probability that an input pattern matches a stored pattern falls off as a Gaussian

function of the Euclidean distance. With this, the probability that the input pattern

matches the ith stored pattern can be calculated as being proportional to e−d
2
i /σ

2
,

where σ is a parameter of the node. Calculating this for every stored pattern gives

the closeness of the current input pattern to all the vertices of the Markov graph.

Degree of membership of the input pattern in each temporal group is determined

by the maximum of its closeness to each of the vertices within the temporal group.

This results in a vector of length equal to the number of temporal groups, with each

component of the vector indicating the degree of membership of the input pattern in

the corresponding temporal group. This vector is then normalized to sum to unity.

The normalized memberships become estimates of probability of membership in each

temporal group. The normalized degree of memberships is the output of the node.

The output is a histogram giving estimates of probability of membership of the current

input pattern in each temporal group of the node.

2.3.3 Experimental results of learning and sensing in a node

We now describe some experimental results of learning and sensing in a level-1 node

– the node marked (a) in figure 2.8. The network in figure 2.8 is exposed to 300000

frames from the object-motion movies described earlier. Each frame of this movie is

a 32-pixels by 32-pixels image that contains the picture of a whole object. The level-1

node’s visual field, 4 pixels by 4 pixels, is much smaller than the whole image. Hence

CHAPTER 2. INTRODUCTION TO HTM 35

Figure 2.18: Patterns memorized by a level-1 node in figure 2.8 when exposed to videos
of line drawing images. Each pattern is of length 16 and is shown as a 4x4 pixel array for
easier interpretation. The node memorized 150 patterns.

CHAPTER 2. INTRODUCTION TO HTM 36

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Number of iterations x1e+5

40

60

80

100

120

140

160

N
u
m

b
e
r

o
f

u
n
iq

u
e
 s

p
a
ti

a
l
p
a
tt

e
rn

s

Figure 2.19: The number of patterns stored in a level-1 node as a function of the number
of training images.

the node “sees” only portions of the objects.

Figure 2.18 shows the patterns memorized by the node during the training phase.

From the 300000 frames, 150 unique patterns are memorized. Each pattern is a vector

of 16 components and is shown as a 4x4 image array for easier interpretation. Figure

2.19 shows a plot of the number of unique patterns in the memory as a function of

the number of frames of the training movie.

A Markov graph with 150 vertices is obtained at the end of the training period. It

is not practical to show the whole Markov graph in a figure. In figure 2.20, we show a

section of this Markov graph. Partitioning this Markov graph resulted in 58 temporal

groups. Examples of the resultant temporal groups are shown in figure 2.21.

Figure 2.22 illustrates the sensing process in a node. Shown are the outputs of

the node for 3 time steps during which a vertically translating horizontal line was the

input sequence to the node. The top panel of the figure shows the calculated degree

of match between the input patterns and the stored patterns for these three time

steps. As the input patterns change, different stored patterns become the ‘winners’.

The bottom-panel of the figure (e to g) shows the output of the node for these time

CHAPTER 2. INTRODUCTION TO HTM 37

0.5

0.5

0.34

0.03

0.2

0.01

0.65
0.48

0.18

0.01

0.42

0.5

0.5

0.43
0.41

0.41

0.02

0.02

0.01

0.43

Figure 2.20: This figure shows a portion of the normalized Markov graph learned in a
level-1 node. The original Markov graph has 150 vertices corresponding to the 150 stored
patterns. The portion shown here has ten vertices. The vertices are shown as circles. For
ease of interpretation, the patterns corresponding to these vertices are shown within the
circles as 4x4 pixel arrays. Vertices corresponding to vertical lines have significant self-
transition probabilities because vertical translations of a vertical line result in the same
vertical line. In contrast, the corner-vertices have zero self-transition probabilities because
a vertical or horizontal translation of a corner results in a different corner.

CHAPTER 2. INTRODUCTION TO HTM 38

1

2

3

4

5

6

7

8

9

10

11

12

Figure 2.21: This figure shows 12 of the 58 temporal groups learned in a level-1 node. The
patterns of the same temporal group are shown within a gray box. Each row is a different
temporal group.

CHAPTER 2. INTRODUCTION TO HTM 39

steps. The outputs have the same ‘winner’ – temporal group 9 – for the three time

steps. The output is ‘invariant’ because the vertical translations of the horizontal line

inputs are in the same temporal group.

A node in sensing has the following property. If the patterns of a temporal group

of the node occur sequentially at the input of the node, then the output of the node

will be invariant during that sequence. The sequential occurrence of patterns of the

same temporal group will happen frequently if the temporal statistics of the inputs

remain the same as during learning. Under this condition, the output of the node

will, on average, change slower than the input to the node.

2.3.4 Temporal groups are zeroth order Markov chains

The temporal groups in a node are obtained by partitioning its Markov graph into

sub-graphs. However, during the sensing/inference phase, each temporal group is

considered as a set of patterns without regards to their within-temporal-group transi-

tion probabilities. In essence, each sub-graph is considered as a zeroth order Markov

chain by discarding the sequential information stored within the sub-graph. In the

general case, an HTM node can have variable order Markov chains that make use of

sequential information during sensing/inference. For the rest of this thesis, we will

use the name Markov chains when sequential information is important and the name

temporal groups when it is not.

2.4 Operation of nodes in a hierarchy

The nodes in a network are trained one level at a time. The level-1 nodes are trained

first. When the level-1 nodes are in training, they do not produce any outputs. At

this time, the nodes at level two and higher are switched off. Once the level-1 nodes

are trained, they are put into sensing/inference mode. In this mode, they produce

outputs. These outputs are the inputs for the level-2 nodes. The level-2 nodes are

trained next. This process is repeated in the hierarchy to train all the nodes in the

network.

CHAPTER 2. INTRODUCTION TO HTM 40

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

1
6

0
p

a
tt

e
rn

 i
n

d
e
x

0
.0

0
.2

0
.4

0
.6

0
.81
.0

degree of match with input pattern

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

1
6

0
p

a
tt

e
rn

 i
n

d
e
x

0
.0

0
.2

0
.4

0
.6

0
.81
.0

degree of match with input pattern

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

1
6

0
p

a
tt

e
rn

 i
n

d
e
x

0
.0

0
.2

0
.4

0
.6

0
.81
.0

degree of match with input pattern

0
1

0
2

0
3

0
4

0
5

0
6

0
te

m
p

o
ra

l
g

ro
u

p
 i

n
d

e
x

0
.0

0
.2

0
.4

0
.6

0
.81
.0

degree of membership of input pattern

0
1

0
2

0
3

0
4

0
5

0
6

0
te

m
p

o
ra

l
g

ro
u

p
 i

n
d

e
x

0
.0

0
.2

0
.4

0
.6

0
.81
.0

degree of membership of input pattern

0
1

0
2

0
3

0
4

0
5

0
6

0
te

m
p

o
ra

l
g

ro
u

p
 i

n
d

e
x

0
.0

0
.2

0
.4

0
.6

0
.81
.0

degree of membership of input pattern

pa
tte

rn
 n

um
be

r
pa

tte
rn

 n
um

be
r

pa
tte

rn
 n

um
be

r

degree of match with input pattern

degree of match with input pattern

degree of match with input pattern

te
m

po
ra

l g
ro

up
 n

um
be

r
te

m
po

ra
l g

ro
up

 n
um

be
r

te
m

po
ra

l g
ro

up
 n

um
be

r

degree of membership of input

degree of membership of input

degree of membership of input

t=
0

t=
1

t=
2

(c
)

(g
)

(f)
(e

)

(b
)

(a
)

F
ig

u
re

2.
22

:
T

hi
s

fig
ur

e
ill

us
tr

at
es

th
e

qu
an

ti
ti

es
co

m
pu

te
d

du
ri

ng
th

e
se

ns
in

g
pr

oc
es

s
of

a
no

de
.

T
he

th
re

e
co

lu
m

ns
co

rr
es

po
nd

to
th

re
e

ti
m

e
st

ep
s.

A
ve

rt
ic

al
ly

tr
an

sl
at

in
g

ho
ri

zo
nt

al
lin

e
w

as
th

e
in

pu
t

to
th

e
no

de
du

ri
ng

th
is

ti
m

e.
T

he
to

p
pa

ne
ls

of
th

e
fig

ur
e

(a
to

c)
sh

ow
th

e
de

gr
ee

of
m

at
ch

be
tw

ee
n

th
e

in
pu

t
pa

tt
er

n
an

d
th

e
st

or
ed

pa
tt

er
ns

as
ca

lc
ul

at
ed

in
th

e
no

de
.

F
ig

ur
es

(e
)

to
(g

)
sh

ow
th

e
co

rr
es

po
nd

in
g

no
de

ou
tp

ut
s.

CHAPTER 2. INTRODUCTION TO HTM 41

2.4.1 Example two-level network

We use the simplified two-level hierarchical network shown in figure 2.23(a) to illus-

trate the operation of nodes in a hierarchy. This hierarchy has two nodes at level 1

and one node at level 2. The input to this network is an image of size 4 pixels by 8

pixels. One-half of this image, a pattern of size 4 pixels by 4 pixels, is fed to one node

at level 1, and the other half is fed to the other node at level 1. The level-1 nodes

are identical and have 12 patterns and four temporal groups. Both child nodes have

identical numbering of patterns and temporal groups, although this need not be the

case. The nodes at level 1 are in sensing/inference mode. The node at level 2 is in

its learning phase.

2.4.2 Inputs for higher-level nodes

When a node is at the first level of the hierarchy, its input comes directly from the

sensor, possibly after some pre-processing. The input to a node at a higher-level is

the concatenation of the outputs of the nodes that are directly connected to it from

a lower level. In figure 2.23, each level-1 node has an output of length 4. The input

to the level-2 node is the concatenation of these outputs – a pattern of length 8 as

shown in figure 2.23(a).

In the following subsection, we assume that the patterns that are presented to

the level-1 nodes exactly match the patterns presented to them during their learning

phase. This means that a level-1 node output, for any input pattern, will have

exactly one ‘1’ in the position corresponding to the temporal group to which the

input pattern belongs, and zeros everywhere else . Therefore, the input patterns to

the level-2 node in figure 2.23 has two ‘1’s – one for each child’s winner temporal

group. The assumption of clean input patterns is relaxed in section 2.5.

2.4.3 Memorization of patterns at the level-2 node

We now describe the learning process in the level-2 node as a sequence of inputs is

presented to the level-1 nodes. Figure 2.23 shows the two-level example network along

with its inputs for times t = 0, t = 1 and t = 2. The sequence of inputs corresponds

CHAPTER 2. INTRODUCTION TO HTM 42

g1

g2

g3

g4

Temporal Groups

c1 c2 c3 c4 c5 c6

c7 c8 c9 c10 c11 c12

Memory

Memory

g1

g2

g3

g4

Temporal Groups

c1 c2 c3 c4 c5 c6

c7 c8 c9 c10 c11 c12

Memory

g1

g2

g3

g4

Temporal Groups

c1 c2 c3 c4 c5 c6

c7 c8 c9 c10 c11 c12

Memory

Memory

g1

g2

g3

g4

Temporal Groups

c1 c2 c3 c4 c5 c6

c7 c8 c9 c10 c11 c12

Memory

g1

g2

g3

g4

Temporal Groups

c1 c2 c3 c4 c5 c6

c7 c8 c9 c10 c11 c12

Memory

Memory

g1

g2

g3

g4

Temporal Groups

c1 c2 c3 c4 c5 c6

c7 c8 c9 c10 c11 c12

Memory

(a) (b) (c)

Figure 2.23: This figure illustrates how nodes operate in a hierarchy. We show a two-level
network and its associated inputs for three time steps. This network is constructed for
illustrative purposes and is not the result of a real learning process. The outputs of the
nodes are represented using an array of rectangles. The number of rectangles in the array
corresponds to the length of the output vector. Filled rectangles represent ‘1’s and empty
rectangles represent ‘0’s. See text for details.

CHAPTER 2. INTRODUCTION TO HTM 43

t = 10

g1

g2

g3

g4

Temporal Groups

c1 c2 c3 c4 c5 c6

c7 c8 c9 c10 c11 c12

Memory

g1

g2

g3

g4

Temporal Groups

c1 c2 c3 c4 c5 c6

c7 c8 c9 c10 c11 c12

Memory

Memory

t = 11

g1

g2

g3

g4

Temporal Groups

c1 c2 c3 c4 c5 c6

c7 c8 c9 c10 c11 c12

Memory

g1

g2

g3

g4

Temporal Groups

c1 c2 c3 c4 c5 c6

c7 c8 c9 c10 c11 c12

Memory

Memory

t = 12

g1

g2

g3

g4

Temporal Groups

c1 c2 c3 c4 c5 c6

c7 c8 c9 c10 c11 c12

Memory

g1

g2

g3

g4

Temporal Groups

c1 c2 c3 c4 c5 c6

c7 c8 c9 c10 c11 c12

Memory

Memory

Figure 2.24: This figure uses the same setting as of figure 2.23 except for the input sequence.
The input sequence is an “L” moving to the right. The level-2 node has already learned one
pattern before the beginning of this input sequence. The new input sequence introduced
one additional pattern to the level-2 node.

CHAPTER 2. INTRODUCTION TO HTM 44

to a “U” shape moving in the combined visual field of these two nodes. No level-1

node sees the whole U pattern. The sequence of patterns seen by the left level-1

node, as the U moves in the combined field of view, can be described as left-corner,

left-corner, left-corner. On the other hand, the right level-1 node sees the sequence

vertical-line, right-corner, right-corner.

For the right-bottom node in Figure 2.23, the outputs for times t = 0 to time t = 2

are [0, 0, 0, 1] , [0, 0, 0, 1] , [0, 0, 0, 1] respectively. The outputs do not change because

the input patterns c10, c11 and c12 are in the same temporal group (g4) in the right

level-1 node. Similarly, the left level-1 node outputs the vector [0, 1, 0, 0] for these

three time steps.

The input to the level-2 node, at any time, is the concatenation of the outputs

from its children. For the above three time steps, this input is [0, 1, 0, 0, 0, 0, 0, 1]. This

is obtained as the concatenation of [0, 1, 0, 0] from the left level-1 node and [0, 0, 0, 1]

from the right level-1 node. While the network is exposed to 3 different images

of U, the input to the level-2 node remains the same. This input is an invariant

representation for the three different translations of the U.

The pattern memorization process at the level-2 node is identical to that of the

level-1 nodes. A new pattern that is not already in the node’s memory is added to

the memory and given a new number. During the sequence of inputs from t = 0 to

t = 2, one new pattern was added to the memory of the level-2 node.

Figure 2.24 shows another sequence of patterns and the corresponding inputs/outputs

for time period from t = 10 to t = 12.(The particular time indexing that we choose

here is not important.) During this period an “L” moves across the combined visual

field of the level-1 nodes. Note however, that the left level-1 node sees the same se-

quence of movement as it saw for the rightward motion of the U pattern. Therefore,

its outputs for time steps t = 10 to t = 12 are identical to that for time steps t = 0 to

t = 2 steps. The output of the right level-1 node during this time period is [1, 0, 0, 0].

As we observed in the case for the U pattern, different shifts of the L produce the

same input pattern to the level-2 node. Therefore, the input to the level-2 node is

invariant to those translations of the L. However, the input pattern to the level-2 node

for the L-sequence is different from that for the U-sequence. That is, the patterns at

CHAPTER 2. INTRODUCTION TO HTM 45

level 2 have maintained the selectivity between U and L while remaining invariant to

their translations.

The learning of transition probabilities and temporal grouping in higher-level

nodes are identical to that of level-1 nodes. This process can be repeated in the

hierarchy to learn a multi-level network.

2.4.4 Patterns at higher-level nodes represent “coincidences”

We saw that a pattern of a higher-level node is the concatenation of the outputs

from its children. An output from a child has a ‘1’ in the position corresponding to

its currently active temporal group. Therefore, each pattern stored in a higher-level

node has as many ones as the number of children of that node. The pattern [0100

0001] in the example we considered above describes that the 2nd temporal group of

the left-child and the 4th temporal group of the right child occurred at the same

time. In general, patterns in higher-level nodes represent particular co-occurrences

or coincidences of the temporal groups of their children. Therefore, we will use the

terms coincidence, coincidence-pattern, and pattern interchangeably for the rest of

this thesis.

2.5 Dealing with noise and ambiguity

The descriptions in the previous sections assumed that the inputs to the network

are not noisy. Dealing with noisy patterns require modifications to the learning and

inference steps.

2.5.1 Learning with noisy inputs

The memorization process that was described earlier is not suitable for the case of

noisy inputs because the node will have to store a very large number of patterns.

Level-1 nodes and higher-level nodes require different modifications to deal with noise.

We describe level-1 modifications first and then the higher-level modifications.

CHAPTER 2. INTRODUCTION TO HTM 46

Learning with noise at level-1 nodes

When the inputs are noisy, an additional stage of clustering is performed on the

inputs. This pre-clustering algorithm assumes that the patterns inputted to the node

belong to a vector space. (See figure 2.25). The Euclidean distance between different

patterns in this vector space is used to find clusters of patterns. The clusters are

formed such that patterns close-by in Euclidean distance fall into the same cluster.

The node uses an online k-means clustering algorithm to cluster the input patterns

into k clusters, where the number of clusters k is a design parameter of the node. The

k-means algorithm is initialized with k randomly chosen input vectors as the initial

cluster centers. This algorithm then assigns a new input vector to its closest cluster

center and moves that cluster center towards the new input pattern by a small amount

that is a fraction of the Euclidean distance between the input pattern and the closest

cluster center. The amounts by which cluster centers are moved in response to new

input patterns is reduced with time. This results in stabilization of the cluster centers.

The node obtains k cluster centers by applying online k-means algorithm to the

input patterns. The cluster centers are recorded in permanent memory and given

distinct labels. The rest of the learning process proceeds as above using the cluster

centers as the memorized patterns. The vertices of the Markov graph now correspond

to the cluster centers and they are labeled using the cluster center labels. The cluster

center corresponding to an input pattern is the closest cluster to the input pattern in

the Euclidean distance sense.

Learning with noise at higher-level nodes

The inputs to higher-level nodes are distributions that reflect the ambiguity in the

input to the network. During learning, the higher-level nodes handle this ambiguity

by sparsifying the inputs by taking a ‘winner’ from each child. The positions corre-

sponding to the winners are set to one and the other positions are set to zero. With

this operation, the patterns seen during learning match the ideal patterns that are

seen for the noise-less case.

CHAPTER 2. INTRODUCTION TO HTM 47

X

X
X

X

Figure 2.25: Idealized picture of clustering the noisy input patterns. The noise-free under-
lying patterns are represented as points in a vector space (represented by crosses). Noise
causes different variations of these ideal patterns to appear at the input of the node (rep-
resented by dots). If the noise-level is small enough, approximations to the ideal patterns
can be found by clustering the inputs. The cluster centers are used as approximations of
the true patterns.

CHAPTER 2. INTRODUCTION TO HTM 48

2.5.2 Sensing/Inference – general case

In our description of the sensing/inference process for the level-1 node in section 2.3.2,

we assumed that the input patterns, in general, do not match the stored patterns.

Therefore, the same sensing process can be used for the noisy case for all level-1 nodes.

The output of a level-1 node reflects the noise in the input. Instead of signaling the

membership of the input pattern in a group with complete certainty, the output is

now a distribution that reflects the degree of membership of the noisy input pattern

in each temporal group of the node.

The calculation of the outputs of higher-level nodes is slightly different from the

computations done in a level-1 node. This difference can be understood with respect

to the level-2 node from section 2.4. Consider the pattern shown in figure 2.23 within

the level-2 node. The ‘1’s in this pattern correspond to group-2 from the left child-

node and group-4 from the right child-node. If the inputs from the children nodes

are probability distributions, the probability that this particular coincidence-pattern

is active would be proportional to the quantity obtained by multiplying together the

second value from the left child-node’s output and the fourth value from the right

child-node’s output.

In general, let the ith coincidence-pattern be represented as ci =
[
mi

1, · · · ,mi
Nc

]
where the mi

k’s represent the positions where the coincidence-pattern has non-zero

entries. Nc is the number of child nodes of this node. The probability that the ith

coincidence-pattern is active is calculated as

P (ci) = γ
Nc∏
k=1

input(mi
k) (2.1)

where γ is a proportionality constant that normalizes the probability distribution.

Once the probability distribution over the stored patterns is obtained, the rest of

the computations are identical to the level-1 node inference computations. From the

probability distribution over the patterns, the probability that a particular group is

active is calculated as the probability of the pattern that has the maximum probability

among all the patterns belonging to that group.

CHAPTER 2. INTRODUCTION TO HTM 49

1 2 3 4 1 2 3

X XX XX

max max

message from left
child

is a probability
distribution over its
temporal groups

message from right
child

is a probability
distribution over its
temporal groups

Coincidences: This
node has 5

coincidences

temporal groups:
This node has 2
temporal groups

A coincidence is a
particular co-
occurrence of
temporal groups,
one temporal
group from each
child.

c1 c2 c3 c4 c5

A temporal group
is a collection of
coincidences. Only
one element of a
temporal group is
active at any time.

The coincidence
c2 is the
simultaneous
occurrence of
temporal group 3
from the left child
and temporal
group 2 from the
right child

Temporal group 1
is a pooling of
coincidences c1
and c3. Only one
of c1 or c3 is
expected to be
active at any
particular time.

g1 g2

Output is a
probability

distribution over the
space of temporal

groups

Probability
distribution over
the space of
spatial patterns
(coincidences)

Figure 2.26: This figure illustrates the structure of a higher-level node and the general
inference mechanism. Each coincidence-pattern can be thought of as being represented by
a neuron-like unit. The connections of this neuron to the inputs describe the coincidence-
pattern represented by that neuron. For example, c2 is has connections to the 3rd location
of the message from the left child and to the 2nd location of the right child. This means
that c2 represents the coincidence of group three of the left child-node and group-2 of the
right child-node. The coincidence-neurons do a multiplication of their inputs to obtain the
outputs. Similarly, each temporal group can be thought of as a neuron. A temporal group
is described by the connections it makes to the coincidence (or pattern) neurons. In the
figure shown, temporal group g1 consists of coincidences c1 and c3, while temporal group g2

consists of coincidences c2, c4 and c5. The output of a temporal group neuron is obtained
by taking the max over the inputs.

CHAPTER 2. INTRODUCTION TO HTM 50

This form of propagating the uncertainties provides better recognition compared

to making winner-take-all decisions locally. Ambiguous information can get resolved

higher up in the hierarchy because only some configurations of the temporal groups of

lower levels are valid coincidence-patterns at higher levels. Bayesian belief propaga-

tion [75] is used to propagate the uncertainties in the network to obtain the optimum

recognition performance. The derivation of belief propagation equations for HTM

nodes is discussed in appendix A. Belief propagation techniques can also be used to

propagate evidence down-stream in the hierarchy. This backward propagation is used

to disambiguate and reconstruct information at the lower levels of the hierarchy. In

the next section, we will consider the recognition performance of a fully trained hier-

archy. Examples for feedback propagation and reconstruction using the same network

can be found in appendix B.

2.6 Recognition performance of a fully trained hi-

erarchy

Using the procedures described above, we trained a hierarchy of nodes. This hierarchy

has 64 nodes in the bottom level, four nodes in the middle level and one node at the

top level. The nodes at level 1 are arranged in an 8x8 grid and each level-1 node

received a 4x4 pixel patch of the input. The input to a level-2 node came from 16

level-1 nodes organized in a 4x4 grid. The four level-2 nodes were connected to the

one node at the top.

2.6.1 Training movies

The network is trained on 48 categories of line drawing images as shown in figure

2.27. The training set included several scaled examples of each category.

Levels 1 and 2 of the system are trained using videos consisting of vertical and

horizontal translations of the training images. As the level-1 nodes do not distinguish

between scaling and translation sequences, the level-1 temporal groups required for

CHAPTER 2. INTRODUCTION TO HTM 51

Figure 2.27: Training image examples: An example from each category is shown. Several
examples at different scales were used to generate the training movies.

representing scale changes are learned from translation sequences. Therefore, contin-

uous scale variations are not included in the training videos.

The top level was trained using supervision using a naive Bayes classifier [25, 20]

attached to the pattern-probablity outputs of the level-3 node. During this process,

the training images are presented at every position and the network is supervised at

the classifier attached to the level-3 node. Training images are presented exhaustively

at every position.

2.6.2 Testing images

Testing images are generated using a program that takes in a training image and

generates several test images by arbitrarily scaling along x and y axes, adding noise,

deleting pixels and adding small rotations.2 Since the scales chosen are arbitrary, it is

unlikely that an exact replica of a training image would be presented during testing.

2The training set did not have rotations in them

CHAPTER 2. INTRODUCTION TO HTM 52

The system is tested for recognition accuracy by presenting these images at the

bottom level and reading out the category from the classifier attached to the top-

level node. The recognized category is set to be the one that produced the maximum

probability at the classifier. This is then compared against the actual category index

for the test image.

2.6.3 Recognition results

The recognition accuracy on training images is 99.73 percent. We tested the system on

approximately 9000 test images. The system achieved 57 percent recognition accuracy

on the test image set. The chance level is 2 percent. A nearest-neighbor classifier

applied to the same problem obtained only 28 percent recognition accuracy. Figure

2.28 shows several test images that were recognized correctly. These test images are

arranged in columns according to their correct category.

To understand the nature of the recognition performance, we gradually distorted

an image in one category to an image in another category and recorded the strengths

(proportional to probabilities) recorded at the top level of the network during the

process. Figure 2.29 illustrates the result of this experiment.

2.6.4 How the system generalizes to translations, scaling and

distortion

Suppose we take a trained network and try to teach it a new pattern – pattern ‘A’

as shown in figure 2.30. This network is trained on patterns other than A during

its initial training phase. We now expose the network to pattern A at one position

and supervise at the top of the network. The position of A to which the network is

exposed is shown in figure 2.30 in black.

Figure 2.30 (a) also shows three horizontal translations of this A in gray, red and

green. Notice the patterns within the input fields of the level-1 nodes, created due

to translations of A. In the highlighted input field in figure 2.30 (a), these patterns

correspond to four translations of a corner. If these patterns belong to the same

temporal group in the node that is attached to this input field, then the output of

CHAPTER 2. INTRODUCTION TO HTM 53

Figure 2.28: This figure shows examples of test images that were recognized correctly.
Each column shows examples of a particular category. Each test image is of size 32 pixels
by 32 pixels. Only 10 out of 48 categories are shown here. It can be seen from the test
images that the system can recognize these images despite large amounts of translation,
scale differences, distortions and noise.

CHAPTER 2. INTRODUCTION TO HTM 54

Figure 2.29: Variation of perceptual strength with pattern distortion : For this test we
gradually distorted a test pattern of one category (category b) into a pattern of another
category (category p). None of the test patterns were identical to the ones used for training
the b and p categories. Plotted along the Y axis is the score obtained at L3 for categories
b and p when patterns along the X axis were shown to the system. In the region marked
as b region the pattern was identified as belonging to category b and similarly for the p
region. In the ambiguous region the system classified the pattern as neither b nor p but
(erroneously) identified it as various other categories.

that node will remain invariant during these translations of A. If this happens in

all other nodes, the patterns seen by higher-level nodes will be invariant to local

translations of A. The temporal groups required for this are similar to the learned

temporal groups in section 2.3.1.

Figure 2.30 (c) shows the canonical A and several scaled versions of it. Note that

the temporal groups required at the lowest level are similar to the ones required for

translation invariance. In the input field of a level-1 node, both those transformations

(a) (b) (c)

Figure 2.30: This figure is used to explain the generalization performance of our system.
See text for details. (a) shows several horizontal translations of an “A” (b) shows several
vertical translations of an “A” and (c) shows several scaled versions of an “A”

CHAPTER 2. INTRODUCTION TO HTM 55

produce the same effect. Therefore, some of the temporal groups required for scale

invariance can be learned by exposure to translating patterns.

Invariance across larger transformations is achieved by the combined effect of the

temporal groups at the lower levels and higher levels. When the network learns a new

object that is composed of parts of familiar objects, the invariances that are learned for

the familiar objects automatically transfer to the new objects. This happens because

the objects are learned in a hierarchy; new objects are learned as reconfigurations of

the parts of familiar objects.

2.6.5 Generalization performance

The above discussion tells us that the generalization for a new object will depend on

its “degree of similarity” with the familiar objects, at various levels of the hierarchy.

Since this notion is hard to quantify, we use an experiment to illustrate this.

We trained the network on 48 categories as described before. We then exposed

the network to three additional categories of images at 10 randomly chosen positions

for each category while supervising at the top for the appropriate category. We tested

the network for generalization by querying it for exposures to these images at different

locations. The degree of success of the network in recognizing the images at other

locations depended on the complexity of the novel image. Simple images generalized

to more positions compared to complex images. Figure 2.31 shows the generalization

performance of the network.

2.7 Related work

Several researchers have built pattern recognition systems with multiple levels. Neocog-

nitron [32], convolutional neural networks [58], the HMAX model [84], and the frag-

ments hierarchy from Ullman [100] are examples of models that have network archi-

tectures and pooling operations similar to the HTM model described here. However,

the pooling mechanisms in these models were hardcoded and not learned. This is

discussed in detail in section 3.7.

CHAPTER 2. INTRODUCTION TO HTM 56

Figure 2.31: In this experiment we showed the system snapshots of 3 novel images at 10
randomly chosen positions. What is plotted is the number of positions to which the system
generalized for each of these novel images (shown along the X axis). It can be seen that the
generalization performance goes down with increasing complexity of the novel pattern.

CHAPTER 2. INTRODUCTION TO HTM 57

Boltzmann machines [47], and deep belief networks [48] provide another set ex-

amples of networks with multiple levels of representations. However, these networks

demonstrate limited translation and scale invariance since they do not have a pooling

mechanism similar to the models described above. Moreover, the learning mechanisms

in these models do not exploit the temporal nature of vision.

Visnet [91] and Slow Feature Analysis [109] are examples of networks that use

temporal slowness as a principle for building invariant representations. These net-

works were built as proofs of concept for temporal learning; hence the algorithms in

these models are unlikely to scale to larger problems. Moreover, these models do not

use the formalism of Bayesian belief propagation for inference and do not have the

capability of using feedback propagation for reconstruction of input images. Ullman

and Bart [101] use image fragments, extended with motion tracking, as the features

for invariant recognition. However, their work does not use a hierarchical structure.

2.8 Summary and bigger picture

Our attempt to achieve invariant pattern recognition considered the visual world as a

spatio-temporal process. Our method involved creating a spatio-temporal abstraction

hierarchy for the visual world. This abstraction hierarchy was created as a network

of nodes where each node used essentially the same learning algorithm. Each node in

the network contained patterns and temporal groups. We observed that a pattern in

a higher-level node corresponds to the simultaneous occurrence of temporal groups

in its child-nodes. The nodes higher up in the hierarchy have larger receptive fields –

they account for larger amounts of space compared to nodes in lower levels. Since each

node creating invariant representations for the temporal process that it is exposed to,

the temporal variations become slower as we ascend in the hierarchy. The combined

effect is that the nodes at the higher level (through the nodes at the lower level) end

up representing larger spatial and temporal scales compared to the lower-level nodes.

A “cause” that is represented at a higher level is influenced by a larger spatial extent,

and is persistent for a larger duration of time compared to the lower level causes.

Figure 2.32 gives an illustration of these concepts.

CHAPTER 2. INTRODUCTION TO HTM 58

time

space

abstraction
hierarchy

Figure 2.32: This figure shows the concept of a spatial and temporal abstraction hierarchy.
The higher levels abstract larger areas of space and larger durations of time. The higher
levels change their states slowly compared to the lower levels.

CHAPTER 2. INTRODUCTION TO HTM 59

Instead of thinking of this as a recognition hierarchy, we can invert this hierarchy

and think of it as the process by which the world generates images. The visual

world can be thought of as a “generative model” that uses a hierarchical structure

to construct the images. This model operates in space and time. When a particular

cause is active at a higher level of the hierarchy, it causes multiple sub-causes to unfold

in time simultaneously at various spatial locations. These sub-causes in turn act as

causes to unfold further sub-causes in time at finer spatial scales. As we descend down

in the world hierarchy, we see finer spatial and temporal scales. The causes that are

active at the higher level restrict the dynamics of the “causes” at lower levels. The

dynamics of the causes at lower level in turn restrict the flow of the causes in higher

levels. This kind of image generation would generate several different images for a

particular cause that is active at the top of the hierarchy. In the next chapter we

analyze such spatio-temporal hierarchical systems from the point of view of learning

and generalization.

Chapter 3

Towards an Understanding of

Hierarchical Learning and

Generalization

3.1 Introduction

The study of hierarchical models has a rich history and interest in them has waxed

and waned in the past. Hierarchical architectures have recently regained attention in

the machine learning literature [6, 48]. Many questions remain unanswered about the

hierarchical nature of learning. Although hierarchical learning systems are known to

work well in practice, computational learning theory does not answer why hierarchies

are important for learning. Hierarchical systems are built routinely and are known to

reduce sample complexity in practice. However, there is no theoretical explanation

for this and no fundamental understanding of the parameters involved [78].

In this chapter we study the generalization properties of HTM networks by gener-

ating patterns from them. A generative model is specified to enable the generation of

patterns from HTM networks. Analogous to the standard practice in machine learn-

ing where synthetic observations from a generative model are used to understand the

characteristics of the recognition model, the HTM generative model is used primarily

as a tool to analyze and characterize the generalization properties of HTMs.

60

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 61

Characterization of generalization in the HTM network is important because not

all data domains and modeling techniques directly benefit from a hierarchical struc-

ture. For example, if the class structure for patterns in a particular domain can be

defined in terms of nearest Euclidean neighbor relationships, then there is no gener-

alization advantage in modeling those patterns using a hierarchy. Similarly, if there

is no temporal structure in the data, application of an HTM to that data need not

give any generalization advantage. The main goal of this chapter is to identify the

characteristics of the data to which HTM models can be applied with successful gen-

eralization. This is accomplished by the analysis of the synthetic data generated from

an HTM generative model.

Another advantage of understanding the source of generalization in HTMs is that

it can be used to explain why some of the existing hierarchical models generalize.

Neocognitrons [31], convolutional neural networks [58], and the HMAX model [84]

of the visual cortex are examples of successful feed-forward hierarchical models of

visual pattern recognition. However, the generalization characteristics of these models

are not well understood. We show that these models have a mapping to the HTM

model. In essence, these models are exploiting the same assumptions as specified

in our generative model by hard-coding the effect of temporal learning. The hard-

coded invariant features in these models can be learned using time as a supervisor.

Therefore, the learning principles used in HTMs can be applied to problems where

such hard-coding is not possible, in addition to the problems that are already tackled

by these models.

The multi-scale properties of the generated data also lead us to draw some specu-

lative connections to the perceived multi-scale structure of many physical, biological

and information systems. Herbert Simon has argued that hierarchical-temporal or-

ganization could be a general property of physical and biological systems [89]. He

conjectured that learning machines will need to replicate this hierarchical structure.

We find tentative parallels between the organization of the visual cortex and the

organization of some physical systems in the world.

The rest of this chapter is organized as follows. Section 3.2 describes how patterns

are generated from HTMs. In section 3.3, we analyze the properties of these patterns.

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 62

O
bs

er
va

bl
e

Pa
tte

rn
s

Se
ns

or
s

HTW Network HTM Network

(a) (b)

Figure 3.1: Patterns generated from an HTW network are used to analyze the generaliza-
tion properties of an HTM network

In section 3.4, we describe the learning problems that are associated with hierarchical

temporal data and in section 3.5 we describe some learning methods. In section 3.7,

we show how convolutional neural networks and similar models can be considered

as special cases of HTMs. The generalization properties of HTMs are analyzed in

section 3.8. In section 3.9, we discuss related work. We conclude in section 3.10 by

drawing some speculative connections between the organization of some systems in

the world and the organization of the neocortex.

3.2 Generating patterns from HTMs

In the previous chapter, HTMs were introduced primarily as a recognition model. In

this section we describe how patterns are generated from an abstractly defined HTM

network. An HTM network used in the generative mode will be called an HTW

network because the patterns generated from this network constitute a Hierarchical

Temporal World (and also because ‘W’ is the reverse of ‘M’).

There are numerous advantages in having a generative model for HTMs. Since

we have control over the generation of patterns, we can vary the parameters of the

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 63

generation process to understand how the properties of generated patterns vary based

on these parameters. Having a generative model also helps to answer questions about

learning models that are not well matched to the generation model. For example,

what would be the result of learning a four-level HTW generated patterns with a

three-level HTM network? Having a mathematical model for pattern generation also

helps us understand the source of generalization in recognition models.

3.2.1 HTW network

An HTW model is organized as a network of nodes as shown in figure 3.1(a). The

outputs of the level-1 nodes constitute the observable patterns generated by the net-

work. All the nodes in this network operate in the same way. Patterns are generated

by the combined operation of the nodes in the hierarchy. Since all nodes work in an

identical manner, we understand the pattern generation mechanism by first study-

ing the mechanism in a node and then understanding how nodes work together in a

hierarchy.

3.2.2 Structure of a node

A node in an HTW network consists of the following:

• A set of unique patterns labeled c1 to c|C|. Each pattern is a vector of the

number of components equal to the number of children of that node. The set

of pattern labels in a node can be considered as a finite alphabet.

• A set of Markov chains labeled g1 to g|G|. Each Markov chain is defined over a

subset of the set of pattern labels in the node.

Each Markov chain gi in the node is associated with an initial distribution Πgi
.

The initial distribution specifies the probability for each state of the Markov chain

being the first state to be activated. Each node is also associated with a time constant

τ that determines on average how many time steps a Markov chain will remain active.

These two parameters control the generation of patterns from a node.

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 64

Figure 3.2: Structure of a node: Shown here is a node at level 2. Nodes are represented
using their level index and index within the level. N2,1 indicates that this node is the first
node at level-2 of a network. All the variables within the node are superscripted by (2, 1).
This node has two Markov chains, denoted by g2,1

1 and g2,1
2 . There are 6 patterns in this

node. They are labeled c2,1
1 to c2,1

6 . Each pattern has two components corresponding to the
two child nodes of this node. The child nodes are not shown. Also stored within the node
is a time constant τ2 that is the same for all nodes at this level of the hierarchy.

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 65

The components of a stored pattern in the node are the Markov chain labels of the

child nodes – one component per child. A particular pattern represents a particular

co-activation of the Markov chains in its children, with exactly one Markov chain

being active in each child. The total number of such configurations is given by the

product of the number of temporal groups in each child. However, the number of

stored patterns in a node will be much less than this number and represents the

number of allowed co-activations of the Markov chains in a node’s children1.

At this point, we need some notation to refer to particular nodes in a hierarchical

arrangement of nodes. We will use two indices to uniquely identify a node in a

network. The first index will correspond to the level of the network that the node is

in. The second index will correspond to the number of the node within that level. For

example, we will use N2,1 to refer to first node at level-2 of the network. Whenever

required, we will use the super-script indexing to refer to labels within the node as

well. For example, g2,1
1 represents the first Markov chain in node N2,1.

Figure 3.2 shows a simple node with 6 patterns and 2 Markov chains. Markov

chain g1 has 3 pattern labels in it - pattern labels c1, c4 and c5. Markov chain g2 has

3 pattern labels in it - pattern labels c2, c3 and c6.

3.2.3 Generation from a single node

A temporal sequence of patterns can be generated from a node by activating it with

the identity of a Markov chain. The node will then generate a sequence of patterns

by sampling from the activated Markov chain. The first pattern is emitted according

to the initial distribution associated with the activated Markov chain. Subsequent

patterns are emitted by following the transition probability table associated with this

Markov chain. This process is repeated τ times so that a sequence of patterns that

is τ long is generated. The pattern generation stops after τ steps. The node can

1The generative nodes have a one-to-one match to the HTM nodes that were introduced in chapter
1. In that chapter, we described HTM nodes that memorized patterns and learned a Markov graph
over the space of pattern labels. This Markov graph was then partitioned to form temporal groups.
After partitioning, the sub-graphs associated with the temporal groups were discarded. The Markov
chains in our generative node correspond to the Markov subgraphs obtained after partitioning the
Markov graph in the node during learning.

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 66

be started again with the identity of one of the Markov chains to generate further

sequences of patterns.

Consider the node shown in figure 3.2. Assume that we start the node with the

Markov chain g1. The node produces the first pattern label by sampling according to

the initial distribution of this Markov chain. Let this pattern label be c5. The pattern

corresponding to c5 ,
[
g1,1

3 , g1,2
3

]
, is emitted. The next pattern label is generated

according to the transition probability P (.|c5). This process is continued for 3 steps

and then the node stops.

3.2.4 Generation of patterns from a hierarchy of nodes

To understand the process of pattern generation in a hierarchy, let us connect two

child nodes to the node that we studied in the previous section. These two child

nodes are connected to the parent node as shown in the figure 3.3

Suppose we activate the parent node by passing it the identity of one of its Markov

chains. Let this Markov chain be g2,1
2 . The parent node will generate the first pattern

by sampling from the activated Markov chain according to its initial distribution. Let

the pattern that is generated be c2,1
6 .

This pattern, c2,1
6 has two components – g1,1

3 and g1,2
1 . These components corre-

spond to the Markov chain labels of the child nodes of node N2,1. In general, the

components of a pattern generated by a parent node are the Markov chain labels of

the child nodes.

The pattern generated by the parent node activates the pattern generation in

the child nodes by activating each child node with the Markov chain label from the

pattern component corresponding to it. This can be thought of as the parent node

passing the “control” down to the child nodes. Once the child nodes are activated,

they will sample τ1 times from their Markov chains before the control is returned to

the parent. The parent node cannot generate another pattern till the child node has

sampled τ1 times from its Markov chain.

In the current case, the pattern c2,1
6 generated by the parent node will activate the

Markov chain g1,1
3 in the left child node and g1,2

1 in the right child node. These Markov

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 67

t=0

t=1

t=2

t=3

t=4

t=5

Figure 3.3: A two-level HTW network. Also shown are the patterns generated by this
network from time t = 0 to time t = 5.

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 68

chains will be active concurrently. Each child node will then generate patterns from

these Markov chains for τ1 steps. Since these child nodes do not have any more

children, the pattern label that is generated is emitted from these nodes. For every

time step, we get two outputs - one corresponding to each child. Let the pattern

labels emitted by the child nodes at time t = 0 be c1,1
2 from the left child and c1,2

1

from the right child. The concatenation of these two pattern labels,
[
c1,1

2 , c1,2
1

]
is a

pattern with two components. This pattern is the output of the generative network

at time t = 0.

The child nodes will continue the generation of patterns for τ1 time steps (τ1 = 3).

During this time, the parent node is not allowed to generate new patterns from its

active Markov chain. Thus the output of the level-2 node will remain c2,1
6 for these

three time steps. At the end of τ1 steps, the control is returned to the parent node

and the parent node can generate the next pattern by sampling from its Markov chain

(provided, the parent node hasn’t already sampled τ2 times from that Markov chain).

The generation of a new pattern at the parent node once again initiates a pattern

generation cycle at the child nodes.

This generation process can be extended to any number of levels. When a parent

node generates a pattern and passes the control to its children, all the children possess

the control simultaneously. Nodes lose control by either passing it to the parent or

by passing it down to the children. Control is split as it passes down in the hierarchy

- when a parent node passes the control down, all its children receive it. Control is

aggregated as it passes up in the hierarchy - a parent node receives control only when

all its children have passed their control to it. The nodes at the same level of the

hierarchy generate patterns in synchrony and in parallel.

Whenever a node generates a pattern, the control is passed down to its children.

The nodes at level-1 of a hierarchy do not have any children. Therefore, level-1 nodes

do not pass down control and do not wait for the control to be returned. When

control is passed to a level-1 node, the level-1 node emits pattern labels for τ1 time

steps and returns the control to the parent. All the level-1 nodes emit pattern labels

concurrently for every time step. Therefore, at each time step we will get one pattern

label from each level-1 node. At any time t, the concatenation of the outputs of the

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 69

level-1 nodes is a vector of length equal to the number of nodes at level one. This

vector is the observable pattern generated by the network at time t. Figure 3.3 shows

the data generated from the two-level network for six time steps.

The data generated from an HTW network is both spatial and temporal. At

each time point, the data has multiple components corresponding to the nodes at the

bottom level of the hierarchy. This is the spatial or structural component of the data.

Each of these components evolves in time. The generated data is a multi-variate time

series with interleaved spatial and temporal properties.

3.3 Properties of hierarchical-temporal data

We now quantitatively analyze the data generated from and HTW network. Figure

3.4 shows a four-level HTW network with a fan-out of two at each level. Each node

of this network has 20 patterns and 5 Markov chains. Each Markov chain contains

4 patterns. The same pattern does not participate in more than one Markov chain.

The time constant of each level is set to an average value of 5. This was achieved by

varying the time constant between 2 and 8 in a uniformly random manner after every

cycle of generation. With this the active Markov chains at level 1 will change once in

5 time steps, on average, and the active Markov chains at level 2 will change once in

25 time steps, on average. In general, the active Markov chain at level i will change

on average every 5i time steps.

All the Markov chains are identical in their alphabet size and they use the same

transition matrix, albeit with a different mapping of the states to the set of pat-

terns. The transition matrix has a probability of transition value of 0.57 between its

(i mod 4)th state and (i+1 mod 4)th state and a probability of transition value of 0.14

between every other pair. These quantities were chosen to ensure a strong sequential

transition component with some amount of randomness. Any combination of values

that ensures this would suffice.

Nodes in the network generate a pattern label for every time step. As the network

is executed, each node generates a time-series. Figure 3.4 shows the arrangement and

labeling of the generated data. Each level of the network creates a spatio-temporal

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 70

4,1

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8

2,1 2,2 2,3 2,4

3,1 3,2

level 1

level 2

level 3

level 4

t=0
t=1
t=2

t=50000

.

.

.

.

Figure 3.4: Structure of the HTW network used for the experiments in section 3.3.

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 71

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Pattern Number at t

0
1

2

3
4

5

6

7

8

9
10

11

12

13

14

15

16

17

18

19

P
a
tt

e
rn

 N
u

m
b

e
r

a
t

t-
1

Figure 3.5: Transition probability matrix obtained from the data stream D1,1 of the level-1
node 1, 1

data set. We ran the network for 50000 time steps and stored the time-series corre-

sponding to each node of the network. We then quantitatively analyzed the properties

of the generated data.

3.3.1 Temporal structure of data streams from a single node

Figure 3.5 shows the first order transition matrix obtained by observing the data

stream of node 1 at level 1. This transition matrix was obtained by counting the

number of transitions in the data stream from one pattern label to another. The

rows and columns of this matrix correspond to the pattern labels of node 1. The

(i, j)th entry of this matrix gives the estimated probability that the next pattern is j

given the current pattern is i.

Figure 3.6 shows the same transition matrix, with rows and columns now re-

arranged such that the pattern labels belonging to the same Markov chain occur

adjacent to each other along the rows and columns2. This matrix has a block diagonal

2Clearly, this kind of re-arrangement is possible only when a pattern occurs only in one Markov

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 72

4 17 19 11 0 6 10 1 8 13 2 15 7 3 14 9 18 12 5 16
Pattern Number at t

4

17

19

11

0

6
10

1

8
13

2
15

7

3
14

9
18

12

5
16

P
a
tt

e
rn

 N
u

m
b

e
r

a
t

t-
1

Figure 3.6: Reordered transition probability matrix.

structure. This structure arises because of the time constant τ1 of the node. This

time constant ensures that, once a Markov chain is started, patterns are generated

from that Markov chain for the duration of τ1, on average.

Suppose we did not know the Markov chain memberships of these patterns. Under

benevolent conditions, we can use this temporal slowness property to recover those

memberships and the underlying Markov chains. The transition matrix in figure

3.6 suggests that this can be done by identifying tightly connected sub-graphs of

the graph representing the transitions between patterns of a node. The underlying

sub-graphs, with appropriately normalized edge weights, will then correspond to the

Markov chains. We will see in section 3.5.2 that the temporal slowness is a key

property exploited during learning.

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 73

5 10 15 20 25 30
Temporal separation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
u

tu
a
l

In
fo

rm
a
ti

o
n

 (
b

it
s)

level 3
level 2
level 1

Figure 3.7: Temporal mutual information of nodes at level-1, level-2 and level-3.

3.3.2 Mutual information vs. temporal separation in the hi-

erarchy

Consider the time-series D1,1 generated by node 1 at level-1. For brevity, let us

denote this stream by D. For any given time t, D(t) is the pattern label generated

by this node. Suppose we know the pattern label D(t) at time t. The amount of

information that this gives us about the pattern label D(t+∆) at time t+∆ depends

on the temporal properties of the data stream. We can use mutual information [17]

to quantify this property 3. Let D∆ represent the data stream obtained by delaying

the D data stream by ∆ time steps. Then the mutual information I(D,D∆) between

D and D∆ quantifies the amount of information that on average can be obtained

about a time step in stream D by measuring at a time step ∆ steps preceding it.

chain
3Mutual information I between two random variables Y and Z is defined as I(Y,Z) = H(Y) −

H(Y |Z), where H represents the entropy. Intuitively, this can be thought of as the reduction in the
uncertainty of one variable given the other.

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 74

I(D,D∆) can be thought of as a generalization of the auto-correlation function and

can be used to measure the amount of temporal dependency in a data stream D.

(Auto-correlation cannot be used because the variables here are nominal.) For this

reason, we will call this quantity the temporal mutual information. As all the nodes

in our network have identical parameters, the temporal mutual information of the

time-series generated by a node depends on the level of that node in the network.

Figure 3.7 plots the mutual information vs. temporal separation of nodes at levels

one, two and three of the hierarchy. The plots clearly show the temporal dependency

in the data streams. At level 1, knowing a pattern label at any time t gives on

average 0.3 bits of information about the pattern label at time t + 5. The mutual

information falls off with increasing temporal separation. It can also be observed that

the temporal dependency of the states of the nodes at level 2 is larger than that of the

nodes at level 1. One of the properties that we wanted our generative model to hold

was the increasing temporal stability as we ascend in the hierarchy. This property

is reflected in the plots. The temporal dependency of the data streams generated by

a node increases as you move up in the hierarchy because the active Markov chains

and patterns of the nodes at a higher levels change at a slower rate compared to that

of a lower level node.

3.3.3 Mutual information vs. structural separation in the

hierarchy

Suppose we know the pattern label that was emitted by a node at a particular time.

How much does this tell us about the pattern label of another node within the same

level at that time? This can be quantified by measuring the mutual information

between the data streams of those nodes.

As shown in figure 3.4, the data streams generated by level-1 nodes are labeled

D1,1, D1,2, · · · , D1,8. We measured the pair-wise mutual information between these

data streams. The results of this measurement are shown in figure 3.8 (Level-1).

Clearly, the nodes that are connected to the same immediate parent show high amount

of mutual information. The nodes that are not connected to the same parent show

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 75

4.2

0.3

0.01

0.01

0.005

0.005

0.005

0.005

0.3

4.2

0.01

0.01

0.005

0.005

0.005

0.005

0.01

0.01

4.2

0.3

0.005

0.005

0.005

0.005

0.01

0.01

0.3

4.2

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

4.2

0.3

0.01

0.01

0.005

0.005

0.005

0.005

0.3

4.2

0.01

0.01

0.005

0.005

0.005

0.005

0.01

0.01

4.2

0.3

0.005

0.005

0.005

0.005

0.01

0.01

0.3

4.2

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8

1,1

1,2

1,3

1,4

1,5

1,6

1,7

1,8

0.3

4.2

0.02

0.02

4.2

0.3

0.02

0.02

0.02

0.02

4.2

0.3

0.02

0.02

0.3

4.2

2,1 2,2 2,3 2,4

2,1

2,2

2,3

2,4

4.2 0.23

0.23 4.2

3,1 3,2

3,1

3,2

Level 1

Level 2

Level 3

Figure 3.8: The pair-wise mutual information plots between the data streams generated by
the nodes at levels 1, 2 and 3. Mutual information between two variables X, Y is calculated
using the formula I(X,Y) = H(X) −H(X|Y). The mutual information (in bits) between
pairs of data streams is indicated within the corresponding rectangle.

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 76

significantly lower mutual information. The same trend can be seen at levels 2 and 3

as shown in figure 3.8.

An important property of the hierarchy can be observed by examining how the

measurements of mutual information between data streams vary in the hierarchy.

Consider the data streams generated by level-1 nodes 1, 2, 3 and 4. Data streams

D1,1 and D1,2 have low mutual information (0.01 bits) with data streams D1,3 and

D1,4. However, there is high mutual information (0.3 bits) between the level-2 data

streams D2,1 and D2,2.

Looking at the “raw” data streams D1,1, D1,2 and D1,3, D1,4, one might conclude

that there is no advantage in jointly modeling D1,1, D1,2 and D1,3, D1,4. The data

stream of the level-2 node (2, 1) can be derived from the data streams of nodes level-1

nodes (1, 1) and (1, 2) by first finding the groups corresponding to the patterns and

then finding the co-occurrences of the groups. Similarly, the data stream of the level-2

node (2, 2) can be derived from the data streams of level-1 nodes (1, 3) and (1, 4).

What we observe is that by doing one step of temporal and spatial abstractions on

the set of level-1 nodes (1, 1) and (1, 2) and on the set of nodes (1, 3) and (1, 4), we

obtain mutual information that was not visible at level-1 between {D1,1, D1,2} and

{D1,3, D1,4}. The same property holds good between nodes at levels 2 and 3.

The nodes that are at the same level of the hierarchy and not connected to the

same parent act nearly independently. However, if we abstract out the details of these

lower levels and go to a higher-level, we see patterns of interaction between these

nodes. This loose coupling provides a way of learning these modules independently of

each other, and abstracting the details at a lower level to see higher-level interactions.

This is another property that we will exploit in learning hierarchical temporal memory

systems.

3.3.4 Summary of the properties of HTW generated data

• Hierarchical organization in spatial (structural) and temporal dimensions

• Lower level nodes are associated with smaller portions of the patterns generated

from the network. Higher level nodes influence larger portions of the generated

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 77

patterns, but with less detailed control

• Temporal predictability at the lower level nodes is smaller compared to the

temporal predictability at higher levels. Temporal variations in lower level nodes

occur faster compared to higher levels

• The nodes at any level that are not connected to the same parent are loosely

coupled

• Temporal and spatial abstractions of one level reveal interesting structure that

can be modeled by another level. Without making these abstractions, the de-

pendency between different streams might not be visible at a lower levels.

3.4 Learning problems associated with hierarchi-

cal temporal data

Learning involves the construction of a model through the observation of hierarchical-

temporal data. The complexity of the learning task can vary depending on the amount

of prior knowledge that can be applied to the problem. Based on this, we can put

the learning problems into two broad categories:

1. Learn the network structure and node states from data: The most

general learning problem that can be defined on this data set involves learning

the complete network structure that generated the data. This includes learning

the hierarchical connectivity between the nodes and the internal states of each

node in the hierarchy. If no assumptions are made about the data generation

mechanism, solving this problem involves searching through a hypothesis space

that is possibly infinite. However, under the assumption that the data was

generated from an HTW network of unknown structure, practical algorithms

can be devised to extract an approximate network structure.

2. Assume the network structure. Learn the node parameters from data:

In many learning problems, the network structure can be designed using prior

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 78

domain knowledge. Then the only task that remains is of learning the states of

the nodes in the network.

The complexity of learning and the details of what is learned will also depend on

the task for which the model is built. Given below is a non-exhaustive categorization

of the learning problem based on the task.

• Classification problem: The visible patterns generated by a network belong

to different Markov chains at the top node of the network. The identity of

the Markov chain that is active at the top-level node when a visible pattern is

emitted by the network can be thought of as the class identity of that pattern.

If we have a learned model, then for every input pattern, we can query the

model to find out the Markov chain identity of that pattern at the top of the

network. In this manner, a learned model can be used for classification.

• Prediction problem: The network can be queried to predict the next pattern

based on a sequence of observed patterns.

• Reconstruction problem: The patterns that occur in the real world are noisy

and ambiguous. A learned model can be used to clean up an input pattern.

3.5 Hierarchical temporal memory: a learning method-

ology for hierarchical-temporal data

We will now devise a learning methodology for hierarchical temporal data. This

learning methodology satisfies the following two criteria:

1. Be a universal learning algorithm for the hierarchical-temporal world: This

means that, we will not make any more assumptions about the world than the

generic assumptions about the hierarchical and temporal world set-forth in the

generative model. This will make our learning method applicable to a large

class of problems that fall within these assumptions.

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 79

2. Be memory based. i.e, non-parametric: This means that we will not be mak-

ing any assumptions about the shape of the probability distributions that can

occur in the world. Instead, we will approximate the distributions by using

explicit memorization. Temporal learning will be done using Markov models

with multinomial distributions.

Since the methodology that we describe is hierarchical and temporal and memory-

based (non-parametric), we refer to this by the name Hierarchical Temporal Memory

(HTM).

Learning is the reverse process of generation. We are given a long stream of

patterns that is generated from an HTW network. We do not know the structure

of the network or the coincidence-patterns and Markov chains in any node in the

generative network. By observing the data given to us, we want to get back the

network-structure and the coincidence-patterns and Markov chains in the nodes of

the network that generated the data.

We describe the learning process in two stages. First we consider the problem of

learning the network structure and then we will consider the problem of learning the

coincidence-patterns and Markov chains in the nodes.

3.5.1 Learning the structure of an HTM network

We are given multi-variate temporal data. The data have as many temporal streams

as the number of variables. Let us assume that the number of streams is L0. The

pattern at any time point is a vector of L0 components. By observing this data

stream, we need to identify the hierarchical structure that generated this stream. In

this section we will consider a greedy sub-optimal algorithm for doing this.

In section 3.3, we found that data streams that are generated from the nodes

with the same immediate parents have high mutual information while data streams

generated from nodes that are further separated in the hierarchy have low mutual

information. Our network construction algorithm is based on this observation. The

basic idea behind this algorithm involves using mutual information to find the data

streams that are to be fed to the same node.

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 80

First, measure the pair-wise mutual information between the L0 data streams.

These pair-wise measurements can be thought of as a measure of similarity between

the data streams. Then divide the streams into L1 clusters based on these mutual

information measurements. The number of clusters could be a parameter or could

be discovered by the clustering algorithm. The first level (level-1) of the network is

constructed using L1 nodes. All the data streams that fell into the same cluster are

fed to the same node at level-1.

Next, train all the level-1 nodes by feeding in the data streams to these nodes

according to their clustering assignment. (In the next section we will describe the

method for training the nodes. For the time being, we will assume the existence of

such a method.) After the level-1 nodes are trained, those nodes will start producing

outputs. An output is produced for every input. Since there are L1 nodes at level-1,

we will have L1 data streams. At this stage, we have constructed and trained the

first level of the network.

For the next stage of network construction, we treat these L1 data streams the

same way we treated the original L0 data streams. That is, we measure the pair-wise

mutual information between these L1 data streams and put them into L2 clusters.

We assign one node for each cluster and feed those data streams that fall into the

same cluster into those nodes. This process is repeated until we reach a single node

at the top.

3.5.2 Learning the states of a node

The process involved in learning the states of an HTM node was discussed in detail

in section 2.3. For convenience, we summarize that discussion in this section.

A node that is not trained is a tabula rasa. Through the learning process we

hope to create within the node the coincidence patterns and the Markov chains of

the corresponding hierarchical temporal world that generated the patterns.

The input to a node in the network is a sequence of input patterns, presented one

pattern at a time. The node, when it starts the learning process, is a tabula-rasa. It

has nothing stored in its memory and it hasn’t formed any Markov chains/temporal

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 81

groups. At the end of the learning process, the node will have memorized several

patterns and formed several Markov chains. The node achieves this learning in a

two-step process - (1) Memorizing the coincidence-patterns and (2) Learning the

temporal groups.

Memorizing the coincidence patterns

The input to a node at an intermediate level in the hierarchy is the concatenation of

the outputs of its child nodes. If the node has M children, this is a pattern of M com-

ponents. Each component of this pattern is the “name” of the Markov chain/temporal

group from the child node. The whole pattern represents a co-occurrence of the tem-

poral groups in the child nodes.

In the first step of the learning process, the node memorizes the unique patterns

that it sees in its inputs and labels those patterns. We will assume that the node

observes the input stream long enough to see all the coincidence patterns in the

data. The memorized patterns are labeled c1, c2, · · · , cNc , where Nc is the number of

memorized patterns.

Learning the Markov chains/temporal groups using time as the supervisor

Once the first stage of learning is finished, a sequence of input patterns produce

a sequence of pattern labels within the node. In the second stage of the learning

process, the node learns the Markov chains within the node. The node does this by

observing the transitions of pattern labels in time. By learning the Markov chains,

the node is modeling the transitions of pattern labels using a mixture of Markov

models. Only one of these Markov models will be active at a particular time. Each

Markov model is responsible for modeling a temporal duration approximately equal

to the time constant of the node.

If the input stream of patterns came pre-segmented with their assignments to

Markov chains, then the problem of learning the Markov chains is a trivial one –

learn the transition probabilities in a Markov chain only using those input sequence

segments that are assigned to that Markov chain. However, the input stream of

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 82

pattern labels does not come pre-segmented. The node has to, on its own, figure out

the segmentation of the input sequence and learn the Markov chains based on the

appropriate segments.

Without any further information, this segmentation problem is under-specified

and therefore not solvable in practice. In section 3.3 we described how temporal

slowness is a key assumption in the generation of patterns from an HTW network.

This property ensures that a Markov chain that is generating patterns tends to be

active for some duration of time. In learning the Markov chains, the node assumes

that the pattern labels that persistently follow each other in time are likely to come

from the same Markov chain.

A simple algorithm that can be used for learning the Markov chains involve learn-

ing a transition matrix between the complete set of pattern labels and then parti-

tioning that transition matrix into smaller transition matrices corresponding to the

individual Markov chains. We can consider the original transition matrix as a graph.

Then, with the assumption of temporal stability, the transition matrices of the indi-

vidual Markov chains will correspond to tightly connected sub-graphs of this original

graph. This method of learning the Markov chains will work when the pattern labels

belonging to one Markov chain are mostly disjoint from the pattern labels belonging

to a different Markov chain.

3.6 Classification problems

Many machine-learning theories are constructed around the concept of classifying

patterns in a supervised manner [25]. In supervised classification problems, a training

data set is available that has a set of patterns and their category labels. A classifier

is then trained on this training set data. The goal is to learn the boundaries between

these classes so that novel patterns can be assigned to their correct classes. The

performance of these classifiers is measured using a test set.

In contrast to the standard clustering mechanisms and discriminative learning

mechanisms that are distance-based, the classification in HTMs is model-based. The

patterns are assumed to come from a Hierarchical Temporal World (HTW) model.

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 83

In the HTW generative model, for every pattern that is generated from the network,

there is a Markov chain at the top-node of the network that is active. The identity

of this Markov chain is the class label for that pattern.

In HTMs, the classification problem is the problem of identifying the identity of

the Markov chain at the top node that corresponds to the input pattern. In a tree

structured hierarchical network, this can be solved using Bayesian belief propaga-

tion techniques. See appendix A for the description of belief propagation in HTM

networks.

3.7 Convolutional neural networks, HMAX model,

Neocognitron

Convolutional neural networks [58] and feed-forward models of the visual cortex like

Neocognitron [32] and the HMAX model [84] have been very successful on visual pat-

tern recognition problems. Despite the wide variety of learning algorithms employed

in these models, they all share the same structural properties. All these models have

feed-forward hierarchies with alternating layers of feature selection and feature-pooling

levels.

We will use the illustration in figure 3.9 to understand the basic mechanism behind

these models. The input image in the figure is a two dimensional array of pixel values.

The segment of the network shown in the figure consists of feature-detection neurons

(shown as circles) and feature-pooling neurons (shown as rounded rectangles). As

illustrated, the feature detection neurons have receptive fields that are much smaller

in size compared to the size of the whole input image. In this example, we have two

kinds of feature detectors - a vertical line detector and a horizontal line detector.

These feature detector neurons respond to the presence of a vertical/horizontal line

in a small patch of the input image that corresponds to their receptive fields.

Now, consider the feature pooling neuron ‘a’ in figure 3.9. This neuron pools across

the outputs of two feature detector neurons of the vertical line type. The output of

the feature pooling neurons is the maximum of the output of these neurons. This

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 84

max max
a b

A

A'

B

B'

C'

Figure 3.9: This figure shows the basic mechanism of feature-detection and feature-pooling
employed by convolutional neural networks and by the HMAX model.

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 85

means that this feature pooling neuron will respond if a vertical line is present either

in the input field A–A’, or in the field B–B’ or in both. By max-pooling the responses

of the vertical line feature detectors in A–A’ and B–B’, the feature pooling neuron

has become an invariant detector of the vertical line in the receptive fields A–A’ and

B–B’.

If we tile the rectangular input field C–C’ with several vertical line detectors

and then pool their responses using a max-pooling neuron, then the response of

that max-pooling neuron will be invariant to the translation of a small vertical line

segment within the C–C’ rectangular input field. Using the same mechanism, we

can build translation invariance to any kind of feature. All we need to do is pool

across translated versions of that feature type using a max-pooling mechanism. This

is the basic mechanism employed by Neocognitron, convolutional neural networks,

and the HMAX model. By building invariant pooling over small receptive fields and

then stacking them gradually with alternating layers of feature detection and feature

pooling, these networks gain invariance to translations and small scale variations of

the same image category, while maintaining selectivity to images belonging to different

categories.

It is important to note that the invariant pooling is hard-coded in convolutional

neural networks and in the HMAX model. In these models, the feature pooling neuron

did not learn to pool across the outputs of translated feature detector neurons of the

same type. Instead, the pooling was pre-determined by the designer of the network.

How did the network designer know what features to pool across? It is quite in-

tuitive that in the visual world, we want features invariant to translations and scale

variations. Therefore, in the case of the visual world, it is possible to hard-code

translation invariance and scale invariance into the network. However, the technique

of hard-coding the invariance will not transfer to other domains. Even in the vision

domain, it will become increasingly difficult to hard-code rotations and other defor-

mations. Learning these invariances is the only general strategy that we can apply

to build models for any domain. In the visual world, those learned invariances will

correspond to translation, scaling etc. In a different domain, we will have to invent

new words to describe the invariances that are learned.

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 86

g2

g1
c1

c2

c4

c3

A

A'

B

B'

C

C'

Figure 3.10: Mapping of the feature-detection and feature pooling layers of convolutional
neural nets to the HTM node.

3.7.1 Mapping to hierarchical temporal memory

Convolutional neural nets and models like Neocognitron and HMAX can be mapped

to HTMs in a straightforward manner. The simple cell layers in these models map

to the coincidence-patterns in HTMs. A simple cell in the convolutional network

remembers a configuration of features from the feature maps at lower levels. Similarly,

a coincidence pattern in an HTM node, remembers a configuration of the Markov

chain “features” from the lower level nodes.

The feature-pooling levels of these models map to the Markov chains of an HTM

node. The max pooling operation maps to the max-propagation mode of Bayesian

belief propagation used in HTMs. Figure 3.10 shows how the segment of convolutional

network in figure 3.9 can be mapped to an HTM node.

Having the feature-pooling layer as a learned temporal group gives HTMs several

advantages over convolutional neural networks and similar models. In HTMs, the

feature pools are learned using temporal continuity. This lets the feature-pooling

levels in HTMs pool together patterns that are otherwise very different in a spatial

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 87

similarity metric. Moreover, this lets HTMs to be invariant to the transformations

that are present in the data rather than hard-coding the transformations. In general,

learning these feature pools is the only viable strategy to apply the same modeling

techniques for data from different domains.

Feature pooling in convolutional neural networks and similar models correspond

to treating the Markov chains in an HTM node as zeroth order models by discard-

ing their transition probability tables. HTMs in general have the capability of using

these Markov chains as a variable order temporal model. This means that HTMs can

exploit the temporal continuity not only during learning, but also during inference.

For example, movement of an input picture gives more information about the trans-

formation of features. Since an HTM has encoded these transformations as part of its

Markov chains, HTMs can exploit this additional information by integrating evidence

over time using the dynamic programming equations described in appendix A.

3.8 Generalization

Generalization is the capability of pattern recognition systems to correctly classify

patterns that were never seen during training. In non-parametric methods like Near-

est Neighbors, generalization is achieved through the Euclidean distance function. A

new pattern is assigned to the same class of its nearest prototype. More sophisticated

classifiers like SVMs find the “boundaries” between different classes in a higher di-

mensional space. The boundaries are parameterized and then those parameters are

fit using the training set. However, generalization can suffer in these models because

the actual class boundaries in the high dimensional space can be very discontinuous

and fast changing.

3.8.1 Generalization in HTMs

It is the combined effect of the Markov chains and the hierarchy that gives rise to

generalization in hierarchical temporal memory systems. The sequential information

stored in the Markov chains is not required for understanding the generalization

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 88

(a) (b) (c)

Figure 3.11: (a) A two-level hierarchy to illustrate the source of generalization in HTMs.
(b) Invariance to translation (c) Invariance to scale variation

properties. Therefore, for the rest of this discussion, we will consider each Markov

chain as a zeroth order model. A Markov chain that is considered to be a zeroth

order model will be called a temporal group.

To explain the generalization mechanisms in HTMs, we use a simple two-level

network with two nodes at level 1 and one node at level 2, as shown in figure 3.11(a).

Consider a particular coincidence pattern at level 2. This coincidence pattern specifies

the co-occurrence of a temporal group (zeroth order Markov chain) from the left child

and a temporal group/Markov chain from the right child.

Let us assume that the co-occurrence pattern c2,1
1 at level-2 belongs to “category-

1”. This pattern represents the co-occurrence of g1,1
2 and g1,2

1 from the children. By

definition, all the patterns that correspond to the cross-product space of g1,1
2 from the

left child and g1,2
1 from the right child will belong to “category-1” because, all these

input patterns to the network will co-activate g1 from the left child and g2 from the

right child. However, to learn this co-occurrence, the level-2 node had to see only one

such instance. For example, suppose that the network was first exposed to the input

pattern
[
c1,1

2 , c1,2
4

]
which it memorized to be category 1. By the nature of the temporal

at level-1, the network will generalize patterns
[
c1,1

2 , c1,2
1

]
,
[
c1,1

4 , c1,2
4

]
and

[
c1,1

4 , c1,2
1

]
as

belonging to this category.

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 89

The temporal groups/Markov chains in the children are not specific to any higher-

level category of patterns. The temporal groups in these nodes could be learned

without the network having seen even one pattern of category 1. This is possible

because the same temporal groups appear as part of different categories. Once the

temporal groups in the lower level nodes are learned, a new category can be learned as

a new co-occurrence of the temporal groups. This new configuration can be learned

by exposing the network to just one input pattern.

Though simple, this mechanism is very powerful. Consider figure 3.11(b) and (c).

In this figure, assume that, the level-1 nodes have all learned different translations of

vertical lines, 45o lines and −45o degree lines as their temporal groups. The second

level memorized a triangle as a particular configuration of these temporal groups,

by getting exposed to one image of the triangle. Now the network will be able to

generalize to different scale variations and translations of this triangle based on the

property that we described above. Any transformation of the triangle where the

local variations remain within the current temporal groups (Markov chains) of the

corresponding nodes will be recognized as the triangle itself.

3.8.2 Generalization: numerical example

We will illustrate the generalization properties using an artificial example. First,

we generate data from a three level HTW network. Each node in the network has

three temporal groups (zeroth order Markov chains) and six coincidence patterns.

Each temporal group has two coincidence patterns each. As before, we treat the

concatenated outputs of level-1 nodes as the output pattern of the network. This

network can create a total of 384 different patterns, each a vector of four components.

See appendix C for an analysis of the number of patterns that can be generated from

an HTM hierarchy. The patterns that are generated by the network are divided

into three categories corresponding to the three temporal groups at the highest level.

Therefore there are 128 patterns per category.

We are interested in training an HTM network to classify these patterns. Suppose

that we are given the network structure that generated the data, but not given the

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 90

0 10 20 30 40 50
Number of Training Samples

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b

il
it

y
o
f

F
u

ll
y

T
ra

in
in

g
 t

h
e
 H

ie
ra

rc
h

y

three levels
two levels

Figure 3.12: Results of the example to illustrate the generalization power that we gain
from using a hierarchy.

mapping of patterns to temporal groups in each node. Also assume that instead of

using time as the supervisor at each node, we are allowed to query a friendly oracle

that will tell us how to map patterns to Markov chains. For any pattern that is picked

from the set of possible patterns, the friendly oracle tells us which of the 3 top-level

categories it came from. The oracle also helps with queries about a node. For example,

take a 4-component pattern and split it up into the 4 components corresponding to

the 4 level-1 nodes. The oracle will then give information about the Markov chain to

which the pattern-segments belong in their corresponding level-1 nodes.

The friendly oracle here is mimicking the effect of using time as the supervisor.

In practical cases, an HTM node will need to see sequences of occurrences of these

patterns to carve out the Markov chains. This means that several of these patterns

need to be seen repeatedly. However, for simplifying our analysis of generalization,

we assume that the friendly oracle tells us the Markov chain of a pattern even if it is

seen only once.

If we are allowed to use answers from a friendly oracle, then we can build up

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 91

the network level by level by first mapping out the level-1 nodes and then using

the level-1 node outputs to map out level-2 nodes and so on using the following

strategy. We pick a pattern from the set of all possible patterns. This pattern has 4

components corresponding to the 4 level-1 nodes. Each component is a pattern label

of the corresponding node. If the pattern label within a node was not observed before,

we query the oracle to find out the pattern-label to Markov chain mapping. If the

pattern label in a node was observed earlier, then we already know the pattern-label

to Markov chain mapping for that node. We produce the outputs of level-1 nodes

under this mapping.

Now we look at the inputs to the level-2 nodes. The input pattern to a level-2

node is the concatenation of the outputs of its child level-1 nodes. Following the

above strategy of asking the oracle or looking up a previously learned mapping, we

map the patterns at level-2 nodes to outputs. Repeating the same strategy, we can

find the category output of an input pattern to the network.

Once all the patterns in all the nodes are observed, the hierarchy is fully mapped

out. With a fully trained hierarchy, we do not need the oracle to correctly classify the

rest of the patterns. Fewer the patterns required for training the hierarchy, greater

the generalization.

From the complete set of 384 patterns, we can randomly pick a particular number

of patterns as training set. Given the number of patterns in the training set, we can

calculate the probability that the hierarchy will be fully trained with that number of

training patterns. For this numerical example, we did this calculation by simulating

the process several times and counting the number of times the hierarchy was fully

trained. We varied the number of examples in the training set and repeated this

process to obtain the graph shown in figure 3.12. We also calculated this curve for

a two-level hierarchy. For this case, we assumed that the network had four nodes at

level-1 all feeding into the same single level-2 node.

The plots shown in figure 3.12 illustrate the generalization capabilities of this

hierarchical learning. For a three level training hierarchy, the probability of fully

training the system goes to 1 for a randomly selected training set of about 12 patterns.

That is, out of the 384 patterns we need to only observe about 12 patterns as part

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 92

of the training process to correctly classify all the other 372 patterns. A two-level

training hierarchy applied to the same learning problem will become fully trained after

observing about 40 training patterns. Although this is considerably worse than the

performance of a three level hierarchy, the benefit of using a hierarchical training is

still achieved even when the training hierarchy does not perfectly match the generation

hierarchy.

The probability that an HTM hierarchy will be fully trained with a given number

of patterns can be calculated theoretically. Equations for this calculation are derived

in appendix C.

3.9 Related work

The work done in this chapter has several connections to the work done by Rivest

and Sloan on the topic of Hierarchical Concept Learning. In [85], they proved that

hierarchical concepts could be learned efficiently if a teacher is available at every level

of the hierarchy. We are making use of this fundamental result by using time as the

teacher at every level of the hierarchy. However we haven’t analyzed the additional

complexity involved in using time as a supervisor.

Hierarchical systems have been the studied in different contexts. Herbert Simon

[89] described the structural and temporal dimensions of the hierarchical organization

of the world. In the book titled Hierarchy Theory [74], several authors described the

hierarchical organization of the world from different points of view.

Hierarchies have also been studied from the views of scaling laws and composi-

tionality. In [33], Geman et al described the nature of structural hierarchies and their

compositional advantages. In [15], Changizi identifies a set of universal scaling laws

for compositional hierarchical systems. In both these works the nature of structural

hierarchy is studied in detail while the temporal hierarchy is left unexamined. Their

hierarchies did not have alternating temporal and spatial abstractions. Therefore, the

unique generalization source provided by such abstractions was not identified.

Harrison studied algorithms for discovering compositional structure in the world

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 93

and identified and analyzed spatial and temporal abstraction algorithms [41]. How-

ever, they were not put together in a hierarchical manner and their generalization

properties were not analyzed.

The work in this thesis was influenced by the work of Riesenhuber and Poggio

[84]. Although their network hard-coded the effect of temporal learning, it was a

proof of concept that hierarchical systems generalize well. Although they have started

analyzing the hierarchy from a theoretical perspective [90], their approach is in terms

of defining a distance measure in the hierarchy. In [79], Poggio clearly identifies a

connection between generalization and hierarchy and argues that generalization will

depend more on the architecture than on the detailed nature of the algorithms.

In contrast, some of the recent work on Deep Belief Networks has emphasized

clever learning algorithms for multi-layered networks [48]. However, it is unclear

what advantages these networks offer in terms of sample complexity of learning and

in terms of generalization. Although Deep Belief Networks have been applied to

temporal sequences as well [94], this was accomplished without any constraints for

discovering slow features. Therefore, it is not clear that those networks learned spatial

and temporal hierarchies similar to that of HTMs.

Hierarchical Hidden Markov Models (HHMMs) [29], are another class of hierar-

chical models that share some properties with HTMs. However, these models are hi-

erarchical in just one dimension – usually the temporal dimension. Therefore, those

models do not get the advantage of the compositional generalization provided by

HTMs. In [77], Karl Pfleger described the construction of sequence hierarchies with

bottom-up chunking. Although Pfleger describes the hierarchy as compositional, it is

not compositional in the sense described in this chapter. Similar to HHMMs, Pfleger’s

hierarchies are only in the temporal dimension.

Memory based learning was first described by Albus in his CMAC architecture

for motor learning and control [1]. Inspired by the success of this memory-based ap-

proach, Lin and Vitter explored a theoretical framework for memory-based learning

[62]. However, their examination was restricted to single level systems and did not

include the effect of temporal learning. Consequently, the generalization properties

of these mechanisms were limited to nearest neighbor search, space decomposition

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 94

techniques and clustering [62]. In contrast, Poggio and Girosi explored a mechanism

where approximations are made using basis functions instead of stored prototypes

[80]. However, the generalization mechanisms in these techniques ended up being a

modified form of nearest neighbor search with spatial decomposition. Hierarchical

vector quantization [14] is related, but the hierarchy in this case helps only in the

reduction of storage and computation and does not result in any interesting general-

ization properties.

A number of researchers [109, 7, 91] have built hierarchical networks with slowness

in time with increasing levels of hierarchy as the guiding principle to build invariant

representations. This body of work comes closest to the hierarchies described in

this chapter. However, their networks were built as a proof of concept for biological

systems. These models did not have an associated generative model and did not use

Bayesian belief propagation for inference. Moreover, the generalization properties

that arise from the interplay of spatial and temporal hierarchies were not analyzed.

3.10 Speculations on the parallels between the or-

ganization of the world and the organization

of the neocortex

The No Free Lunch (NFL) theorems [110, 50] for learning teach us that no learning

algorithm has an inherent superiority over another learning algorithm for all learning

problems. If an algorithm is superior for a particular problem, it is only because

the algorithm exploits assumptions that are suitable for that problem. On the other

hand, results from neuroscience tell us that the neocortex might be using the same

algorithm for different tasks like visual, auditory and somatosensory perception [43].

It is also well known that the neocortex is organized as a hierarchy [28]. A plausible

explanation for these observations is that data from different domains and sensory

modalities, despite their apparent superficial differences, can have the same underly-

ing statistical properties. This could be because the data generation mechanisms of

the world have an underlying hierarchical structure due to the laws of physics and

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 95

self-organization. The neocortex, through evolution, might have discovered this fact

and could be exploiting it to learn efficient models for hierarchically structured data.

If that is the case, then the secrets behind the efficiency of hierarchical learning can be

unlocked by studying the organization of the world. In this section, we present some

parallels between the organization of some systems in the world and the organization

of the neocortex.

3.10.1 Hierarchical organization of systems in the world

Natural and man-made dynamic systems tend to have a nested multi-scale organi-

zation. In such systems, there are large-scale system-level variables and small-scale

sub-system-level variables. Often, the larger system level variables are slower com-

pared to the smaller sub-system level variables [105]. If we consider weather systems,

for example, winter is a high-level system variable that affects the whole country.

During winter, there will be local system variables like snow storms that affect the

weather in, say, Minnesota. While the winter lasts for several months, the local varia-

tions usually last only for days. The weather system can be thought of as organized as

a hierarchy. This hierarchy is spatial as well as temporal. The higher-level variables

like winter correspond to large spatial area and slow temporal variations. Local vari-

ations like snow storms are faster compared to the large-scale variables but influence

smaller spatial areas.

It is important to note that the hierarchical organization is in both time and

space. The hierarchy in space can be thought of as the construction of a complex

system using sub-systems. The sub-systems provide stable re-usable components that

can be assembled together to build larger systems. Herbert Simon was among the

first to point out this arrangement [89]. According to Simon, the hierarchy in time

can be thought of as an ordering of characteristic frequencies of these sub-systems.

Different sub-systems will have different characteristic frequencies associated with

their dynamics. In general there is mapping between the sub-system ordering and

the frequency ordering. It is generally observed that smaller subsystems (small spatial

scales) are associated with faster frequencies of vibrations and larger subsystems are

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 96

associated with slower frequencies of vibrations [74].

The sub-systems at different levels of the hierarchy interact in both directions.

State variables at higher-level are not mere averaging of the state variables at lower

levels [74]. The higher-level variables provide context to the lower-level variables

which control the rate of dynamics of the higher-level variables.

3.10.2 Spatial and temporal hierarchies in the neocortex

It is well established that the visual is organized as an anatomical hierarchy [28]. The

structural hierarchy of the primate visual cortex has been well studied. The visual

information leaving the retina first enters the cortical area V1 after passing through

the lateral geniculate nucleus [45]. In the ventral stream that is generally accepted

as responsible for object recognition, information gets passed successively to visual

areas V2, V4 and IT. The neurons in region V1 see only a small portion of the visual

field. The neurons in region V2 receive their inputs from several neurons in area V1.

Therefore, the effective receptive field of a V2 neuron is several times bigger than

that of a V1 neuron. In general the receptive field sizes increase as you go up in

the hierarchy. A neuron in area IT has a receptive field that is almost equal to the

size of the whole visual field. If we present an object as input to the visual cortex,

the neurons in area V1 will respond to small local features like oriented lines in that

object. The pattern of neuron firings in area IT will correspond to the identity of

the object itself. This kind of organization of the neurons gives rise to a structural

hierarchy.

The information flow in the visual cortex is not just from bottom to top. Both

feed-forward and feedback connections exist between the levels of the hierarchy. The

different levels of the hierarchy interact in a recurrent manner [45] with the higher

levels providing context for the lower levels [60].

Interspersed with the structural hierarchy of the visual cortex is a temporal hier-

archy. To see this, imagine that we slowly move the object presented to the visual

cortex, while still keeping the whole object within its receptive field. The neurons

in area V-1 will see local features moving in and out of their receptive fields. That

CHAPTER 3. UNDERSTANDING HIERARCHICAL LEARNING 97

is, their responses will change quickly as we move the object. Since the neurons in

area IT code for the identity of the object itself, their responses will remain largely

stable as the object is moved. This corresponds to a temporal slowness as we ascend

in the hierarchy. The idea of a temporal hierarchy is consistent with the idea of a

structural hierarchy where the neurons specialize for object identities as you ascend

in the hierarchy.

The temporal hierarchy in the visual cortex hasn’t received as much experimental

verification as the spatial hierarchy. Recently, Hasson et al [42] studied the nature of

temporal hierarchies using functional magnetic resonance imaging. They concluded

that, similar to the known cortical hierarchy of spatial receptive fields, there is a

hierarchy of progressively longer temporal receptive windows in the visual cortex.

Chapter 4

Towards a Mathematical Theory of

Cortical Microcircuits

4.1 Introduction

Understanding the computational and information processing roles of the cortical

microcircuits is one of the outstanding problems in neuroscience. The microcircuits

of the cortex are bewildering in their complexity and anatomical detail. Although

enormous progress has been made in the collection and assimilation of data about

the physiological properties and interconnectivity of cortical neurons, the data are

not sufficient to derive a computational theory in a purely bottom-up fashion.

The theoretical setting of hierarchical Bayesian inference is gaining acceptance as

the framework for understanding cortical computation [60, 45, 83, 19]. Tai Sing Lee

and David Mumford [60] suggested that algorithms for Bayesian belief propagation

might model the interactive feed-forward and feedback cortical computations. They

based this suggestion on an understanding of neurophysiological evidence in the light

of Bayesian computations. However, they did not propose mechanisms for hierarchical

and temporal learning or propose how these computations could be implemented in

cortical circuits. In a recent review, Hegde and Felleman pointed out correctly that

the “Bayesian framework is not yet a neural model. [Bayesian] framework currently

helps explain the computations that underlie various brain functions, but not how the

98

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 99

brain implements these computations” [45]. The work in this chapter is an attempt

to fill this gap by deriving a computational model for cortical circuits based on the

mathematics of Bayesian belief propagation in Hierarchical Temporal Memory (HTM)

networks.

The starting point for this work is the Memory-Prediction framework described

by Jeff Hawkins in his book entitled On Intelligence [43]. In the Memory-Prediction

framework, Hawkins provided a plausible computational and biological framework for

understanding the operations of the cortex. Hawkins also provided biological instan-

tiations for his theory. Hawkins’ theory was a remarkable synthesis and introduced

several novel ideas for the computations performed by cortical circuits. However,

these instantiations were incomplete and lacked the rigor provided by a mathemat-

ical framework. The theory of Hierarchical Temporal Memory, as expressed in [44]

and further expanded in the previous chapters of this thesis, was developed by start-

ing with the Memory-Prediction theory and by formalizing it using a mathematical

framework. This chapter works back from this formal expression and derives cortical

microcircuits by matching the computational specifications of the theory with known

biological data. The resultant biological circuit is complete in the sense that it sup-

ports the Bayesian computations required for temporal, feed-forward and feedback

inference. The various elements of the circuits are also consistent with each other in

the sense that they operate under the same set of assumptions and also work together

in a hierarchy.

This work differs in many aspects from the prevalent modeling methods in com-

putational neuroscience. In neuroscience, it is common to construct models based

on bottom-up information without synthesizing it in to a larger framework. Many

models are constructed on an as-needed basis to explain particular phenomena. A

model that explains one phenomenon typically does not explain another. Such models

typically do not achieve any significant pattern recognition or prediction. In contrast,

the cortical circuit models in this chapter are not constructed to explain any particu-

lar phenomenon. These circuits do the same computation as the pattern-recognition

HTM networks in chapter 2, and follow the principles of hierarchical-temporal learn-

ing and generalization established in chapter 3.

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 100

Several researchers have proposed models for cortical circuits [38, 37, 65]. Some of

these models exhibit interesting pattern recognition properties and some have been

used in the explanation of physiological phenomena. However, none of these models

are derived from a general Bayesian framework and they do not incorporate the

concepts of hierarchical temporal learning that were described in the earlier chapters.

To our knowledge, the work in this chapter is the first instantiation of the theory of

Bayesian belief propagation and hierarchical and temporal learning and generalization

into a biologically plausible cortical circuit. (Partial details of this work have been

published earlier [35, 34].)

The circuits derived in this chapter can provide a hypothesis driven framework

for examining the neural connectivity. Deciphering the functional connectivity of

the cortical circuits is a formidable task and is associated with the perils involved

in the reverse engineering of a complex system. Several insights can be obtained

by comparing it with the reverse engineering of an electronic circuit. Although a

single transistor can function as an amplifier, an amplifier for real world use is seldom

constructed using a single transistor. A good construction involves a biasing circuitry,

which makes sure that the amplifying transistor works properly despite changing

temperature conditions, different device characteristics and feedback instabilities. It

is reasonable to expect that a similar situation exists within the cortical sheet where

a multitude of neurons are involved in biasing a canonical cortical circuit to function.

If the circuit is tested for connectivity when it is not properly biased (for example,

when an animal is not in the normal behaving conditions), one could end up missing

some important connections and logging some spurious ones. Hence, deciphering

the functional connectivity from an increasing amount of anatomical data requires

theories about cortical functions and how they map on to anatomy. This chapter can

be considered as a contribution in that direction.

As with any other theory, it is expected that the particular instantiation described

here will need to be revised as more data is obtained and more aspects of cortical

computations like attention, timing and motor action are incorporated. The circuits

derived here could act as a basis for such explorations. The biological circuit gives us

a mapping from the intermediate values in belief propagation computations to column

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 101

and lamina specific neural responses. The anatomical evidence for the derived circuits

is examined and some of its variations are explored. In addition, the derived circuits

are used to model well known physiological phenomena. The phenomenon of neurons

in V1 responding to illusory contours, and the phenomenon of higher-level recognition

reducing the activity of lower levels are observed in the same network. Modeling of

these phenomena can also serve as examples of how to use the derived circuits for

hypothesis driven physiological experiments.

This chapter is organized as follows. First, the general organization of the cortex

is described and the concepts behind canonical cortical circuits are reviewed (Sections

4.2 and 4.3). Section 4.4 establishes a mapping between the cortical hierarchy and the

HTM hierarchy and between cortical regions and HTM nodes. This establishes the

context for looking at the computations done within an HTM node. The Bayesian

belief propagation equations for the computations in an HTM node are described in

section 4.5. The mapping from these equations to biological circuits is established in

two stages. In the first stage (section 4.6), an abstract neural implementation of the

belief propagation equations is proposed and described in detail. In the second stage

(section 4.7), this abstract neural implementation is mapped to a laminar biological

cortical circuit by comparing the computational specifications with anatomical data.

Section 4.8 provides example applications of this circuit in the modeling of physio-

logical phenomena. Variations and extensions of the derived circuits are discussed in

section 4.10. The chapter is concluded with a discussion in section 4.11.

4.2 Neocortex primer and working assumptions

The main purpose of this section is to describe the biological background for the

sections that follow. The anatomical features of neocortex are described primarily to

establish the working assumptions for the rest of the chapter. Although many features

of cortical organization are well understood, these are not without exceptions. Many

others are less well understood and remain controversial. We will revisit and discuss

some of these assumptions in section 4.11. A good review of the organization of the

neocortex can be found in the book entitled The Computational Brain, authored by

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 102

Churchland and Sejnowski [16].

The neocortex is the seat of intelligence in humans and other mammals. Phys-

ically, the neocortex looks like a sheet. This sheet is several millimeters thick and

contains several layers of neurons. Sensory and motor processing in the neocortex is

topographically organized. This means that, nearby neurons, in general, represent re-

lated things. For example, neurons in the visual areas of the cortex V1 are arranged

topographically and adjacent neurons have adjacent receptive fields on the retina.

Different such regions corresponding to different modalities and different stages of

information processing can be identified on the neocortical sheet [104].

Cortical areas have a laminar organization. This means that the neo-cortical sheet

is constructed from many different layers of neurons. Neurons in a given layer of the

neo-cortical sheet conform to a highly regular pattern of where each connects to and

from where each receives connections. In general, the neo-cortical sheet is considered

as having six different laminae (layers). Although several exceptions can be found,

the six layers provide a commonly agreed upon framework with which to explore

models of cortical circuits [22]. These laminae are numbered 1 to 6. Layer-1 is the

layer closest to the skull and farthest from the white matter. Layer-6 is the layer

closest to the white matter. Typically, the laminae are described with respect to a

horizontal orientation with layer-1 at the top and layer-6 at the bottom, as shown in

figure 4.1(B). With this picture in mind, layers 1-3 are typically referred to as the

‘superficial’ layers or top layers. Layers 5 and 6 are referred to as the deep layers of

cortex.

In addition to the ‘horizontal’ organization seen in the laminae, cortical regions

also have a ‘vertical’ organization. This vertical organization is typically described

as cortical columns [69]. The characteristic of this vertical organization is a high

degree of commonality between neurons in the same vertical column crossing different

laminae. There is a high degree of anatomical connectivity between neurons in the

same column. This is also reflected in the physiological response properties of neurons

in the same column. The orientation columns in the primary visual cortex typically

do not result in sharp boundaries [16]. In higher level cortices like IT, individual

columns represent component visual features of an object [99]. Although the columnar

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 103

organization is generally accepted, its function is still debated [52].

It is now well accepted that the different regions in the visual cortex connect in a

hierarchical manner [28]. For example, the primary visual cortex, known as area V1,

is the first cortical processing stage for visual signals. The result of the processing of

V1 is sent to cortical area V2 and then to cortical area V4. Physically, the connections

between different areas of the cortex travel through the white matter or through the

cortical sheet itself. It is also known that the connections between different regions of

cortex are reciprocal. If area A connects to area B, then area B also sends feedback

connections to area A. In fact, the hierarchical positions of different regions of the

visual cortex were anatomically established based on the differences in feed-forward

and feedback projection patterns [28].

4.3 Canonical cortical microcircuits

Cortical neurons, organized in different laminae and columns, form microcircuits that

connect vertically in a column as well as horizontally across columns. Many proper-

ties of these microcircuits are stereotypical and remain the same across age, cortical

area and species. This suggests that neocortical microcircuits are variations of a

common microcircuit template. A major challenge for computational neuroscience is

to understand the computational function of lamina-specific synaptic connections in

stereotypical cortical microcircuits [40].

There are a large number of anatomical and physiological studies about the intra

and inter-laminar connections of neurons. Many researchers have provided summary

diagrams for these connections by synthesizing the vast amount of anatomical data.

Although highly idealized, these diagrams provide templates from which to develop

a detailed theory of cortical microcircuits. Figure 4.2 shows an example of one such

cortical circuit template [4]. In this circuit, the excitatory feed-forward pathways

derived from anatomical evidence of axonal projection patterns are shown. Other

such summary diagrams are available from [97, 98, 22, 23].

The goal of this chapter is to provide a detailed model for the canonical cortical

microcircuit based on the theory of hierarchical temporal memory and Bayesian belief

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 104

I

IV

II/III

V

VI

(A) (B)

(C) (D)

V1

V2

V4

V1

V2

V4

6 layers

6 layers

6 layers

6 layers

6 layers

6 layers

Level 1

Level 2

Level 3

Figure 4.1: (A) Schematic of neocortex inside the skull. The neocortex is a thin sheet of
several layers of neurons. Different areas of the neocortex sheet process different information.
Three areas – V1, V2 and V4 – are marked on this sheet. These correspond to areas
in the visual cortex. Sensory information entering V1 gets processed through multiple
stages. The connections between cortical areas are reciprocal. The feed-forward connections
are represented using green arrows and the feedback connections are represented using
red arrows. (B) A slice of the neo-cortical sheet showing its six layers and its columnar
organization. The cortical layers are numbered 1 to 6. Layer-1 is the outer layer (close to
the skull) and layer 6 is the inner layer (close to the white matter). (C) Areas in the visual
cortex are connected in a hierarchical manner. This diagram shows the logical hierarchical
arrangement of the areas which are physically organized as shown in (A). (D) An HTM
network that corresponds to the logical cortical hierarchy shown in (C)

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 105

Figure 4.2: An example of a summary diagram for the cortical circuits. Image source:
Bannister [4]

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 106

propagation. At this point, the biological background and working assumptions nec-

essary for understanding such a mapping have been reviewed. The next section will

describe how different organizational levels of an HTM map to different organization

properties of the neocortex.

4.4 Mapping between neocortex hierarchy and HTM

network hierarchy

The goal of this chapter is to match the theory and operations of hierarchical temporal

memory to the organizational details of neocortex at different levels ranging from

the hierarchy to the detailed microcircuitry. This section establishes the high-level

mapping from the cortical hierarchy, cortical areas and cortical columns to HTM

hierarchy, set of HTM nodes, and coincidence patterns in HTM nodes.

Logically, an idealized version of the hierarchical connectivity of areas of the visual

cortex can be drawn as shown in figure 4.1(C). In the logical hierarchy shown in figure

4.1(C), the areas V1, V2 and V4 are shown as single contiguous regions consisting of

several cortical columns. However, it is clear that at the lower levels of the hierarchy,

multiple columns can be ‘active’ independent of one another. For example, in V1,

the left part of V1 could be seeing a vertical line while the right side of V1 could

be seeing a horizontal line. Since these hypotheses are not mutually exclusive, the

column representing vertical line will be active on the left side of V1 while the column

representing horizontal line will be active on the right side of V1 [43]

An area of cortex can be thought of as encoding a set of patterns and sequences

in relation to the patterns and sequences in regions hierarchically above and below

it. The patterns correspond to the coincidence-patterns in an HTM node and the

sequences correspond to the Markov chains. An area like V1 can encode several

mutually non-exclusive patterns. In an idealized model, these sets of patterns can be

partitioned into several sets where the patterns belonging to the same set are mutually

exclusive and the patterns belonging to different sets are mutually non-exclusive.

(Mutually exclusive means that the strengthening of one hypothesis decreases the

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 107

strength for another.)

A set of mutually exclusive patterns can be represented by a random variable. In

our idealized version, a cortical column represents a particular value of this random

variable. At every time instant, the activity of a set of cells in a column represents the

probability that a particular coincidence-pattern is active. The feed forward and feed

back connections to a set of cortical columns carry the belief propagation messages.

Observed information anywhere in the cortex is propagated to other regions through

these messages and can alter the probability values associated with the hypotheses

maintained by other cortical-column sets.

An HTM Node, in its simplified form, encodes a set of mutually exclusive patterns

and Markov chains. A region of cortex that has several patterns simultaneously

active will be implemented using several HTM nodes. Figure 4.1(D) shows the HTM

implementation of the logical cortical hierarchy shown in 4.1(C). In this mapping,

the area V1 is implemented using 4 HTM nodes while area V2 is implemented using

2 HTM nodes. Typically, the number of non-exclusive patterns that needs to be

maintained decreases as you ascend in the hierarchy. Therefore, higher-level cortical

regions can possibly be modeled using a fewer number of HTM nodes. Note that this

is a representative diagram. A cortex-equivalent implementation of V1 and V2 could

require several thousand HTM nodes for each cortical area.

4.5 Belief propagation in HTM nodes

Intuitively, a learned HTM node can be thought of as having memorized a set of

patterns (the coincidence-patterns) and a set of sequences over patterns (the Markov

chains). For example, the different coincidence-patterns in an HTM node that corre-

sponds to part of area V1 can represent different translations of a vertically oriented

edge and different translations of a horizontally oriented edge. The Markov chains in

that node can correspond to a Markov chain that represents the sequence of move-

ments of the vertical edge and another Markov chain that represents the sequence of

movements of the horizontal edge.

In general, the messages that come into an HTM node from its children are the

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 108

Calcuate degree of certainty
over markov-chains based on

the history of evidence
distributions

Calculate degree of certainty
over coincidence patterns

Unwind feedback messages and
combine with feedforward

messages to calculate the Belief
distribution over coincidence

patterns

Unpack the Belief distribution to
send feedback messages to

children

(2)

(1)

(3)

(4)

Feedforward/Feedback degree of certainty in
the markov chains of this node

Feedforward/Feedback degree of certainty in the markov chains
of the child nodes

HTM Node

Figure 4.3: An intuitive depiction of the inference operations of an HTM node.

children’s degree of certainty over their Markov chains. The node converts these

messages to its own degree of certainty over its coincidence-patterns. Based on the

history of messages received, it also computes a degree of certainty in each Markov

chain. This is then passed up to the higher level node. What the node receives from

the parent is the parent’s degree of certainty over this HTM node’s Markov chains.

This is then ‘unwound’ in a step-by-step manner to find the top-down probability

distribution over coincidence patterns. The top-down distribution over coincidence-

patterns is then ‘unpacked’ to derive the node’s degree of certainty over its child node

Markov chains. Figure 4.3 represents this intuitive picture.

4.5.1 Belief propagation equations for HTM nodes

Table 4.1 summarizes the computation of belief propagation messages in an HTM

node. We will now describe the notation and meaning of these equations using the

reference HTM node shown in figure 4.4. Detailed derivations of these equations are

given in appendix A.

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 109

(a) (b)

Markov chains
State

Coincidence Pattern Matrix C

Markov chains
State

Coincidence Pattern Matrix C

(2)

(1)

(3)

(4)

Figure 4.4: (a) Structure of the reference node with 5 coincidence patterns and 2 markov
chains. This is an HTM node that has finished its learning process. It is assumed that this
is a node at level-2 of a network and is labeled as N2,1. This node has 2-children. Child 1
has 3 markov chains and child-2 has 4 markov chains. Each coincidence pattern represents a
co-occurrence of the markov-chains of the children. The portions of the coincidence pattern
coming from the first and second child are shown in different shades. (b) Information flow
in the reference node for the computation of the belief propagation equations shown in
table 4.1. The rectangles inside the node are processing units for the equations in the
rows corresponding to the number displayed in each rectangle. We will use ‘feed-forward’
or ‘bottom-up’ to qualify messages received from children and messages sent up to the
parent of this node. We will use ‘feedback’ or ‘top-down’ to qualify messages received from
the parent and messages sent to the child nodes of this node. The node shown in figure
has two bottom-up input messages corresponding to the two children and has two top-
down outputs which send messages to these children. The arrows show vectors of inputs,
outputs and intermediate computational results. The number of components of each vector
is represented using an array of rectangular boxes placed on these arrows.

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 110

In these equations, the coincidence-patterns are referred to using ci’s and the

Markov chains are referred to using gi’s. The HTM node shown in figure 4.4(a)

contains 5 coincidence-patterns and 2 Markov chains. The transition probability

matrix of the Markov chain gr is denoted by P (ci(t)|cj(t− 1), gr). This term appears

in equations 4.3 and 4.6. Each coincidence-pattern in the node represents a co-

occurrence of the temporal groups from its children. These are represented implicitly

in equations 4.1 and 4.8.

The node receives feed-forward messages from its children and sends feed-forward

messages to its parent. The feed-forward messages are denoted by λsource node index.

Similarly, the node receives feedback messages from its parent and sends feedback

messages to its child nodes. These messages are denoted by πdestination node index. The

equations shown in table 4.1 describe how the output messages are derived from the

input messages. From the view point of the node, the feed-forward messages carry

information about the evidence from below. Evidence from below at any time point

t is denoted by −et. Similarly evidence from the parent is denoted by +et.

Equation 4.1 describes how the node calculates its likelihood of coincidence pat-

terns, from the messages it gets from the children. The bottom-up likelihood of

coincidence-pattern ci at time t is represented by yt(i) = P (−et|ci(t)). The likelihood

of each coincidence pattern is calculated as the product of the message components

corresponding to that coincidence pattern.

In equation 4.2, the bottom-up likelihood of Markov chain gr at time t is denoted

by P (−et0|gr(t)), where the term −et0 represents the sequence of bottom-up evidences

from time 0 to time t. This reflects that the likelihood of the Markov chains depends

on the sequence of inputs received by the node. The variables α and β defined in equa-

tions 4.3 and 4.6 are state variables that are updated in a recursive manner at every

time instant. These are dynamic programming variables, each variable defined over

all pairwise combinations of coincidence-patterns and Markov chains. For example,

αt(ci, gr) is value of the feed-forward dynamic programming variable at time t corre-

sponding to coincidence ci and Markov chain gr. In equations 4.3 and 4.6, the states

are updated every time step by passing the state from the previous time step through

the Markov transition matrices and by combining them with bottom-up/top-down

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 111

evidence.

A detailed derivation of these equations can be found in appendix A. We examine

these equations in more detail in the next section as we consider how to implement

them using neuron-like elements.

4.6 Neuronal implementation of HTM belief prop-

agation

This section describes an implementation of the HTM belief propagation equations

using neuron like elements. The implementation will be described with respect to

the reference HTM node in figure 4.4 . Two different views of this reference node are

shown. In the first view, the coincidence patterns and the Markov chains are shown

explicitly. The reference node has two children - child 1 with three Markov chains

and child 2 with four Markov chains. Therefore, a coincidence pattern stored in the

node is a 7-element vector. Both Markov chains in the reference node have 4 states

each.

The second view shows the message flow within this node for the implementation

of the belief propagation equations. The rectangles inside the node correspond to the

equations shown in table 4.1 and are numbered according to the row number of the

table. The neuronal implementation of the equations in table 4.1 is described in the

following subsections. The subsection numbers below correspond to the table row

numbers.

4.6.1 Calculating the bottom-up likelihood of coincidence-

patterns

The bottom-up input to the HTM node is the feed-forward output messages from its

children. These output messages carry the information about the degree of certainty

of the child nodes in their Markov chains/temporal groups. Each message is a vector

of length equal to the number of Markov chains in the corresponding child. The

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 112

1) Calculate
likelihood over
coincidence-
patterns.

yt(i) = P (−et|ci(t)) ∝
M∏
j=1

λ
mj

t (r
mj

i) (4.1)

where coincidence-pattern ci is the co-occurrence of rm1
i ’th

Markov chain from child 1, rm2
i ’th Markov chain from child

2, · · ·, and rmM
i ’th Markov chain from child M .

2) Feed-forward
probability
over Markov
chains (tem-
poral groups)
using dynamic
programming

λkt (gr) = P (−et0|gr(t)) ∝
∑

ci(t)∈Ck

αt(ci, gr) (4.2)

αt(ci, gr) = P (−et|ci(t))
∑

cj(t−1)∈Ck

P (ci(t)|cj(t−1), gr)αt−1(cj, gr)

(4.3)

α0(ci, gr) = P (−e0|ci(t = 0))P (ci(t = 0)|gr) (4.4)

3) Calculate
the belief dis-
tribution over
coincidence
patterns

Belt(ci) ∝
∑
gr∈Gk

P (gr|+e0)βt(ci, gr) (4.5)

βt(ci, gr) = P (−et|ci(t))
∑

cj(t−1)∈Ck

P (ci(t)|cj(t−1), gr)βt−1(cj, gr)

(4.6)
β0(ci, gr) = P (−e0|ci(t = 0))P (ci(t = 0)|gr,+ e0) (4.7)

4) Calculate the
messages to be
sent to child
nodes.

πchild(gm) ∝∑
i∀i
I(ci)Bel(ci) (4.8)

where

I(ci) =

{
1, if gchildm is a component of ci
0, otherwise

(4.9)

Table 4.1: Belief propagation equations for an HTM node

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 113

Figure 4.5: Circuit for calculating the bottom-up probability over coincidence-patterns.
Coincidence-pattern neurons are represented by diamond-shapes. The inputs to the circuit
are the messages from the children – these are denoted by λ1,1 and λ1,2. The output of the
circuit is y, as calculated by equation 4.1. The input connections to the neuron represent
its coincidence-pattern. For example, c2 is the co-occurrence of Markov chain 3 from the
left child and Markov chain 1 from the right child. The probabilities are calculated by a
multiplication of the inputs to each neuron.

likelihood of coincidences is derived from these input messages according to equation

4.1. This operation is performed by the rectangle marked 1 in figure 4.4(b).

Figure 4.5 shows neuronal implementation of this calculation for the reference

HTM node. Each stored coincidence pattern is represented by a neuron. For example,

the coincidence pattern c1 is represented by the neuron labeled c1. The pattern

corresponding to the co-occurrence is stored in the connection this neuron makes to

the messages from the child input nodes. The neuron c1 has connections to the first

position of the message from the first child and the second position of the message from

the second child. Note that this corresponds to first row of the coincidence-pattern

matrix C2,1 in figure 4.4(a). Similarly, it can be verified that the other neurons in

figure 4.5 match up the corresponding rows of the coincidence-pattern matrix C2,1.

It is the output of these neurons that represent the result of the calculation per-

formed by equation 4.1. Each neuron calculates its output by multiplying it inputs.

For example, the output of neuron c3 is proportional to λ1,1(2)×λ1,2(3). The output,

denoted by y in figure 4.4(b), is a vector of 5 components – one component corre-

sponding to each coincidence pattern. This vector represents the degree of certainty

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 114

D

D

D

D

D

D D

Figure 4.6: The circuit for calculating the likelihoods of Markov chains based on the
sequence of inputs. This circuit implements the dynamic programming equations 4.3. There
are three types of neurons in this picture. See text for details

of the node in its currently active coincidence pattern, based on the messages received

from its child nodes.

4.6.2 Efficiently calculating the bottom-up likelihood of Markov

chains

The next step in the computation of feed-forward messages is the calculation of the

degree of certainty of the HTM node in each of its Markov chains. This computation

is done by the rectangle marked 2 in figure 4.4(b). The input for this calculation is

the probability distribution over coincidences – the 5-component vector (y) that was

calculated in the previous section. The output depends not only on the current input

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 115

y, but also on the sequence of inputs received up till this time point. The output is

a likelihood distribution over the Markov chains of the node. For the reference node,

this is a vector with 2 components as shown in figure 4.4(b).

For the belief propagation calculation, the quantity that we need to calculate

is P (−e0,
− e1, · · · ,− et|gi) for each Markov chain gi where −e0,

− e1, · · · ,− et represent

the bottom-up evidence distributions received from time 0 to time t. This forward

degree of certainty in a Markov chain depends on the sequence of messages that

the node has received from its children. Done naively, computation of this quantity

requires computing the probability of all possible paths from time 0 to time t. To

calculate P (−et0|gi) efficiently, all the past evidence needs to be collapsed into a state

variable that can be updated recursively every time instant. This is done using

a technique called dynamic programming [5, 53, 9]. Equation 4.3 represents this

dynamic programming computation. The derivation of this equation is described in

appendix A.

Now we will show that this equation has a very efficient, simple and intuitive

implementation using neuron-like elements.

Consider the neuron circuit shown in figure 4.6. There are three kinds of neurons in

this circuit. The diamond-shaped neurons at the bottom are the same as the neurons

that were described in the previous section. The outputs y of these neurons are one of

the inputs to the ‘circle’ neurons as shown in figure 4.6. The circle neurons implement

the sequence memory of the Markov chains in an HTM node. Figure 4.6 shows the

implementation of the two Markov chains of the reference node in figure 4.4(a). The

connections between the circle neurons implement the transition probabilities of the

Markov chain. The ‘axons’ between these neurons encode a one time-unit delay. This

means that the output of a circle neuron is available at the input of the circle neuron

that it connects to after one time step.

Note that all the circle-neurons in the same column have the same bottom-up

input. They are all driven by the same pattern-likhelihood neuron from below. Each

column, considering only bottom-up input, can be thought of as representing one

particular coincidence pattern. But the same coincidence pattern can be part of

different Markov chains. The circle neurons represent the coincidence pattern in the

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 116

context of different Markov chains. For this reason, we have labeled the circle neurons

as c1g1, c3g2 etc. In this notation, c1g1 represents the coincidence pattern c1 in the

context of the Markov chain g1.

In addition to the bottom-up input, these circle neurons also have a ‘lateral’ input.

These come from other circle-neurons in the same Markov chain. It is this lateral

connection that specifies the meaning of a neuron in a sequence. For example, the

circular neuron c1g1 will be activated only in the context of Markov chain g1, whereas

the circular neuron c3g2 will be activated only in the context of Markov chain g2.

Each circle neuron in this circuit does the same computation. Each circle-neuron

has a bottom-up input that represents the strength of activation of the coincidence

pattern that is being represented by that neuron. In the figure, the bottom-up inputs

are represented by white arrow heads. Each neuron also has a set of lateral inputs.

These lateral inputs are weighted by synapse strengths. Each neuron calculates its

output by taking the weighted sum of its lateral inputs and then multiplying that

quantity by the bottom-up input. Let us denote the output of a circle neuron using

α(coincidnce number, markov chain number). For example, α(c3, g2) is the output

of circle neuron c3g2. With this, the output of any circle neuron cigr is calculated as

αt(ci, gr) = y(i)
∑
j

w(i, j) ∗ αt−1(cj, gr) (4.10)

That is, the output of the a circle neuron at any time is the weighted sum of the

outputs of the neurons in the same Markov chain at the previous time step multiplied

by the current bottom-up activation. The axonal delays in the neuron circuits ensure

that it is the previous outputs of the circle neurons that are used to calculate the

current output in the above equation.

Examine equation 4.3. Note that what is described above is exactly this equation if

we replace w(i, j) by P (ci|cj, gr). Therefore, the circle-neuron circuits shown in figure

4.6 implement equation 4.3 and the weights on the lateral time-delayed connections

correspond to the transition matrix entries in each Markov chain.

Now consider the third kind of neurons – the ‘rectangle’ neurons – in figure 4.6.

The rectangle neuron marked g1 receives its inputs from the outputs of all the circle

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 117

neurons in the Markov chain g1. In general, the rectangle neurons pool the outputs of

all the coincidence-pattern neurons in the context of a Markov chain. Therefore, in a

node, there will be as many rectangle neurons as there are Markov chains. The input

connections to these neurons are instantaneous – they do not have a delay. At any

time point, the output of a rectangle neuron is calculated as the sum (or maximum)

of the inputs to that neuron.

Note that the operation of the square neurons correspond to pooling over the

activations of all the circle neurons of the same Markov chain. It is easy to verify

that this is the operation involved in the calculation of the message this node sends to

its parent according to equation 4.2. The concatenated outputs of the square neurons

is the message λ2,1 that this node sends to its parent. As noted in figure 4.4(b), this

message is a vector of two components, corresponding to the two Markov chains in

the reference node in figure 4.4(a). This completes the description of the neuronal

implementation of equations in the second row of table 4.1 and of the operations

performed by the rectangle marked (2) in figure 4.4(b).

4.6.3 Calculating the belief over coincidence patterns

An HTM node calculates its degree of belief in a coincidence pattern by combining

bottom-up, top-down and temporal evidences according to the equations on the third

row of table 4.1. This corresponds to the operations of the rectangle marked (3) in

figure 4.4(b). The top-down input to the node is a vector of length equal to the number

of Markov chains, two in this case, of the node. The output of this computation is

the belief-vector over the coincidence-patterns – in this case, a vector of length 5.

The belief calculation, described in equation 4.5, has almost the same form of

the forward dynamic programming equations 4.3. The state variable β has the same

form as the state variable α and a very similar update equation. The only difference

between these two is the multiplication by a top-down factor P (gk|+e0) in the belief

calculation equations. Therefore, the neuronal implementation of the dynamic pro-

gramming part of the belief calculation equation is very similar to that of the forward

dynamic programming variable α. This implementation is shown in figure 4.7. The

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 118

D

D

D

D

D

D

D

Figure 4.7: Circuit for calculating the belief distribution over coincidence patterns. The
belief is calculated by integrating the sequence of bottom-up inputs with top-down inputs
according to equation 4.5. See text for details.

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 119

filled-circle neurons correspond to the circle-neurons in the forward calculation. Note

that, in contrast to the circle neurons in figure 4.6, the filled-circle neurons also have

a top-down multiplicative input that corresponds to P (gk|+e0).

In the place of the rectangle neurons that calculated the λ2,1 message in figure

4.6, we have pentagon neurons in figure 4.7. The pentagon-neurons in figure 4.7 are

the belief neurons. These neurons pool over the activities of the same coincidence

neuron in different Markov chains to calculate the belief value for each coincidence

pattern. This operation corresponds to the
∑
gk∀k operation in equation 4.5. Note that

the operation of the pentagon neuron is different from that of the rectangle neuron

in figure 4.6. The rectangle neuron pools over different coincidence patterns in the

same Markov chain. The pentagon neuron pools over the same coincidence-pattern

in different Markov chains.

Incorporating duration models in belief calculation

One of the drawbacks of the equations in section 4.5 is the lack of explicit duration

models associated with the states of Markov chains. As expressed in the equations,

the Markov chains are forced to change their state with every time step. Self-loops

in the Markov chains will lead to an exponential duration probability density that is

inappropriate for most physical signals [81].

Several techniques exist for incorporating explicit duration models into Markov

chains [61, 81]. We assume that durations are signaled to a node by an external

timing unit that determines the rate of change of the signals using some system level

measurements. This means that the belief calculation will have two components.

The component that we described above calculates the belief distribution without

considering when exactly that belief distribution is going to be active. The second

component, the external timing signal, determines when the belief distribution is

going to be active without regards to the nature of the distribution itself.

Figure 4.8 shows the arrangement of this circuit where the outputs of the ‘rounded

rectangle neurons’ are looped through an external variable delay unit. The rounded

rectangle neurons act as a gate that opens only when a timing signal and a belief

value are both available at its inputs. The activation of these neurons trigger the

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 120

Variable Time
DelayTimed Belief

Belief

Figure 4.8: The circuit for the timing of the belief distribution and for computing the
messages to be sent to children according to equation 4.8. The two sets of hexagonal
neurons correspond to the two children of the reference node. See text for more details on
the operation of this circuit.

next timing cycle.

4.6.4 Calculating the messages that are to be passed to child

nodes

The step that remains to be explained is the conversion of the belief messages to the

messages that a node sends to its children. This step is described by equation 4.8 and

corresponds to the operations performed by the rectangle marked (4) in figure 4.4(b).

The input for this operation is the belief vector. The outputs are the π messages that

are sent to the child nodes. A message is sent to each child and the message describes

the degree of certainty this node has about the child nodes’ Markov chains.

Figure 4.8 shows how this equation can be implemented using neurons. The pen-

tagon neurons shown in this figure are the same as the belief neurons we discussed

in the previous section. The outputs of the pentagon neurons are gated through the

timing loop using the rounded rectangle neurons. The outputs from these rounded

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 121

rectangle neurons are fed to ‘hexagonal neurons’. Figure 4.8 shows two sets of hexag-

onal neurons corresponding to the two child nodes of this node. Each hexagonal

neuron corresponds to a Markov chain of the child node. The left child node has 3

Markov chains and the right child node has 4 Markov chains. The outputs of these

hexagonal neurons are the messages that are sent to the respective children.

The connections between the rounded rectangle neurons and the hexagonal neu-

rons encode the constituents of coincidence patterns. For example, the first rounded-

rectangle neuron is connected to the first Markov chains corresponding to both chil-

dren. This is because the coincidence pattern c1 is defined as the co-occurrence of

the first Markov chain from the left child and the first Markov chain from the right

child. The hexagonal neurons calculate their outputs as a sum of their inputs. This

operation corresponds to equation 4.8.

The operation of the hexagonal neurons shown in figure 4.8 can be thought of as

the reverse of the operations performed by the diamond neurons that were described

in figure 4.5. The weights on the inputs to both these kinds of neurons define the

coincidence-patterns. In the case of the diamond neurons, they are calculating the

probability over coincidences from the probability distribution over Markov chains

from each child. The hexagonal neurons are doing the reverse – they are calculat-

ing the probability distributions over the Markov chains from each child from the

probability distribution over coincidence patterns.

4.7 A detailed proposal for the computations per-

formed by cortical layers

In section 4.3, we gave an overview of the laminar and columnar arrangement of

cortical circuits. We also described the correspondence between the HTM node and

cortical areas. We then set out on a goal to provide a detailed model for the cortical

circuits. We are now at that point. In this section, we propose a detailed computa-

tional model for the laminar cortical microcircuits.

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 122

Anatomical data give us important constraints on input/output layers, intra/inter-

laminar connections and placement of cell bodies and dendrites. The HTM belief

propagation equations provide computational specifications. The combination of the

anatomical constraints and the computational specifications provides a reasonable

framework to develop a detailed model of the cortical circuit. Assignment of a par-

ticular function to a particular layer imposes constraints on what functions can be

performed by another layer. The challenge is to find an organization that is self-

consistent in the sense that it implements the belief propagation equations while

conforming to the constraints imposed by biology.

Our working hypothesis can be stated simply: The cortical microcircuits are imple-

menting the HTM belief propagation equations described in table 4.1. The neuronal

implementation of these equations was described in the previous section. Under the

assumption that the cortical circuits are implementing these equations, what remains

to be explained is how the neuronal implementation of the previous section is physi-

cally and spatially organized in the layers and columns of cortical microcircuits. This

is accomplished by comparing the abstract implementations from the previous section

with anatomical data.

Our proposal for the function, connectivity and physical organization of cortical

layers and columns is shown in figure 4.9. This figure corresponds to the laminar and

columnar cortical microcircuit implementation of the belief propagation equations

for the reference HTM node in figure 4.4. Figure 4.9 was created by arranging the

neurons of the abstract neuronal implementation of HTM belief propagation into

columns and laminae in such a way that the resultant circuit matched most of the

prominent features of anatomical data. In the following sections we will de-construct

this picture and examine the anatomical and physiological evidences for the specific

proposals. This will also illuminate the process that we went through to arrive at the

circuit shown in figure 4.9.

The circuits in figure 4.9 provide an exemplar instantiation of the Bayesian com-

putations in laminar and columnar biological cortical circuits. Several plausible vari-

ations and exceptions of this circuit can be found because of the degrees of freedom

in the implementation of the belief propagation equations and because of the paucity

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 123

I

II/III

IV

V

VI

Figure 4.9: A laminar biological instantiation of the Bayesian belief propagation equations
used in the HTM nodes. The circuit shown here corresponds exactly to the instantiation
of the reference HTM node shown in figure 4.4. The 5 ‘vertical columns’ in the circuit
correspond to the 5 coincidence patterns stored in the reference node. Layers 1 to 6 are
marked according to the standard practice in neuroscience. Emphasis is given to the func-
tional connectivity between neurons and the placement of the cell bodies and dendrites.
Detailed dendritic morphologies are not shown. Axons are shown using thin arrow-tipped
lines. Feed-forward inputs and outputs are shown using green axons and feedback inputs
and outputs are shown using red axons. Whether an axon is an input or output can be de-
termined by looking at the direction of the arrows. The blue axons entering and exiting the
region represent timing-duration signals. ‘T’ junctions represent the branching of axons.
However axonal crossings at ‘X’ junctions do not connect to each other. Inter-columnar
connections exist mostly between neurons in layer 2/3 and between layer-5 cells and layer-6
cells. The inter-columnar connections in layer 2/3 that represent sequence memories are
represented using thicker lines. See text for more details.

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 124

of anatomical data. We will tackle some of these exceptions and variations as they

come up in the appropriate context.

4.7.1 Columnar organization

The cortical circuit shown in figure 4.9 is organized as 5 columns corresponding to the

5 coincidence-patterns in the reference HTM node that we started with. The neurons

in each column represent some aspect of the coincidence pattern that the column

represents. For example, the neurons in layer 2/3 represent the coincidence pattern

in the context of different sequences, whereas the neurons in layer-6 represent the

participation of the coincidence-pattern in the calculation of feedback messages. The

5 cortical columns shown represent a set of 5 mutually exclusive hypotheses about the

same input space. For example, these columns can correspond to a set of columns in

the primary visual cortex V1 that receives input from a small area of the visual field.

The 5 coincidence-patterns can correspond to different orientations of a line. If the

receptive field is small enough, the different orientations can be considered mutually

exclusive - the activity of one reduces the activity of the other. We saw that this kind

of columnar organization is typical in biology [99],[16].

In the idealized cortical column model, each different aspect that needs to be

represented about a coincidence pattern is represented using a single neuron each.

For example, there is exactly one neuron representing coincidence-pattern 1 in the

context of Markov chain 1. This means that there is no redundancy in this idealized

cortical representation. Clearly, nothing about the computation or the representation

changes if we replicate each neuron in this circuit a few times, while maintaining their

connectivity. A coincidence that is represented by a single neuron in our cortical

column can be represented by a cluster or laterally interconnected neurons.

The reason why this observation is important is that this might explain the intra-

laminar lateral connections between the neurons within the same cortical-column1.

Figure 4.10(b) shows how an idealized cortical column is replicated three times to

provide physical redundancy. In this replicated circuit, the neurons with the same

1Since our equations are derived from the logical computation, connections required for physical
redundancy are not addressed by it at all.

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 125

(a) (b)

Figure 4.10: (a) An idealized cortical column. This idealization could correspond to a
biological mini-column. (b) A cortical column that contains several copies of the mini-
column in (a). See text for more details.

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 126

meaning can be laterally connected without changing the meaning of the computation.

Such lateral connections can provide better redundancy, better transmission ability

and even some kind of active transmission (“amplification”) [22] along a transmission

line2. Note also that in such an arrangement, the intensity of response will be greater

at the center of the physical column and will decrease towards the periphery. This is

observed in real biological columns [16].

Our idealized cortical column in figure 4.10(a) can correspond to what is known as

the mini-columns of the cortex. Mini-columns are developmental units that contain

about 80 to 100 neurons. By the 26th gestational week, the human neocortex is

composed of a large number of mini-columns in parallel vertical arrays [70]. It is

interesting to note that most of the connections in the idealized vertical column in

figure 4.10(a) can be established without any learning. The connections that can be

established a-priori are shown in black color in figure 4.10(a). This feature makes

our idealized cortical column a good candidate to be a developmental feature like the

mini-column. Cortical columns of the type we show in figure 4.10(b) are formed by

binding together many mini-columns using common input and short-range horizontal

connections [70]. The number of mini-columns per cortical column varies from 50 to

80 [70].

For the rest of the discussion, it is assumed that the short-range, within cortical

column, intra-laminar excitatory connections found in biology are explained by the

need for physical redundancy as described above. The rest of the discussion will focus

on the idealized cortical column and the idealized cortical circuit with no redundancy.

4.7.2 Layer 4 stellate neurons implement the feed-forward

probability calculation over coincidence-patterns

The excitatory neurons in Layer-4 of the cortex consist primarily of star-shaped neu-

rons called stellate neurons and pyramidal neurons [96]. Layer-4 is generally accepted

2This is analogous to doubling the number of wires to increase the current carrying capacity and
using twisted strands of wire instead of a single core

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 127

as the feed forward input layer to cortical regions [45]. In the cat primary visual cor-

tex, the outputs from the retina pass through the lateral geniculate nucleus (LGN)

of the thalamus and then terminate on layer-4 stellate cells. Most of these connec-

tions are known to be proximal to the cell body and can drive the cells. The major

projection (output) of layer-4 stellate neurons is to layer-3 cells [22].

We propose that the layer-4 stellate cells are implementing the probability cal-

culation described in equation 4.1 and shown in figure 4.5. This means that layer-4

neurons are coincidence detectors and that the synapses of the layer-4 neurons rep-

resent co-occurrence patterns on its inputs.

In figure 4.9, the layer-4 neurons are shown as star-shaped and red in color. The

inputs to these neurons are the outputs of lower levels of the cortical hierarchy, pos-

sibly routed through the thalamus. It is easy to verify that the connections of these

neurons correspond to the ‘diamond’ neurons in our belief propagation implemen-

tation shown in figures 4.5 , 4.6 and 4.7. Note that, in the implementation of the

belief propagation equations, shown in figures 4.6 and 4.7, the neurons that calcu-

late the probability distribution on coincidence patterns (the diamond neurons) have

only feed-forward inputs. This is in contrast to many other neurons that receive feed-

forward, feedback and lateral inputs. In neuroscience, it is accepted that the feedback

inputs to a cortical region generally avoid layer-4 [45]. This is consistent with our

proposal for the function of layer-4 neurons.

Making layer-4 correspond to the feed-forward computation of the probability

over coincidence-patterns impose some constraints on the computational roles for

other layers. For example, the major projection of layer-4 is to layer-3. This means

that any computation that requires major inputs from layer-4 will need to be done

at layer-3 and should match the general characteristics of layer-3. The proposals for

layer-3 computations, described in section 4.7.4, match these constraints.

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 128

4.7.3 Layer 1: The broadcast layer for feedback information

and timing information

Feedback connections from higher levels of the cortex rise to layer 1. The recipients

of these connections are the cells with apical dendrites in layer 1. Layer 1 com-

prise mostly of axons carrying feedback from higher level of cortex and non-specific

thalamus and apical dendrites and a minor concentration of cell bodies [96] .

To remain consistent with this biological data, the layer-1 in our mapping will be

the ‘broadcast’ layer for feedback information. The axons carrying feedback infor-

mation P (G|e+) will be available at layer-1 and accessed by the apical dendrites of

neurons that require this information. In addition, the availability of a timing signal

at layer-1 is assumed. The purpose of this timing signal is discussed in section 4.7.5.

4.7.4 Layer 2/3 pyramidal cells: sequence memory, pooling

over sequences, incorporating feedback information

The primary inter-laminar excitatory input to layer 2/3 is from the stellate cells of

layer 4. In addition, the layer 2/3 neurons receive excitatory inputs from other layer

2/3 neurons (Lateral connections) [4] . Many layer 2/3 neurons also project to higher

levels of cortex and to layer 5 [95].

We propose three different roles for the layer 2/3 pyramidal neurons in cortical cir-

cuits: (1) Calculation of feed-forward Markov chain (sequence) states, (2) Projection

of Markov chain information to higher level cortices and (3) Computation of sequence

states that incorporate feedback information. We now consider each proposal in detail

and then examine anatomical evidence in support of these circuits.

1. Pyramidal cells for feed-forward sequence states: The pyramidal neurons

shown in green color in figure 4.9 implement the Markov chain sequence mem-

ories and the dynamic programming computations for feed-forward sequential

inference. These neurons correspond to the ‘circle neurons’ that we described

in section 4.6.2 and implement the dynamic programming equation 4.3 in table

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 129

4.1. These pyramidal neurons receive ‘vertical’ excitatory inputs from the out-

puts of layer-4 stellate neurons and ‘lateral’ inputs from other pyramidal cells

within layer 2/3. Circuits in the layer 2/3 of 4.9 show how sequence memories

(Markov chains) are implemented in biology. The green pyramidal neurons with

blue outlines and blue axons correspond to Markov chain g1 in figure 4.6 and

the green pyramidal neurons with magenta outlines correspond to Markov chain

g2 in figure 4.6. The axons from these pyramidal cells cross column boundaries

and connect to other pyramidal neurons that belong to the same sequence cir-

cuit. Since these connections correspond to sequence memories, they will be

very precise about which columns they target.

2. Pyramidal cells that project to higher order cortex: To compute the

feed-forward output that needs to be sent to the higher level cortical regions,

we propose a second set of pyramidal cells. These pyramidal cells correspond

to the Markov chain identities and get excitatory inputs from the previous set

of pyramidal cells that belong to the same Markov chain. This second set of

pyramidal neurons in layer 2/3 corresponds to the rectangle neurons in figure

4.6. These neurons send their outputs to higher-level cortices. Therefore, their

axons project through layer 4, layer-5 and layer-6 towards the white-matter. In

figure 4.9, these pyramidal neurons are shown in blue color in layer 2/3. Note

that they receive excitatory projections from other layer 2/3 pyramidal neurons

and send axons to the white matter.

3. Pyramidal cells for feedback sequence computation: In section 4.6.3,

we saw that a second set of dynamic programming states were required for the

calculation of the belief in coincidence patterns and as an intermediate step in

deriving the feedback messages to be sent to the children. These set of neurons

do the sequence computations while integrating feedback information from the

higher layers. We propose a third set of pyramidal neurons in layer 2/3 for this

purpose. These neurons correspond to the filled-circle neurons in figure 4.7. In

figure 4.9, these neurons are represented using yellow colored pyramidal neurons

in layer 2/3. The lateral connections of these neurons are identical to the lateral

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 130

connections of the layer 2/3 green pyramids that we just described. However,

these yellow layer 2/3 pyramids also integrate feedback information from layer

1 using their apical dendrites in layer-1 as shown in figure 4.9.

Now, let us examine the anatomical evidence that led us to these proposals. The

major bottom-up input required for the above calculations is the feed-forward proba-

bility over coincidence patterns that was assigned to layer-4 neurons in section 4.7.2.

The major excitatory projection of layer-4 neurons is to layer 2/3 neurons [97]. For

example, L4 spiny neurons in the barrel cortex of the mouse are characterized by

mainly vertically oriented, predominantly intra-columnar axons that target Layer

2/3 pyramidal cells [63]. Note that the green and yellow neurons in figure 4.9 receive

inputs from layer-4 neurons that are in the same column.

Cells in layer 2/3 are known to be ‘complex’ cells that respond to sequence of

motion or cells that respond invariantly to different translations of the same feature.

Unlike cells in layer 4 that respond to impoverished stimuli, cells in layer 2/3 of

the visual and barrel cortices strongly prefer richer stimuli, such as motion in the

preferred direction [49]. This is consistent with our proposal for the layer 2/3 cells

that represent different coincidence patterns in the context of different Markov chains

(sequences). They become active only in the context of the correct sequence. In

biology, it is found that axons of the layer 2/3 pyramidal neurons travel several

millimeters in parallel to the layer 2/3–layer-4 boundary and re-enter layer 2/3 to

make excitatory connections to pyramidal cells there [4, 64]. This is akin to some of

the blue and magenta axons that we show in figure 4.9 and is self-consistent with the

implementation of sequence memories and dynamic programming computations. The

green neurons and the yellow neurons in figure 4.9 correspond to this description.

For the computation of sequence information that incorporates feedback informa-

tion, the sequence neurons will also need access to the feedback information present

at layer-1. This means that there should be a class of neurons that are part of the

sequence circuits as described above and receive excitation from layer 1. Pyramidal

cells of this type, with their apical dendrites in layer-1, are found in the cortex [97, 4].

These are the yellow pyramidal neurons shown in figure 4.9.

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 131

To calculate the belief in a coincidence-pattern, the outputs of all the yellow neu-

rons in the same column have to be summed up. This corresponds to pooling the

evidence for that coincidence-pattern from all the different Markov chains (sequences)

in which the coincidence participates. We will see that layer-5 is ideally suited for

doing this. It is well known that layer 2/3 pyramidal cell axons have two distinct pro-

jection fields: one horizontal, with long-range (2-4 mm) projecting axon collaterals

and one vertical, confined to the column [63]. The horizontal, trans-columnar connec-

tions target other layer 2/3 pyramidal cells [27, 51] and correspond to the sequence

memory circuits that were described above. Both the green neurons and the yellow

neurons in figure 4.9 take part in these circuits, with the yellow neurons receiving

feedback information as well. It is known that the trans-laminar projections of layer

2/3 neurons are to a class of cells known as layer 5-B[95]. It is also known that it

is the layer-3 pyramidal cells with their apical dendrites in layer-1 that connect to

layer-5 cells. These projections are confined to the same column [63]. In the next

section we will see that this is consistent with our proposal for the belief calculation

cells in layer 5.

4.7.5 Layer 5: implementation of belief calculation

We propose that a class of layer-5 pyramidal neurons in cortical circuits calculate the

belief over coincidence patterns according to equation 4.5. This corresponds to the

computations performed by the pentagonal neuron in figure 4.7. In the biological

implementation shown in figure 4.9, these neurons are shown in light cyan color in

layer-5. These neurons receive inputs from the yellow-neurons in layer 2/3. Logically,

the operation of these belief neurons corresponds to the pooling of evidence for a

particular coincidence from the different sequences that this coincidence participates

in. These neurons calculate the belief without regards to the exact time at which the

belief is going to be active.

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 132

Layer-5 pyramidal cells for duration models

In the proposed circuit, a second set of pyramidal cells are involved in representing

the precise time at which the beliefs are going to be active. These neurons, shown

as the dark cyan neurons in the layer 5 of of figure 4.9, correspond to the rounded-

rectangle neurons in figure 4.8. The timing signal, assumed to be broadly available

at layer-1, is shown as blue colored axons. The dark cyan timing neurons have their

apical dendrites in layer-1 to access this timing signal. It is assumed that the belief-

timing neurons project to the non-specific thalamus, which acts as a variable delay

mechanism that projects back to layer-1 to complete a timing loop, as shown in figure

4.8. This is identical to the timing loop proposed by Hawkins [43] and similar to the

timing loops in the cortical circuits proposed by Granger [37].

Now let us examine the anatomical evidence for these neurons and connections.

It is now well established that there are primarily two kinds of pyramidal neurons in

layer-5 of the cortex. Type 1, is called the ‘regular-spiking’ (RS) neurons and type

2 is called the ‘intrinsically bursting’ (IB) neurons. This classification is done based

on the difference in the nature of the spike-trains generated by these neurons. The

IB cells are larger, and they have their apical dendrites in layer -1. The RS cells

are smaller, and their apical dendrites are mostly in layer 2/3. It is also known that

the RS cells are mostly pre-synaptic to the IB cells. That is, the RS-cells send their

outputs to IB cells. In our mapping in figure 4.9, the RS-cells are the light-cyan

colored neurons in layer-5. Note that their inputs are from layer 2/3. Similarly, the

IB cells are the dark-cyan colored neurons in layer-5 with their apical dendrites in

layer-1. The output of the RS-cell goes to the IB-cell. These mappings are consistent

with anatomical data [96, 97].

However, there is a significant difference between anatomical data and the circuit

for layer-5 neurons shown in figure 4.9. Anatomical data says that most of the ex-

citatory connections from the layer-2/3 pyramidal cells (the yellow neurons in figure

4.9) to layer-5 go to the IB-cells in layer-5. Whereas, in our mapping, they go first

to the RS-cells, and then to the IB-cells. In our implementation, we have separated

the pooling of evidence and the integration of durations into the RS-cells and IB-cells

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 133

respectively. Nothing prevents the IB-cells from doing both these functions. For ex-

ample, the apical dendrites of the IB-cells can be involved in the duration models,

while the connections close to its cell body from the layer 2/3 cells can be involved

in the pooling of evidence. However, that will leave the role of RS-cells in question.

In our survey, we could not find detailed information about the inputs to RS-cells,

except for the knowledge that their dendrites are in layer 2/3.

The existence of RS-cells can be justified if there is some utility for the belief in

coincidence patterns that does not incorporate the precise timing information. A bit

of introspection leads us to believe that there is indeed the need for such a neuron.

Consider the case of listening to music. We know which note is going to happen

next, well before it happens. If only the IB-cells were present, then they would fire

only when the belief and the timing both match. There is clearly some utiility to

having the information about the belief, available before the precise time at which

the coincidence pattern corresponding to the belief occurs. We ascribe this role to

the RS-cells in layer-5. They are belief-cells that ‘anticipate’ the occurrence of the

belief. The IB-cells represent that same belief at a precise time point.

In some sense, the RS cells can be thought of as the amber lights at a traffic inter-

section. They come on before the red lights come on and represent the anticipation

of the red light. The timing difference between the amber light coming on and the

red light coming on depends on the typical speed of the traffic on that street.

The RS neurons fire tonically. That is, when activated, they fire at a relatively

same spike-rate that is maintained over some duration. In contrast, the IB cells

fire with bursts. The contrasting physiological properties of RS and IB neurons

might correspond to their complementary roles in the calculation of a timed belief

distribution.

With this description, we can make sense of the connections from layer 2/3 cells

to the IB-cells. The IB-cells can get this information either directly from the layer

2/3 cells, or through the RS, cells. Both these circuits are plausible and biology could

be using both these mechanisms. The fact that IB cells can receive the information

directly from layer 2/3 cells do not obviate the RS cells because RS cells have a utility

of their own that cannot be represented by the IB-cells. The fact that RS cells are

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 134

predominantly pre-synaptic to IB cells is also consistent with this proposal.

The IB-neurons of layer 5 project to sub-cortical areas and to motor areas. If a

cortical area is to influence actions, it makes good sense that the signals for that should

be based on the temporally precise belief of that cortical area, because the belief

represents the best possible information about the coincidence patterns represented

in that cortical area. Therefore, the fact that layer-5 IB neurons project to sub-

cortical areas that influence motor actions is self-consistent with the proposal that

they compute the belief. The timing loop requires the projection of the IB neurons

to an external timing circuit. Hawkins [43] and Granger [37] have proposed the

projections of IB cells to the non-specific thalamus as the mechanism for generating

a variable timing signal.

Another role of the computed belief is in the calculation of the messages that

are sent to the child nodes. This calculation requires the pooling over the belief

from different coincidence-patterns. This means that the axons of layer-5 cells that

are involved in this computation should cross column boundaries and travel long

distances. There is anatomical evidence for this [96]. In the next section we will see

that these connections are self-consistent with the assignment of the role of feedback

message computation to layer-6 neurons.

4.7.6 Layer 6: computing the feedback messages for children

We assign to layer 6 pyramidal neurons the role of computing the feedback messages

that are to be sent to regions that are hierarchically below. This corresponds to the

hexagonal neurons in figure 4.8 and equation 4.8 in table 4.1. In figure 4.9, this is

shown as the purple colored neurons in layer 6.

Feedback messages are derived from the results of belief calculation from a set of

columns. This means that the layer-6 neurons will receive its inputs from the layer-5

neurons involved in the calculation of belief. This is shown in figure 4.9. A given

set of columns will send feedback messages to all its ‘child regions’. The feedback

message sent to one child is not the same as the feedback message sent to the other

child. In figure 4.9, some of the layer-6 neurons project to the left child while the rest

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 135

project to the right child.

The input connections to a layer-6 cell come from multiple columns depending on

all the coincidence patterns in which a child-nodes Markov chain participated. Note

that in figure 4.9, the axonal inputs to layer-6 neurons from layer-5 neurons cross

several columns.

Layer-6 is known to be a primary source of cortical feedback connections [22].

There is a class of pyramidal neurons in layer-6 that have short dendritic tufts ex-

tending primarily to layer-5. The axons of these neurons project cortico-cortically

[96]. Hence they are appropriately situated for calculating the feedback messages and

is consistent with our proposals for other layers.

There are many other neuron-types that are identified in layer-6. We do not

explain the functions of those neurons. Our conjecture is that some of those neurons

are involved in the driving of context dependent, covert attention. Examining these

roles is beyond the scope of this chapter.

It is well know that the feed-forward axons from the thalamus make synapses in

layer-6 on their way to layer-4 stellate cells. In figure 4.9, these axons are shown as

the green axons that synapse in layer-6 and layer-4. The belief propagation equations

in table 4.1 do not directly explain the purpose of these layer-6 synapses of these

rising neurons. One plausible explanation is that this connection is required for the

learning of the synaptic inputs to layer-6 from layer-5. The layer-6 neurons pool the

evidence from the different coincidences that a child’s Markov chains participate in.

To do this, the output of all the coincidence neurons that the child’s Markov chain is

part of should get wired to the input of the layer-6 feed back neuron that corresponds

to that child’s Markov chain. This is possible only if, the layer-6 feedback neuron

fires at the same time as the layer-5 belief-neuron. This means that, there should be

a mechanism to fire the layer-6 feedback neuron corresponding to a child’s Markov

chain, when that Markov chain is active in the feed-forward message from that child.

This can be accomplished by making the feed-forward inputs fire neurons in layer-6

during learning. This could be an explanation for the en passage synapses in layer-6

of axons rising to layer-4. Another plausible explanation is that these connections

are required for the divisive normalization of the feedback messages as shown by the

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 136

dotted rectangle in figure A.2 of appendix A.

4.8 Applications of the derived cortical microcir-

cuit

The mapping between Bayesian belief propagation computations and cortical anatomy

enables us to view the variables in the calculation in an HTM node as neural responses

arranged in a laminar and columnar manner that corresponds to the cortical arrange-

ment. The columnar arrangement corresponds to the coincidence-patterns in the

node and the laminar arrangement corresponds to the different stages involved in the

belief propagation computations. With this mapping, the HTM node can be treated

as a piece of cortical tissue. Neural responses that follow a particular pattern of firing

can be searched for and located. This, in combination with the hierarchy of an HTM

network, can be used to model and predict different physiological phenomena.

4.8.1 A model for the illusory contour effect

The illusory contour effect is a well-known cognitive and physiological phenomenon.

Figure 4.11(a) shows a Kanizsa diagram that produces the illusory contour effect.

When viewing this figure, humans perceive the edges of a square even in regions

where there is no direct visual evidence for them. Lee and Nguyen [59] found that

neurons in area V1 responded to such illusory contours even though their feed-forward

receptive fields do not have any evidence supporting the presence of a line. In [60] ,

Lee and Mumford suggested that, this could be the result of Bayesian computations.

Their argument was that the presented stimulus, according to the statistics of the

visual world, is adequate to create a high-level hypothesis of the rectangle even though

the edges are missing. The activation of this global hypothesis at areas V2 and above

in turn constrains the activity of lower level neurons through the feedback messages.

In addition to finding the neurons in V1 that respond to the illusory contours, Lee

and Nguyen also studied the temporal dynamics of their responses. Figure 4.11(b)

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 137

(a) (b)

Figure 4.11: (a) A Kanizsa diagram that produces the illusory contour effect. While
viewing this figure, vertical edges of a square are perceived even where there is no direct
evidence for those edges – for example within the dotted circle. This image is adapted from
[59] (b) The dynamics of illusory contour response as observed in monkeys. Note the onset
of the response to illusory contours occur about 50 milliseconds later compared to the onset
of the response to a real contour. Image source: Nguyen and Lee [59].

shows the temporal dynamics of the neurons responding to illusory contours as ob-

served in the monkey visual cortex [59]. The summary of their findings is that the

population averaged response to illusory contours emerged 100 milliseconds after stim-

ulus onset in the superficial layers of V1 and at approximately 120 to 190 millisecond

in the deep layers. The responses to illusory contours in area V2 occurred earlier, at

70 msec in the superficial layers and at 95 msec in the deep layers.

The hypothesis that illusory contours are the result of the higher levels imposing

their knowledge on to the lower levels is tested using a special input pattern (stimulus)

presented to the Pictures HTM network. The Pictures HTM network was introduced

in chapter 2. The input pattern, an incomplete ‘A’ as shown in figure 4.12(1), is

created by deleting a small segment from the training pattern ‘A’. This pattern is

presented at the input to the trained Pictures HTM network and feed-forward and

feedback inference is done using Bayesian belief propagation equations. (See appendix

B for examples of feedback based reconstruction of inputs to the Pictures network).

As the belief propagation messages are propagated up and down in the hierarchy,

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 138

Region Y, Neuron 15
Region X, Neuron 5
Region X, Neuron 76

X
Y

(1)

(2) (3)

Re
sp

on
se

Time

Neuron 5

Neuron 15

Neuron 76

Figure 4.12: (1) Input pattern – an incomplete ‘A’– for replicating the illusory contour
effect in the Pictures HTM network introduced in chapter 2. The Pictures HTM network
was trained on complete ‘A’s and other patterns (See section 2.6.1 for details). (2) The
‘feed-forward’ receptive fields of the neurons recorded from nodes receiving inputs from the
areas marked X and Y in the first figure. (3) Dynamics of the neural responses to illusory
contours and real contours as observed in nodes X and Y of the Pictures network. See text
for details.

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 139

we recorded the activity of a selected set of ‘neurons’ in two nodes X and Y at

the level 1 of the Pictures network. These nodes correspond respectively to the

nodes at level 1 that have their input fields as the regions marked X and Y in figure

4.12(1). The neurons that were selected for this study were the belief neurons in

nodes X and Y corresponding to the coincidence patterns shown in figure 4.12(b).

Neuron 76, recorded from the level-1 node corresponding to the input field X, was the

belief neuron in the idealized cortical-column representing a horizontal line-segment

aligned with the bottom-edge as its coincidence pattern. Neuron 5, observed from

the same node, was in a cortical column that represented a vertical line. Neuron 15

was recorded from the node corresponding to the input field Y and represented the

belief in a horizontal line-segment aligned with the top-edge.

The input pattern in figure 4.12(1) is presented to the Pictures HTM network at

time t = 0. The time unit in figure 4.12(3) represents the delay in propagating a belief

propagation message one level in the hierarchy. For example, a time-step of 1 is the

time taken by a feed-forward message from a level-1 node to reach its level-2 parent

and is same as the time taken by a feedback message from a level-3 node to reach

its level-2 child. The message passing between all the nodes at all the levels occur

concurrently. The delays in calculating the intermediate variables within a node are

ignored. (See appendix B for more details on the timing of the belief propagation

messages.)

Consider neuron 15 from node Y. This neuron shows a robust response at time

t = 0 because the input field to this node receives a perfect input that is tuned

to neuron 15. Therefore, at time t = 0, there is a large amount of support for

the coincidence pattern represented by neuron 15 and hence its activity is high. In

contrast, neuron 76 of region X does not show any response at time t = 0. This is

because there is no bottom-up evidence in the input field to node X to support its

belief in the coincidence pattern represented by neuron 76.

At time t = 2 the messages from the level-1 node have propagated one level up

and feedback messages from level-2 nodes have arrived at the level-1 nodes. These

feedback messages incorporate the level-2 nodes’ interpretations, based on their past

experience, of the feed-forward messages they received from multiple level-1 nodes.

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 140

The neuron responses of the level-1 nodes at this time integrate this feedback messages

into consideration. At time t = 2, the response of neuron 15 from node Y has increased

because, the evidences from the nodes surrounding Y, through the mechanism of belief

propagation, have increased the evidence for node Y to believe in the horizontal-line

coincidence pattern that is represented by neuron 15. This is because the combination

of the evidence from these neighboring nodes is consistent with what the network has

been trained on.

Now consider the response at time t = 2 of Neuron 76 from node X. The response

of this neuron went up from near zero at time t = 0 to a robust response at time

t = 2. Clearly, at this time point, this neuron is responding as if there is a horizontal

line in the input field of node X, even though there is no bottom-up evidence for this.

The response of Neuron 76 is the illusory contour response.

The reason why the response of neuron 76 went up at time t = 2 can be understood

in terms of the learned memory of the network and in terms of the belief propagation

computations. The network was trained on patterns similar to A. The nodes at level-2

have learned that the occurrence of a horizontal line in one of the children is usually

coincident with the occurrence of a horizontal line in its neighboring child. There is

strong evidence for line-segments on either sides of the input field of node X. The

parent node of node X, from the memory of its past experience and based on the

messages received from the children, infers that a continuous line is likely to be the

input pattern. This is because there is sufficient evidence for the existence of a line

even though node X did not report the presences of a horizontal line segment in its

input field. This inference is reflected in the feedback message to node X from its

parent and tells node X that there is strong top-down evidence for a horizontal line.

Since neuron 76 is the belief neuron that represents the combination of top-down and

bottom-up evidence, its response goes up with the increase in top-down evidence for

the horizontal line.

At time t = 4, feedback messages incorporating global information all the way

from the level-3 node arrive at the level-1 nodes. These messages further reinforce

the beliefs of neuron 76 and neuron 15. The response of neuron 5 from node X is also

plotted as a control to show that feedback messages do not increase the responses

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 141

of all neurons. The response of neuron 5 does not increase with the incorporation

of feedback information because, the contextual information, in light of the past

experience of level-2 nodes, do not support the belief in a vertical line in node X.

The delayed onset of the illusory contour response in figure 4.12(3) corresponds

to the delayed onset of illusory contour response observed by Lee and Nguyen in

4.11(b). The delayed onset occurs because of the delays in propagating messages up

and down in the hierarchy. Lee and Nguyen also showed that the illusory contour

response occurs first in the superficial layers and then in the deep layers. This is

also consistent with the cortical circuit model in figure 4.9 because the feedback

information first reaches the Markov chain neurons in layer 2/3 (the yellow-neurons

in figure 4.9) and then is then integrated into the layer-5 neurons.

4.9 Shape perception reduces activity in the lower

levels

Using functional MRI, Murray et al [72] showed that perception of objects in higher

levels of the visual cortex reduces the level of activity in the primary visual cortex.

They postulated that inferences of high-level areas are subtracted from incoming

sensory information in lower areas through cortical feedback.

The model we described in this chapter offers an alternative explanation for this

phenomenon compared to the subtraction theory. Reduction in activity occurs be-

cause the recognition of a global percept by a higher-level node, narrows the hy-

potheses space maintained by a lower-level node as a direct result of Bayesian belief

propagation in the hierarchy . This was verified in the Pictures HTM network using

an experiment.

In this experiment, a highly noisy picture of a helicopter is given as the input to

the network. The noisy image ensured that the input pattern received by the level-1

nodes did not exactly match any of the coincidence-patterns stored in those nodes.

Figure 4.13 shows the activity of the belief-cells recorded from a level-1 node receiving

its input from the rectangular area (marked with an arrow) in the helicopter images.

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 142

Neuron Number

Neuron Number

Neuron Number

Re
sp

on
se

Re
sp

on
se

Re
sp

on
se

t=0

t=2

t=4

Figure 4.13: Higher-level perception reduces the activity of lower-levels: Left
panel top shows the noisy helicopter input image that is presented to the network. The
right panel shows the recorded activities of the belief neurons from a level-1 node that
received its input from the input field marked by the arrow in the left panel figures. The
three rows correspond to the responses at times t = 0, t = 2 and t = 4. The left panel
figures for t = 2 and t = 4 show the reconstructed input images at those times. See text for
details.

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 143

At t = 0, the input is highly ambiguous as shown and hence the belief of the

region is highly spread out. This spread reflects the ambiguity in the bottom-up

evidence to this node. At t = 1 the level 2 nodes integrate the information from

multiple level 1 nodess and feed back information to level 1 nodes. At t = 2, the

level 1 nodes use this information to update their beliefs. Figure shows that this

reduces the spread of the belief as compared to t = 0. The corresponding picture

of the helicopter is the reconstruction at this stage if you take the best guesses from

all level 1 regions. Although the belief distribution is narrower, the best guess based

on that belief distribution does not produce the correct reconstruction in the marked

input field. At t = 4, the level 1 nodes get feedback messages which incorporate the

global information. This further narrows the belief distribution. Note also that the

reconstruction based on the incorporation of this global information reconstructs a

vertical line in the marked area.

In addition to replicating this effect, out model also offers a prediction. The

prediction is that the reduction in activity will be observed mostly in the deep layers

and partly in the superficial layers of the cortical circuitry. The reduction in the

deep layers corresponds to the narrowing of the belief distribution represented by the

layer-5 neurons in figure 4.9. The reduction in the superficial layers corresponds to

the reduction in activity of the yellow neurons in layer 2/3 of figure 4.9 that integrate

the feedback information.

4.10 Variations, omissions and extensions

In this section we consider the omissions and variations of the proposed cortical

circuits and identify research areas that could extend them.

Learning

The microcircuits are derived based on the belief propagation equations in a learned

HTM node. The learning algorithms described in chapter 2 have not been analyzed for

their biological plausibility. Incorporation of learning into the circuits would require

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 144

neural mechanisms for competition, inhibition and online learning. This is beyond

the scope of this thesis.

Inhibitory neurons

Inhibitory neurons are missing from the derived circuits. The assumption we make is

that excitatory neurons provide the prominent information processing pathway that

is supported by inhibitory neurons. Most of the inter-laminar connections within

a cortical area are provided by the spiny excitatory neurons, whereas the smooth

inhibitory interneurons principally connect locally within their layer of origin. It is the

excitatory cells that connect long distance in both vertical and lateral dimensions and

their activity is then moulded by local inhibitory neurons [22]. Several computational

and physical functions can be attributed to the inhibitory neurons. They are required

for competition during learning and inference. It is well known that belief propagation

requires normalization of the messages to avoid numerical underflows. Inhibitory

neurons could also be required for avoiding instabilities produced by positive feedback

loops.

Continuous cortical regions

The HTM nodes are discrete entities with abrupt boundaries. This does not cor-

respond to biology because the visual cortex is not a collection of discrete nodes.

Although the idealized HTM node instantiation gives us the flexibility to create

mathematical abstractions that can be analyzed, it needs to be modified to make

a biological correspondence.

One way to accommodate this could be to use HTM nodes with heavily over-

lapped input fields to construct a region. Consider an HTM node that represents

coincidence-patterns that correspond to orientations 10o, 30o, 50o, · · · and another

HTM node representing orientations 20o, 40o, 60o, · · ·. These two nodes, when phys-

ically interleaved, can produce more continuos variation of the receptive fields.

These modifications introduce the problem that the resultant hierarchical network,

viewed as a Bayesian network, has cycles in it. Although theoretical guarantees do not

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 145

exist for the convergence of belief propagation in such hierarchies, successful systems

have been built based on belief propagation in loopy graphs [71, 8, 30].

Sparse distributed representations

Many computational neuroscientists now believe that the neocortex uses sparse-

distributed representations to encode information [87, 107, 106]. The HTM model

here uses sparse-distribted representations when the representations of a hierarchi-

cal level are considered. However they do not use sparse-distributed representations

within a node. In domains where a node is exposed to data that has rich character-

istics, this model would require modifications to include sparse distributed represen-

tations within an HTM node.

Although several algorithms have been researched for the learning of sparse repre-

sentations, the recently discovered theory of Compressed Sensing (CS) theory might

provide a biologically plausible and simple method for sparse-distributed representa-

tions in the cortex [21, 13]. The CS theory argues that the information in signals

that have a sparse representation in some basis is well preserved with random pro-

jections. This means that sparse representations might be achieved by representing

an incoherent set of randomly selected coincidence patterns, while letting multiple

coincidence-patterns to be active at the same time to represent any input. From a bi-

ological stand point, this would correspond to the layer 4 cells representing randomly

selected coincidence patterns from their input space.

Cortical maps

The circuits derived in this chapter provide no explanation for the cortical maps

[104, 92]. The reason for this is that the circuits derived here attempt to explain only

the information processing in a learned model. Any arrangement of the circuit that

preserves the connections would still do the same information processing. However

this leaves a major organization property of the neocortex unexplained. There could

be two reasons for the cortical maps. One is that organizing the columns in a partic-

ular manner in space could reduce wiring length or some other resource that needs

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 146

to be conserved. Another reason could be that a topographical organization of “sim-

ilar” patterns could reduce the search space for coincidence-detection and sequence

learning algorithms. Circuits for implementing self organizing map [55] algorithms

need to be incorporated into the theory. This is left as future work.

Thalamic relays and attentional/motor pathway

The microcircuits derived in this chapter do not incorporate any mechanism for atten-

tion control. Hypothesis-driven attention control is an important aspect of perception.

Attention plays an important role in belief propagation as well [75]. It is known that

thalamus plays an important role in corticocortical communication, acting as a dy-

namic control of information that is passed from one cortical area to another [88, 73].

The thalamic pathway is an alternate pathway in the hierarchy in addition to the di-

rect cortico-cortical projections. There are computational reasons why two pathways

might exist in the cortex. In belief propagation, the messages required for attention

control are different from that of a standard feedback message. The attention control

messages instantiate variables at intermediate levels and therefore affect the results

of feed-forward propagation, where as the standard feedback messages in belief prop-

agation do not interact with feed-forward messages. Some forms of attention can

also be considered as an internal motor action. In that sense, the attention control

mechanism can also be thought of as analogous to the do operator proposed by Pearl

[76] to model the effect of actions in causal Bayesian networks. It is a tantalizing clue

that Guillery and Sherman [39] found that the layer-5 pyramidal cells that project to

the pulvinar of the thalamus also project to motor structures. Incorporation of the

attention pathway into the derived circuits is left for future research.

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 147

4.11 Discussion

Is there a common cortical algorithm?

The work in this chapter is based on the assumption of a common cortical algorithm.

We provided some evidence in support of the common cortical algorithm in the in-

troduction to this thesis [3, 2, 103]. However, the existence of a common cortical

algorithm is anything but a settled matter. One argument that can be made against

the common cortical algorithm is the heterogeneity of neuron types. For example,

researchers have revealed substantial variation in pyramidal cell structure in different

cortical areas [26]. Some of these variations are systematic – for example, the increase

in dendritic arbor size with ascendance in the hierarchy – and can be resolved with

the idea of a common algorithm. Until we understand and explain the computational

reason behind a large majority of such variations, the common cortical algorithm will

have to be considered as a working hypothesis.

Is there a hierarchy?

Although there seems to be no debate that the visual system is hierarchically or-

ganized according to principled anatomical criteria [45], the hierarchy in the visual

system is not a clean hierarchy as the one we considered here. There are many con-

nections that skip levels and multiple internally consistent hierarchies can be derived

based on the same anatomical criteria [46, 102]. Hierarchical organization/processing

has also been found in the auditory cortex [108] and in the motor cortex [57].

Are cortical columns important?

The columnar organization of the cortex was discovered half a century ago [67] and

has survived as a fundamental principle of brain organization. Columnar organization

was one of the features of the derived circuits and this was based on the presumed

columnar organization of the neocortex. Horton and Adams[52] raised several issues

regarding the function of columnar organization and its value. Our mapping could

help resolve some of the issues that were raised by these authors.

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 148

One seeming point of contention is the delineation of the roles of minicolumns

and macrocolumns [82, 12]. Horton and Adams argue that defining two different

structures as the fundamental unit of cortex produces confusion. Although our map-

ping does not consider columns as ‘independent’ fundamental units, it can offer some

clarity to this dilemma. In our mapping, minicolumns are physical units of corti-

cal computations and macrocolumns are logical units of cortical computation. The

minicolumns establish the basic vertical wiring necessary and common to belief propa-

gation computations. Consider a cortical area consisting of 1000 such minicolumns. If

that cortical area is exposed to a world where only 10 patterns need to be represented,

then it can be expected that approximately 100 minicolumns will be allocated to rep-

resent the concept of any particular pattern – a macrocolumn. This also addresses

another concern that the authors raised – the variation in the number of minicolumns

per macrocolumn across areas. The variation occurs due to a combination of genetics

(the number of available minicolumns) and learning (the richness of the statistics of

the world).

Another point raised by the Horton and Adams is the near-continuous variation of

orientation responses in the visual cortex without any apparent discrete boundaries.

We discussed in section 4.10 how the continuous variation in the cortex could be

handled using overlapping nodes. The visual world has continuous orientations and

this could be the reason why the visual cortex tries to preserve that continuous gradual

variation. On the other hand, when the world is more discrete as in the case of

stimulation received from whisker follicles, the cortical organization is predominantly

columnar to the extend that it is called barrel cortex. If we lived in a visual world that

had only four orientations, then we would probably have seen a ‘barrel’ organization

in the visual cortex.

Are connections random or precise?

There are two views in neuroscience about the nature of connections between neurons.

Many researchers argue that connections maybe precise with respect to cell classes

but are likely to be highly random with respect to individual neurons within a class

[11]. On the other hand, there are at least some cases of highly specific and precise

CHAPTER 4. A THEORY OF CORTICAL MICROCIRCUITS 149

connections [56], even to the extent of the relative position of the targets.

The circuit models derived here support both these view points. We saw that

some of the connections in the minicolumn can be pre-wired without learning. Those

connections are likely to be highly specific. Moreover, the sequence learning connec-

tions that travel long distances to target another column (coincidence-pattern) in the

same Markov chain are also likely to be specific. On the other hand, the coincidence-

patterns represented by the layer-4 neurons can be randomly selected from the set

of input coincidences as we discussed in the context suggested by the Compressed

Sensing theory.

Appendix A

Belief Propagation in HTM

Networks

In this section we describe Bayesian belief propagation as implemented in HTMs.

Bayesian belief propagation was pioneered by Judea Pearl and more details on this

can be obtained from his book entitled Probabilistic Reasoning in Intelligent Systems

[75]. The belief propagation equations for HTM networks are derived by modifying

the belief propagation equations for Bayesian networks. Like Bayesian networks,

HTMs can be thought of as encoding relationships between random variables. In our

vision example, these random variables correspond to the coincidence-patterns and

Markov chains learned at multiple levels of the network.

An input to the network is typically termed evidence. For example, a new image

that is presented to the network is the evidence for the network. The network prop-

agates this evidence in the hierarchy to adjust the belief states of each node in the

network. The belief states are defined as the posterior probabilities of coincidence

patterns in each node.

A useful picture to have in mind is that of the HTM network being in equilibrium

with the current state of the world. In our case, the current state of the world is

the input image. The belief states in the nodes of the network reflect this evidence.

When a new input image is presented, this information is passed up and down the

hierarchy using belief propagation and the belief states of the nodes change to match

150

APPENDIX A. BELIEF PROPAGATION IN HTM NETWORKS 151

the new evidence.

Two popular variants of belief propagation algorithms exist and they answer dif-

ferent queries based on the same model. One variant, called sum-prop, computes the

belief states of each node given the evidence. Another variant of the belief propagation

algorithm is called max-prop. This is also known as belief revision. This algorithm

finds the best possible combination of assignments of states of nodes in an HTM

network, given the evidence. The answer that belief revision computes is known as

the Most Probable Explanation for the current evidence [75]. The difference between

these two queries can be subtle. In the sum-prop case, the belief states calculated

at a node is the degree of belief calculated without assuming that other nodes have

committed to any particular state. In the max-prop case the belief states correspond

to the degree of belief of a node’s state being part of the best possible configuration.

This assumes the commitment of other nodes to particular states.

We use the following notation to describe the belief propagation mechanisms in

HTM networks. We follow the notations used by Pearl [75]. Equations are described

for two cases. In the first case, all the evidence is restricted to the current time

instance. This case is applicable to the recognition of an image that is presented to

the network and also for reconstruction of that image. This is described in the next

section. The equations for incorporating evidence from past time steps – the dynamic

case – is described in section A.2.

A.1 Belief propagation equations for the static case

A.1.1 Notation

Ck Random variable representing the coincidence patterns of the kth node.

Depending on the context, Ck is also used to represent the set of coinci-

dence patterns in the kth node.

APPENDIX A. BELIEF PROPAGATION IN HTM NETWORKS 152

cki The ith coincidence in the kth node.

Gk The random variable representing the Markov chains/temporal groups of

the kth node. Depending on the context, this can also be used to represent

the set of temporal groups of the kth node.

gki The ith Markov chain/temporal group in the kth node.

e− and −e The evidence from below, from a node’s view point. This is comprised of

all the evidence observed by all the descendants of this node.

e+ and +e The evidence from above, from a node’s view point. This is comprised of

all the evidence observed by all the nodes that are not descendants of this

node.

P (e−|Gk) Probability of evidence from below given the Markov chains/temporal

groups in node k. This is a vector of length equal to the number of

groups.

P (e−|gki) The probability of evidence from below given the ith group in node k. This

is a scalar.

P (e−|Ck) The probability of evidence from below given the coincidence patterns in

node k. This is a vector of length equal to the number of coincidence

patterns in node k.

P (e−|cki) The probability of evidence from below given the ith coincidence pattern

in node k. This is a scalar.

P (Ck|Gk) The rows of this matrix correspond to the Markov chains/temporal groups

and the columns correspond to the coincidences. The (i, j)th entry of this

matrix, P (cj|gi), gives the probability of seeing the coincidence cj given

that we have seen the Markov chain/temporal group gi.

APPENDIX A. BELIEF PROPAGATION IN HTM NETWORKS 153

Node m1 Node m2

Node k

λ
m1 ∝ P (e−|Gm1) λ

m2 ∝ P (e−|Gm2)

λ
k ∝ P (e−|Gk)

Figure A.1: A segment of an HTM network.

λk The message that the kth node sends to its parent. This is a vector and is

proportional to P (e−|Gk). λk(r) is the rth component of this vector and

is proportional to P (e−|gkr)

For all the variables defined above, superscripts indicate the membership of the

variables in a particular node. To reduce clutter, the superscript will be dropped

when the node-membership of the variables are clear from the context.

A.1.2 Learned memory of a node

The coincidence-patterns and the Markov chains/temporal groups form the learned

memory structures of the node on which belief propagation operates.

A coincidence-pattern ci defines a particular co-occurrence of the Markov chains/temporal

groups of its child nodes. It can be thought of as a vector [rm1
i , · · · , rmM

i], where the

ri’s correspond to the indices of the groups of its child nodes. For example, if M = 2

and c4 is the coincidence of group 2 from child node m1 and group 5 from child node

m2, then the coincidence pattern represented by c4 is [2, 5].

APPENDIX A. BELIEF PROPAGATION IN HTM NETWORKS 154

Node k

P (Ck|Gk)

Ck

λm1 ∝ P (e−|Gm1) λm2 ∝ P (e−|Gm2)

λk ∝ P (e−|Gk)

yk ∝ P (e−|Ck)

P (Ck|Gk)

Ck

Divide

Multiply

(1)

(2) (3)

(4)

Figure A.2: Block diagram of belief propagation operations in an HTM node for the static
case.

For belief propagation in the static case, we need a conditional probability matrix

that can be derived from the Markov chains/temporal groups. This matrix is denoted

by P (C|G). The ith row of this matrix corresponds to the ith group in the node

and the jth column of the matrix corresponds to the jth coincidence pattern. The

ith row of the P (C|G) matrix is calculated as follows. The positions corresponding

to the coincidences that belong to this group are populated by their frequencies of

occurrence. The rest of the positions are populated by zeros. This row is then

normalized to sum to one to obtain the ith row of P (C|G). C and P (C|G) constitute

the memory of an HTM node. These memories are affected only through learning.

A.1.3 Belief propagation computations

Figure A.1 shows a segment of an HTM network with 3 nodes. We describe the

belief propagation computations with node k as the reference. This node has two

child nodes - node m1 and node m2. For generality we assume that this node has M

children. We use m1,m2, · · · ,mM as the indices of the child nodes.

This node gets M messages from its child nodes. The message from node mi will

APPENDIX A. BELIEF PROPAGATION IN HTM NETWORKS 155

be λmi where,

λmi ∝ P (e−|Gmi) (A.1)

This message is proportional to the probability of evidence from below given the

temporal groups Gmi in node mi. This is a vector of length equal to the number of

groups of node mi.

Feed-forward computations

From these messages, first the degree of certainty over coincidence-patterns is com-

puted. This quantity is represented by y and is proportional to P (e−|C). The ith

component of the y vector corresponds to the coincidence ci. In general, this coinci-

dence can be thought of as represented as a vector of M numbers [rm1
i , rm2

i , · · · , rmM
i]

where the r’s represent the group indices of its children that constitute this coinci-

dence. The ith component of y is then calculated as

y(i) = α1

M∏
j=1

λmj (r
mj

i) (A.2)

where α1 is an arbitrary scaling constant. This scaling constant is usually set to a

value so that the messages do not encounter floating point underflow.

The above calculation assumes that the evidences from the children can be com-

bined independently, given the coincidence-patterns of the node. Since, P (e−|ci) =
M∏
j=1

P (e−|gmi
rmi

) and since λmi are proportional to P (e−|Gmi) for all i, this calculation

ensures that y is proportional to P (e−|C)

The node calculates its output y. This output λ is proportional to P (e−|G) and

is a vector of length Ng, the number of temporal groups within the node. The ith

component of this vector is calculated as,

λk(i) =
Nc∑
j=1

P (cj|gi)y(j) (A.3)

APPENDIX A. BELIEF PROPAGATION IN HTM NETWORKS 156

Since P (e−|gi) =
Nc∑
j=1

P (cj|gi)P (e−|cj), the above computation ensures that λk is pro-

portional to P (e−|Gk).

Feedback computations

The feedback computations take the top-down message πk from the parent and com-

putes the messages that need to be sent to the children. In the process, the belief of

the node is calculated as the product of the feed-forward probability over coincidences

and the feed-back probability over coincidences. The first step in this computation is

the calculation of π′ as

π′k(i) = πk(i)/λk(i) (A.4)

From π′, the top-down probability over coincidence-patterns is calculated as

z(i) =
∑
gj∈G

P (ci|gj)π′(j) (A.5)

The belief of the node in its coincidence-patterns is the product of the top-down and

bottom-up probabilities over coincidences:

Bel(ci) = y(i)× z(i) (A.6)

The π messages that are sent to the children are calculated from the belief distribution

and the coincidence-pattern descriptions.

πchild(gchildm) =
∑
ci∈C

I(ci)Bel(ci) (A.7)

where,

I(ci) =

 1, ifgchildm is a component of ci

0, otherwise
(A.8)

The belief revision computations can be obtained by replacing the summations in

equations A.3, A.5 and A.7 with maximizations.

APPENDIX A. BELIEF PROPAGATION IN HTM NETWORKS 157

Node k

Ck Ck
(1)

(2) (3)

(4)

Divide

Figure A.3: Block diagram of belief propagation computations within a node for the dy-
namic case.

A.2 Belief propagation equations for the dynamic

case

The equations we described in the previous section is a special case of the belief

propagation equations required if sequential evidence is taken into account. In this

section, we use dynamic programming [5, 53, 93]methods to derive the equations for

sequential inference under some simplifying assumptions.

A.2.1 Notation

We need some new notation to take care of temporal indexing in addition to the

notation described in the previous section. Figure A.2 shows the block diagram of

the node for belief propagation computations for the dynamic case.

APPENDIX A. BELIEF PROPAGATION IN HTM NETWORKS 158

time

Figure A.4: Timing of input and output messages to Node k. The message passing between
the node and its children occur at intervals of 1 time step, where as the message passing
between the node and its parents occur at intervals of τk time steps.

ct0,
− et0,

+ et0 These denote all the possible sequence combinations of the underlying

variable from time 0 to time t.

αt, Belt, yt, βt All the internal variables are updated with every time step. Their value

at any particular time are denoted using the subscript t.

c(t) Denotes all possible values the coincidence can take at time t. Similar

notation is used for the Markov chains.

ci(t) Denotes the coincidence-pattern ci at time t.

P (Ck
t |Ck

t−1, G
k
t−1) This describes all the within Markov chain transition probabilities for the

set of Markov chains in the node.

A.2.2 Coincidence patterns and the Markov chains

The coincidence-patterns for the dynamic case are the same as the coincidence-

patterns for the static case. The temporal-groups in the static case are zeroth order

Markov chains, whereas in the dynamic case we use first-order Markov chains. The

set of Markov chain transition probabilities is a learned data structure and is denoted

using P (Ck
t |Ck

t−1, G
k
t−1).

APPENDIX A. BELIEF PROPAGATION IN HTM NETWORKS 159

A.2.3 Dynamic programming equations

We derive the dynamic programming equations under simplifying assumptions. Fig-

ure A.2 shows the timing of the messages, as seen by node k. We assume that the

bottom-up messages to the node arrive synchronized to time-steps t = 0, t = 1 etc.

The messages from the parent node arrives at intervals that are multiples of τk, where

τk is the time constant of node-k. Similarly, it is assumed that bottom-up messages

are passed at an interval of τk, although they are calculated for every time step

t = 0, t = 1, · · ·.
Assume that a top-down message arrived at time t = 0, synchronous with bottom-

up messages from the children. We derive the update equations for calculating the

internal states and outputs of the node from t = 0 to t = τk, as more bottom-up

messages arrive.

Belt(ci) = P (ci(t)|−et0,+ e0)

= (1/P (−et0|+et0))
∑
gr∈Gk

∑
ct−1
0

P (−et0|ct0, gr,+ e0)P (ct0, gr|+e0)

= (1/P (−et0|+et0))
∑
gr∈Gk

P (gr|+e0)
∑
ct−1
0

P (−et0|ct0, gr,+ e0)P (ct0, gr|+e0)

∝ ∑
gr∈Gk

P (gr|+e0)βt(ci, gr) (A.9)

Where the dynamic programming variable βt is defined as

βt(ci, gr) =
∑
ct−1
0

P (−et0|ct0, gr,+ e0)P (ct0, gr|+e0) (A.10)

Then, the update equation becomes

βt(ci, gr) = P (−et|ci(t))
∑

cj(t−1)∈Ck

P (ci(t)|cj(t− 1), gr)βt−1(cj, gr) (A.11)

The initial state is β0(ci, gr) = P (−e0|ci(t = 0))P (ci(t = 0)|gr,+ e0) and can be

understood as the initial distribution of each Markov chain.

APPENDIX A. BELIEF PROPAGATION IN HTM NETWORKS 160

The messages for bottom-up transmission are calculated as follows:

P (−et0|gr(t)) =
∑
ct0

P (−et0, c
t
0|gr)

=
∑
ct0

P (−et0|ct0)P (ct0|gr)

=
∑
ct0

P (−et−1
0 |ct−1

0)P (−et|ct)P (ct−1
0 , ct|gr)

=
∑
ct0

P (−et|ct)P (ct|ct−1, gr)P (−et−1
0 |ct−1

0)P (ct−1
0 |gr)

=
∑
ci∈Ck

P (−et|ci(t))
∑
cj∈Ck

P (ci(t)|cj(t− 1), gr)

∑
ct−2
0

P (−et−1
0 |ct−1

0)P (ct−1
0 |gr)

=
∑
ci∈Ck

P (−et|ci(t))
∑
cj∈Ck

P (ci(t)|cj(t− 1), gr)αt−1(ci, gr) (A.12)

Where α is the dynamic programming variable whose update equation is given by

αt(ci, gr) = P (−et|ci(t))
∑

cj(t−1)∈Ck

P (ci(t)|cj(t− 1), gr)αt−1(cj, gr) (A.13)

The bottom-up output message is calculated as

λ(gr) = P (−et0|gr(t)) ∝
∑

ci(t)∈Ck

αt(ci, gr) (A.14)

Appendix B

Feedback Propagation in HTM

Networks

This section describes the results of feedback propagation in the Pictures HTM net-

work that was described in chapter 2 and trained on the Pictures data set described

in section 2.6.1. The recognition results of this network was discussed in section

2.6. Recognition is achieved by presenting an image as input to the network and

propagating the evidence up in the hierarchy using Bayesian belief propagation. For

any image that is presented, it is also possible to propagate information down in the

hierarchy. This is done using the belief propagation equations that are described in

appendix A. Feedback propagation can be used to clean up a noisy images and to

drive attention. The figures that follow describe and demonstrate the operation of

feedback propagation in an HTM network.

161

APPENDIX B. FEEDBACK PROPAGATION IN HTM NETWORKS 162

Level 1

Level 2

Level 3

Inputs

t=1 t=2 t=3 t=4

Figure B.1: Belief propagation messages can be thought of as perturbations propagating
in a network that is in equilibrium. At time t = 0, a new image is presented to the
network. This causes a perturbation in the equilibrium of the level-1 nodes and messages
are propagated up in the hierarchy. At time t = 1, these messages arrive at the level-2
nodes. The arrival of these messages trigger feed-forward and feedback messages from the
level-2 nodes. At time t = 2, the feed-forward messages reach the top of the three-level
hierarchy and the feed-back messages from level-2 reach the level-1 nodes. At time t = 3,
the feedback messages from the level-3 node reach the level-2 nodes and trigger another
feedback propagation from the level-2 nodes. At time t = 4, these feedback messages,
incorporating the effect of evidence from the whole hierarchy, arrive at the level-1 nodes.
See [75] for more details on the scheduling of belief propagation messages.

APPENDIX B. FEEDBACK PROPAGATION IN HTM NETWORKS 163

Figure B.2: Feedback reconstruction of the noisy image of a ‘helicopter’: Top-left: the
noisy input image. Top-right: Reconstruction of the image using local information
from just the level-1 nodes This reconstruction is done by choosing the coincidence-
patten that best matches the input in every 4x4 patch. Bottom-left: Reconstruction
of the image at time t = 2 after the first set of feedback messages are incorporated.
This reconstruction is done by choosing the coincidence that has the maximum belief
in each level-1 node. Bottom-right: The final reconstruction at time t = 4. This
reconstruction incorporates evidence from the whole hierarchy.

Appendix C

Calculation of Generalization

Properties of HTM Networks

C.1 Definitions

We will be dealing with HTM networks where all the nodes at the same level have

similar parameters. It is easy to generalize the computations to the general case. The

total number of levels in the network will be denoted by L. Level 1 will be the first

level of the hierarchy and level L will be the Lth level.

For all the calculations in this section, we abstract the HTM nodes using three

parameters. NC,l denotes the number of coincidence-pattern in a node at level-l

and NG,l denotes the number of temporal groups (zeroth order Markov chains) in

a node at that level. The number of children of nodes at levels l = 2, 3, · · ·L are

denoted using Bl, where B stands for branching. We assume that the number of

coincidences are evenly distributed into the groups, i.e, each group has the same

number of coincidences. Therefore, we consider only those cases where the number

of coincidences per group is an integer.

164

APPENDIX C. CALCULATION OF GENERALIZATION 165

C.2 Number of patterns that can be generated

from a network

The number of patterns that can be generated from a network can be calculated easily

by first analyzing a small network of two levels and then generalizing it to L levels.

Consider a network with one level-2 node and B2 level-1 nodes that are children of the

level-2 node. For any particular coincidence pattern that is generated by the level-2

node, the total number of patterns that can be generated by the network (defined

as the concatenation of the coincidence-pattern labels of level-1 nodes) is given by

(NC,1/NG,1)B2 . Therefore, the total number of patterns that are generated by this

two-level network is NC,2 × (NC,1/NG,1)B2 .

Now, consider a three-level network. For any fixed coincidence pattern generated

by the node at level-3, we will get NC,3× (NC,2/NG,2)B3 patterns at the output of the

level-2 nodes. Each of this pattern has B3 components and they each independently

operate to generate patterns at level-1. The number of patterns generated by the

three-level network would then be NC,3×(NC,2/NG,2)B3(NC,1/NG,1)B3B2 . Generalizing

this, we obtain the number of patterns that can be generated form an L-level network

as

Nw(L) = NC,L ×
(
NC,L−1

NG,L−1

)BL

×
(
NC,L−2

NG,L−2

)BLBL−1

× · · · ×
(
NC,1

NG,1

)BLBL−1···B2

(C.1)

C.3 Probability of fully training the network

Using the training-oracle that we introduced in section 3.8, an HTM node becomes

fully trained when it has observed all the possible coincidence-patterns in its corre-

sponding HTW counter part.

Consider a node at level 1. Assume that the world has Nw patterns that were

generated from an HTW network of L levels. Then, Nw/NC,1 of those patterns will

have the first coincidence from the first node at level-1 as their first component. Simi-

larly, any particular coincidence selected from this node will have Nw/NC,1 patterns in

the world with that coincidence as the corresponding component. If we are selecting

APPENDIX C. CALCULATION OF GENERALIZATION 166

patterns from the world without replacement, then any selected pattern is equally

likely to have one of the NC,1 coincidence pattern in the component corresponding to

this node.

Assume that we have drawn ND patterns from the world without replacement.

To calculate the probability that we have all types of coincidence-patterns from our

level-1 node in this set of ND patterns, first define events A1, A2, · · · , ANC,1
where Aj

is the even that coincidence-pattern j was not present in the set of ND patterns. The

probability of event Aj is
(
NC,1−1

NC,1

)ND
.

Then, the probability that all coincidence-patterns are present in the set of ND

patterns can be calculated as

p1 = 1− P (∪NC,1

j=1 Aj) (C.2)

This probability can be calculated using the inclusion-exclusion formula (see [86]) as

p1 = 1−
NC,1−1∑

i=1

(
NC,1

i

)(
NC,1 − 1

NC,1

)ND

(−1)i+1

 (C.3)

and the probability that all the level-1 nodes will have all their coincidence-patterns

in a draw of ND patterns from the world can be calculated by raising p1 to the power

of the number of nodes at level-1. Continuing this reasoning, the probability of fully

training the hierarchy in ND draws can be calculated as

Ptrain =
L∏
l=1

1−
NC,l−1∑

i=1

(
NC,l

i

)(
NC,l − 1

NC,l

)ND

(−1)i+1

Bl+1Bl+2···BL

(C.4)

Bibliography

[1] James S. Albus. A new approach to manipulator control: The cerebellar model

articulation controller (cmac). Journal of Dynamic Systems, Measurement, and

Control, 97:270–277, 1975.

[2] Paul Bach-y Rita. Tactile sensory substitution studies. Ann N Y Acad Sci,

1013:83–91, 2004.

[3] Paul Bach-y Rita and Stephen W Kercel. Sensory substitution and the human-

machine interface. Trends Cogn Sci, 7(12):541–546, 2003.

[4] Peter A. Bannister. Inter- and intra-laminar connections of pyramidal cells in

the neocortex. Neurosci Res, 53(2):95–103, 2005.

[5] Richard Bellman. Dynamic Programming. Princeton University Press, 1957.

[6] Yoshua Bengio and Yann LeCun. Scaling Learning Algorithms towards AI.

Large Scale Kernel Machines. MIT Press, Cambridge, MA, 2007.

[7] Pietro Berkes and Laurenz Wiskott. Slow feature analysis yields a rich repertoire

of complex cell properties. Journal of Vision, 5(6):579–602, 2005.

[8] G. Berrou, A. Glavieux, and P. Thitimajshima. Near shannon limit error-

correcting coding: Turbo codes. In Proceedings International Conference on

Communications, pages 1064–1070, May 1993.

[9] Dimitri P. Bertsekas. Dynamic Programming: Deterministic and Stochastic

Models. Prentice-Hall, Englewood Cliffs, N.J., 1987.

167

BIBLIOGRAPHY 168

[10] Christopher M. Bishop. Pattern Recgonition and Machine Learning. Springer,

2006.

[11] V. Braitenberg and A. Schuz. Cortex: Statistics and Geometry of Neuronal

Connections. Springer-Verlag, Berlin, 1991.

[12] Daniel P Buxhoeveden and Manuel F Casanova. The minicolumn hypothesis

in neuroscience. Brain, 125(Pt 5):935–951, 2002.

[13] E.J. Candes and M.B. Wakin. An introduction to compressive sampling [a

sensing/sampling paradigm that goes against the common knowledge in data

acquisition]. Signal Processing Magazine, IEEE, 25(2):21–30, March 2008.

[14] N. Chaddha, S. Mehrotra, and R.M. Gray. Finite state hierarchical table-lookup

vector quantization for images. icassp, 4:2024–2027, 1996.

[15] Mark A. Changizi. Universal scaling laws for hierarchical complexity in lan-

guages, organisms, behaviors and other combinatorial systems. J Theor Biol,

211(3):277–295, 2001.

[16] Patricia S. Churchland and Terrence J. Sejnowski. The Computational Brain.

MIT Press, Cambridge, Massachusetts, 1992.

[17] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John

Wiley and Sons, 1991.

[18] David D. Cox, Philip Meier, Nadja Oertelt, and James J. DiCarlo. ’breaking’

position-invariant object recognition. Nat Neurosci, 8(9):1145–1147, 2005.

[19] Sophie Deneve. Bayesian inference in spiking neurons, pages 353–360. Advances

in Neural Information Processing Systems 17. MIT Press, 2005.

[20] Pedro Domingos and Michael J. Pazzani. On the optimality of the simple

bayesian classifier under zero-one loss. Machine Learning, 29(2-3):103–130,

1997.

BIBLIOGRAPHY 169

[21] D.L. Donoho. Compressed sensing. Information Theory, IEEE Transactions

on, 52(4):1289–1306, April 2006.

[22] Rodney J. Douglas and Kevan A. Martin. Neuronal circuits of the neocortex.

Annual Review of Neuroscience, 27:419–451, 2004. LR: 20041117; JID: 7804039;

RF: 176; ppublish.

[23] Rodney J. Douglas and Kevan A. C. Martin. Mapping the matrix: the ways of

neocortex. Neuron, 56(2):226–238, 2007.

[24] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John

Wiley and Sons, New York, 1973.

[25] R. O. Duda, P. E. Hart, and David G. Stork. Pattern Classification. Second

edition, John Wiley and Sons, New York, NY, 2001.

[26] Guy N Elston. Cortical heterogeneity: implications for visual processing and

polysensory integration. J Neurocytol, 31(3-5):317–335, 2002.

[27] Dirk Feldmeyer, Joachim Lubke, and Bert Sakmann. Efficacy and connectivity

of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile

rats. J Physiol, 575(Pt 2):583–602, 2006.

[28] D. J. Felleman and D. C. Van Essen. Distributed hierarchical processing in the

primate cerebral cortex. Cereb Cortex, 1(1):1–47, 1991.

[29] Shai Fine, Yoram Singer, and Naftali Tishby. The hierarchical hidden Markov

model: Analysis and applications. Machine Learning, 32(1):41–62, 1998.

[30] Brendan J. Frey and David J. C. MacKay. A revolution: Belief propagation in

graphs with cycles. In Michael I. Jordan, Michael J. Kearns, and Sara A. Solla,

editors, Advances in Neural Information Processing Systems, volume 10. The

MIT Press, 1998.

[31] K. Fukushima. Neocognitron: A self organizing neural network model for a

mechanism of pattern recognition unaffected by shift in position. Biological

Cybernnetics, 36(4):93–202, 1980.

BIBLIOGRAPHY 170

[32] Kunihiko Fukushima, Sei Miyake, and Takayuki Ito. Neocognitron: A neural

network model for a mechanism of visual pattern recognition. In Artificial

neural networks: theoretical concepts, pages 136–144. IEEE Computer Society

Press, 1988.

[33] S. Geman, D. Potter, and Z. Chi. Composition systems. Quarterly of Applied

Mathematics, LX:707–736, 2002.

[34] Dileep George and Jeff Hawkins. Belief propagation and wiring length opti-

mization as organization principles for cortical microcircuits. Technical report,

Redwood Neuroscience Institute, 2005.

[35] Dileep George and Jeff Hawkins. A hierarchical Bayesian model of invariant

pattern recognition in the visual cortex. In Proceedings of the International

Joint Conference on Neural Networks, volume 3, pages 1812–1817. IEEE, 2005.

[36] Diana F. Gordon and Marie desJardins. Evaluation and selection of biases in

machine learning. Machine Learning, 20(1-2):5–22, 1995.

[37] Richard Granger. Engines of the brain: The computational instruction set of

human cognition. AI Magazine, 27(2):15–31, Summer 2006.

[38] Stephen Grossberg. Towards a unified theory of neocortex: laminar cortical

circuits for vision and cognition. Prog Brain Res, 165:79–104, 2007.

[39] R W Guillery and S M Sherman. The thalamus as a monitor of motor outputs.

Philos Trans R Soc Lond B Biol Sci, 357(1428):1809–1821, 2002.

[40] Stefan Haeusler and Wolfgang Maass. A statistical analysis of information-

processing properties of lamina-specific cortical microcircuit models. Cereb

Cortex, 17(1):149–162, 2007.

[41] Mathew Harrison. Discovering Compositional Structures. PhD thesis, Brown

University, Providence, RI, 2005.

BIBLIOGRAPHY 171

[42] Uri Hasson, Eunice Yang, Ignacio Vallines, David J Heeger, and Nava Ru-

bin. A hierarchy of temporal receptive windows in human cortex. J Neurosci,

28(10):2539–2550, 2008.

[43] Jeff Hawkins and Sandra Blakeslee. On Intelligence. Henry Holt and Company,

New York, 2004.

[44] Jeff Hawkins and Dileep George. Hierarchical temporal memory: Concepts,

theory and terminology. http://www.numenta.com/Numenta_HTM_Concepts.

pdf, 2006.

[45] Jay Hegde and Daniel J Felleman. Reappraising the functional implications of

the primate visual anatomical hierarchy. Neuroscientist, 13(5):416–421, 2007.

[46] C C Hilgetag, M A O’Neill, and M P Young. Indeterminate organization of the

visual system. Science, 271(5250):776–777, 1996.

[47] G.E. Hinton and T.J. Sejnowski. Learning and relearning in Boltzmann ma-

chines. In Parallel Distributed Processing: Explorations in the Microstructure

of Cognition, Volume I: Foundations, pages 282–317. MIT Press, Cambridge,

Massachusetts, 1986.

[48] Geoffrey E. Hinton. Learning multiple layers of representation. Trends Cogn

Sci, 11(10):428–434, 2007.

[49] Judith A. Hirsch and Luis M. Martinez. Laminar processing in the visual

cortical column. Curr Opin Neurobiol, 16(4):377–384, 2006.

[50] Y. C. Ho and D. L. Pepyne. Simple explanation of the no-free-lunch theo-

rem and its implications. Journal of Optimization Theory and Applications,

V115(3):549–570, December 2002.

[51] Carl Holmgren, Tibor Harkany, Bjorn Svennenfors, and Yuri Zilberter. Pyra-

midal cell communication within local networks in layer 2/3 of rat neocortex.

J Physiol, 551(Pt 1):139–153, 2003.

BIBLIOGRAPHY 172

[52] Jonathan C Horton and Daniel L Adams. The cortical column: a structure

without a function. Philos Trans R Soc Lond B Biol Sci, 360(1456):837–862,

2005.

[53] Ronald A. Howard. Dynamic Programming and Markov Processes. MIT Press,

Cambridge, Massachusetts, 1960.

[54] Stephan C. Johnson. Hierarchical clustering schemes. Psychometrika, 32:241–

254, 1967.

[55] Teuvo Kohonen. Self-organized formation of topologically correct feature maps.

Biological Cybernetics, 43:59–69, 1982.

[56] J Kozloski, F Hamzei-Sichani, and R Yuste. Stereotyped position of local synap-

tic targets in neocortex. Science, 293(5531):868–872, 2001.

[57] O E Krigolson and C B Holroyd. Evidence for hierarchical error processing in

the human brain. Neuroscience, 137(1):13–17, 2006.

[58] Y. LeCun and Y. Bengio. Convolutional networks for images, speech, and time-

series, 1995.

[59] T. S. Lee and M. Nguyen. Dynamics of subjective contour formation in the

early visual cortex. Proc Natl Acad Sci U S A, 98(4):1907–1911, 2001.

[60] Tai Sing Lee and David Mumford. Hierarchical Bayesian inference in the visual

cortex. Journal of the Optical Society of America, 2(7):1434–1448, July 2003.

[61] S. Levinson. Continuously variable duration hidden markov models for speech

analysis. Acoustics, Speech, and Signal Processing, IEEE International Confer-

ence on ICASSP ’86., 11:1241–1244, Apr 1986.

[62] Jyh-Han Lin and Jeffrey Scott Vitter. A theory for memory-based learning.

Mach. Learn., 17(2-3):143–167, 1994.

BIBLIOGRAPHY 173

[63] Joachim Lubke and Dirk Feldmeyer. Excitatory signal flow and connectivity

in a cortical column: focus on barrel cortex. Brain Struct Funct, 212(1):3–17,

2007.

[64] Jennifer S. Lund, Alessandra Angelucci, and Paul C. Bressloff. Anatomical

substrates for functional columns in macaque monkey primary visual cortex.

Cerebral cortex (New York, N.Y. : 1991), 13(1):15–24, 2003.

[65] Kevan A C Martin. Microcircuits in visual cortex. Curr Opin Neurobiol,

12(4):418–425, 2002.

[66] Tom M. Mitchell. The need for biases in learning generalizations. Technical

Report CBM-TR-117, New Brunswick, New Jersey, 1980.

[67] Berman A.L Mountcastle, V. B. and P.W. Davies. Topographic organization

and modality representation in first somatic area of cat’s cerebral cortex by

method of single unit analysis.

[68] V B Mountcastle. An organizing principle for cerebral function: the unit module

and the distributed system. In The Mindful Brain. MIT Press, 1978.

[69] Vernon B. Mountcastle. The columnar organization of the neocortex. Brain,

120(4):701–722, 1997.

[70] Vernon B. Mountcastle. Introduction to the special issue on computation in

cortical columns. Cerebral Cortex, 13(1):2–4, January 2003.

[71] Kevin Murphy, Yair Weiss, and Michael Jordan. Loopy-belief propagation for

approximate inference: An empirical study. In Proceedings of the 16th Con-

ference on Uncertainty in Artificial Intelligence, pages 467–475. Morgan Kauf-

mann, 2000.

[72] S. O. Murray, D. Kersten, B. A. Olshausen, P. Schrater, and D. L. Woods. Shape

perception reduces activity in human primary visual cortex. Proceedings of the

BIBLIOGRAPHY 174

National Academy of Sciences of the United States of America, 99(23):15164–

15169, Nov 12 2002. LR: 20041117; DEP: 20021104; JID: 7505876; 2002/11/04

[aheadofprint]; ppublish.

[73] B. A. Olshausen, A. Anderson, and D. C. Van Essen. A neurobiological model

of visual attention and pattern recognition based on dynamic routing of infor-

mation. Journal of Neuroscience, 13(11):4700–4719, 1993.

[74] H. H Pattee. Hierarchy theory: the challenge of complex systems. The In-

ternational library of systems theory and philosophy. G. Braziller, New York,

1973.

[75] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-

sible Inference. Morgan Kaufmann, San Francisco, California, 1988.

[76] Judea Pearl. Causality : Models, Reasoning, and Inference. Cambridge Uni-

versity Press, March 2000.

[77] Karl Pflegerr. Online Learning of Predictive Compositional Hierarchies. PhD

thesis, Stanford University, 2002.

[78] T Poggio and S Smale. The mathematics of learning: Dealing with data. Notices

of the American Mathematical Society (AMS, (50):2003, 2003.

[79] Tomaso Poggio and Emilio Bizzi. Generalization in vision and motor control.

Nature, 431(7010):768–774, 2004.

[80] Tomaso Poggio and Federico Girosi. A theory of networks for approximation

and learning. Technical Report AI Memo No. 1140, MIT AI Laboratory, 1989.

[81] L. R. Rabiner. A tutorial on hidden Markov models and selected applications

in speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[82] P Rakic. Specification of cerebral cortical areas. Science, 241(4862):170–176,

1988.

BIBLIOGRAPHY 175

[83] Rajesh P. N. Rao. Hierarchical Bayesian inference in networks of spiking neu-

rons. In Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors, Advances in

Neural Information Processing Systems 17. MIT Press, Cambridge, MA, 2005.

[84] M. Riesenhuber and T. Poggio. Hierarchical models of object recognition in

cortex. Nature Neuroscience, 2(11):1019–1025, November 1999.

[85] R. L. Rivest and R. Sloan. A formal model of hierarchical concept learning.

Information and Computation, 114(1):88–114, 1994.

[86] Sheldon M. Ross. A First Course in Probability, Fourth Edition. Prentice Hall,

Englewood Cliffs, NJ, 1994.

[87] Phil Sallee and Bruno A. Olshausen. Learning sparse multiscale image repre-

sentations. In Advances in Neural Information Processing Systems, volume 16,

pages 1327–1334, 2004.

[88] S Murray Sherman and R W Guillery. The role of the thalamus in the flow of

information to the cortex. Philos Trans R Soc Lond B Biol Sci, 357(1428):1695–

1708, 2002.

[89] Herbert A. Simon. The Sciences of the Artificial. MIT Press, Cambridge,

Massachusetts, 1981.

[90] Andrea Caponnetto Steve Smale, Tomaso Poggio and Jake Bouvrie. Derived

distance: towards a mathematical theory of visual cortex. Technical report,

MIT CBCL, 2007.

[91] Simon M Stringer and Edmund T Rolls. Invariant object recognition in the

visual system with novel views of 3d objects. Neural Comput, 14(11):2585–

2596, 2002.

[92] N V Swindale. How many maps are there in visual cortex? Cereb Cortex,

10(7):633–643, 2000.

BIBLIOGRAPHY 176

[93] Joseph A. Tatman and Ross D. Shachter. Dynamic programming and influence

diagrams. IEEE Transactions on Systems, Man, and Cybernetics, 20(2):365–

379, 1990.

[94] G W Taylor, G E Hinton, and S Roweis. Modeling human motion using binary

latent variables. In Advances in Neural Information Processing Systems, page

2007. MIT Press, 2006.

[95] A M Thomson and A P Bannister. Postsynaptic pyramidal target selection by

descending layer iii pyramidal axons: dual intracellular recordings and biocytin

filling in slices of rat neocortex. Neuroscience, 84(3):669–683, 1998.

[96] Alex M. Thomson and A. Peter Bannister. Interlaminar connections in the

neocortex. Cerebral cortex (New York, N.Y. : 1991), 13(1):5–14, 2003.

[97] Alex M. Thomson and Christophe Lamy. Functional maps of neocortical local

circuitry. Front. Neurosci., 1(1):19–42, 2007.

[98] Kevan A.C. Martin Tom Binzegger, Rodney J. Douglas. Brain, Vision, and

Artificial Intelligence, chapter Cortical Architecture, pages 15–28. Springer

Berlin / Heidelberg, 2005.

[99] K Tsunoda, Y Yamane, M Nishizaki, and M Tanifuji. Complex objects are

represented in macaque inferotemporal cortex by the combination of feature

columns. Nat Neurosci, 4(8):832–838, 2001.

[100] Shimon Ullman. Object recognition and segmentation by a fragment-based

hierarchy. Trends Cogn Sci, 11(2):58–64, 2007.

[101] Shimon Ullman and Evgeniy Bart. Recognition invariance obtained by extended

and invariant features. Neural Netw, 17(5-6):833–848, 2004.

[102] L G Ungerleider and J V Haxby. ’what’ and ’where’ in the human brain. Curr

Opin Neurobiol, 4(2):157–165, 1994.

BIBLIOGRAPHY 177

[103] L von Melchner, S L Pallas, and M Sur. Visual behaviour mediated by retinal

projections directed to the auditory pathway. Nature, 404(6780):871–876, 2000.

[104] Brian A Wandell, Serge O Dumoulin, and Alyssa A Brewer. Visual field maps

in human cortex. Neuron, 56(2):366–383, 2007.

[105] BT Werner. Complexity in natural landform patterns. Science, 284(5411):102–

104, 1999.

[106] H. Wersing and E. Korner. Learning optimized features for hierarchical models

of invariant object recognition. Neural computation, 15(7):1559–1588, Jul 2003.

JID: 9426182; ppublish.

[107] Heiko Wersing, Julian Eggert, and Edgar Körner. Sparse coding with invariance

constraints. pages 385–392, 2003.

[108] C M Wessinger, J VanMeter, B Tian, J Van Lare, J Pekar, and J P Rauschecker.

Hierarchical organization of the human auditory cortex revealed by functional

magnetic resonance imaging. J Cogn Neurosci, 13(1):1–7, 2001.

[109] Laurenz Wiskott and Terrence Sejnowski. Slow feature analysis: Unsupervised

learning of invariances. Neural Computation, 14(4):715–770, 2002.

[110] David H. Wolpert and William G. Macready. No free lunch theorems for opti-

mization. IEEE Trans. on Evolutionary Computation, 1(1):67–82, 1997.

