
Knowledge-Based Systems
UNIVERSITY OF PADERBORN

Introduction to Reinforcement Learning

Michael Baumann

University of Paderborn

Research Group Knowledge-Based Systems
Prof. Dr. Kleine Büning

winter term 2013

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

Outline

1 Introduction

2 The Reinforcement Learning Problem

3 Q-Learning

4 Reinforcement Learning in Realistic Scenarios

5 Applications

Introduction to Reinforcement Learning Baumann 1/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

Motivation

How can an agent learn to choose optimal actions in each state
to achieve its goals?
→ Learning from interaction
→ Reward and punishment

Definition (Reinforcement Learning [Sutton and Barto, 1998])
“Reinforcement learning is learning what to do–how to map
situations to actions–so as to maximize a numerical reward signal.
The learner is not told which actions to take, as in most forms of
machine learning, but instead must discover which actions yield
the most reward by trying them.”

Introduction to Reinforcement Learning Baumann 2/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

(Single) Agent Systems in a Nutshell

Agent:
Situated in an environment
Subject of learning
Perceives (probably only a portion) of the environment’s state
→ e.g. sonar, camera, . . .
Can perform actions to act in or change the environment
→ e.g. move, turn, . . .

Environment:
Everything outside the agent
Observable state
Offers reward / punishment (RL)

1

10

target

Introduction to Reinforcement Learning Baumann 3/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

Classification of Learning Techniques

Supervised Learning needs labeled training samples
Unsupervised Learning has no information on the correct solution;
similar structures are found
Reinforcement Learning uses a (delayed) feedback of the
environment as measure, without stating the correct solution

Example 1 (Reinforcement Learning).
Scenario: An agent hast to learn a board game
Formulation: The agent receives a reward if it won the game and
a punishment (negative reward) if it loses. All other situation
result in neutral feedbacks.

Introduction to Reinforcement Learning Baumann 4/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

Outline

1 Introduction

2 The Reinforcement Learning Problem

3 Q-Learning

4 Reinforcement Learning in Realistic Scenarios

5 Applications

Introduction to Reinforcement Learning Baumann 5/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

Reinforcement Learning
. . . in a Nutshell

state

action

reward

Interaction with environment via states and actions
Reward as feedback for the last action
Agent discovers usability of actions during learning
Goal: Find policy, that maximizes discounted returns

Introduction to Reinforcement Learning Baumann 6/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

Reinforcement Learning in Single Agent Systems

Reward function offers numerical rewards for state-action pairs
→ Goal: Learn successful policy for any state
→ Maximizing this reward leads to proper behavior

No labeled examples, i.e. no information on correct behavior
Agent is not told which action to choose

→ Trial-and-error
Learning agent has often no knowledge about its environment
Difficulty: Current actions may influence future rewards
Formulation as Markov Decision Process

Introduction to Reinforcement Learning Baumann 7/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

The Markov Property

Environment’s behavior may depend on the complete history:

P
[
st+1 = s ′, rt+1 = r | st , at , rt , st−1, at−1, . . . , r0, s0, a0

]
If the state signal has the Markov Property, the response at t + 1
only depends on the state and action at time t:

P
[
st+1 = s ′, rt+1 = r | st , at

]
If the system has the Markov property, both probability
distributions are equal!

Example 2.
Configuration of all pieces on the board in checkers.

Introduction to Reinforcement Learning Baumann 8/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

Markov Decision Process

Definition 1 (Markov Decision Process).
A Markov Decision Process is defined by a tuple (S,A, r , δ) with:

Finite set of states S
Finite set of actions A
Reward function r
State transition function δ
The state signal has the Markov property

st ∈ S is perceived in time t and at ∈ A is executed
Environment responds with rt = r(st , at) ∈ R and transitions
to state st+1 = δ(st , at)

δ, r are part of the environment and may be unknown

Introduction to Reinforcement Learning Baumann 9/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

Policy

Policy π determines agent’s behavior:
π : S → A

π(st) = at decides upon action in state st
But: what is the optimal policy?

Example 3.

s1 s2

s4 s5 s6

G

Figure: Illustration of a policy
[Mitchell, Machine Learning]

π(s1) = aright
...

π(s6) = aup

Introduction to Reinforcement Learning Baumann 10/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

(State) Value Function

Goal: Learn a policy that maximizes the sum of discounted
rewards
Cumulated discounted value V π(st) starting in st following
arbitrary policy π:

V π(st) = rt + γrt+1 + γ2rt+2 + · · · =
∞∑

i=0
γ i rt+i

Discount factor 0 ≤ γ < 1: value of delayed rewards in relation to
immediate rewards

Reward received i steps in future are discounted by γ i

γ → 0 consider only immediate rewards
γ → 1 higher influence of distant rewards

Again: Optimal policy?

Introduction to Reinforcement Learning Baumann 11/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

Optimal Policy

Agent has to learn policy π that maximizes V π(s) for all states s
Optimal Policy π?:

π? : V π?
(s) ≥ V π(s) ∀s ∈ S, ∀π

V π?
(s) is the sum of discounted rewards for an optimal policy

starting in s
V ?(s) is short for V π?

(s)

⇒ The agent’s goal is to learn an optimal policy π?

Introduction to Reinforcement Learning Baumann 12/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

Learning an Optimal Policy

For V ? it holds:

V ?(s1) > V ?(s2)⇔ agent prefers s1 over s2

But: V ? values states and not actions!
Optimal action in state s is action a, that maximizes the sum of
reward r(s, a) and V ?-value of the successor state:

π?(s) = argmax
a

(r(s, a) + γV ?(δ(s, a)))

Introduction to Reinforcement Learning Baumann 13/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

(State-Action) Value Function

Q(s, a) is the maximal discounted cumulated reward that can be
received after executing action a in state s

Q(s, a) = r(s, a) + γV ?(δ(s, a))

Assumption: agent follows an optimal policy after performing
action a
Till now, π?(s) requires δ and r to be known:

π?(s) = argmax
a

(r(s, a) + γV ?(δ(s, a)))

π?(s) in terms of Q(s, a):

π?(s) = argmax
a

Q(s, a)

Sufficient to learn Q(s, a)

Introduction to Reinforcement Learning Baumann 14/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

Outline

1 Introduction

2 The Reinforcement Learning Problem

3 Q-Learning

4 Reinforcement Learning in Realistic Scenarios

5 Applications

Introduction to Reinforcement Learning Baumann 15/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

Q-Learning

How to learn from delayed rewards?
→ Iterative approximation
Close relation between V ?(s) and Q(s, a):

V ?(s) = max
a′

Q(s, a′)

Recursive formulation of Q(s, a):

Q(s, a) = r(s, a) + γV ?(δ(s, a))

= r(s, a) + γmax
a′

Q(δ(s, a), a′)

→ Core idea of Q-Learning (Watkins 1989)

Introduction to Reinforcement Learning Baumann 16/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

Q-Learning Algorithm

Q̂ is the agent’s estimation of Q
Agent stores estimated Q-values for each state-action pair
The agent performs action a in state s and observes the reward r
and the successor state s ′

Update of the Q-estimation after each step

Q̂(s, a) = r + γmax
a′

Q̂(s ′, a′)

Update only requires Q̂
r and s ′ are known to the agent because the update is performed
after the environment’s reaction

Introduction to Reinforcement Learning Baumann 17/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

Q-Learning Algorithm

Q Learning
1 ∀s, a initialize Q̂(s, a)
2 loop
3 observe state s
4 select action a and execute it
5 receive immediate reward r
6 observe new state s ′

7 update Q̂(s, a):

Q̂(s, a) = r + γmax
a′

Q̂(s ′, a′)

Q̂ estimation of Q
γ discount factor

Initialization

All elements zero
Random
Heuristic initialization
. . .

Introduction to Reinforcement Learning Baumann 18/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

Q-Learning in a Grid World

100

81

R
63

72

Initial state: s
1

10090

81

R
63

Next state: s
2

a right

Figure: Grid World
adapted from [Mitchell, Machine Learning]

Q̂(s1, aright) = r + γmax
a′

Q̂(s2, a′)

= 0 + 0.9 ·max{63, 81, 100}
= 90

Introduction to Reinforcement Learning Baumann 19/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

Action Selection

Agent has to perform an action a ∈ A in each step
Always choosing action a = argmax

a′
Q(s, a′)

Exploits gained knowledge
But: Prefers state-action pairs with high values in the beginning
Important: visit unknown state-action pairs (s, a) to gain new
information (exploration)

→ Exploration/exploitation Trade-off

ε-greedy: Choose a random action with probability ε and with
probability (1− ε) an action with highest Q-value

Introduction to Reinforcement Learning Baumann 20/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

Convergence

Q-Learning with a tabular representation of the knowledge
converges to the real Q-values under following assumptions:

1 The system is a deterministic MDP
2 The rewards are bound:

∀s∀a : |r(s, a)| ≤ c

3 All state-action pairs (s, a) are visited infinitely often

Introduction to Reinforcement Learning Baumann 21/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

Non-Determinism: Q-Function

Noisy states and/or erroneous actuators ⇒ probabilistic δ(s, a)
and r(s, a)

Non-deterministic MDP: δ and r only depend on s, a
V π now expected value of discounted cumulated reward:

V π(st) = E
[∞∑

i=0
γ i rt+i

]

Adjustment of Q-function:
Q(s, a) = E [r(s, a) + γV ?(δ(s, a))]

= E [r(s, a)] + γE [V ?(δ(s, a))]

= E [r(s, a)] + γ
∑
s′

P(s ′ | s, a)V ?(s ′)

P(s ′ | s, a) is probability to transition to s ′ after executing a in s

Introduction to Reinforcement Learning Baumann 22/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

Non-Deterministic Q-Learning
Recursive definition of Q-function:

Q(s, a) = E [r(s, a)] + γ
∑
s′

P(s ′ | s, a)max
a′

Q(s ′, a′)

Basic Q-update does not converge anymore
→ Different rewards for same (s, a) introduce “bouncing”
Decaying weight αt for adaptation:

Q̂t(s, a) = (1− αt)Q̂t−1(s, a) + αt

(
r + γmax

a′
Q̂t−1(s ′, a′)

)
Convergence to optimal solution if 0 < αt ≤ 1 and

∞∑
i=1

αt =∞ and
∞∑

i=1
(αt)2 <∞

→ E.g. depending on number of visits of state-action pair:
αt = 1

1+visitst(s,a)

Introduction to Reinforcement Learning Baumann 23/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

Properties of Q-Learning

With Q-Learning the estimation Q̂ converges to the true Q-values
Learning optimal policies with delayed rewards
No need of domain knowledge
The Q-value comprises all information on the expected discounted
cumulated reward for any state-action pair
In reality “sufficiently” many visits to each state-action pair are
often enough

Introduction to Reinforcement Learning Baumann 24/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

Outline

1 Introduction

2 The Reinforcement Learning Problem

3 Q-Learning

4 Reinforcement Learning in Realistic Scenarios

5 Applications

Introduction to Reinforcement Learning Baumann 25/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

Problems with Reinforcement Learning

Length of training: Q-Learning needs many iterations (even on
small problems)
Problem of temporal credit assignment: Hard to determine, which
action (in a long sequence) led to a later reward
Exploration: The agent’s behavior influences the distribution of
trainings examples (→ exploration vs. exploitation)
Partially observable states: Often no access to the complete state
of the environment (e.g. camera vision of a robot)
Frequent assumption in RL algorithms: Tabular representation

No generalization
Storage / time needed to derive good policy

Introduction to Reinforcement Learning Baumann 26/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

Generalization
Motivation

Issues with reinforcement learning in large/continuous state spaces
Storage needed for all state-action pairs
Time required to become sufficiently acquainted with each pair

Generalization: Apply knowledge to unseen but similar states
⇒ Reduce size of state space

Assumption: Similar states require similar behavior.

Introduction to Reinforcement Learning Baumann 27/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

Related Work

Generalization is not new, other approaches include:
Tile Coding: [Sherstov and Stone, 2005],
[Whiteson et al., 2007], [Lin and Wright, 2010]
Basis functions: [Ernst et al., 2005],
[Munos and Moore, 2002]
Vector Quantization: [Lee and Lau, 2004]

Existing approaches often . . .
need domain knowledge
are computationally expensive
are storage intensive
have non-adaptive approximation shapes

Often: computational issues or domain knowledge assumed

Introduction to Reinforcement Learning Baumann 28/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

GNG-Q
General Approach

Agent

Approximation Learning

Environment
continuous state

discrete state

action

reward

influence

Parallel learning of behavior and representation
⇒ Q-Learning + Growing Neural Gas = GNG-Q

Use information from learning to adjust representation.

Introduction to Reinforcement Learning Baumann 29/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

GNG-Q
State Regions

Assumption: Similar states require similar behavior
Build state regions with states that

are similar regarding some measure
require the same behavior

GNG-Q respects similarity in state and action space.

Introduction to Reinforcement Learning Baumann 30/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

GNG-Q
Q-Update

st

st+1

at
n1’s region

n′1’s region

Standard Q-update rule:

Qt+1(st , at) = (1−α)Qt(st , at) +α
[
r(st , at) +γmax

a′∈A
Qt(st+1, a′)

]
Adopted Q-update for (st , at):

Qt+1(n1, at) = (1− α)Qt(n1, at) + α
[
r(st , at) + γmax

a′∈A
Qt(n′1, a′)

]
Q-function for state regions defined by neurons.

Introduction to Reinforcement Learning Baumann 31/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

GNG-Q
Adjusting the Approximation

Start with coarse approximation, initially consisting of two regions
Q-Learning is applied to the current approximation
Adjust approximation (refine and adapt)

.

Refinement based on information gained during learning.

Introduction to Reinforcement Learning Baumann 32/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

GNG-Q
Refinement

?

targetG G

Refine regions with incompatible states
⇒ Count changes in the policy for each region

Frequent changes of the policy indicate the need to split.

Introduction to Reinforcement Learning Baumann 33/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

Experimental Evaluation
11

10

target

10Environment Learned Policy

Set of states: S = {(x , y) | x , y ∈ [0, 1] ⊂ R}
Set of actions: one step of size 0.05
Task: learn the shortest path from all positions to the goal
Reward: 0 for action leading to the goal, -1 else

Introduction to Reinforcement Learning Baumann 34/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

Outline

1 Introduction

2 The Reinforcement Learning Problem

3 Q-Learning

4 Reinforcement Learning in Realistic Scenarios

5 Applications

Introduction to Reinforcement Learning Baumann 35/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

Areas of Application

Manufacturing optimization
Scheduling: E.g. assignment of cabs to passengers
Artificial intelligence for board games
Robot soccer
. . .

Introduction to Reinforcement Learning Baumann 36/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

Credits

Singleagent Reinforcement Learning
The sections on Singleagent Reinforcement Learning and
Q-Learning are mainly based on [Sutton and Barto, 1998] and
Chapter 13 of [Mitchell, 1997]. The Section on Reinforcement
Learning in Realistic Scenarios is based on
[Baumann and Kleine Büning, 2011] and [Baumann et al., 2012]

Introduction to Reinforcement Learning Baumann 37/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

References I

[Baumann and Kleine Büning, 2011] M. Baumann and H.
Kleine Büning (2011).
State aggregation by growing neural gas for reinforcement
learning in continuous state spaces.
In The Tenth International Conference on Machine Learning and
Applications (ICMLA 2011), pages 430–435. IEEE Computer
Society.

Introduction to Reinforcement Learning Baumann 38/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

References II

[Baumann et al., 2012] M. Baumann, T. Klerx, and H.
Kleine Büning (2012).
Improved state space aggregation with growing neural gas in
high-dimensional state spaces.
In The 5th International Workshop on Evolutionary and
Reinforcement Learning for Autonomous Robot Systems
(ERLARS@ECAI 2012), pages 27–36.

[Ernst et al., 2005] D. Ernst, P. Geurts, and L. Wehenkel (2005).
Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6:503–556.

[Lee and Lau, 2004] I. S. Lee and H. Y. Lau (2004).
Adaptive state space partitioning for reinforcement learning.
Engineering Applications of Artificial Intelligence, 17:577–588.

Introduction to Reinforcement Learning Baumann 39/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

References III

[Lin and Wright, 2010] S. Lin and R. Wright (2010).
Evolutionary tile coding: An automated state abstraction
algorithm for reinforcement learning.
In AAAI Workshops: Workshop on Abstraction, Reformulation,
and Approximation (WARA-2010).

[Mitchell, 1997] T. M. Mitchell (1997).
Machine Learning.
McGraw-Hill.

[Munos and Moore, 2002] R. Munos and A. Moore (2002).
Variable resolution discretization in optimal control.
Machine Learning Journal, 49:291–323.

Introduction to Reinforcement Learning Baumann 40/43

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

References IV

[Sherstov and Stone, 2005] A. A. Sherstov and P. Stone (2005).
Function approximation via tile coding: Automating parameter
choice.
In SARA 2005. Springer Verlag.

[Sutton and Barto, 1998] R. S. Sutton and A. G. Barto (1998).
Reinforcement Learning: An Introduction.
The MIT Press.

[Whiteson et al., 2007] S. Whiteson, M. E. Taylor, and P. Stone
(2007).
Adaptive tile coding for value function approximation.
Technical report, University of Texas at Austin.

Introduction to Reinforcement Learning Baumann 41/43

Appendix

Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

GNG-Q
Criteria for Adjustments

Count changes in policy (error of neuron)
Movement only, if neuron’s error is larger than ∆ (e.g. ∆ = 1)

n n

Refine the approximation after an episode, if∑
n∈Nt

error(n) > |nt | and
At least λinsert episodes have passed since the last refinement

“errors of all neurons are small” ⇔ “policy stabilized”

Introduction to Reinforcement Learning Baumann 43/43

	The Reinforcement Learning Problem
	Q-Learning
	Reinforcement Learning in Realistic Scenarios
	Applications

