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Motivation

How can an agent learn to choose optimal actions in each state
to achieve its goals?
→ Learning from interaction
→ Reward and punishment

Definition (Reinforcement Learning [Sutton and Barto, 1998])
“Reinforcement learning is learning what to do–how to map
situations to actions–so as to maximize a numerical reward signal.
The learner is not told which actions to take, as in most forms of
machine learning, but instead must discover which actions yield
the most reward by trying them.”
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(Single) Agent Systems in a Nutshell

Agent:
Situated in an environment
Subject of learning
Perceives (probably only a portion) of the environment’s state
→ e.g. sonar, camera, . . .
Can perform actions to act in or change the environment
→ e.g. move, turn, . . .

Environment:
Everything outside the agent
Observable state
Offers reward / punishment (RL)

1

10

target

Introduction to Reinforcement Learning Baumann 3/43



Introduction The Reinforcement Learning Problem Q-Learning Reinforcement Learning in Realistic Scenarios Applications

Classification of Learning Techniques

Supervised Learning needs labeled training samples
Unsupervised Learning has no information on the correct solution;
similar structures are found
Reinforcement Learning uses a (delayed) feedback of the
environment as measure, without stating the correct solution

Example 1 (Reinforcement Learning).
Scenario: An agent hast to learn a board game
Formulation: The agent receives a reward if it won the game and
a punishment (negative reward) if it loses. All other situation
result in neutral feedbacks.
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Reinforcement Learning
. . . in a Nutshell

state

action

reward

Interaction with environment via states and actions
Reward as feedback for the last action
Agent discovers usability of actions during learning
Goal: Find policy, that maximizes discounted returns
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Reinforcement Learning in Single Agent Systems

Reward function offers numerical rewards for state-action pairs
→ Goal: Learn successful policy for any state
→ Maximizing this reward leads to proper behavior

No labeled examples, i.e. no information on correct behavior
Agent is not told which action to choose

→ Trial-and-error
Learning agent has often no knowledge about its environment
Difficulty: Current actions may influence future rewards
Formulation as Markov Decision Process
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The Markov Property

Environment’s behavior may depend on the complete history:

P
[
st+1 = s ′, rt+1 = r | st , at , rt , st−1, at−1, . . . , r0, s0, a0

]
If the state signal has the Markov Property, the response at t + 1
only depends on the state and action at time t:

P
[
st+1 = s ′, rt+1 = r | st , at

]
If the system has the Markov property, both probability
distributions are equal!

Example 2.
Configuration of all pieces on the board in checkers.
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Markov Decision Process

Definition 1 (Markov Decision Process).
A Markov Decision Process is defined by a tuple (S,A, r , δ) with:

Finite set of states S
Finite set of actions A
Reward function r
State transition function δ
The state signal has the Markov property

st ∈ S is perceived in time t and at ∈ A is executed
Environment responds with rt = r(st , at) ∈ R and transitions
to state st+1 = δ(st , at)

δ, r are part of the environment and may be unknown
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Policy

Policy π determines agent’s behavior:
π : S → A

π(st) = at decides upon action in state st
But: what is the optimal policy?

Example 3.

s1 s2

s4 s5 s6

G

Figure: Illustration of a policy
[Mitchell, Machine Learning]

π(s1) = aright
...

π(s6) = aup
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(State) Value Function

Goal: Learn a policy that maximizes the sum of discounted
rewards
Cumulated discounted value V π(st) starting in st following
arbitrary policy π:

V π(st) = rt + γrt+1 + γ2rt+2 + · · · =
∞∑

i=0
γ i rt+i

Discount factor 0 ≤ γ < 1: value of delayed rewards in relation to
immediate rewards

Reward received i steps in future are discounted by γ i

γ → 0 consider only immediate rewards
γ → 1 higher influence of distant rewards

Again: Optimal policy?
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Optimal Policy

Agent has to learn policy π that maximizes V π(s) for all states s
Optimal Policy π?:

π? : V π?
(s) ≥ V π(s) ∀s ∈ S, ∀π

V π?
(s) is the sum of discounted rewards for an optimal policy

starting in s
V ?(s) is short for V π?

(s)

⇒ The agent’s goal is to learn an optimal policy π?
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Learning an Optimal Policy

For V ? it holds:

V ?(s1) > V ?(s2)⇔ agent prefers s1 over s2

But: V ? values states and not actions!
Optimal action in state s is action a, that maximizes the sum of
reward r(s, a) and V ?-value of the successor state:

π?(s) = argmax
a

(r(s, a) + γV ?(δ(s, a)))
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(State-Action) Value Function

Q(s, a) is the maximal discounted cumulated reward that can be
received after executing action a in state s

Q(s, a) = r(s, a) + γV ?(δ(s, a))

Assumption: agent follows an optimal policy after performing
action a
Till now, π?(s) requires δ and r to be known:

π?(s) = argmax
a

(r(s, a) + γV ?(δ(s, a)))

π?(s) in terms of Q(s, a):

π?(s) = argmax
a

Q(s, a)

Sufficient to learn Q(s, a)
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Q-Learning

How to learn from delayed rewards?
→ Iterative approximation
Close relation between V ?(s) and Q(s, a):

V ?(s) = max
a′

Q(s, a′)

Recursive formulation of Q(s, a):

Q(s, a) = r(s, a) + γV ?(δ(s, a))

= r(s, a) + γmax
a′

Q(δ(s, a), a′)

→ Core idea of Q-Learning (Watkins 1989)
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Q-Learning Algorithm

Q̂ is the agent’s estimation of Q
Agent stores estimated Q-values for each state-action pair
The agent performs action a in state s and observes the reward r
and the successor state s ′

Update of the Q-estimation after each step

Q̂(s, a) = r + γmax
a′

Q̂(s ′, a′)

Update only requires Q̂
r and s ′ are known to the agent because the update is performed
after the environment’s reaction
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Q-Learning Algorithm

Q Learning
1 ∀s, a initialize Q̂(s, a)
2 loop
3 observe state s
4 select action a and execute it
5 receive immediate reward r
6 observe new state s ′

7 update Q̂(s, a):

Q̂(s, a) = r + γmax
a′

Q̂(s ′, a′)

Q̂ estimation of Q
γ discount factor

Initialization

All elements zero
Random
Heuristic initialization
. . .
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Q-Learning in a Grid World

100

81

R
63

72

Initial state: s
1

10090

81

R
63

Next state: s
2

a right

Figure: Grid World
adapted from [Mitchell, Machine Learning]

Q̂(s1, aright) = r + γmax
a′

Q̂(s2, a′)

= 0 + 0.9 ·max{63, 81, 100}
= 90
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Action Selection

Agent has to perform an action a ∈ A in each step
Always choosing action a = argmax

a′
Q(s, a′)

Exploits gained knowledge
But: Prefers state-action pairs with high values in the beginning
Important: visit unknown state-action pairs (s, a) to gain new
information (exploration)

→ Exploration/exploitation Trade-off

ε-greedy: Choose a random action with probability ε and with
probability (1− ε) an action with highest Q-value
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Convergence

Q-Learning with a tabular representation of the knowledge
converges to the real Q-values under following assumptions:

1 The system is a deterministic MDP
2 The rewards are bound:

∀s∀a : |r(s, a)| ≤ c

3 All state-action pairs (s, a) are visited infinitely often
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Non-Determinism: Q-Function

Noisy states and/or erroneous actuators ⇒ probabilistic δ(s, a)
and r(s, a)

Non-deterministic MDP: δ and r only depend on s, a
V π now expected value of discounted cumulated reward:

V π(st) = E
[ ∞∑

i=0
γ i rt+i

]

Adjustment of Q-function:
Q(s, a) = E [r(s, a) + γV ?(δ(s, a))]

= E [r(s, a)] + γE [V ?(δ(s, a))]

= E [r(s, a)] + γ
∑
s′

P(s ′ | s, a)V ?(s ′)

P(s ′ | s, a) is probability to transition to s ′ after executing a in s
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Non-Deterministic Q-Learning
Recursive definition of Q-function:

Q(s, a) = E [r(s, a)] + γ
∑
s′

P(s ′ | s, a)max
a′

Q(s ′, a′)

Basic Q-update does not converge anymore
→ Different rewards for same (s, a) introduce “bouncing”
Decaying weight αt for adaptation:

Q̂t(s, a) = (1− αt)Q̂t−1(s, a) + αt

(
r + γmax

a′
Q̂t−1(s ′, a′)

)
Convergence to optimal solution if 0 < αt ≤ 1 and

∞∑
i=1

αt =∞ and
∞∑

i=1
(αt)2 <∞

→ E.g. depending on number of visits of state-action pair:
αt = 1

1+visitst(s,a)
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Properties of Q-Learning

With Q-Learning the estimation Q̂ converges to the true Q-values
Learning optimal policies with delayed rewards
No need of domain knowledge
The Q-value comprises all information on the expected discounted
cumulated reward for any state-action pair
In reality “sufficiently” many visits to each state-action pair are
often enough
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Problems with Reinforcement Learning

Length of training: Q-Learning needs many iterations (even on
small problems)
Problem of temporal credit assignment: Hard to determine, which
action (in a long sequence) led to a later reward
Exploration: The agent’s behavior influences the distribution of
trainings examples (→ exploration vs. exploitation)
Partially observable states: Often no access to the complete state
of the environment (e.g. camera vision of a robot)
Frequent assumption in RL algorithms: Tabular representation

No generalization
Storage / time needed to derive good policy
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Generalization
Motivation

Issues with reinforcement learning in large/continuous state spaces
Storage needed for all state-action pairs
Time required to become sufficiently acquainted with each pair

Generalization: Apply knowledge to unseen but similar states
⇒ Reduce size of state space

Assumption: Similar states require similar behavior.
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Related Work

Generalization is not new, other approaches include:
Tile Coding: [Sherstov and Stone, 2005],
[Whiteson et al., 2007], [Lin and Wright, 2010]
Basis functions: [Ernst et al., 2005],
[Munos and Moore, 2002]
Vector Quantization: [Lee and Lau, 2004]

Existing approaches often . . .
need domain knowledge
are computationally expensive
are storage intensive
have non-adaptive approximation shapes

Often: computational issues or domain knowledge assumed
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GNG-Q
General Approach

Agent

Approximation Learning

Environment
continuous state

discrete state

action

reward

influence

Parallel learning of behavior and representation
⇒ Q-Learning + Growing Neural Gas = GNG-Q

Use information from learning to adjust representation.
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GNG-Q
State Regions

Assumption: Similar states require similar behavior
Build state regions with states that

are similar regarding some measure
require the same behavior

GNG-Q respects similarity in state and action space.
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GNG-Q
Q-Update

st

st+1

at
n1’s region

n′1’s region

Standard Q-update rule:

Qt+1(st , at) = (1−α)Qt(st , at) +α
[
r(st , at) +γmax

a′∈A
Qt(st+1, a′)

]
Adopted Q-update for (st , at):

Qt+1(n1, at) = (1− α)Qt(n1, at) + α
[
r(st , at) + γmax

a′∈A
Qt(n′1, a′)

]
Q-function for state regions defined by neurons.
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GNG-Q
Adjusting the Approximation

Start with coarse approximation, initially consisting of two regions
Q-Learning is applied to the current approximation
Adjust approximation (refine and adapt)

. . . . . .

Refinement based on information gained during learning.
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GNG-Q
Refinement

?

targetG G

Refine regions with incompatible states
⇒ Count changes in the policy for each region

Frequent changes of the policy indicate the need to split.
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Experimental Evaluation
11

10

target

10Environment Learned Policy

Set of states: S = {(x , y) | x , y ∈ [0, 1] ⊂ R}
Set of actions: one step of size 0.05
Task: learn the shortest path from all positions to the goal
Reward: 0 for action leading to the goal, -1 else
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Areas of Application

Manufacturing optimization
Scheduling: E.g. assignment of cabs to passengers
Artificial intelligence for board games
Robot soccer
. . .
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Credits

Singleagent Reinforcement Learning
The sections on Singleagent Reinforcement Learning and
Q-Learning are mainly based on [Sutton and Barto, 1998] and
Chapter 13 of [Mitchell, 1997]. The Section on Reinforcement
Learning in Realistic Scenarios is based on
[Baumann and Kleine Büning, 2011] and [Baumann et al., 2012]
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GNG-Q
Criteria for Adjustments

Count changes in policy (error of neuron)
Movement only, if neuron’s error is larger than ∆ (e.g. ∆ = 1)

n n

Refine the approximation after an episode, if∑
n∈Nt

error(n) > |nt | and
At least λinsert episodes have passed since the last refinement

“errors of all neurons are small” ⇔ “policy stabilized”
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