
Improved State Aggregation with Growing Neural Gas in
Multidimensional State Spaces

Michael Baumann1 and Timo Klerx2 and Hans Kleine Büning2

Abstract. Q-Learning is a widely used method for dealing with re-

inforcement learning problems. However, the conditions for its con-

vergence include an exact representation and sufficiently (in theory

even infinitely) many visits of each state-action pair—requirements

that raise problems for large or continuous state spaces. To speed up

learning and to exploit gained experience more efficiently it is highly

beneficial to add generalization to Q-Learning and thus enabling the

transfer of experience to unseen but similar states. In this paper, we

report on improvements for GNG-Q, an algorithm that solves rein-

forcement learning problems with continuous state spaces and simul-

taneously learns a proper abstract state space. This approach com-

bines Q-Learning and growing neural gas (an adaptive vector quan-

tizer) to compute a state space abstraction. It starts with a coarse

resolution that is gradually refined based on information achieved

during learning. We improve the dealing with the non-determinism

that may emerge in abstracted state spaces, suggest a new refinement

strategy and propose a new criterion to decide when a refinement is

necessary. Furthermore, we argue that this criterion offers an implicit

local stopping condition for changes made to the approximation. Ad-

ditionally, we employ eligibility traces to speed up learning. We eval-

uate the improved method in continuous state spaces with up to four

dimensions and compare the results with several approaches from

literature. Our experiments confirm that the modifications highly im-

prove the efficiency of the abstract state space and that our approach

is well competitive with existing methods.

1 Introduction

In reinforcement learning (RL), an agent has to learn a policy to solve

a given problem—just from interaction with a (probably unknown)

environment. It does so by trying its available actions in the differ-

ent states of the environment and uses the (maybe delayed) scalar

feedback—the reward—from the environment to update its estima-

tion of the policy. The environment has to offer rewards in a way that

the agent can learn a useful behavior by maximizing these rewards

over time. RL problems are often modeled as Markov decision pro-

cesses (MDP) [17] and can be solved with temporal difference meth-

ods that usually store the learned behavior in a tabular representation

for each possible combination of states and actions. One well-known

RL algorithm is Q-Learning [21] (for detailed information on other

approaches we refer to [18, 17]) that is proven to converge to an op-

timal policy under several conditions [20]. These conditions include

to visiting each state-action pair infinitely often. This requirement is

fraught with problems in large or continuous state spaces that can be
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found in realistic settings. To use aforementioned table-based meth-

ods, continuous state spaces have to be discretized—a step that often

needs domain knowledge to find a proper resolution of the approxi-

mation.

Large state spaces suffer from two severe problems: First, the

curse of dimensionality (the search space grows exponentially in

the number of states) induces high memory requirements. Second,

the large amount of state-action pairs inhibits the agent to gather

enough knowledge for each possible state as the probability to ex-

perience a certain state more than once decreases as the size of the

state space increases. One way to cope with these problems is the

use of generalization—i.e. transfer knowledge to unseen but simi-

lar states—that can e.g. be achieved by aggregating states [11]. For

detailed overviews of other approaches, we refer to [4] or [19].

In this paper we analyze the GNG-Q approach [1] and investigate

its behavior on a continuous state RL task: An agent is situated in a

2-dimensional environment and has to learn the shortest path from

any position to the goal (cf. Sec. 5). Furthermore, we investigate two

multi-dimensional problems: a d-dimensional continuous world and

the acrobot swing up problem [16].

The idea of GNG-Q is to learn the behavior and its representation

in parallel using a combination of Q-Learning and the unsupervised

growing neural gas (GNG) vector quantizer [9]. GNG-Q assumes that

similar states need similar behavior and computes a Voronoi tessel-

lation of the state space and treats all states in one region equally.

The core idea of GNG-Q is as follows: The approximation is initially

very coarse and is refined in regions that contain incompatible states.

In each learning step, the agent uses the current approximation to up-

date its estimated policy. Simultaneously, changes in the learned pol-

icy point out regions that have to be refined. Thus, an abstracted state

space is built by aggregating compatible states and this abstraction is

adjusted based on the interaction during learning without knowing

the environment in advance.

Our contribution is as follows: 1. We argue, that abstracted state

spaces may introduce non-determinism and adapt the Q-update to

better cope with this situation. 2. A new operation for refining regions

of states is introduced. 3. We provide new criteria for the refinement

and adaptation of the approximation and argue how these criteria lead

to an implicit stopping condition for adjustments on the approxima-

tion. 4. Eligibility traces are incorporated to speed up learning. 5.

We experimentally evaluate the influences of the parameters in the

approach and compare its performance to other approaches. The en-

hancements in the updated algorithm called GNG-Q+ lead to a sig-

nificant decrease in the size of the approximation and an improved

regulation of the refinement and adaptation. Furthermore, our ad-

justed use of the edges in the graph offers a means to model the state

transition function for the abstracted states and allows to removing
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dead regions. Our experiments confirm, that GNG-Q+ is well com-

petitive with other approximative approaches and that GNG-Q+ is

able to efficiently compute a useful policy in parallel with a compact

state space approximation. The proposed approach operates on-line

and does not need the underlying model of the considered reinforce-

ment learning problem. Additionally, it does not need to incorporate

domain knowledge and the approximation offers flexible and adap-

tive shapes. After learning, the policy can be stored very efficient as

only the Voronoi centers of the approximation and the associated ac-

tion values are needed. The mapping of one state of the original state

space to its abstraction is realized by a nearest neighbor rule and is

thus very fast and easy to implement.

2 Related Work

Another approach that uses vector quantization was introduced in

[11]. There, an adaptive vector quantizer is used to partition the

state space while the agent is learning. The partitioning is carried

out based on proximity in the state space and similarity regarding

the rating of actions generated by Q-Learning. The approximation is

refined if the reward accumulated in one region is exceeding some

threshold and a predefined minimal distance to all neighboring code

words is kept. In this approach, the centers of the created regions

are not able to move and domain knowledge is required to determine

useful values for the thresholds used. Fernández et al. [8] present the

VQQL model that consists of the generalized Lloyd algorithm for

vector quantization and Q-Learning. It uses vector quantization to

obtain a set of codebook vectors that represent the state space. In a

subsequent step, Q-Learning is used to learn a policy based on this

reduced representation. The key difference to the GNG-Q and GNG-

Q+ approaches is that Fernández et al. construct the state space rep-

resentation independent from learning. Ratitch and Precup [13] also

follow a similar approach as they place units as centers for an ap-

proximation. Their goal is to add a new unit if for the current state

the number of nearby units is below some threshold.

Konidaris et al. [10] approximate continuous environments with

the Fourier basis, a method that employs Fourier series to approxi-

mate the optimal value function. They compare their approach empir-

ically to various other basis function approaches and conclude that its

performance is similarly good. Unfortunately, this approach seems to

be rather run time consuming.

Adaptive Tile Coding [22] is an approach that learns a policy in

parallel with an appropriate state space abstraction. Starting with a

very coarse approximation consisting of just one tile, it is refined

based on information (e.g. based on the policy) from learning. The

refinement operation splits one tile evenly in half, which will often

lead to problems as it may happen that many splits are needed until

incompatible states are separated. Another Tile Coding approach was

presented in [12] where a genetic algorithm was used to decide upon

refinements allowing unevenly splits. A drawback of this algorithm

may be that it is executed for several resolutions of the approxima-

tion.

3 State Space Abstraction in Reinforcement
Learning

This section presents the theoretical model of state space abstraction

and shows, how the agent uses the transition and reward functions of

the original Markov decision process (MDP) to update the abstracted

MDP. Additionally, we describe the GNG-Q approach that we adapt

in Sec. 4.

3.1 Theoretical Model

Single agent reinforcement learning problems are usually modeled

as Markov decision processes (MDP). In this work, we consider

continuous state spaces in deterministic environments with discrete

time steps and discrete actions. Thus, we define a MDP as M =
(S,A,T, r) where the transition function T : S × A → S returns

the succeeding state T(st, at) = st+1 ∈ S after performing action

at ∈ A in state st ∈ S. The reward function r : S ×A→ R reflects

the immediate merit of this execution.

Q-Learning [21] is one frequently employed algorithm to learn

an optimal policy π⋆. It approximates the action-value function

Q⋆(s, a) that expresses the expected accumulated reward for per-

forming action a in state s and following an optimal policy after-

wards. The agent incrementally updates its approximation Q̂ of the

action-value function Q(st, at) during interaction with the environ-

ment: it executes at in st and observes the succeeding state st+1 and

the reward rt = r(st, at). The approximation is then updated ac-

cording to Q̂t+1(st, at) := (1 − αt)Q̂t(st, at) + αt

[
r(st, at) +

γmaxa′∈A Q̂t(st+1, a
′)
]

with the learning rate α and discount fac-

tor γ. Q-Learning is proven to converge to the true Q-function given

that each state-action pair is updated infinitely often, an exact rep-

resentation of the policy is used and the learning rate αt fulfills∑
t αt = ∞ and

∑
t α

2
t < ∞ [20]. As pointed out earlier, large

state spaces introduce severe issues and it is thus highly beneficial

to introduce some kind of generalization [17]. Amongst many others

(for detailed overviews see [19] or [4]), one approach to deal with

large state spaces is the use of state space abstractions. Following

[19], we define an abstract state space as follows:

Definition 1 (State Space Abstraction) Let M = (S,A,T, r) be a

deterministic Markov decision process. We define the corresponding

abstracted MDP M̂ = (Ŝ, A,T, r) where Ŝ is a partition of the

actual state space S and usually |Ŝ| ≪ |S| holds. Each abstract

state ŝ ∈ Ŝ is defined as a set ŝ := {s | ψ(s) = ŝ, s ∈ S} where

the abstraction-function ψ is a mapping ψ : S → Ŝ that maps each

state of S to one of the states of the abstracted state space Ŝ. Thus, ψ
provides a partition of S with

⋃
ŝ∈Ŝ

ŝ = S and ŝ1∩ ŝ2 = ∅, ∀ ŝ1 ̸=

ŝ2 ∈ Ŝ.

The value functions in RL for an abstract MDP M̂ can be learned

from interactions with the original MDP M: The agent observes a

state st ∈ S and performs action at that takes it to the subsequent

state st+1 = T(st, at) and results in a reward r(st, at). This infor-

mation can be used e.g. in a Q-Learning update for the abstracted

MDP [19]:

Q̂t+1(ψ(st), at) := (1− αt)Q̂t(ψ(st), at)

+ αt

[
r(st, at) + γmax

a′∈A
Q̂t(ψ(st+1), a

′)
]

(1)

Note, that the update for one abstract state ŝ affects all states s ∈ S
that are abstracted to ŝ, i.e. all states s for which ψ(s) = ŝ hold. This

is a major advantage as one update affects several states and each

(maybe unseen) state is treated equally as any other state abstracted

to the same abstract state.

3.2 Growing Neural Gas State Quantizer

One approach to learn an approximation of the state space while per-

forming reinforcement learning was presented in [1]. This approach

learns the behavior and its representation in parallel: An adaptive
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vector quantizer (growing neural gas (GNG), [9]) is used to approx-

imate the state space and in each learning step, Q-Learning is exe-

cuted on the current approximation. The goal is to find a partition of

the state space in regions such that each region contains states that

can be treated equally. GNG-Q (summarized in Alg. 1) uses infor-

mation collected during learning to adjust the approximation. Thus,

the abstraction function ψ and the agent’s approximation Q̂ for the

abstracted MDP are learned in parallel.

GNG-Q aggregates states to so called state regions that are similar

regarding some measure and require the same behavior. All states in

one state region are treated equally and share one Q-vector. These

regions are built using a growing neural gas: A set of units n ∈ N
called neurons are positioned in the state space and a Voronoi tes-

sellation is created by a nearest neighbor rule that assigns any state

s ∈ S to the nearest neuron nn(s) = argminn′∈N d(s, n′) using

some distance measure d. The abstraction function ψ is thus defined

by the set Nt of neurons at time t and the nearest neighbor rule.

In each learning step, the nearest and second nearest neurons

n1, n2 to the current state st are determined and both neurons are

connected with a neighborhood connection. These connections are

equipped with an age that is used to remove outdated connections.

We call such connected neurons n1 and n2 topological neighbors.

The goal of the refinement is to relieve regions with incompati-

ble states by splitting them. In the growing neural gas approach, a

local error is introduced for each neuron. In the GNG-Q approach,

the error is a counter for the changes in the policy in the respective

region. Initially, the approximation has a very coarse resolution and

in each learning step, Q-Learning is applied to the current approx-

imation. Regions that need refinement are identified by monitoring

changes in the policy learned so far: Every time, a Q-update causes

that argmaxa Q̂t(n1, a) ̸= argmaxa Q̂t+1(n1, a) holds, the error

for the current state’s region is increased as this means, that the agent

would now prefer a different action for this region. The approxima-

tion is periodically refined by adding a new neuron in the region with

the highest error because this is evidence that the region consists of

states that have to be treated separately to obtain a good policy.

In the generic growing neural gas approach, neurons are moved

in order to adapt to the probability distribution by which the sam-

ples of the input space are drawn. In RL one has to deal with se-

quences of samples as the agent interacts with the environment in

such a way that it iteratively transitions from one state to a subse-

quent state. Thus, the network in GNG-Q would try to follow the

trajectories of the agent. In order to prohibit this behavior and to sup-

ply a static approximation during each episode, an additional set is

introduced for each region: The so-called regional states Rn store

the states, the agent visited in n’s region during the current episode.

After each episode, each neuron n is moved a small portion ϵb to-

wards the centroid of Rn. Additionally, each topological neighbor of

n is moved a much smaller portion ϵn ≪ ϵb towards the centroid of

Rn. Thus, the positions of the neurons adapt to states visited during

the last episode.

4 Revised Growing Neural Gas Q-Learning

This section argues that non-determinism may occur in the abstract

state space although the original MDP is deterministic. We argue how

to better deal with this non-determinism, show how to add eligibility

traces to speed up learning, investigate the role of neighborhood con-

nections and introduce criteria for the movement and the refinement

as well as a revised refinement method. Finally, we sum up the new

algorithm called GNG-Q+ in Alg. 2.

Algorithm 1: GNG-Q (the numbers in braces indicate changes

made in GNG-Q+)

foreach episode do

while episode not finished do

observe st, perform at, observe st+1 and r(st, at)
use current approximation to compute ψ(st), ψ(st+1)
update Q-estimation according to Eq. 1 (1)

update neighbor connections and error values (2)

if network still adapts then insert a new neuron every

λ’th iteration (3)

if network still adapts then
adapt n and n’s topological neighbors to centroid of n’s

regional states Rn (4)

4.1 Dealing with Induced Non-Determinism

Although we consider deterministic environments—the state transi-

tion function as well as the reward function is deterministic—the ag-

gregation of states can introduce non-determinism in the abstracted

MDP: Consider the situation in a shortest path scenario depicted in

Fig. 1: If the agent performs the action “go right” in one of the states

abstracted by the region ŝ1, then, depending on its location in this

region, the subsequent state can be in region ŝ2 or ŝ3. As the agent

updates its estimates of Q̂(ŝ1,→) depending on the Q-vector of the

succeeding state, the Q-values are prone to oscillate. This problem

occurs, if there are at least two states s1, s2 in one region ŝ that

result in states that are abstracted by different abstract states after

performing the same action, formally: ∃s1 ̸= s2 ∈ ŝ, ∃a ∈ A :
ψ(T(s1, a)) ̸= ψ(T(s2, a)). This kind of non-determinism can be

caused by irregular shaped regions (as in the GNG-Q approach, cf.

Fig. 1(a)) but may also occur whenever transitions between differ-

ently sized abstract states are possible (cf. Fig. 1(b)). In [8], this non-

determinism is also called “the loss of the Markov property” as the

subsequent state ŝt+1 now not only depends on ŝt but also on the

states visited before time t.
To improve the behavior with this non-determinism in the abstract

MDP, we equip GNG-Q+ with a learning rate αt that depends on the

time step t such that
∑

t αt = ∞ and
∑

t α
2
t < ∞ hold. Note, that

this is the same condition on the learning rate as given in [20] for the

convergence of Q-Learning. Following the idea of [7], such a learn-

ing rate can be constructed as αt = 1
1+visits(ŝ,a)ω where visits(ŝ, a)

is the number of executions of action a in the abstracted state ŝ and

ω is a constant to regulate the decrease of the learning rate over time.

To fulfill the condition above, 0.5 < ω ≤ 1 has to hold. This learning

rate decreases the influence of updates of each (ŝ, a) over time and

helps to reduce the oscillation of the Q-values. The original GNG-Q

did not consider this non-determinism and used a constant learning

rate. Thus, the Q-update (1) in GNG-Q+ is adapted to use a learning

rate αt as described.

Abstracting states transforms the learning problem in something

close to a partially observable MDP (POMDP) [15, 19]. Unfortu-

nately, this improvement does not provide a solution for the POMDP,

but it introduces more stability to the learning process.

4.2 Adding Eligibility Traces

One way to speed up learning in reinforcement learning problems is

the use of eligibility traces [6]. They offer a means to distribute im-

mediate reward to all state-action pairs (s, a) that have been visited
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ŝ1 ŝ2

ŝ3

→ ↑

↓

(a)

→
ŝ1 ŝ3↓

ŝ2↑

(b)

Figure 1. Induced non-determinism in different approximation schemes:

The action → in ŝ1 may lead to different succeeding states depending on

the actual state that is abstracted to ŝ1.

during the current episode according to their eligibility e(s, a). This

counter is increased by 1 every time the action at is performed in

the current state st and if at is the action with the highest Q-value

for state st. If at is not the maximal action, the eligibility traces for

all state-action pairs are reset to zero. Additionally, each e(s, a) is

decayed by a factor λ ∈ [0, 1] for all state-action pairs:

et+1(s, a) =

⎧
⎪⎨

⎪⎩

γλ(et(s, a) + 1) if s = st and a = at = a⋆

0 if at ̸= a⋆

γλet(s, a) if s ̸= st or a ̸= at

with a⋆ = argmaxa′ Q̂t(s, a
′). Thus, reward or punishment can be

credited for all state-action pairs that were “responsible” for it. If the

agent performs an exploratory action (i.e. an action that has not the

highest Q-value for the current state), the eligibility traces are cut off.

In every update, the temporal difference error δt is computed as

δt = r − Q̂t(st, at) + γmaxa′ Q̂t(s
′
t, a

′) between the current state

st and the succeeding state st+1. This value is added to the Q-value

of every state-action pair:

Q̂t+1(s, a) = Q̂t(s, a) + αtδtet(s, a), ∀s ∈ S, ∀a ∈ A

The method used here is called Watkins’s Q(λ) [17]; for a comparison

of other approaches see [17, 6]. The transformation of this approach

to neurons is straightforward: For each neuron n, we use et(n, a) to

express the eligibility for this neuron-action pair (compare Alg. 2).

4.3 Neighborhood Connections

In each update, the nearest neuron n1 to the current state s and the

nearest neuron n′
1 to the subsequent state are connected if n1 ̸= n′

1.

Thus, the neighborhood connections abstract the transitions of the

original MDP to the abstracted MDP: Each connection between two

abstract states ŝ1 and ŝ2 implies that an action performed in a state

s1 with ψ(s1) = ŝ1 resulted in a state s2 with ψ(s2) = ŝ2 (or vice

versa as the connections are undirected). Every time, a neuron n1

is the nearest neuron to the current state, the age of all connections

(n1, n
′) connecting n1 with its neighbors n′ is increased. Further-

more, a new connection (n1, n
′
1) is created with n′

1 representing the

nearest neuron of s2. If this connection already exists, its age is reset

to zero. If the age of any connection exceeds agemax , the connection

is removed as this is evidence, that this connection is outdated: Con-

sider the latest agemax neuron-action pairs (n, a) then there was no

action that lead from n1 to n′
1 (or vice versa). Thus it is save to as-

sume, that the approximation changed in a way that there is no action

that leads from any state abstracted by n1 to any state abstracted by

n′
1 (or vice versa). If the deletion of connections results in isolated

neurons, these may be removed as well, as they tend to be unreach-

able following the same argumentation.

Contrary to GNG-Q and the generic growing neural gas algorithm

that use the neighborhood connections to adapt the nearest neuron

and all its topological neighbors, GNG-Q+uses the neighborhood

connections to determine “dead” abstract states, i.e. abstract states

that have not been visited for a long time (cf. Alg.1, (2)). Reasons for

this could be changes in the environment or changes in the approxi-

mation due to adaptations or refinements. Additionally, the neighbor

connections in GNG-Q+ could be used to model an abstract transi-

tion function T̂ : Ŝ ×A→ Ŝ for the abstracted MDP M̂.

4.4 Adjusting the Approximation

After each episode, the approximation can be adjusted by two opera-

tions: The adaptation moves the neurons in such a way that they rep-

resent the state space as good as possible and the refinement is used

to split regions that contain incompatible states. In the following, we

will present changes to these operations and state new conditions for

their application.

In the GNG-Q+ approach, each neuron is moved by ϵb in the di-

rection of the centroid of its regional states. Contrary to the GNG-Q

approach, the positions of a neuron’s topological neighbors (cf. Alg.

1, (4)) are not changed in order to increase the stability of the approx-

imation learned so far. Thus, in GNG-Q+ states visited in one region

only affect the center of this particular region.

Especially, we only move a neuron n if its associated error value

error(n) is larger than a small threshold ∆ (e.g. ∆ = 1). The inten-

tion is that we do not want to move a neuron, which is well positioned

and has a useful Q-vector. It is intuitive to consider the error of a neu-

ron for this purpose as this value is increased every time the policy in

its region changes. Thus, the performance of neurons with high error

values may increase by repositioning them whereas neurons whose

local policy has not changed often recently shall keep their position.

This behavior can be seen as parameter exploration as discussed e.g.

in [14].

As each region is only assigned one Q-vector for all its contained

states, it is important, that only compatible states are aggregated.

During the learning steps, the policy is monitored and every time, the

local policy in one region changes, the associated error is increased.

In [1], after each λinsert steps, the region of the neuron with the high-

est error is refined, unless a specific stopping condition is met.

In our approach, we refine the approximation after an episode, if∑
n∈Nt

error(n) > |Nt| holds and at least λinsert episodes have

passed since the last refinement. Thus, the refined approximation can

be adapted for some time and Q-vectors on the new approximation

can be learned accordingly. Of course, one could refine the approxi-

mation whenever the sum of all errors is larger than zero. However,

this might cause a too fine approximation, as sometimes a change in

the policy is inevitable. The motivation for the condition above is,

that on average each neuron is “allowed” to change its policy once

per episode.

The refinement is done by cloning the neuron ne with the highest

error and perturbate ne and the new neuron n+ by a small amount to

ensure that their initial positions differ slightly. The new neuron n+

is initialized with the Q-vector of ne and connected to the same topo-

logical neighbors. After this refinement, the error values of all neu-

rons are reset to zero, to reflect the fact that the abstraction function

ψ has changed. In GNG-Q+ the insertion ((3) in Alg. 1) is performed

after one episode.

The condition stated above implicitly provides a stopping crite-
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rion for adjustments of the abstracted state space: If the errors of

all neurons are small, this is evidence, that the overall policy has

not changed often since the last insertion and the current policy can

be expressed sufficiently with the current resolution. The GNG-Q

uses an external measure to decide, when the approximation is fine

enough, whereas GNG-Q+ uses the above criteria on the error to de-

cide when the approximation should be refined or moved.

As we change the number and the positions of the neurons over

time, we also change the abstraction function because ψ is defined

by the positions of the neurons and the used distance measure. Af-

ter moving the neurons, one state s may be abstracted by a different

neuron than before because it may now be in a different region. Ad-

ditionally, if a new neuron is added, the number of regions is changed

and thus, states may be in a different region after the refinement, too.

The refinement also changes the domain of the estimated Q-function

but the influence is rather low as the Q-vector in the two new regions

is the same as before. Dead regions that are deleted also change the

domain of Q̂ but this does not influence the approximation as these

regions were not visited for a long time.

4.5 Complete Algorithm

This section presents the complete algorithm of our approach (cf.

Alg. 2). To deal with different sized dimensions, it is useful to

scale the values of the states to be from the same interval. A com-

mon approach is to normalize a value x ∈ [xmin , xmax ] to a value

xscaled ∈ [xmin
scaled , x

max
scaled ] such that

xscaled =
x− xmin

xmax − xmin
· (xmax

scaled − xmin
scaled) + xmin

scaled .

Thus, the distance function employed in the nearest neighbor rule

weights all dimensions equally and no dimension will be favored just

because its values are from a larger scale. In our approach we used a

normalization to the interval [0, 1].

5 Evaluation

In this section, we experimentally evaluate the GNG-Q+ approach

and compare the results with those of other approaches from litera-

ture. At first, the different problem domains are described, followed

by a description of the evaluation setup and the default parameter set-

ting. Then GNG-Q+ and GNG-Q are compared in a 2-dimensional

continuous world. After that, GNG-Q+ and the Fourier approach [10]

are evaluated in a d-dimensional continuous world and GNG-Q+ is

used to solve the acrobot swing up control problem. We compare our

results in the acrobot domain to a baseline approach and additionally

to several approaches from literature.

5.1 Problem Domains

Here, we describe the two different problem domains that we chose

to evaluate the performance of GNG-Q+: The d-dimensional contin-

uous world is defined and the acrobot swing up problem from [16] is

introduced.

5.1.1 The d-Dimensional Continuous World

To test the performance of GNG-Q+ in higher dimensional spaces,

we use an extension of the continuous world employed in [1]: In the

d-dimensional continuous world the coordinates are from [0, 1]d ⊂
R

d and the agent has to learn the shortest path from all positions to

Algorithm 2: GNG-Q+

foreach episode do

initialize state s
initialize regional states Rn = ∅, ∀n ∈ N
initialize eligibility traces: e(n, a) = 0, ∀n ∈ N, ∀a ∈ A
while episode not finished do

/* interaction with environment */

observe current state st
determine nearest neuron n1 = nn(st) to current state

select and perform action at

observe subsequent state st+1

determine nearest neuron n′
1 = nn(st+1) to st+1

/* update neurons */

visits(n1, at)← visits(n1, at) + 1
store st in n1’s regional states: Rn1

← Rn1
∪ {st}

discount errors for all neurons

connect neurons n1, n
′
1

increase age of all neighborhood connections of n1

/* update Q̂ */

αt = 1
visits(n1,at)ω

δt = r − Q̂t(n1, at) + γmaxa′ Q̂t(n
′
1, a

′)
et+1(n, a)← et(n, a) + 1
foreach neuron n ∈ N do

foreach action a ∈ A do

Q̂t+1(n, a)← Q̂t(n, a) + αtδtet(n, a)

if at = argmaxa′ Q̂t(st, a
′) then

et+1(n, a)← γλet(n, a)
else

et+1(n, a)← 0

/* Monitor changes in policy */

if argmaxa Q̂t(n1, a) ̸= argmaxa Q̂t+1(n1, a) then

increase error(n1)

/* Adaptation of approximation */

foreach neuron n ∈ N do

if error(n) > ∆ then

compute centroid sn of regional states for neuron n:

sn =
1

|Rn|

∑

sr∈Rn

sr

adaptation of neuron n to sn:

wn ← wn + ϵb · (sn − wn)

/* Refinement of approximation */

if
∑

n∈N error(n) > |N | then

insert new neuron in most erroneous region

the goal located in sgoal := (1, 1, . . . , 1) ∈ R
d. The agent can per-

form actions a+
i and a−

i for each dimension 0 ≤ i < d that increase

or decrease the value of the i-th component by 0 < sstep ≤ 1, i.e. it

takes a step along dimension i. Thus, the agent’s action set A consists

of 2 · d actions and the state space is S = {(x, y) | x, y ∈ [0, 1]d}.

At the beginning of each episode, the agent is randomly placed in-

side the world and if it tries to leave the world in any dimension it is

positioned on the border of this dimension. To relax the goal condi-

tion, the goal is modeled as a hypercube with the edge length equal
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to sstep . For the action that leads the agent to the goal, a reward of 0
is awarded, for all other action, the reward is −1. Clearly, for d = 2
this environment reduces to the environment from [2] and Sec. 5.4.

5.1.2 The Acrobot Swing Up Control Problem

As additional environment we considerd the “acrobot swing up”

(sometimes called double pendulum swing up) control problem as

it is defined in [16].

The acrobot is a two-link under-actuated robot with the goal to

move the second link above a given height. The state space consists

of four continuous dimensions, namely the angles θ1, θ2 ∈ [−π,π]
and the corresponding angular velocities θ̇1 ∈ [−4π, 4π] and θ̇2 ∈
[−9π, 9π]. A sample state is shown in Fig. 2. The lengths of the

θ1

l1

θ2 l2

apply torque here

tip

Figure 2. The acrobot from [16].

links (l1 = l2 = 1), their masses (m1 = m2 = 1), the gravity

(g = 9.8), the goal height (h = 1) and the torque applied to the link

are parameters that we chose in accordance to [16]. The behavior of

the acrobot is calculated via formulas which can be found in [16],

too. For our experiments we used a library1 and adjusted it such that

it fits the dynamics in [16].

5.2 Experimental Setup

In all experiments, one setting with a specific method and a fixed

setup was simulated 100 times with different random seeds and av-

eraged afterwards. Furthermore, the reward for the agent is always

the same. If the agent reaches the goal state, it receives a reward of

0 and −1 in every other step. In each experiment, we initialized the

Q-tables with zero for every state-action pair.

We divided the evaluation in a learning and a test-phase. In the

learning phase we used an ε-greedy approach and learned for 10

episodes. In the following test phase, we tested the learned policy

for 250 episodes in which the agent always chose the action with

the highest Q-value. If the agent did not reach the goal after a fixed

number of steps, this test-episode was stopped. During the evaluation

phase, the agent was not allowed to learn.

For all our experiments in the continuous worlds, we chose the

step size of the agent as sstep = 0.05 and the maximal number of

trials in one episode as
(

1
sstep

)d

. In the acrobot domain, we allowed

the agent a maximal number of 5000 steps to learn and the evaluation

was finished if either the goal was reached or 3000 steps have passed.

5.3 Parameter Values for Our Approach

To define useful basis values for our approach, we evaluated GNG-

Q+ for several parameter values on the 2-dimensional continuous

world. In contrast to the other experiments, we only report on aver-

ages of 30 runs.

1 http://library.rl-community.org

For the exploration strategy we used ε-greedy and experimented

with ε ∈ {0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4} and obtained the best

results for ε ∈ {0.01, 0.05} with ε = 0.01 being slightly better

for all settings. The strengths of the adaptation towards the cen-

troid of the regional states were chosen from {0.01, 0.025, 0.05}
and ϵb = 0.05 performed best. We experimented with several expo-

nents for the learning rate and chose ω ∈ {0.51, 0.55, 0.6, 0.65, 0.7}
from which ω ∈ {0.55, 0.6, 0.65} performed best. As example,

we investigated the influence of the number of episodes λinsert be-

tween two refinements of the approximation and chose λinsert ∈
{10, 20, 30, 40, 50}. The results are plotted in Fig. 3(a) and it can be

seen, that λinsert ∈ {30, 40, 50} performs best while smaller values

result in slower convergence. Note that after around 2000 episodes,

all graphs reach their minimal values.

Based on theses experiments, we chose the following basic values

for GNG-Q+ (variations are mentioned correspondingly):

• decay factor for eligibility traces λ = 0.9
• number of episodes between two insertions λinsert = 40
• maximal age of neighbor connections agemax = 300
• discount factor γ = 0.9
• exploration probability ε = 0.01
• exponent for the time dependent learning rate ω = 0.55
• adaptation strength ϵb = 0.05
• error decay β = 0.9999

5.4 Comparison between GNG-Q and GNG-Q+

For the comparison of GNG-Q and GNG-Q+ we employed the same

scenario and the same parameter values as in [1] and thus, we used

exploration rate ε = 0.05 and discount factor γ = 0.95 for both

approaches, learning rate α = 0.1, ϵb = 0.05, ϵn = 0.0006 and

λinsert = 1000 for GNG-Q. For the new approach, we used λinsert =
40, ϵb = 0.05 and for the eligibility traces λ = 0.9.

As we can see from Fig. 4, GNG-Q finds a good policy slightly

faster in the beginning. After around 1000 episodes, GNG-Q+ is as

good as GNG-Q and remains more stable without high peeks, which

can be seen in the zoomed section. Additionally, GNG-Q+ needs less

neurons than GNG-Q to represent the learned policy. Fig. 5 shows

the number of neurons needed to represent the learned policy for

which the number steps are shown in Fig. 4. GNG-Q+ does not need

more than 20 neurons on average with their number remaining stable

whereas GNG-Q needs more than 100 neurons after 10000 episodes

without stabilization of the number of neurons. Obviously, learning

with GNG-Q+ compared to GNG-Q results in a better policy while

less neurons and thus less memory is needed.

Fig. 6 shows the approximation computed by one arbitrary run

of GNG-Q. It can be seen in the left part, that the state regions are

rather small and that the density of regions increases towards the

goal. Although the policy (depicted in the right part of the figure) in

combination with the computed approximation leads to an optimal

behavior, the right part of this figure shows, that there are many re-

dundant regions, e.g. all neighboring regions that point in the same

direction. In Fig. 7(a), the state space approximation computed by

one run of GNG-Q+ together with the learned policy is shown. This

result is clearly better than the one in Fig. 6 as the learned behavior

for both approximation is identical but the approximation computed

by GNG-Q+ is much smaller.

Of course, the size of an approximation is not the only metric that

has to be considered. However, for equal performances, a smaller

approximation in number of states is definitely better than a larger

one as this saves computing time and memory.
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Figure 3. Average number of steps to reach the goal (a) and average number of neurons (b) with different values for λinsert using GNG-Q+.
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Figure 6. Approximation computed by one run of GNG-Q. The left part shows the abstracted state space and the right part depicts the learned policy for the

dashed area.
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Figure 4. Average number of steps with GNG-Q and GNG-Q+ in the sce-

nario from [1].

For the GNG-Q+ approach, we investigated the distribution of the

neurons in the 2-dimensional continuous world. For this, we col-

lected the positions of all neurons from all evaluations and plot-

ted them into the environment. The heat map in Fig. 7(b) gives an

overview of the average distribution of the neurons: The opacity in-

dicates the relation of number of neurons in this tile to the maximal
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Figure 5. Size of the approximation in number of needed neurons with

GNG-Q and GNG-Q+ in the same scenario as in Fig. 4.

number of neurons over all tiles (“the darker the tile, the more neu-

rons fell into this particular tile”).

We can see that the density of neurons increases towards the goal

and that no neurons are positioned near x = 0 or y = 0. This stems

from the fact, that the neurons are moved towards the centroid of all

positions visited in the respective region. The distribution of neurons
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Figure 7. Exemplary state space with 8 states computed by one arbitrary run of GNG-Q+ in (a) and heat map showing the density of average positions of all

neurons from all evaluations in the 2-dimensional continuous world in (b).

in the old GNG-Q approach is similar but in GNG-Q+, the number

of neurons is drastically reduced (compare Fig. 5).

5.5 Experiments in Multidimensional Spaces

In this section we investigate the performance of GNG-Q+ in two

multi-dimensional environments and compare our results to ap-

proaches from literature.

5.5.1 The d-Dimensional Continuous World

Fig. 8 shows the comparison of GNG-Q+ and the Fourier approach

from [10] in a 3-dimensional continuous world with six actions. The

parameters for the Fourier approach are taken from [10] for a similar

environment called the “Discontinuous Room” (Fourier order = 5;

λ = 0.9; α = 0.001; γ = 0.9; ϵ = 0). For the first 1000 episodes

the Fourier approach outperforms GNG-Q+. After that GNG-Q+ re-

mains more stable than the Fourier approach and needs less steps to

reach the goal. Note that the implementation of the Fourier approach

we used2 was about 10-times slower than GNG-Q+ (regarding com-

putation time).

5.5.2 The Acrobot Swing Up Control Problem

We evaluated the performance of the acrobot for torque ∈ {1, 2, 5}
with our GNG-Q+ approach and started from a down-hanging posi-

tion, i.e. θ1 = θ2 = θ̇1 = θ̇2 = 0.

Fig. 9 shows the learning curves for the average number of steps

for torque ∈ {1, 2, 5}. We can see that it takes about 12000 episodes

to find a good policy for torque = 1. For torque ∈ {2, 5}, the learn-

ing curve does not improve significantly after 5000 episodes. After

40000 episodes the policies found by GNG-Q+result in about 118

steps for torque = 1, 34 steps for torque = 2 and 17 steps for torque

= 5 on average.

Fig. 10 shows the number of needed neurons for torque ∈
{1, 2, 5}. After 40000 episodes GNG-Q+ uses around 60 neurons

on average to approximate the state space for torque = 1, 30 neurons

2 http://library.rl-community.org/wiki/Sarsa Lambda Fourier Basis (Java)
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Figure 8. Average number of steps with GNG-Q+ and Fourier based ap-

proach from [10] in a 3-dimensional continuous world.

for torque = 2 and 20 neurons for torque = 5. It seems that GNG-Q+

would have inserted more neurons without an obvious benefit if the

learning proceeded e.g. caused by exploration. As seen in Fig. 9 the

policies for torque ∈ {2, 5} do not improve after 5000 episodes but

still, new neurons are inserted. This fact will be investigated in further

research. Nevertheless, GNG-Q+ can represent the four-dimensional

state space of the acrobot problem in a very compact way with only

60 neurons on average for the hardest task.

For comparison, we employed the following baseline algorithm:

We use Q-Learning on a predefined uniform discretization with a

similar state space size as computed by GNG-Q+ at convergence.

Without any knowledge on the problem at hand, it is advisable to

use the same resolution for each dimension. Of course, this may not

be optimal as some dimensions might require a finer resolution than

others. As the GNG-Q+ approach needs approx. 61.2 neurons for

torque=1, approx. 30 neurons for torque=2, and approx. 18.2 neu-

rons for torque=5, we decided to split each dimension in 3 equal

portions and thus the resulting state space has 34 = 81 states. We

also ran experiments for larger state spaces where the performance

of this baseline approach improved but still was not satisfying. Nev-

ertheless, this experiment should only serve as a rough comparison.

Fig. 11 shows the learning curves of the baseline approach for the
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Figure 9. Comparison of the average number of steps for GNG-Q+ in the

acrobot domain with torque ∈ {1, 2, 5}.
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Figure 10. Comparison of the approximation size in numbers of neurons

for GNG-Q+ in the acrobot domain with torque ∈ {1, 2, 5}.

average number of steps with torque ∈ {1, 2, 5}. The learning curve

for torque = 1 oscillates heavily, but the oscillation decreases with

increasing torque. Table 1 shows the comparison in terms of mean

values (µ) and standard deviation (σ) of GNG-Q+ and the baseline

approach for the last 5000 episodes. The values correspond to the

learning curves from Fig. 9 and 11. Except for torque = 5, GNG-

Q+ outperforms the baseline approach considering the average num-

ber of steps needed to reach the goal by a factor of at least two.

As already seen in Figs. 9 and 11 the learning curves of the base-

line approach oscillate more than GNG-Q+ which results in a higher

standard deviation. For torque = 5 the baseline approach is slightly

better than GNG-Q+ on average over the last 5000 episodes, but the

baseline approach needs approx. 15000 episodes to learn the good

policy while GNG-Q+ needs only 1000 episodes. Hence, GNG-Q+

performs better than the baseline approach in most cases while need-

ing less states. It seems that GNG-Q+ places more neurons where

a high density is necessary and only few neurons where a coarser

resolution suffices.

Table 1. Comparison (mean value µ and standard deviation σ) of GNG-Q+

and the baseline approach over the last 5000 episodes with torque ∈ {1, 2, 5}.

GNG-Q+ Baseline

Torque µ σ µ σ

1 117.69 16.53 465.55 809.3

2 33.18 5.98 79.62 31.81

5 16.17 2.66 15.25 5.16
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Figure 11. Comparison of the average number of steps for the baseline ap-

proach in the acrobot domain with torque ∈ {1, 2, 5}.

We also compared our results to others found in literature but

it was not always possible to obtain precise values for the perfor-

mance3. Furthermore, it was sometimes unclear which parameters

values were used in the presented experiments. The GNG-Q+ ap-

proach needs on average about 118 steps to reach the goal state from

a down-hanging position. Always starting from that position the best

policy found by GNG-Q+ results in 72 steps. The policy found in

[10] needs around 100 steps to reach the goal. Unfortunately, the start

position and the torque applied are not mentioned for these experi-

ments. The method described in [5] needs about 250 steps from the

down-hanging position with torque = 1 whereas [3] needs at least

87 steps for the same setting. In [16], their CMAC approach needed

around 85–90 steps.

5.6 Conclusion of Evaluation

In this section we compared GNG-Q+ with GNG-Q, the Fourier

approach, a baseline approach and other approaches from litera-

ture. The changes made to improve GNG-Q to GNG-Q+ increased

the performance regarding stabilization and needed neurons. Then

we showed that GNG-Q+ needs less steps at convergence than the

Fourier approach. After that we investigated the difference between

GNG-Q+ and a baseline approach, resulting in more stable and in

most cases better performance of GNG-Q+. Finally, we presented

results from comparable approaches.

6 Conclusion & Future Work

In this paper, we analyzed GNG-Q, an approach that uses a com-

bination of Q-Learning and growing neural gas to learn a policy in

parallel with a state space abstraction and proposed GNG-Q+ that

improves the former approach. The use of a non-deterministic Q-

update, the incorporation of eligibility traces and the formulation of

criteria for adjustments of the state space clearly improved the perfor-

mance. Our evaluation showed that GNG-Q+ is capable of learning

compact state space representations in parallel with a (nearly) op-

timal policy in several continuous reinforcement learning problems

with up to four dimensions and eight actions. Its performance is well

competitive with other approaches from literature without the need of

knowing the considered reinforcement learning problem beforehand.

For the future, we plan to incorporate a merging strategy to deal

with the fact that Q-vectors of neighboring state regions may become

3 We are aware that the actual results for the mentioned literature may be
better than reported here and we do not want to discredit them. The values
here should only show that our approach is comparable to existing methods.
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similar during learning. The next step is to theoretically investigate

the adapted method and to analyze convergence and optimality ques-

tions. Additionally, we will investigate how the number of neurons

may be bounded further to avoid the increase caused e.g. by taking

exploratory actions. Furthermore, the approach will be employed in

the multi-agent reinforcement learning context. There, it will be in-

vestigated, how the proposed approach can deal with partial observ-

ability.
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