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Do we have the correct perspective on perception?



How can a robot autonomously learn to perceive and interact with its environment?



The Sensori-Motor Contingencies Theory

• Perception = “mode of exploration of the 
world, mediated by the knowledge of 
sensorimotor contingencies”
(SM contingencies = rules governing the 
sensory changes produced by motor actions)

• Different perceptions = different structures in 
the contingencies

• Brain: identify contingencies and use them 
for thoughts and planning



Some lessons from the SMCT

• Siuatedness

• Sensorimotor transitions as building block

• Forward model(s)

• Sensorimotor invariants
(abstract & code-independent) 



Problem: Grounding spatial perception?

Existing ways to deal with spatial tasks:
• “model-free” approaches: learn a policy or forward model without particular care for spatial structure
• “model-based” approaches: spatial structure provided a priori by humans
• dedicated approaches: strong inductive biases, supervised setting

7

Can spatial structure be discovered in a bottom-up fashion?
→ can an agent learn the xyz frame necessary to learn a forward model?

“Deep reinforcement learning for vision-based robotic grasping: A simulated comparative evaluation of off-policy methods”, Quillen, 2018
“Body schema learning for robotic manipulators from visual self-perception”, Sturm, 2009
“Emergence of grid-like representations by training recurrent neural networks to perform spatial localization”, Cueva, 2018

motor space external spaceforward model



Problem
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“Internal world”:
• raw sensorimotor states
• high dimension
• own metric

“External world”:
• body and environment
• immersed in space

o low dimension
o Euclidean metric
o shared by agent and environment
o content-independent

→ Can the agent build an internal representation
      of space, with the same properties?

→ Is sensorimotor prediction a sufficient drive?



Intuition
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Ø The sensorimotor space in which the agent gathers experiences is fundamentally 
different from the external space in which it is embedded:
 

“Thereby, the representative space, in the triple form visual, tacile and motor, is inherently 
different from the geometric space.”

Ø Sensorimotor states in themselves aren't informative about space; one need to look 
at the way sensations change:
 

“None of our sensations, considered separately, could have lead us to the idea of space; it 
comes to us by the study of the laws according to these sensations come one after antoher.”

Ø Spatial changes (displacements) have the particular property of being compensable:
 

“What characterizes a change of position [of an object], is that it can be compensated [by a 
motor command].”

H.Poincaré (1854-1912)

“L’espace et la géométrie”, H.Poincaré, 1895



Sensory/motor states are not “spatial”
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Sensory/motor changes can be “spatial”
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Not all sensory/motor changes are “spatial”
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Spatial sensory/motor changes are “compensable”psst

compensation
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“Compensability” is content-independent on the motor side
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“Compensability” holds everywhere
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“Internal world”:
• raw sensorimotor states
• high dimension
• own metric

“External world”:
• body and environment
• immersed in space

o low dimension
o Euclidean metric
o shared by agent and environment
o content-independent

Problem

→ Can the agent build an internal representation of space, with the same properties? (topology, metric,…)
→ Is sensorimotor prediction a sufficient drive?

Compensable transitions
Displacements
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Capturing the Euclidean metric
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different motor
transitions 

same sensory
transition

Capturing the Euclidean metric
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Capturing the Euclidean metric

Internal world

Internal world
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Capturing the topology of space

Internal world

Internal world
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• The external space has a low-dimensional Euclidean structure
• This structure induces invariants in sensorimotor transitions
• Capturing these invariants should be beneficial for sensorimotor prediction
• They can be grounded in the motor space, by encoding motor states such that:

o motor transitions corresponding to the same external displacements are encoded by the same internal change
o motor states corresponding to the same position are encoded into a single point

Capturing the structure of the external space



Experiment: simulation
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• Robot arm
o 3 degrees of freedom
o camera on the tip (16 x 16 RGB), with fixed orientation
o base fixed in space

• Environment
o room filled with objects
o can translate with respect to the agent

• Data:
o transitions
o environment translations in-between SM transitions

environment
translation
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• Sensorimotor predictive model:

• Motor states are encoded using
a shared encoding module

• Unconstrained encoding h

Experiment: predictive model

mt

mt+1

ht

ht+1

st

st+1

??

Will h capture the Euclidean structure of the external space ?
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Results: motor encoding
true sensor position

m
otor encoding

motor sampling motor encoding true sensor position

Test of the encoding module:
• regularly sample the motor space
• encode the motor samples
• compare the encoding with the true sensor position

(affine transformation)

The structure of the encoding matches the one of the external space!
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Results: motor encoding
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Results: motor encoding

The structure of the encoding matches the one of the external space
• robust to the body complexity
• robust to the type of sensor
• robust to the dimension of the encoding space
• robust to the complexity of the neural network

6D
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Results: motor encoding

standard exploration
environment moves 

during SM transitions static environment

For the spatial structure to emerge:
• The agent needs to experience consistent SM transitions (predictability)
• The agent needs to experience different positions of the environment



Conclusion
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Compensable transitions
Displacements

true sensor position
m

otor encoding
Take home messages:

• it is possible to go from scratch to a space akin to “xyz”
• spatial structure shapes SM experiences

→ displacements appear as compensable transitions
• capturing this structure is advantageous for SM prediction
• spatial structure gets captured in the motor encoding when  

optimizing for sensorimotor prediction

Important points:
• action is required for a notion of space
• displacements of the environment also
• spatial knowledge grounded in the motor space
• spatial knowledge based on egocentric frame
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Thank you!

https://github.com/alaflaquiere/learn-spatial-structure
https://arxiv.org/abs/1906.01401


