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Do we have the correct perspective on perception?




How can a robot autonomously learn to perceive and interact with its environment?
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 Perception = “mode of exploration of the

world, mediated by the knowledge of
sensorimotor contingencies”
(SM contingencies = rules governing the SCENE

sensory changes produced by motor actions) /
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Some lessons from the SMCT
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Problem: Grounding spatial perception?

Existing ways to deal with spatial tasks:
* “model-free” approaches: learn a policy or forward model without particular care for spatial structure
* “model-based” approaches: spatial structure provided a priori by humans
* dedicated approaches: strong inductive biases, supervised setting
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Can spatial structure be discovered in a bottom-up fashion?
— can an agent learn the xyz frame necessary to learn a forward model?




Problem
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“Internal world”:
* raw sensorimotor states
* high dimension
* own metric

“External world”:
* body and environment
* immersed in space
o low dimension
o Euclidean metric
o shared by agent and environment
o content-independent

— Can the agent build an internal representation
of space, with the same properties?

— |s sensorimotor prediction a sufficient drive?



Intuition

» The sensorimotor space in which the agent gathers experiences is fundamentally
different from the external space in which it is embedded:

“Thereby, the representative space, in the triple form visual, tacile and motor, is inherently
i different from the geometric space.”

» Sensorimotor states in themselves aren't informative about space; one need to look
at the way sensations change:

“None of our sensations, considered separately, could have lead us to the idea of space; it
comes to us by the study of the laws according to these sensations come one after antoher.”

ke e (e el > Spatial changes (displacements) have the particular property of being compensable:

“What characterizes a change of position [of an object], is that it can be compensated [by a
motor command].”



Sensory/motor states are not “spatia
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Sensory/motor changes can be “spatia

spatial change of the environment spatial change of the agent

Agent
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Not all sensory/motor changes are “spatia

state change of the environment

Agent

state change

state change of the agent

state change
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Spatial sensory/motor changes are “compensable”

spatial change of the environment spatial change of the agent

Agent

displacement
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“Compensability” is content-independent on the motor side

spatial change of the environment spatial change of the agent

Agent

displacement
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“Compensability” holds everywhere

spatial change of the environment spatial change of the agent

Agent

g\ displacement
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Problem

“Internal world”:
* raw sensorimotor states
* high dimension

. f * own metric
Compensable transitions

Displacements $ “External world”:

* body and environment

* immersed in space

low dimension

Euclidean metric

shared by agent and environment
content-independent
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— Can the agent build an internal representation of space, with the same properties? (topology, metric,...)
— Is sensorimotor prediction a sufficient drive?



Capturing the Euclidean metric
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Capturing the Euclidean metric
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Capturing the Euclidean metric
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Capturing the topology of space

K-p Agent \
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Capturing the structure of the external space

* The external space has a low-dimensional Euclidean structure

* This structure induces invariants in sensorimotor transitions

e Capturing these invariants should be beneficial for sensorimotor prediction

* They can be grounded in the motor space, by encoding motor states such that:
o motor transitions corresponding to the same external displacements are encoded by the same internal change
o motor states corresponding to the same position are encoded into a single point
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Experiment: simulation

* Robot arm
o 3 degrees of freedom

o camera on the tip (16 x 16 RGB), with fixed orientation

o base fixed in space
* Environment
o room filled with objects
o can translate with respect to the agent
* Data:
o transitions (my,s;) — (myzi1,S8:41)
o environment translations in-between SM transitions
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Experiment: predictive model| ‘
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* Motor states are encoded using siamese Al

a shared encoding module
* Unconstrained encoding h 2([s S

Will h capture the Euclidean structure of the external space ?




Results: motor encoding

Test of the encoding module:

regularly sample the motor space

encode the motor samples

compare the encoding with the true sensor position

motor sampling

motor space

(affine transformation)

motor encoding

The structure of the encoding matches the one of the external space!

1.51

1.0 4

0.5 A

0.0 A

—0.5 4

—1.0 1

—-1.54

true sensor position

3ulpoousa Jojow
uolyisod JOSuas anJ}

24



Results: motor encoding
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Results: motor encoding

The structure of the encoding matches the one of the external space

robust to the body complexity
robust to the type of sensor

robust to the dimension of the encoding space
robust to the complexity of the neural network
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Results: motor encoding

motor space

For the spatial structure to emerge:
The agent needs to experience consistent SM transitions (predictability)

The agent needs to experience different positions of the environment

standard exploration
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Conclusion

Take home messages:

e itis possible to go from scratch to a space akin to “xyz”

e spatial structure shapes SM experiences

— displacements appear as compensable transitions
e capturing this structure is advantageous for SM prediction
e spatial structure gets captured in the motor encoding when

optimizing for sensorimotor prediction

Important points:
e action is required for a notion of space
* displacements of the environment also
» spatial knowledge grounded in the motor space
e spatial knowledge based on egocentric frame

1.51

1.0 4

0.5 A

0.0 A

—0.5 4

—1.0 1

—-1.54

Compensable transitions
Displacements

3ulpoous Jojow
uo13isod JOSuUas anJ}

1
\ 4

28



Thank you!

https://github.com/alaflaquiere/learn-spatial-structure

https://arxiv.org/abs/1906.01401

https://github.com/alaflaquiere
alaflaquiere@softbankrobotics.com
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Abstract

Despite its onmi presence in robotics application, the nature of spatial knowledge
and the mechanisms thet underlie its ememgence in autonomous agents are still
poorly understood. Recent theoretical works siggest that the Euclidean structure of
spaceinduces invariants in an agent’s raw sensori motor experience. We hypothesize
thet capturing these invariants is benef cial for sensorimptor prediction and thet,
under certain exploratory conditions, a motor representation capturing the structure
of the external space should emerge as a byproduct of leaming to predict future
sensory experences, We propose a simple sensorimotor predictive scheme, apply
it to different agents and types of exploration, and evaluate the pertinence of these

We show that a naive agent can capture the topology and meric
regul arity of its sensor’s position in an egocentric spatid frame without any a prior
knowledge, nor extranecus supenvision.

1 Introduction

Current mode -free Reinforcement Leaming (RL ) approaches have proven to be very successful &
solving diff cult problerrs, but seemito lack the ability to extrapolate and transfer a ready acquired
knowledge to new d reurmstances [7, 33]. One way to overcorme this limitation would be for leaming
agents to abstract from the data a model of the world that could support such extrapolation. For
agents acting in the world, such an acquired model should incl ude a concept of space, such that the
spatia properties of the data they collect could be disentangled and extrapolated upon.

This problem naturally reises the question of the neture of space and how this abstract concept
«can be acquired. This question has al ready been addressad philosophically by great minds of the
past [18, 36, 31], among which the approach proposed by H.Poincaréis of particular interest, asit
naturally lends itself to a methematica formulation and concrete experimentation. He was interested
in understandi ng why we percelve oursal ves as being irmmerser in a 3D and isotropic (Euclideen)
space when our actual sensory experiences livein a multidimensional space of a different neture and
structure (for instance, when the ervironment is projected on the f at heterogeneous surface of our
retina). He suggested that the concept of space emerges via the discovery of conrpensable sensory

that are generated by a change in the environment: but can be canceled-out by a motor change.
This conpensahility property applies spedif cally to displacerrents of objects in the environment
and of the sensor, but not to non-spatial changes (object changing color, agent changing its camera
aperture...). For instance, one can compensate the sensary change due to an object moving 1 meter
away by moving 1 meter toward the object. Moreover, this compensahility property isinvariant to
the content of the environment, as the displacerment of an object can be compensated by the same
rmotor change regardless of the type of the object. One can thus theoreti cally derive from the structure
underlying these compensatory motor changes a notion of space abstracted from the specif ¢ sersory
inputs that any given environment’s content i nduces.

33rd Conference on Neural Informetion Processing Systems (NeurIPS 2019), Vancouver, Canada,
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