

Les Systèmes Coopératifs face aux problèmes de fiabilité des capteurs :

Une approche basée sur un modèle Multi-Agents en 3 couches

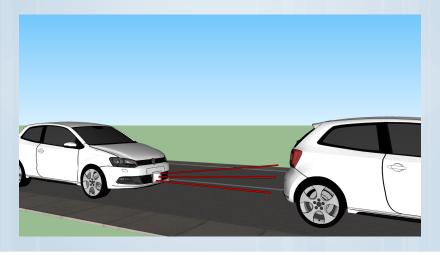
Réunion d'équipe SMA Vendredi 7 février 2014 Maxime Guériau LIRIS & IFSTTAR-LICIT

- 1 Les Systèmes Coopératifs
 - Véhicule intelligent ?
 - Véhicule autonome ?
 - Véhicule coopératif
- 2 Modélisation du trafi
 - Niveaux de modélisation
 - Modèles Car-following
- 3 Modèle 3 couches
 - Présentation du modèle
 - Couche physique
 - Couche communication
 - Couche confiance
- 4 Simulation
 - Implémentation
 - Résultats expérimentaux

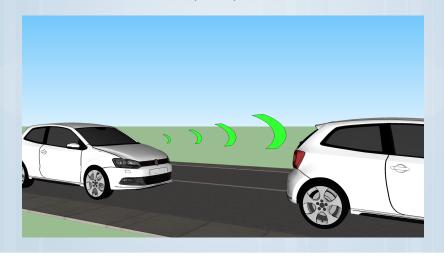
- 1 Les Systèmes Coopératifs
 - Véhicule intelligent?
 - Véhicule autonome ?
 - Véhicule coopératif
- 2 Modélisation du trafic
 - Niveaux de modélisation
 - Modèles Car-following
- 3 Modèle 3 couches
 - Présentation du modèle
 - Couche physique
 - Couche communication
 - Couche confiance
- 4 Simulation
 - Implémentation
 - Résultats expérimentaux

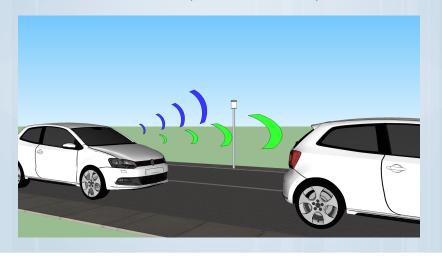
- 1 Les Systèmes Coopératifs
 - Véhicule intelligent?
 - Véhicule autonome ?
 - Véhicule coopératif
- 2 Modélisation du trafic
 - Niveaux de modélisation
 - Modèles Car-following
- 3 Modèle 3 couches
 - Présentation du modèle
 - Couche physique
 - Couche communication
 - Couche confiance
- 4 Simulation
 - Implémentation
 - Résultats expérimentaux

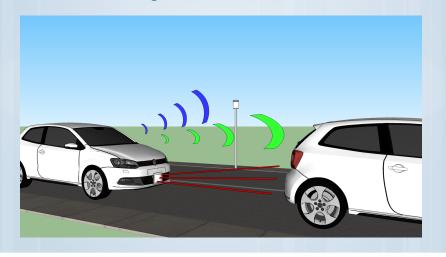
- 1 Les Systèmes Coopératifs
 - Véhicule intelligent ?
 - Véhicule autonome ?
 - Véhicule coopératif
- 2 Modélisation du trafic
 - Niveaux de modélisation
 - Modèles Car-following
- 3 Modèle 3 couches
 - Présentation du modèle
 - Couche physique
 - Couche communication
 - Couche confiance
- 4 Simulation
 - Implémentation
 - Résultats expérimentaux


Les Systèmes Coopératifs

- 1 Les Systèmes Coopératifs
 - Véhicule intelligent?
- ioule autorionie :
- 2 la élisation du trafic
 - Modèles Car-following
- 3 Modèle 3 couches
- Présentation du modèle
 - buche physique
 - The communication
- L vene confiance
- 4
- mplementation
 - Résulta expérimentaux


Véhicule classique


• Véhicule équipé


• Véhicule connecté (V2V)

Véhicule connecté (V2V & V2I/I2V)

Véhicule intelligent

Les Systèmes Coopératifs

- 1 Les Systèmes Coopératifs
 - Véhicule autonome ?
 - A phicule coopération of the coopération of the
 - 2 Modelisation du trafic
 Niveaux de modélisation
 Modèles Car-following
 - 3 Modèle 3 couches

 Frésentation du modèle

 Couche physique

 Couche communication
- mple contation
 - Résulta expérimentaux

- Systèmes avancés d'aide à la conduite (Advanced Driver Assistance Systems)
 - Lane-Keeping System

Active park-assist

- Systèmes avancés d'aide à la conduite (Advanced Driver Assistance Systems)
 - Lane-Keeping System

Active park-assist

- Systèmes avancés d'aide à la conduite (Advanced Driver Assistance Systems)
 - Lane-Keeping System

Active park-assist

- Systèmes avancés d'aide à la conduite (Advanced Driver Assistance Systems)
 - Collision avoidance system

Adapative Cruise Control

- Systèmes avancés d'aide à la conduite (Advanced Driver Assistance Systems)
 - Collision avoidance system

Adapative Cruise Control

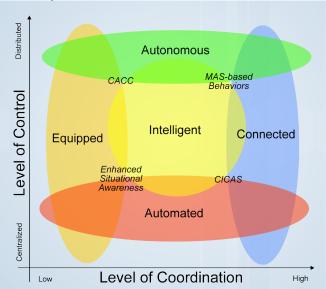
Autonomous vehicle

Platoon system

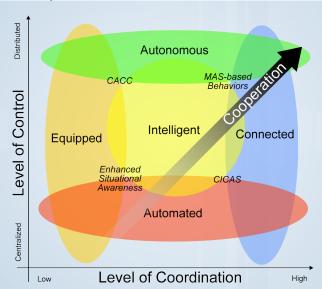
Autonomous vehicle

Platoon system

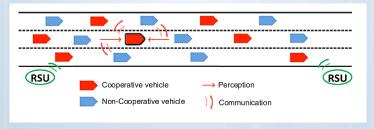
Les Systèmes Coopératifs

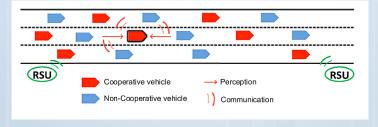

- 1 Les Systèmes Coopératifs
 - Inicule autonome?
 - Véhicule coopératif
- Niveaux de modélisation
 Modèles Car-following
- 3 Modèle 3 couches

 The Présentation du modèle

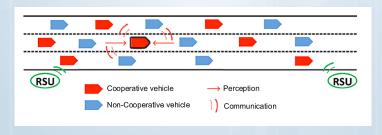

 Couche physique

 Couche communication
- mple contation
- Systèmes Coopératifs Vendredi 7 février 2014 Maxime Guériau

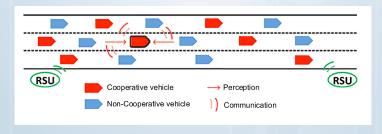

Véhicule coopératif


Véhicule coopératif

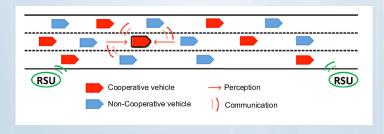
- Véhicules coopératifs
 - Communication
 - Perception
 - Coopération
 - Infrastructure
 - RSL
 - Gestionnaire d'infrastructure

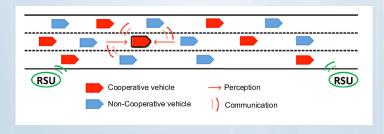


- Véhicules coopératifs
 - Communication
 - Perception
 - Coopération
- Infrastructure
 - RSU
 - Gestionnaire d'infrastructure



• Enjeux des systèmes coopératifs =


- Sécurité
- Fluidité
- Confort


- Enjeux des systèmes coopératifs =
 - Sécurité
 - Fluidité
 - Confort

- Enjeux des systèmes coopératifs =
 - Sécurité
 - Fluidité
 - Confort

- Enjeux des systèmes coopératifs = trafic + homogène et + stable
 - Sécurité
 - Fluidité
 - Confort

Modélisation du trafic

- Les Somes Cooperatifs

 I would intelligent?

 Concule autonome?

 Cooperatif
- 2 Modélisation du trafic
 - Niveaux de modélisation
 - Modèles Car-following
- 3 Modele 3 couches

 Présentation du modèle

 Gouche physique

 Couche communication
- mple entation
 - Résulta expérimentaux

Modélisation macroscopique

- Indicateurs globaux : densité, débit, vitesse moyenne
- Modèle d'ordre 1, d'ordre 2

Modélisation mésoscopique

- Niveau intermédiaire
- "Gas-kinetic models"
- Fonction de densité de probabilité

- Comportements individuels
- Modélisation particulaire
- "Car-following models"

Modélisation macroscopique

- Indicateurs globaux : densité, débit, vitesse moyenne
- Modèle d'ordre 1, d'ordre 2

Modélisation mésoscopique

- Niveau intermédiaire
- "Gas-kinetic models"
- Fonction de densité de probabilité

- Comportements individuels
- Modélisation particulaire
- "Car-following models"

Modélisation macroscopique

- Indicateurs globaux : densité, débit, vitesse moyenne
- Modèle d'ordre 1, d'ordre 2

Modélisation mésoscopique

- Niveau intermédiaire
- "Gas-kinetic models"
- Fonction de densité de probabilité

- Comportements individuels
- Modélisation particulaire
- "Car-following models"

Modélisation macroscopique

- Indicateurs globaux : densité, débit, vitesse moyenne
- Modèle d'ordre 1, d'ordre 2

Modélisation mésoscopique

- Niveau intermédiaire
- "Gas-kinetic models"
- Fonction de densité de probabilité

- Comportements individuels
- Modélisation particulaire
- "Car-following models"

Modélisation du trafic

- Les Symmes Cooperatifs

 | We made intelligent?
 | Cooperatifs | Cooperati
- 2 Modélisation du trafic
 - Modèles Car-following
- 3 Modèle 3 couches

 Présentation du modèle

 Couche physique

 Couche communication
- 4
- mple rentation
 - Résulta expérimentaux

Modèles Car-following

Intelligent Driver Model [Treiber and Kesting (2013)]

$$\ddot{x}_n = a \left[1 - \left(\frac{\dot{x}_n}{V_0} \right)^{\delta} - \left(\frac{s_0 + \dot{x}_n T + \frac{\dot{x}_n \Delta \dot{x}_n}{2\sqrt{ab}}}{\Delta x_n} \right)^2 \right]$$

- a : accélération maximum
- b : décélération désirée
- V₀: vitesse désirée
- s_0 : distance en congestion
- T: temps inter-véhicule désiré
- δ : traduit l'agressivité (accélération)

Modèles Car-following

Intelligent Driver Model [Treiber and Kesting (2013)]

$$\ddot{x}_n = \mathbf{a} \left[1 - \left(\frac{\dot{x}_n}{V_0} \right)^{\delta} - \left(\frac{s_0 + \dot{x}_n T + \frac{\dot{x}_n \Delta \dot{x}_n}{2\sqrt{ab}}}{\Delta x_n} \right)^2 \right]$$

- a : accélération maximum
- b : décélération désirée
- V₀: vitesse désirée
- s_0 : distance en congestion
- T: temps inter-véhicule désiré
- δ : traduit l'agressivité (accélération)

Modèles Car-following

Intelligent Driver Model [Treiber and Kesting (2013)]

$$\ddot{x}_n = a \left[1 - \left(\frac{\dot{x}_n}{V_0} \right)^{\delta} - \left(\frac{s_0 + \dot{x}_n T + \frac{\dot{x}_n \Delta \dot{x}_n}{2\sqrt{ab}}}{\Delta x_n} \right)^2 \right]$$

- a : accélération maximum
- b : décélération désirée
- V₀: vitesse désirée
- s_0 : distance en congestion
- T: temps inter-véhicule désiré
- δ : traduit l'agressivité (accélération)

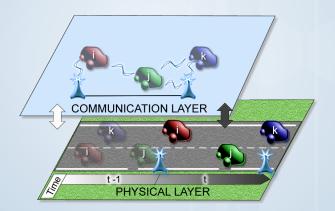
Modèles Car-following

Intelligent Driver Model [Treiber and Kesting (2013)]

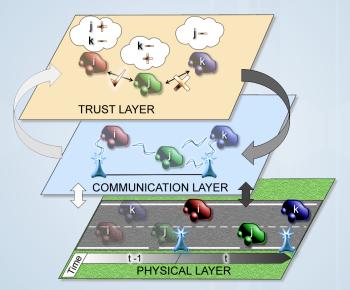
$$\ddot{x}_n = a \left[1 - \left(\frac{\dot{x}_n}{V_0} \right)^{\delta} - \left(\frac{s_0 + \dot{x}_n T + \frac{\dot{x}_n \Delta \dot{x}_n}{2\sqrt{ab}}}{\Delta x_n} \right)^2 \right]$$

- a: accélération maximum
- b : décélération désirée
- V₀: vitesse désirée
- s₀: distance en congestion
- T: temps inter-véhicule désiré
- δ : traduit l'agressivité (accélération)

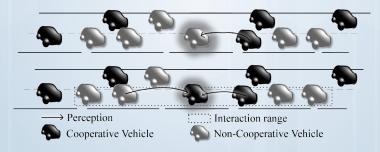
Modèle 3 couches


- 1 Les S es Coopératifs

 Les S es Coopératifs
- 2 Niveaux de modélisation Modèles Car-following
- 3 Modèle 3 couches
 - Présentation du modèle
 - Couche physique
 - Couche communication
 - Couche confiance


Modèle 3 couches [Monteil et al. (2013)]

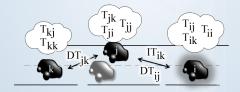
Modèle 3 couches [Monteil et al. (2013)]



Modèle 3 couches [Monteil et al. (2013)]

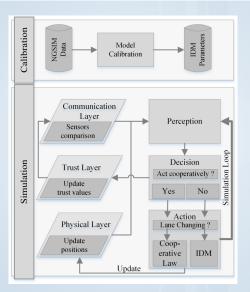
Couche physique

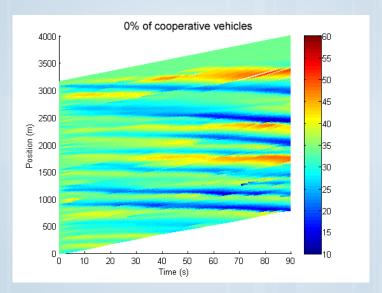
- Section d'une autoroute urbaine à 3 voies
- Car-following model = lane-based trajectories
- Changement de voie opportuniste (MOBIL opportunistic lane change strategy [Kesting et al. (2007)])
- Capteurs = télémètres (à l'avant et à l'arrière)

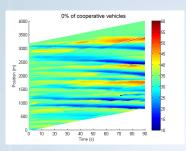

Couche communication

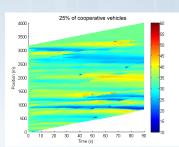
- Communication V2V sans fil (norme Wifi 802.11p)
- Communication V2I
- Informations : propriétés cinématiques / valeurs de confiance / mesures de capteurs
- Road Side Units : calculent et transmettent les paramètres du steady-state

Couche confiance

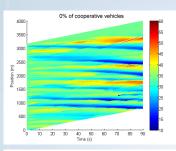

- Définition conceptuelle mais représentation calculatoire [Nguyen Vu et al. (2012)]
- Utilisation des mesures de capteurs et des valeurs de trust échangées
- Détection des capteurs non fiables

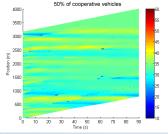


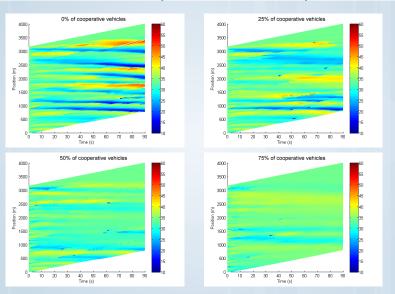

Simulation


- Les Sy mes Coopératits
 - Micule autonome?
- 2 Novellisation du trafic Niveaux de modélisation
- 3 Modèle 3 couches Présentation du modèle Couche physique Couche communication
- 4 Simulation
 - Implémentation
 - Résultats expérimentaux

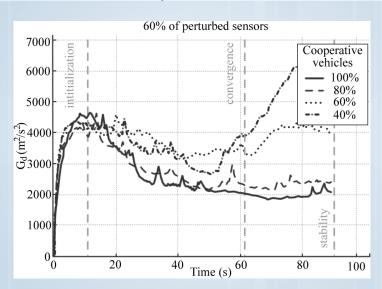
Implémentation







e Les Systèmes Coopératifs Modélisation du trafic Modèle 3 couches Simulation Conclusion Référence



Expérimentation 2 : Impact de la Trust

Conclusion

- La loi coopérative permet d'homogénéiser le trafic
- · Les effets sont positifs même pour un trafic mixte
- La couche confiance permet de détecter les agents dont les capteurs sont peu fiables
- Le modèle en 3 couches assure la cohérence du système et fait le lien entre les dynamiques du système

Perspectives

- Proposer un modèle coopératif inspiré d'un comportement de "flocking"
- Intégrer les RSU comme support de décision ou entrée pour le contrôle du système
- Étudier les effets d'une stratégie de changement de voie coopérative
- Améliorer le modèle de Trust (prendre en compte les comportement de tricherie)

References

- Kesting, A., Treiber, M., and Helbing, D. (2007). General lane-changing model mobil for car-following models. *Transportation Research Record : Journal of the Transportation Research Board*, 1999 / 2007 Traffic Flow Theory 2007 :86–94.
- Monteil, J., Billot, R., Armetta, F., Hassas, S., and El Faouzi, N.-E. (2013).

 Cooperative highway traffic: multi-agent modeling and robustness assessment to local perturbations. In the 92nd Annual Meeting of the Transportation Research Board, reviewed by TRB's Traffic Flow Theory and Characteristics Committee (AHB45).
- Nguyen Vu, Q.-A., Canal, R., Gaudou, B., Hassas, S., and Armetta, F. (2012). Trustsets: using trust to detect deceitful agents in a distributed information collecting system. *Journal of Ambient Intelligence and Humanized Computing*, 3:251–263.
- Treiber, M. and Kesting, A. (2013). *Traffic Flow Dynamics : Data, Models and Simulation*. Springer.