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1 Introduction

In recentyears,multi-agentsystems(MAS) have received increasingattentionin theartificial intel-
ligencecommunity. Researchin multi-agentsystemsinvolvesthe investigationfor autonomous,ra-
tional andflexible behavior of entitiessuchassoftwareprogramsor robots,andtheir interactionand
coordinationin suchdiverseareasasrobotics(Kitanoetal., 1997),informationretrieval andmanage-
ment(Klusch,1999),andsimulation(Gilbert andConte,1995).Whendesigningagentsystems,it is
impossibleto foreseeall thepotentialsituationsanagentmayencounterandspecifyanagentbehavior
optimally in advance.Agentsthereforehave to learnfrom, andadaptto, theirenvironment,especially
in a multi-agentsetting.

In thispanelreport,we combineseveraldifferentperspectives,andreview somekey contributing
influences.The reportbegins with a discussionof just why learningis consideredby many to be a
crucial characteristicof intelligent agentsystems.In the following section,the featuresof different
learningalgorithms,andtheir potentialimpacton multi-agentsystems,arediscussed,suchasways
to achieve multi-agentlearning,theapplicabilityof off-line learningmethods,andadiscussionof the
prosandconsof reactive, logic-based,andsociallearningmethods.

2 The Relationship between Machine Learning and MAS Research

Even thoughmachinelearning(ML) hasbeenstudiedextensively in the past,learningresearchhas
beenmostly independentof agentresearchandonly recentlyhasit received moreattentionin con-
nectionwith agentsandmulti-agentsystems(HuhnsandWeiss,1998;Imam,1996;Sen,1996;Sen,
1998;WeissandSen,1996;Weiss,1997;Weiss,1998;Weiss,1999).This is in somewayssurprising,
becausetheability to learnandadaptis arguablyoneof the mostimportantfeaturesof intelligence
(RussellandNorvig, 1995;HuhnsandSingh,1998).

Intelligenceimpliesacertaindegreeof autonomywhich in turn requirestheability to make inde-
pendentdecisions.Thusagentshave to beprovidedwith theappropriatetoolsto makesuchdecisions.

�
This reportis theresultof apaneldiscussionat theThird Workshopof theUK’sSpecialInterestGrouponMulti-Agent

Systems.
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In mostdynamicdomainsa designercannotpossiblyforeseeall situationsthat an agentmight en-
counterandthereforetheagentneedstheability to adaptto new environments.This is especiallytrue
for multi-agentsystems,wherein many casesglobalbehavior emergesratherthanbeingpre-defined.
Consequently, learningis a crucial part of autonomyandthusshouldbea major focusof agentand
multi-agentresearch.

At onelevel, agentsandmulti-agentsystemscanbeviewedasyet anotherapplicationdomainfor
machinelearningsystems,admittedlywith its own challenges.Researchtaking this view is mostly
reducedto applyingexisting(single-agent)learningalgorithmsmoreor lessdirectlyto (single)Agents
in an MAS setting. Consequently, multi-agentlearningis only seenasan emergentproperty. Even
thoughthis could be interestingfrom a MAS point of view, it doesnot seemoverly challengingfor
ML research.Nevertheless,this is thedirectionmostlearningresearchfor MAS hasbeenfollowing.

Alternatively, multi-agentsystemsposethe problemof distributed learning, i.e., many agents
learningseparatelyto acquirea joint hypothesis.Existing learningalgorithmshave beendeveloped
for singleagentslearningseparateand independenthypotheses.Oncethe learningprocessis dis-
tributedamongstseveral learningagents,suchlearningalgorithmsrequireextensive modification,or
completelynew algorithmsneedto be developed. In distributed learning,agentsneedto cooperate
andcommunicatein orderto learneffectively, andtheseissuesarebeinginvestigatedextensively by
MAS researchers,but to datethey receivedonly little attentionin theareasof learning.

Overall, collaborationbetweenMAS and ML researcherswould be highly beneficialfor both
researchareas,andcertainlybothcommunitiescanlearnfrom eachother. Fortunately, this seemsto
bea view that is gainingpopularity, judgingby thegrowing interestof agentresearchersin ML and
viceversa.

3 Aspects of Agent Learning

We arenow discussingthreeparticularissuesaboutMulti-Agent Learning. We startoff with some
considerationsaboutwhatthetermMulti-Agent Learningmeans,andthedifferencebetweenisolated
or emergentMulti-Agent LearningandcoordinatedMulti-Agent Learning. In the next two subsec-
tions, different designoptionsare presented,namely: on-line vs off line, reactive vs logic-based
learningalgorithms,andsociallearningalgorithmsinspiredby animallearning.

3.1 Single Agent Learning vs Multi-Agent Learning

To date,mostlearningalgorithmshave beendevelopedfrom a single-agentperspective. How effec-
tive cansuchalgorithmsbeusedin a multi-agentsetting?Accordingto StoneandVeloso(Stoneand
Veloso,1998),single-agentlearningfocusesonhow oneagentimprovesits individualskills, irrespec-
tiveof thedomainin which it is embedded.Thatis, wecannottalk aboutmulti-agentlearningif what
anagentlearnsdoesnotaffect nor is affectedby otherneighboringagents.

But cananagentsituatedin a multi-agentenvironmentlearna hypothesisthatdoesnot affect or
is not affectedby otheragents?Even if anagentis not explicitly awareof otheragents,it perceives
themaspart of the environmentand their behavior will be part of the hypothesislearned. It does
seempossibleto achieve coordinatedgroupbehaviour with puresingle-agentlearning(Sugawaraand
Lesser, 1993).Pastresearch(MundheandSen,2000)hasevenshown thatcertainlevelsof awareness
of otheragentscanhurtperformance.

On theotherhand,singleagentlearningmightnotalwaysyield anoptimalperformancein multi-
agentenvironmentsandtheremaybedomainswherecoordinatedmulti-agentlearningis amorenat-
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uralmetaphorandimprovestheeffectiveness.Eventhoughthereis adifferencein learningstrategies
dependingon thelevel of awarenessof otheragentsandcoordination,it is anopenquestionwhether
higherlevelswill automaticallyyield betterperformance.

3.2 On-line and Off-line Learning Methods

On-line (or incremental)learningalgorithms,suchasbackpropagatingneuralnetworks or (in some
way) reinforcementlearning,have beenusedto computenew hypothesesincrementallyassoonas
a new training examplebecomesavailable. On the otherhand,off-line learningmethodsinducea
hypothesisfrom a setof training examplespresentedto the algorithmat a singletime point. Obvi-
ously, on-linealgorithmsarebettersuitedfor multi-agentsystemswhereagentsneedto updatetheir
knowledgeconstantly, but neverthelessit would bedesirableto beableto usethelargeandpowerful
classof off-line learningalgorithmsaswell. In order to do this, an agentneedsto collect a setof
trainingexamplesandthendecideat sometime point to compute(or re-compute)a hypothesis.The
major problemsto be solved arewhich training examplesto collect (andwhat format they should
have) andat which time point to executethe learningalgorithm. The detailsof both decisionswill
mostlydependon theapplicationdomain,but onegeneralprinciplecouldbethatoff-line learningis
executedassoonasthecurrenthypothesisturnsout to bewrongin a numberof casesabove a given
threshold.

Oneexampleof theapplicationof off-line learningmethodssuchasInductiveLogic Programming
to MAS is presentedin thenext subsection.Thespecificadvantagehereis theability to incorporate
domainknowledgeinto thelearningprocess.

4 Learning Techniques

In this sectionwe discusstheapplicationof reactive, logic-based,andsocial learningtechniquesto
MAS.

4.1 Logic-Based Learning and Reactive Learning

In reactive systems,theoverall behaviour emergesfrom theinteractionof thecomponentbehaviours.
Insteadof designingprotocolsof coordinationor providing agentswith complex (BDI-lik e (Raoand
Georgeff, 1992)) recognitionmodels,individuals areassumedto work on value-basedinformation
(suchas the distancethey mustkeepfrom their neighbours)that producesocial behaviour. Since
internalprocessingis avoided,thesetechniquesallow theagentsystemsto respondto thechangesin
their environmentin a timely fashion. In Q-learning,reactive agentsaregiven a descriptionof the
currentstateandhave to choosethe next actionso asto maximizea scalarreinforcementreceived
aftereachaction.Thetaskof theagentis to learnfrom indirect,delayedreward,to choosesequences
of actionsthatproducethegreatestcumulative rewards.

As a sideeffect, agentsarestrippedof domainknowledgethat is essentialfor makingthe right
decisionin complex, dynamicscenarios.We cannotreducean agent’s repertoireto situation-action
rules,nor simulatecomplex socialinteractions(markets,conflicts,andthelike) assumingthatagents
do not have any domainknowledgeof their environment. In orderto displayhigh-level behaviour,
agentsneedto abstracttheir experienceinto concepts.An agentwho liveswithout this ability must
constantlyinvestpreciousenergy in reactingto externalstimuli. Theentity thatcanconceptualisecan
turnexperienceinto knowledgeandshepherdvital resourcesuntil they arerequired.
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Even thoughthey aremainly off-line techniques,Knowledge-basedlearningtechniquessuchas
explanation-basedlearning(EBL) andinductive logic programming(ILP) aresuitabletoolsfor over-
comingthelimitationsof reactive learningsystems.

EBL (Carbonell,et al., 1990)hasbeenwidely usedin artificial intelligenceto speed-uptheper-
formanceof planners.Generallyspeaking,the agentsareconcernedwith improving the efficiency
of theproblem-solver ratherthanacquiringnew knowledge. Obviously, problem-solvers,whenpre-
sentedwith thesameproblemrepeatedly, shouldnot solve it thesameway andin thesameamount
of time. On the contrary, it seemssensibleto usegeneralknowledgeto analyse,or explain, each
problem-solvinginstancein orderto optimisefutureperformance.This learningis not merelya way
of makinga programrun faster, but a way of producingqualitative changesin theperformanceof a
problem-solvingsystem.In short,EBL extractsgeneralrulesfrom singleexamplesby generatingan
explanationwhy thesystemsucceededor failed,andgeneralisingit. Thisprovidesadeductive (rather
thanstatistical)methodto turnfirst-principlesknowledgeinto useful,efficient,special-purposeexper-
tise. Thelearnedrulesenabletheplannerto make theright choiceif a similar situationarisesduring
subsequentproblemsolving.

In contrastto EBL methods,ILP (MuggletonanddeRaedt,1994)computesa hypothesisbased
on externalandinitially unknown circumstances.Generally, relying exclusively on EBL-generated
rules can turn out to be impractical in real-world domainsin which agentswork with incomplete
knowledge,andthusILP is animportantadditionto thesystem’seffectiveness.ILP methodscompute
aninductivehypothesiswith thehelpof trainingdata(positiveandnegativeexamples)andbackground
knowledge.Agentscollecttrainingexamplesbasedonexecutedactionsandplansandtheiroutcome.
This, togetherwith thedomainknowledgebaseanda targetpredicate(e.g.,successor failure) forms
thebasisof theinductive learningprocesswhichcomputesahypothesis(i.e.,adefinitionof thetarget
predicate)thatcanbeusedin subsequentplanning.Targetpredicatesaregivenby thesystemdesigner.
Oncea certainnumberof trainingexamplesareclassifiedincorrectly(i.e., theagentmakesa certain
numberof mistakesin its predictionsof actionoutcomes)a new hypothesiswill becomputedbased
on theextendedtrainingset.

Estlin (Estlin, 1998)hasshown how EBL andILP techniquescanbe combinedin single-agent
domains.Thecombinationof EBL andILP to produceoptimal resultsin dynamic,complex multi-
agentsystemsis currentlybeingstudied(AlonsoandKudenko, 1999;Kudenko andAlonso,2000).

4.2 Social Learning

In the remainderof the paper, influencesfrom artificial intelligenceandbiology arediscussedwith
severalpotentiallearningmechanismsbeingoutlined.Thesemechanismscanbeseenasanalternative
to logic-basedapproachesdiscussedabove.

Considera persistentmulti-agentsystem,wherenew agentsenteraworld alreadypopulatedwith
experiencedagents. In onesense,a new agentbegins with a blank slate,as it hasnot yet hadan
opportunityto learnaboutits environment(althoughit mayof coursebe“hard-wired”with behaviours
thatwill probablyturn out to beuseful). However, a new agentmaynot needto find out everything
abouttheenvironmentfor itself: it maywell bepossibleto benefitfrom theaccumulatedlearningof
thepopulationof moreexperiencedagents.

Thissituationcouldcharacterizehighly autonomoussoftwareagentsoperatingontheinternet,for
example.A new agenthasnotyet learnedwhichsearchengineto try first, or whichauctionsiteoffers
the bestbargains. But the situationdescribedalsomatchesthe learningproblemfacinga newborn
animal,especiallyan animal that belongsto a social specieslike our own. In biology, learningin
multi-agentsystemshasbeenstudiedfor sometime underthe headingsocial learning. Theremay
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belessonsin thebiologicalliteraturefor thosewhoareinterestedin engineeringeffective multi-agent
systems.

An importantdifferencebetweenartificial agentsandanimalsis that in the former casewe can
oftenenforceacompletelycooperativescenario,wherewhatis goodfor oneagentis goodfor themall
(i.e., a commonutility function). Althoughcooperationoccursin many animalspecies,thepotential
for conflict is never absent,becauseof thecompetitionbetweenself-replicatinggenesat theheartof
the evolutionaryprocess.Indeed,muchof the recentwork in evolutionarybiology hasbeenabout
conflictsof interestbetweenindividualsandhow thoseconflictsareresolved. So,cooperative social
learningmay be easierto maintain,andsimpler to understand,in a populationof software agents
thanit is in a real species.However, conflictsof interestwill be relevant if agentsareoperatingin
an environmentwith potentiallymaliciouscompetitors,aswill be true on the internet,for example.
Sociallearningin suchacasecouldinvolve theaddedcomplicationof makingsurethatyour“teacher”
is notattemptingto deceive you in orderto furtherits own interests.

Questionsthatbiologistsaskaboutsociallearning—orany otherbehaviour—include“why?” and
“how?” (Tinbergen,1963).Thesearealsoreferredto asquestionsof functionandmechanismrespec-
tively. Translatedinto engineeringterms,thesequestionsbecome:whenwould you want to include
sociallearningabilitiesin amulti-agentsystem,andhow shouldyoudo it?

We will dealwith the “why?” or “when?” questionfirst. In recentyearstherehasbeensome
progresstowardsunderstandingthe adaptive valueof social learning. Modelsof cultural transmis-
sion(Cavalli-SforzaandFeldman,1981;Boyd andRicherson,1985),within-generationtransmission
(Lalandet al., 1993;1996),andwhateconomistscall herdingbehaviour (Banerjee,1992;Bikhchan-
dani, 1998)help to delineatethe conditionsunderwhich it will be advantageousfor individuals to
learnfrom othersratherthanfinding thingsout for themselves. Someof the conclusionsarerather
straightforward: for example,social learningis morelikely to evolve whenthe costsof individual,
trial-and-errorlearningarehigh. So, in situationswherea mistake by a naive animalcould mean
death,perhapsthrougheatinga poisonousplantor failing to run from a predator, we aremorelikely
to find younganimalslearningfrom the behaviour of others. The equivalent for a software agent
might bea situationwheremistakesarefinanciallycostlyfor theagent’s owner.

A moreinterestingfinding is thatsociallearningwill beselectedwhentheratesof changein the
environment,consideredeitherspatiallyor temporally, areat intermediatelevels(Lalandetal.,1996).
The logic is asfollows: in an environmentthat changesvery slowly, hard-wiredstrategies(i.e., ge-
neticallytransmittedinformation)will enabletheanimalto respondappropriately. If theenvironment
changesvery quickly, theanimalmustlearnfor itself basedon local conditions—sociallearningwill
beinadequatebecausethenaiveanimalwouldbetrying to learnfrom anotherwhoseexperienceof the
world wasno longerrelevant.Thus,in decidingwhetheror not to build acapacityfor sociallearning
into agroupof softwareagents,weshouldfirst examinethespeedatwhichtheirenvironmentchanges.

4.2.1 Mechanisms for Social Learning

Turningto thequestionof mechanism:therearemany waysin whichoneagentmight learnfrom the
behaviour of another. In thesociallearningliterature,therehaslongbeena focuson imitation (Galef,
1988),i.e., thegoal-directedcopying of another’s behaviour. However, as(Tomasello,1996)points
out, trueimitation is acomplex processthatseemsto involve notonly perceiving andreproducingthe
bodily movementsof another, but understandingthechangesin theenvironmentcausedby theother’s
behaviour, andfinally beingableto graspthe“intentionalrelations”betweenthese,i.e.,knowing how
andwhy thebehaviour is supposedto bring aboutthegoal. Much of thework on imitation hasbeen
shortonspecificsabouttheunderlyingmechanisms.
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We will insteadconsidera rangeof simplermechanismsthat could easilybe implementedin a
roboticor softwareagents.It haslong beenrecognizedwithin fields like artificial life that complex
globalphenomenacanarisefrom simplelocal rules,andthis is preciselywhat is happeningin many
sociallearningcontexts: individualsfollow a simplerule (e.g.,“stay closeto your mother”) and,in
combinationwith someform of learning,this givesriseto anapparentlysophisticatedsociallearning
systemat thegrouplevel. ¿Fromthepoint of view of building learningabilitiesinto artificial agents,
simplemechanismshave obviousadvantagesin termsof robustnessanddesigncosts.

Contagious behaviour is exemplifiedby a rule suchas“If othersarefleeing,flee also.” The idea
is that thestimuli producedby theperformanceof a particularbehaviour serve astriggersfor
othersto behave in thesameway. For instance,considerananimalthatis “wired up” suchthat
the characteristicsoundof a conspecificmoving rapidly causesit to do likewise. In a group
of theseanimals,any stimulusthat causesoneof themto flee will leadto a chainreactionof
rapidmovements.Notethatthisdoesnot involve reallearning,andis merelya reactive system,
but could neverthelessproduceadaptive social behaviour. Possibleexamplesof contagious
behaviour includeflight responses,movementin flocksor schools,andchorusingby birdsand
dogs(Galef,1988).Laughingandyawning areexcellentexamplesof contagiousbehaviour in
humans(Provine,1996).

Stimulus enhancement (alsocalledlocal enhancement)is whathappenswhenanimalsobey a rule
like “Follow someoneolder thanyou, andthenlearnfrom whatever happens.” For example,
if you follow your parentseverywhere,andyour parentssometimeseatchocolate,we do not
needto postulatea capacityfor genuineimitation to explain the fact that you develop a lik-
ing for chocolate. Perhapsyou samplechocolatepiecesdroppedby your parents;you then
learn that chocolate-eatingis good. A simplebehavioural tendency—in this case,following
a conspecific—combineswith the capacityfor learningto result in the potentialtransmission
of acquiredbehaviours. (AisnerandTerkel, 1992)have shown thatstimulusenhancementac-
countsfor theacquisitionof anovel feedingbehaviour in blackrats.

Observational learning If weaddslightly moresophisticatedlearningabilitiesto stimulusenhance-
ment,we get observational learning. The algorithminvolved is approximately“Pay attention
to whatothersaredoingor experiencing,andif the resultsfor themappearto begoodor bad
thenlearnfrom this.” (MinekaandCook,1988)work onfearacquisitionin monkeys illustrates
the idea: the authorstook naive, lab-raisedrhesusmonkeys andallowed themto observe an
experiencedconspecificreactingfearfully to thepresenceof asnake. Theobservers,previously
indifferentto snakes,rapidlyacquiredapersistentfearof them.It is easyto seethatin thewild,
this sortof learningcouldresultin thetransmissionof acquiredfears.All thatneedsto beas-
sumedis thatthemonkeys have evolvedbothaninnateability to recognizethecuesassociated
with fear on thepart of a conspecific(suchasgrimacingandretreating),andthe tendency to
learnto fearaco-occurrentstimulus(i.e., thesnake).

Observationallearningcanalsoexist in a simplerform: explicit evaluationof theconspecific’s
experienceasgoodor badmaybe omitted. For example,Norway ratswill develop a marked
preferencefor a novel food that they smell on the breathof a conspecific(Galef, 1996). We
might saythat the first rat, theobserver, learnsthat the new food is goodbecauseit observes
positive consequencesfor thesecondrat, thedemonstrator. That is, theobserver notesthat the
demonstratoris still alive to tell the taleaftereatinga new andpotentiallytoxic substance.It
turnsout,however, thattheratsarenotsensitive to theconsequencesof eatingpoisonousfoods:
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they do not learnthat a food is badif the demonstratorhasbecomeill after eatingit; in fact
they developapreferenceasusual.Sotherats’heuristicis simply“Payattentionto whatothers
areeatinganddo likewise.” Noble,Todd,andTuci (in press)simulatedthis phenomenon,and
showedthatgivencertainassumptionsabouttherats’ environment(e.g.,thelethality of poison
andthebehaviour of sick animals),their failure to evaluatethedemonstrator’s healthis not a
mistake,but is actuallyanadaptive strategy.

Matched-dependent behaviour Speciessuchasratsandpigeonscanreadilybetrainedto discrimi-
nate,e.g.,to pressonebarwhena redlight is on andto pressanotherfor a greenlight. (Miller
andDollard, 1941)showed that this sortof learningwasequallypossiblewhenthebehaviour
of anotheranimalservedasthediscriminative stimulus;they trainedratsto follow a leaderleft
or right at a mazejunction. Thus,simplereinforcementlearningcanresultin sociallearningif
thecontingenciesareright. Thereis no implication that the follower understandsthe leader’s
intentions,nor eventhatthefollower is awareof thematchbetweentheleader’s behaviour and
its own.

Along similar lines,(Skinner, 1953)suggestedthata wild pigeoncouldlearnthroughtrial and
errorthatscratchingin afield waslikely to berewarding(i.e., likely to resultin ingestingfood)
if otherpigeonscouldbeseenscratchingthere.In factthepigeonneednotevenobserve others
feeding: learninga correspondencebetweenhiddenfood andtheevidenceof feeding,suchas
scratchmarks,wouldamountto thesamething. Thegeneralpoint is thatcontagiousbehaviour
maysometimesbelearned.

Cross-modal matching Vocalmimicry by birdsis oftenheldto bea specialcaseof sociallearning:
becausethe original stimulusand the animal’s responseare in the samesensorymodality, a
relatively simplepattern-matchingmechanismcouldaccountfor thephenomenon.In contrast,
copying themovementsof anotheranimalrequirescross-modalmatching;theobservermustbe
ableto translatethevisual input associatedwith another’s movementsinto appropriatemotor
outputs.Considerthatthereisnotrivial link betweenthesightof watchingsomeoneelsescratch
their nose,andtheexperienceof scratchingyour own nose.

None of the simplemechanismsdiscussedso far requiresan ability to perform cross-modal
matching.Eventhoughprocesseslikecontagiousbehaviour or learnedcopying couldmeanthat
thesightof oneanimaldoing

�
wasa sufficient stimulusfor anotheranimalto do

�
, thereis

nosuggestionof asystematicability to copy movements.However, imagineananimalthatwas
ableto identify themovementsof others,andmapthemto movementsof its own muscles.If
suchanability wascombinedwith observationallearning,wewouldgetthebehavioural rule“If
someoneelsemovestheir head(or forelimb or tail or.. . ) thusor so,make thesamemovement
yourself.” As with observationallearning,the rule might beconditionalon positive outcomes
for theobservedanimal.Work on “mirror neurons”in monkeys (GalleseandGoldman,1998)
andhumans(Iacobonietal.,1999)ishighlysuggestive that,atleastin primates,directmappings
may exist betweenmovementsseenandmovementsperformed.(Meltzoff, 1996)findingson
theimitativepowersof veryyounginfantsalsopointto aninnateability to performcross-modal
matchingin humans.

5 Conclusion

Learningability is a crucial featureof intelligent agents,especiallywhenfacedwith a multi-agent
environment.Wehavepresenteda few of theissuesinvolvedin applyingML algorithmsto MAS. We
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believe thatthereis still a lot of work to bedonein themerging of thetwo disciplines.
Moreover, the questionof usingcomplex cognitive agentsversussimplereactive onesis still a

matterof debate. We have presentedtwo major approachesrepresentingboth sides. Logic-based
agentshave the advantageof beingableto naturallyincorporatedomainknowledgein the learning
process,while artificial life approachescanbe basedon evidencefrom biology (e.g.,nestof rats,a
flock of birds,or a troop of monkeys), andmuchcanalreadybe achieved with suchsimplemecha-
nisms.
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