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Abstract
We propose that the abil ity to extract regularities from time series through prediction
learning can be enhanced if we use a hierarchical architecture in which higher layers are
trained to predict the internal state of lower layers when such states change significantly.
This hierarchical organization has two functions: (a) it forces the system to progressively
re-code sensory information so as to enhance useful regularities and filter out useless
information; (b) it progressively reduces the length of the sequences which should be
predicted going from lower to higher layers. This, in turn, allows higher levels to extract
higher level regularities which are hidden at the sensory level. By training an architecture of
this type to predict the next sensory state of a robot navigating in a environment divided
into two rooms we show how the first level prediction layer extracts low level regularities
such as ‘walls’ , ‘corners’, and ‘corridors’ while the second level prediction layer extracts
higher level regularities such as ‘ the left side wall of the large room’ . The extraction of
these regularities allows the robot to locali ze its position in the environment and to detect
changes in the environment (e.g. the presence of a new object or the fact that a door has
been closed).

1. Introduction
From the point of view of a natural or artificial agent the external environment does

not provide any direct cue on how the agent should act to attain a given goal. However,
the environment provides a rich feedback: the sensory states. Such information, by
depending both on the agent motor action and on the environmental structure, may be
used to extract regularities2 from the environment which in turn may be useful to
achieve the agent’s goal. For example, the agent may learn of the consequences of
different actions in different environmental contexts or it may learn to classify sensory
states also on the basis of the preceding and following sensory patterns.

A straightforward way to use sensory information to extract regularities from the
environment is prediction learning i.e. to try to predict what the next sensory state will

                                                       
1 Most of the work described in this paper has been done while Stefano Nolfi was visiting SONY-CSL.
2 By regularities we mean a set of sensory or internal states which can be easil y separated from the others
and which correspond to agent-environmental states which are stable over space or time (i.e. which are
predictable). Hopefully, the meaning of the term wil l become progressively more clear in the next
sections.
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be given the current sensory state and the motor action that the agent is going to perform
(Parisi & Cecconi, 1995). That prediction learning can extract high level regularities
from time series was first shown by Elman (Elman, 1990, 1993). He showed how by
training a simple recurrent neural network to predict the next word in sentences of a
pseudo-natural language, the network was able to extract high level regularities such as
‘nouns’ or ‘verbs’ .

Regularities can also be extracted in different manners without relying on the
information provided by the next sensory states. For example, Floreano & Mondada
(1996) showed how a robot may extract a representation of the external environment by
using an evolutionary process in which individuals are rewarded for their overall abil ity
to achieve a given task. In this case a robot was evolved for its abil ity to explore a
simple arena while periodically returning back to a recharging station. However, this
technique seems to work only in relatively simple cases. In the case of this work for
example, the recharging station was illuminated and the robot was able to directly detect
its relative position in most of the cases.

In this paper we will investigate how prediction learning can extract regularities
from the external environment in the case of a mobile robot that navigates in a simple
environment divided into two rooms. As we will see, regularities extracted in this way
can be used by the robot to localize its position in the environment and to detect changes
in the environmental topology such as the presence of a new object. In doing so we will
show why a simple prediction network such as that described above is not enough to
solve such tasks. A more complex architecture based on a cascade of prediction and
segmentation layers in which regularities can be extracted at different levels is needed
(see below).

1.1 What can and cannot be predicted
In practical cases, it is not possible to predict all the sensory information coming

from the external environment for two reasons:
(1) Some sensory states or a part of each sensory state may be completely

unpredictable. Consider, for example, the case of predicting the next sounds. While
driving we can predict the intensity of the noise produced by the engine of our own car
to a good extent on the basis of the gear into which we have shifted, the slope of the
road etc. However, the sounds coming from the other cars in a traffic jam cannot be
predicted at all .

(2) In general, only some features of the next sensory state can be predicted. For
example, "Hearing the first two words of the sentence 'Henrietta eats …' allows you to
infer that the third word probably indicates something to eat but you cannot tell what.
The class of the third word is predictable from the previous words - the particular
instance of the class is not." (Schmidhuber & Prelinger, 1993, pp.625).

Moreover we should consider that some of those features which can be predicted in
principle may be diff icult to predict in practice. In particular:

(3) The longer the time lag between an event that can be predicted and the features
that can be used to infer its occurrence the harder the corresponding prediction is
(Schmidhuber, 1992). The reason for that is that "the longer the time lag between an
event and the occurrence of a corresponding error the less information is carried by the
corresponding back-propagated error signals" (Schmidhuber, 1992, pp. 234).

(4) The training process may end up in a local minimum in which some of the
sensory states or some features of the sensory states which in principle are predictable
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may not be predicted correctly. In particular, this tends to happen when most of the
states can be predicted easily (e.g. can be predicted by taking into account only the
previous sensory state or few previous sensory states) while few other states can be
predicted with greater difficulties. In such cases, as we will see, the learning process
tends to converge on a solution in which the states which are easy to predict and are
frequent are predicted correctly while the states which are more difficult and are
infrequent are not (on the role of the learning experience regarding the outcome of the
learning process see Elman et al., 1996). This type of problem is very general and might
affect the result of the learning process in very different circumstances. However, its
negative effects may be particularly relevant in the case of prediction learning in
realistic circumstances in which sensory states might not change significantly for a long
time (i.e. in cases in which the prediction task is for the most part trivial).

In other words, it may be that regularities have only an attenuated existence in a
body of training data. If this is the case we are facing a so-called type-2 problem (Clark
& Thornton, 1997). As claimed by Clark and Thornton the only way to solve these hard
problems is to re-code the data in a way that ensures that regularities will have a higher
statistical visibil ity.

Different methods may be applied to solve these problems. To solve the problem
that some states can be unpredictable and that, in other cases, not all the details can be
predicted (i.e. to solve (1) and (2)) Schmidhuber & Prelinger proposed to train a
network to produce the predictable class of the next states instead of the states
themselves. Sensory states were classified into predictable classes by a second network
that try to classify the sensory states in classes that are predictable and still as specific as
possible (Schmidhuber & Prelinger, 1993). To alleviate the problem of the time lag
between events to be predicted and the features that can be used to infer their
occurrence and the problem that most of the states may be easy to predict (i.e. to solve
(3) and (4)) Schmidhuber proposed focusing on unexpected inputs and ignoring
expected ones. This may be obtained by using two networks: one that tries to predict all
sensory states and another that tries to predict the unexpected sensory states. The inputs
which turn out to be unpredictable from the very first network are sent to a higher level
network which in turn predict its next input operating on a slower, self-organizing time
scale (Schmidhuber, 1992a; 1992b; for a variation of this idea in which unexpected
states are identified by a network that predicts its own error see Schmidhuber, 1991).

1.2 A self-organizing hierarchy of prediction and segmentation layers
In this paper we propose an approach based on a hierarchy of prediction layers

(Figure 1) which try to predict the next internal states of the lower layers (or of the
sensory-motor states in the case of the very first layer). In this architecture, as in
Schmidhuber & Prelinger (1993), higher layers are asked to produce a classification of
the next sensory states and not the next sensory states themselves. The classification in
this case is produced by the lower level layers that try to predict the next input states at
their level. Moreover, in this type of architecture the sensory-motor information wil l be
progressively transformed going from lower to higher levels. What we expect is that
during the learning process weights will be modified so that in each transformation: (a)
information will be compressed in time (each internal state, in fact, will be a function
both of the current and of the next input state); (b) features which can be predicted at the
current level will be enhanced while other features will be attenuated. To understand
why, we should consider that, after learning, the internal representation in each
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predicting layer will be a function both of the input state and of the output state (the
internal representation is an intermediate step between the input state and the output
state). At the end of learning the output state will tend to approximate the teaching state.
However, this wil l be true only for states which are correctly predicted. Therefore, the
internal state will be more affected by states which can be predicted at the current level3.

internal state

sensors and planned action

internal state

internal state

time delay

time delay

time delay

Figure 1. Hierarchy of prediction layers. The first level prediction layer (at the bottom) predicts the state
of the sensors at time t+1 by receiving as input their state at time t and the planned motor action. The
higher level prediction layers predict the internal state of the lower level layers at time t+1 by receiving as
input their state at time t.

Moreover, in order to focus on relevant states and reduce the time lag between the
events and the features that can be used to infer their occurrence we propose an
architecture in which, at each level, a segmentation layer compresses sub-sequences of
homologous states into a single state (Figure 2). These segmentation layers, by
identifying sequences of homologous states at each level, allow the network to
progressively reduce the frequency of states to be predicted going from lower to higher
                                                       
3 Consider, for example, the case of a state S0 which is followed 50% of the times by a state S1 and 50%
of the times by the state S2. Moreover imagine that the distribution of S1 and S2 is random (i.e. we cannot
predict if S0 wil l be followed by S1 or S2 even by taking into account the previous states). If S1 and S2 are
orthogonal (i.e. if they are completely different) the next state is totall y unpredictable. In this case S1 and
S2 will not affect the internal representation of the network because the network wil l learn to produce a
neutral state S3 equally distant from S1 and S2. On the contrary, if S1 and S2 are similar, the next state can
be predicted to a certain extent. In this case S1 and S2 wil l affect the internal representation because the
network wil l learn to produce a state S3 which wil l be similar to both S1 and S2.
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prediction layers. Therefore, while low level prediction layers, by being asked to predict
long sequences of states may only learn to detect short term regularities, higher level
layers, by being asked to predict shorter sequences, may be able to detect long term
regularities. The role of the segmentation layers is, as in Schmidhuber (1992a; 1992b),
to compress information in time by focusing on relevant states. The difference is how
relevant states are identified. In this case, relevant states are internal states, at a certain
level, which differ significantly from the previous states. In Schmidhuber (1992a;
1992b) instead, relevant states are states which cannot be predicted from the lower level
prediction layer.

sensors and planned action

time delay

time delay

time delay

segmentationinternal state

segmentationinternal state

segmentationinternal state

Figure 2. Hierarchy of prediction and segmentation layers. Each layer includes a prediction and a
segmentation sub-network. The frequency of the spreading of activation is reduced going from lower to
higher levels because high level layers predict only when the lower segmented state changes. So higher
level layers should predict the internal state of the lower level layers at time t+n where ‘n’ corresponds to
how many steps the internal states of the lower level do not change significantly from the state at time t.

Unfortunately, the process of compressing information in time at each level may be
strongly affected by the presence of unpredictable information. At each level, in fact,
there is no way to discriminate between relevant states (i.e. states which are
significantly different from the previous states or which are unpredictable from the
lower level prediction layer) and unpredictable states. States which are totally
unpredictable, in fact, will probably be different from the previous states and will be
certainly unpredictable from the lower level prediction layer. As a consequence, the
process of focusing on relevant states risks ending up in a process that focuses on
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unpredictable states as well . This may have serious consequences on the higher level
prediction layers.

For this reason it is important that, as we have mentioned above, each prediction
layer progressively re-codes information while filtering out unpredictable information.
It should be noted that at a given level we cannot discriminate between features that are
completely unpredictable and features which are unpredictable at the current level but
which may be predictable at higher levels. This implies that, by filtering out information
which is unpredictable at the current level, we risk eliminating not only information
which is really unpredictable but also information which could be predicted by the
higher levels. However, as we will see, information which is predictable and which is
stable throughout time does not risk being eliminated. Consider for example the
occurrence of the feature x which occurs at time t and lasts n cycles. Moreover, imagine
that the occurrence of x can be predicted only by taking into account the presence of a
feature y which occurred several time steps before. The first level prediction network
will probably fail to predict the occurrence of x at time t and as a consequence the
internal state of this network will not be affected by x. However, at time t+1 the sensory
state will include x. If x tends to last for a significant number of time steps after the first
occurrence, the first level prediction network will probably predict correctly that x will
occur also in the next sensory state. As a consequence the feature x will be filtered out at
time t but not in the next time steps in which it will be both present in the input and in
the output state.

1.3 Extracting regularities at different levels

This work has been inspired by a set of experiments described in Tani (1996). In
these experiments a mobile robot explored the workspace by means of collision-free
maneuvering. When the robot encountered a fork in the road, the robot decided either to
take an alternative direction or to maintain the same direction. At these points (i.e. at the
points of intersection) a recurrent neural network would attempt to predict the next
sensory input which the robot will encounter at the next intersection having as input the
current sensory state and the decision taken at the intersection. These intersections thus
play the role of landmarks and involve a temporal segmentation of the sensory-motor
flow. However, which are the landmarks and how the sensory motor flow should be
segmented is the result of a decision of the experimenter (see also Mataric, 1992). In
this paper we will try to eliminate these types of predefined mechanisms in the hope that
the robot itself wil l be able to extract them by using the feedback of the environment.

Deciding in advance what will be landmarks and how the sensory-motor flow
should be segmented has at least two drawbacks: (a) if the environment changes
significantly the experimenter has to re-design, at least in part, the control system of the
robot; (b) the difficulty in detecting the nearest landmark and in predicting the next
depends on which the landmarks are selected by the experimenter. We should consider
that landmarks which are easily perceived by a human observer may be hard to perceive
by a mobile robot that has a sensory motor system which is very different from our own.
Moreover, landmarks should be selected by taking into account several factors such as
how different they are from the other selected landmarks and how stable they are, given
the current motor behavior of the robot. What a good landmark is depends on several
factors: the task of the robot, the environment, and the sensory-motor structure of the
robot. From the point of view of the prediction task a good landmark is not only a set of
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states which can be easily identified but also a set of states which are useful in
predicting the next landmarks. For these reasons it is clear that it would be better to
have the robot learning what landmarks are and how they are arranged in sequence at
the same time.

In this paper we will use the hierarchical architecture described in Figure 2 both to
extract a set of landmarks from the environment and to predict the next landmark that
the robot will encounter. We will refer to extracted regularities (landmarks) as
segmented states to indicate that: (a) they are not identified in advance; (b) they may
correspond to sub-sequences of similar states at different levels (at the sensory-motor
level, at the internal level of the first level prediction layer, or at the internal level of
higher layers); (c) they do not necessarily correspond to environmental circumstances
which can be described by using a single or few words of our own language (such as the
name of an object or of a topological structure such as an intersection point). A
segmented state, for example, may correspond to a similar sequence of sensory-motor
states which the robot experiences while it is moving along a wall. Or it may correspond
to the states that the robot experiences by following the walls of a square room which is
followed by a narrow corridor. Or, it may correspond to the states which the robot
experiences by encountering an object from a particular angle or in a particular context,
for example after following a wall of a certain length.

The hierarchical architecture described in Figure 2 may extract regularities at
different levels of organization. The first level prediction layer, by being exposed to low
level information (sensory-motor states) and to long sequences of states can only extract
low level regularities such as, for example, ‘an obstacle is approaching from the frontal
direction’ . Higher level prediction layers however, by being exposed to higher level
internal states and to shorter sequences may be able to extract higher level regularities
such as, for example, ‘ I am leaving the big room’.

It should be noted that although in this paper we discuss the implications of this
hierarchical architecture in the case of a mobile robot navigating in an structured
environment, the architecture is quite general and can be applied to very different
domains. For example, one can imagine applying the same architecture to extract
regularity at different levels of organization (e.g. phonemes, syllables, words etc.) in a
sound wave corresponding to a piece of speech. In other words the strategy of forcing
the neural network to learn to re-code the sensory information by extracting regularities
in space and time can be seen as a general strategy for solving different type-2
problems.

A final remark concerns the role of the motor actions produced by the robot. In this
paper we will assume that the behavior of the robot is predetermined and fixed. On the
other hand it is clear that the abil ity to predict the next sensory states might be strongly
affected by the behavior of the robot. Indeed, by evolving plastic controllers which were
allowed to modify their behavior, it was shown that evolved individuals displayed an
initial behavior that enhanced their ability to learn to navigate in their environment
(Nolfi &  Parisi, 1997). For a first attempt to develop a control system which extracts
regularities from the environment through prediction learning and uses this information
to modify its own behavior see (Ito & Tani, 1998).
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2. The experimental setup
In this section we wil l describe the experimental setup and the detailed architecture

which we used in our experiments.

Figure 3. An environment made of two rooms joined by a short corridor. The straight lines represent the
walls and the full circle represents a cylindrical object. The circle on the left-bottom side represents the
robot and the trace on the terrain represents the trajectory of the robot during a few laps in the
environment.

Let us consider the case of a mobile robot that navigates by performing a wall
following behavior in an environment like that described in Figure 3. The robot (see
Figure 4) is a miniature mobile robot developed at E.P.F.L. in Lausanne, Switzerland
(Mondada, Franzi, & Ienne, 1993). It has a circular shape with a diameter of 55 mm, a
height of 30 mm, and a weight of 70g. It is supported by two wheels and two small
Teflon balls. The wheels are controlled by two DC motors with an incremental encoder
(10 pulses per mm of advancement by the robot). The robot is provided with eight infra-
red proximity sensors (six sensors are positioned on the front of the robot, and the
remaining two on the back). The infrared sensors can detect obstacles within a range of
about 3cm.

Figure 4. The Khepera robot.

The Khepera robot, which is programmed to produce a wall following behavior4, is
placed in an environment made of two rooms of 40x40 cm and 20x20 cm respectively
joined by a corridor of 10 cm in width. The robot is asked to predict what the state of
the 8 infrared sensors will be after each movement, given the current state of the sensors
and the selected speed of the two motors. The state of the motors and sensors is updated
each 100ms (step) and the robot is asked to predict the sensory pattern it will experience
                                                       
4 As we said above the behavior of the robot might strongly affect its ability to learn to predict the next
sensory states. We choose this behavior because it is easy to implement and because it allows the robot to
explore environments with different topologies. A similar approach has been used by Nehmzow (1992).
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after each cycle (a cycle may correspond to one or more steps depending on the level of
the layer involved in the prediction, see below).

In doing so we expect that our robot will extract a dynamical representation of the
environment that will i ncorporate the topological structure of the environment and the
relative position of the robot in the environment. This type of representation may be
useful in achieving several different goals such as, for  example, navigating to a desired
part of the environment5.

(a)

(b)

(c)

Figure 5. Three variations of the environment described in Figure 3.

In this paper we will first consider the simplest use of the representation extracted
through prediction learning: detecting if something changed in the environment.
Imagine a sort of vigilant-robot which would check and report on any significant change
occurring in a delimited environment. We place in such an environment a robot which is
programmed to explore the environment itself and we train the robot to predict its next

                                                       
5 The abil ity to directly navigate to a target area requires that the robot modifies its own motor behavior
(which is something that wil l not be discussed in this paper). On the other hand, a similar result can be
obtained by imagining that the robot stops to perform the wall-following behavior when he reaches the
target area. As we will show in section 3.3, in fact, the robot can be trained to identify when it is traveling
along a certain area of the environment.
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sensory states. Hopefully, during the training, the prediction error will be progressively
reduced up to a point in which it will remain relatively low. After that we can use the
margin of error as an indication of the environmental stability. If the margin of error
remains low, we may conclude that the environment is stable because the sequence of
sensory-motor states experienced by the robot confirms the robot expectations which
have been developed during the training phase. On the contrary, if the prediction error
suddenly increases, we may conclude that something has been changed in the
environment.

For instance, we want a robot which, after being trained in the environment
described in Figure 3, is able to detect if the corridor between the two rooms has been
closed, if a new obstacle has been placed in the environment, or if the extension of one
of the two rooms has been altered (see Figure 5 a, b, and c, respectively).

The experiments which will be described have been conducted in simulation (for
more details on the simulator see Miglino, Lund, & Nolfi, 1995). The simulator has
been designed by taking samples of a real environment using the real robot sensors and
motors6. Moreover, it has been shown that quite similar forms of behavior can be
obtained by testing the same control system on the simulated and on the real robot (see
Miglino, Lund, & Nolfi, 1995; Nolfi, 1997). Finally, it should be noted that noise is
added to the sensors (sensors may have 1024 different states ranging from 0.0 to 1.0 and
noise has been accomplished by adding a random generated value ranging from –0.05 to
+0.05 to each sensor value). The presence of noise and the fact that the state of the
sensors and motors are updated each 100ms implies that the trajectory of the robot in
different laps in the environment may differ slightly (see Figure 3).

The neural architecture is organized as a cascade of prediction and segmentation
layers arranged hierarchically. Although the number of layers can be arbitrarily chosen
in the experiment described in this paper we will refer to an architecture with only two
layers (see Figure 6).

The first level prediction layer is a feedforward network with 10 sensory units
(which encode the state of the eight infrared sensors of the robot and the speed of the
two motors), 3 hidden units, and 8 output units (which encode the state of the infrared
sensors at time t+1). Moreover, the network is provided with 3 additional input units
which encode the activation state of the hidden units at time t-1. This recurrence gives
the network dynamical properties which make it possible for the network to process

                                                       
6 The walls and the cylindrical objects were sampled by placing the real robot in front of one of them, and

by letting it turn 360o, recording, at the same time, the state of the infra-red sensors at different distances
with respect to the objects. The activation level of each of the eight infra-red sensors was recorded for 180
different orientations and for 20 different distances. In this way two different matrices of activation were
obtained for the two types of objects (walls and cylinders). These matrices were then used by the
simulator to set the activation state of the simulated sensors depending on the relative position of Khepera
and of the objects in the simulated environment. The effects of the two motors were sampled similarly by
measuring how Khepera moved and turned for each of the 20x20 possible states of the two motors. At the
end of this process a matrix was obtained that was then used by the simulator to compute the
displacements of the robot in the simulated environment. This sampling procedure may prove to be time
consuming in the case of highly unstructured environments because it requires to sample each different
type of objects present in the environment. However, it has the advantage of taking into account the fact
that different sensors, even if identical from the electronic point of view, do respond differently. Sampling
the environment throughout the real sensors of the robot allowed us, by taking into account the
characteristics of each individual sensor, to develop a simulator shaped by the actual physical
characteristics of the individual robot we have (for more about methodological issues see Nolfi, Floreano,
Miglino, and Mondada, 1994; Miglino, Lund, and Nolfi, 1995).
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sequential inputs (Elman, 1993; see also Robinson & Fallside, 1987; Will iams, 1989;
Will iams & Zipser 1992).

sensors planned action

time delay1th-level
prediction

2th-level
prediction

1th-level
segmentation

time delay
… …

Figure 6. The architecture of the network. Single arrows indicate the weights of the first and of the second
prediction layer which are taught by back-propagation and the weights of the segmentation layer which
are taught through unsupervised learning. Empty double arrows indicate that the input state is used as
teaching input at time t+1 both for the first and the second prediction layer (notice however that the first
level prediction layer cycles each 100ms while the second level prediction layer cycles when a new
segmentation occurs). The curved double arrows indicate that the state of the hidden units of the first and
of the second prediction layer is copied after each cycle into a corresponding set of additional input units.
Finally, the full double arrow indicates a ‘winner take all’ network.

The segmentation network is a fully connected two-layer network with 3 input units
and 3 output units. The input layer is constituted by the hidden units of the first level
prediction layer. The output layer is constituted by a set of output units with recurrent
connections which locally encode the current segmented state. The activation state of
each output unit is fed into a ‘winner takes all ’ layer so that the output corresponding to
the most activated unit is set to 1.0 and all other outputs are set to 0.0.

The second level prediction layer is a feedforward network with 4 sensory units
(which are constituted by the 3 outputs of the segmentation network and one input
encoding how many cycles the previous segmented state lasted), 30 hidden units, and 4
output units (which encode the next segmented state and after how many cycles the
segmentation will shift from the current to a new one). Moreover, the network is
provided with 30 additional input units which encode the activation state of the hidden
units at time t-1.

In the case of the first and second level prediction layers the units are activated by
using the logistic function and the weights are updated by using standard back-
propagation (Rumelhart, Hinton, & Will iams, 1986). A learning rate of 0.2 and no
momentum were used. Weights were randomly initialized within -0.1 and +0.1 and
were updated after each cycle. In the case of the segmentation network, the activation
state of a unit (i) is set to a value proportionate to the inverse of the Euclidean distance
(normalized between 0.0 and 1.0) of the corresponding weights (Wij) from the current
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input pattern (X j) and to the previous activation state (due to the recurrent connections).
The constant µ was set to 0.25.
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by reducing the distance between the weights of the winning unit (i*) and the current
input pattern (X j) with a decreasing learning rate (η is initially set to 0.3 and reduced by
50% each 1000 cycles). The winning unit (i*) is the unit which has the minimum
Euclidean distance from the current input pattern (X j). This means that, unlike Self-
Organizing Maps (Kohonen, 1982), only the weights of one unit are updated each
cycle7.
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Finally, it should be noted that while the first level prediction layer is updated each
100ms (i.e. each step), the second level prediction layer is updated only when the
segmentation layer produces a new segmented state (i.e. when, after the processing of
the winner take all weights, the current activated unit is different from that which was
active the previous cycle). Therefore, if the segmentation state changes on an average of
each 10 steps, for example, the second level prediction layer wil l be updated each
second, on the average.

The architecture is trained in three phases. First the first level prediction layer is
trained, then the segmentation network, and finally the second level prediction layer.

In a recent paper we have proposed a different but related architecture (Tani &
Nolfi, 1998). In this work we used a mixture of recurrent neural networks (MRE) which
is an extension of the architecture proposed by Jacobs & Jordan (1991). Each module
competes to become an expert at predicting different sub-sequences of the sensory-
motor flow and the shift between experts is used to produce segmentations. Also in this
case we have an architecture which is hierarchically organized. However, the second
layer was updated each 10 steps (i.e. at a fixed rate) while in the case of the experiments
described in this paper the update rate of the second level prediction layer is not fixed
and is determined by the lower level segmentation network.

3. Experimental results
In this section we wil l report the results of the training of the first-level prediction

layer, the segmentation layer, and the second level prediction layer. Moreover, we will

                                                       
7 Given that only the weights of the winning unit are updated it may happen that some units never become
the winning unit and therefore are never updated. This problem however does not tend to arise when, as
in the case of the experiment describe in this paper, the input patterns are affected by noise (see Szu,
1986).
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provide an analysis which shows what type of regularities have been extracted through
the interaction with the environment.

3.1 First-level prediction
We ran 10 experiments starting with different randomly assigned weights. Each

network was trained for 100,000 steps (i.e. 100,000 cycles given that the first level
prediction layer is update each step). As can be seen in Figure 7, in all cases the
summed square error decreases until it reaches a stable value around 0.05. This means
that the network produces almost perfect performance (i.e. the network output closely
maps the state of the sensor at time t+1).
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Figure 7. Sum of squared error over the 8 output units of the first level prediction layer. The average error
and the standard deviation over 10 runs are shown. Before learning, the average error is around 1.6 (data
not shown in the graph); however, during the first 1000 steps the error suddenly decreases to about 0.2.

However, if we test the trained network in the three variations of the environment
shown in Figure 5 we can see how the prediction error remains quite low (see Figure 8).
This implies that in order to predict most of the next sensory states the network does not
need to extract knowledge about the topological structure of the environment. This can
be explained by considering that the state of the sensors does not change dramatically
during 100ms. Moreover, in most of the cases the current state of the sensors and the
speed of the motors can be used to predict the next sensory state to a good extent
without taking into account the previous states (indeed, by training a first level
prediction network without memory units, we obtained almost identical performance)8.
This implies that the network can produce outputs very close to the desired teaching
inputs without taking into account high level features of the environment such as the
length of the walls. Sometimes the error increases significantly (for example when the
robot approaches a corner and as a consequence the frontal sensors start to be activated
for the first time). However, such situations are infrequent. As a consequence, the
network converges on a solution which does not take these cases into account9.

                                                       
8 If we just copy the state of the first 8 input units which encode the current state of the infrared sensors
into the output units we obtain an average error of 0.08 each 1000 cycles. The fact that the network
produce a lower error imply that it is computing something more interesting. The network, in fact, is able
to correctly predict if sensors will increase or decrease their activation level during 100ms in most of the
cases.
9 This also explains the variation of the prediction error in the three testing environments. For example,
the fact that corners are encountered less frequently in environment (a) than in the other environments
may explain why the prediction error is lower, on the average, in this environment.
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Figure 8. Prediction error for the first-level prediction layer in the case of the training environment (t) and
in the case of three variations of the training environment described in Figure 5. The graph shows the
average error and the standard deviation obtained by testing 10 different networks throughout 5000 steps.
Networks have been tested after training without updating the weights.

3.2 First-level segmentation
After training the first level prediction layer we trained the segmentation layer

which takes as input the state of the hidden units of the lower layer and should classify
such patterns into three different classes on the basis of their similarities. The
segmentation layer has been trained for 100,000 steps (i.e. 100,000 cycles). The training
process has been replicated for each of the 10 networks starting with different randomly
assigned weights. Figure 9 shows how the sensory-motor flow experienced by the robot
is categorized in the case of the training environment. As can be seen, after the training
process, the internal states of the first level prediction layer are classified into three
classes: (1) patterns experienced while the robot is doing wall following (full circle); (2)
patterns experienced while the robot is turning along a corner (full square); (3) patterns
experienced while the robot is traveling along the corridor (empty circle). The same
type of segmentation can be observed in the 10 replications of the experiment. In fact in
all cases, the input patterns during one lap in the environment are segmented into 16
different sequences corresponding to the three classes described above.

Figure 9. Segmentations performed during one lap in the environment. Full circle, empty circle, and full
square indicate, respectively, which of the three segmentation units is active in a given cycle. The state of
the segmentation units is displayed only when a new segmentation occurs (i.e. when the activation state
of output units of the winner takes all layer changes with respect to the previous cycle). The arrows
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indicate the direction of the robot when the corresponding segmentation occurs. Results for a typical
network.

Of course, if we change the number of output units in the segmentation layer,
partially different segmentations are obtained. The number of output units,  in fact,
determines the maximum number of classes in which the sensory-motor flow can be
divided. By replicating the experiment with two output units we observed that in 8 cases
the segmentation network converged in a solution in which one class corresponds to the
patterns experienced while the robot was traveling along a corridor and the other class
to both the patterns experienced while the robot was traveling along walls and corners.
In the remaining two cases, the network converged in a solution in which one class
corresponds to the patterns experienced while the robot was traveling along a corner and
the other class to both the patterns experienced while the robot was traveling along
walls and corridors. By replicating the experiment with four output units we observed
that in all cases the segmentation layer converged in a solution in which sensory
patterns were classified into patterns corresponding to: wall following, traveling along
the corridor, negotiating the first part of a corner, and negotiating the second part of a
corner. It should be noted, however, that by increasing the number of segmentation
outputs the distance between different classes of patterns decreases. As a consequence,
segmentations become progressively less stable throughout time (i.e. for example, in the
case of the experiments with four segmentation units, patterns experienced by
negotiating corners are usually segmented into two classes. Sometimes however,
because of noise and because the trajectory of the robot may slightly differ in different
laps in the environment or during the negotiation of different corners, they are
segmented into only one class).

Notice that the segmentation layer takes as input the internal state of the first level
prediction layer (i.e. a representation which may significantly differ from the sensory-
motor flow). In particular, we expect that the first level prediction layer, by trying to
predict the next sensory state, will produce a similar internal representation for sensory
patterns which are different from the sensory point of view but are functionally
equivalent (i.e. are followed by similar sensory patterns). On the contrary, sensory
patterns which are similar but tend to be followed by different sensory-motor states will
be represented by different internal states. Moreover, we may expect that the internal
representation of the first level prediction layer will be organized so as to contain those
characteristics of the sensory patterns which are useful in prediction and not necessarily
other characteristics which are not useful in prediction. In other words, we may expect
that the first level prediction network will partially filter out information that is
unpredictable at the first level.

That the pre-processing of the sensory-motor flow is accomplished by the first level
prediction layer affects the type of segmentations produced by the segmentation layer
can be shown by replicating the experiment using the sensory-motor patterns (instead of
the internal representation of the first level prediction network) as input for the
segmentation network10. In doing so we observed that in 9 cases out of 10, despite the

                                                       
10 In this case we used an architecture without the first level prediction layer and with a segmentation
network with 10 input units (which encode the state of the 8 infrared sensors and the speed of the two
motors) and 3 output units. It should be noted that in the standard experiment the segmentation network
receives input patterns that may also be influenced by the previous sensory states while in the replication
of the experiment the input patterns consist in the current sensory-motor states only. However, as we said
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segmentation networks had 3 output units, sensory-motor patterns were classified in
only two classes: patterns experienced along a corner and patterns experienced during
wall following. This can be explained by considering that these two classes of patterns
are already significantly different at the sensory level given that they correspond to
partially different state of the sensors and quite different state of the motors (the speed
of the left motor is all in the back during corner negotiation and all i n the front during
wall following). On the contrary, the patterns experienced traveling along the corridor
are not very different from the other patterns at the sensory-motor level (the only
difference is that the infrared sensor positioned on the left side of the robot is activated
while traveling along the corridor). The difference between the patterns experienced
while traveling along walls and along the corridor is enhanced in the internal
representation of the first level prediction layer because they are useful to predict the
next sensory states. The left side infrared sensor, in fact, is only activated along the
corridor; therefore its state is quite reliable and easy to predict after the sensor starts to
be activated the first time.

3.3 Second level prediction
After training the first level prediction and segmentation layers we trained the

second level prediction layer which takes as input the current segmented state (locally
encoded) and the time length of the previous segmented state and should produce as
output the next segmented state and the time length of the current segmented state (i.e.
after how much time the new segmentation will occur). This layer has been trained for
10,000,000 steps. However, given that this layer is updated only when a new
segmentation occurs (each 18.7 steps, on the average, given the type of segmentations
produced by the segmentation layer described in the previous section), training lasted
about 530,000 cycles. As can be seen in Figure 10, the summed square error decreases
until it reaches a value of around 0.04 on the average (the error reaches 0.012 in 8
replications and 0.13 in the other 2 replications). This means that networks produce
almost perfect predictions in 8 cases out of 10.
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Figure 10. Sum of squared error over the 4 output units of the second level prediction layer. The average
error and the standard deviation over 10 runs are shown.

If we test the trained network in the three variations of the environment shown in
Figure 5 we can see how the second level prediction error significantly increases when
                                                                                                                                                                  
in section 3.1, similar performance can be obtained by using a first level prediction network without
memory units.
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the robot experiences different environmental conditions (see Figure 11). This implies
that the second level prediction layer extracted internal representations which include
the topological structure of the environment. These representations allow the robot to
make the correct predictions in the training environment and, conversely, to produce
incorrect predictions when the environment changes.
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Figure 11. Prediction error for the second level prediction layer in the case of the training environment (t)
and in the case of three variations of the training environment described in Figure 5. The graph shows the
average and the standard deviation of the error obtained by testing 10 different networks throughout
100,000 steps. Networks have been tested after training without updating the weights.

The knowledge extracted through prediction learning allows the robot not only to
predict the next states but also to localize its own position in the environment. In Figure
12 we can see the prediction error of the second level prediction layer in a test made by
moving the robot from one to another different position each 1000 steps. As can be
expected, after each replacement, there is a sudden increase in the prediction error
because the robot is disoriented. It is expecting to perceive a sequence of sensory-motor
state corresponding to the part of the environment where it was located while it is
perceiving a sequence corresponding to another portion of the environment where it was
replaced. However, after relatively few cycles the prediction error decreases again (the
robot is able to recover after one lap in the environment, on the average). This shows
how the robot has developed a dynamical representation which includes the relative
position of the robot itself in the environment. Moreover, this shows how such a
representation is robust enough to allow the robot itself to easily recover the right
representation of its relative position after a replacement.
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Figure 12. Prediction error for the second level prediction layer in the case of a test in which the robot is
replaced each 1000 steps. For each replacement, the robot is moved to the position in which it was 150



18

steps before (given that the robots takes about 320 steps to perform a complete lap in the environment this
means that most of the times it is replaced from one to the other room). Result in the case of the best
replication (the replication in which the second level prediction layer reaches the lowest error). The
network has been tested after training without updating the weights.

That the robot extracts a representation of the topological structure of the
environment can be further shown by replicating the experiment with a second level
prediction layer which should not only predict the next segmented state but also should
produce as output one or more labels which indicate where the robot is currently
located. This can be accomplished, for example, by adding to the second level
prediction layer two output units which should be turned on when the robot is traveling
along the left side wall of the large room and the right side wall of the small room. The
teaching input for these two additional units wil l be provided by the experimenter and
not from the environment as in the case of the other units trained by back-propagation.
In particular, we provide as teaching input the patterns [1 0] when the robot is at a
distance lower than 75mm from the left side wall of the large room, [0 1] when the
robot is at a distance lower than 75mm from the right side wall of the small room, and
[0 0] in all other cases.
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Figure 13. Outputs and teaching inputs of the two additional units which locall y encode: (1) when the
robot is located close to the left side wall of the large room; (-1) when the robot is located close to the
right side wall of the small room; (0) when the robot is located elsewhere. The graph shows the difference
between the activation of the two units (i.e. 1.0 represents the vector [1.0 0.0], 0.0 represents the pattern
[0.0 0.0], and -1.0 the vector [0.0 1.0]). Data obtained by testing one typical individual for 911 steps
corresponding to 50 cycles. The robot is initiall y placed in a randomly selected position and it is tested
without updating the weights.

In doing so, we can see that after a few cycles the robot, in addition to correctly
predicting, it is able to correctly label when it is traveling along the two chosen
locations (see Figure 13). Given that the robot starts from a random selected position, it
takes some time to localize itself in the environment (about 200 steps in this case). In
this phase both the predictions and the labeling produced by the second level prediction
layer are incorrect (see Figure 13). After such a phase, however, the robot starts to
produce correct predictions and to label the two rooms correctly. In other words the
robot is able to indicate when it is located in a certain selected location of the
environment. Notice that if we add the two additional output units to the first level
prediction layer instead of to the second level the network is unable to learn to provide
the correct labeling even if we increase the number of internal units (result not shown).
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Figure 14. Sum of squared error over the 6 output units of the second level prediction layer (the two
additional units encode the current location of the robot). The average error and the standard deviation
over 10 runs are shown. The error is initiall y higher than 0.8. However, we keep the same scale of Figure
10 to allow an easier comparison of the two graphs.

Interestingly, in this last experiment in which we added the two additional output
units and provided as teaching input the correct label, the second level prediction layer
converges much faster (see Figure 14) than in the case in which the layer is only asked
to predict the next segmentation (Figure 10). This can be explained by considering that
the addition of the labeling units, can be seen as a way of channeling the learning
process in the right direction11. In fact, it is reasonable to think that, to produce the
correct predictions, the robot should be able to ‘know’, among other things, when it is
located in the two chosen locations. By asking the network to label these locations and
by providing the right teaching input we force the robot to develop an internal
representation which includes such information. This internal representation is a first
step toward the development of a richer internal representation (which also includes
information concerning other locations) that is needed to correctly predict the next
segmented states.

4. Discussion
We proposed that the abil ity to extract regularities from time series through

prediction learning can be enhanced if we use a hierarchical architecture in which
higher layers are trained to predict the internal state of lower layers when such states
change significantly. This hierarchical organization has two main functions: (a) it forces
the system to progressively re-code sensory information so as to enhance useful
regularities and filter out useless information; (b) it progressively reduces the length of
the sequences which should be predicted going from lower to higher layers. As a
consequence, while lower layers extract low level regularities, higher layers can extract
higher level regularities which are hidden at the sensory level.

We investigated this issue in the context of a mobile robot which navigates in a
structured environment. In this context, as in many other realistic cases, the problem is
particularly hard because sensory information comes at high frequency and regularities

                                                       
11 A similar technique has been used by Dorigo and Colombetti (1994) with the goal of facili tating the
learning of complex tasks and has been named behavior shaping. The term shaping indicates that the
knowledge of the experimenter is used to channel the learning process in the right direction.
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at different levels of organization should be taken into account to predict the next
sensory states.

By training a neural network organized in two layers to predict the next sensory
state in a robot navigating in a two room environment we showed how the first level
prediction layer was able to extract low level regularities such as ‘walls’ , ‘corners’ , and
‘corridors’ while the second level prediction layer was able to extract higher level
regularities such as ‘ the left side wall of the large room’. The abil ity to extract
regularities at different levels allows the robot to detect if something changes in the
environment (i.e. the fact that a door has been closed, the presence of a new obstacle, or
an alteration of the shape of a room) or to learn to label a particular location of the
environment such as the left side wall of the large room.

We showed how these tasks, by requiring higher level regularities, can only be
accomplished by the second level prediction layer which has available high level
regularities. On the other hand we showed how the regularities extracted by the second
level prediction layer depends on the re-coding of the sensory-motor information
performed by the first level prediction layer. This first level layer, in fact, transforms the
representation at the sensory-motor level by decreasing the difference between
functionally similar patterns and increasing the difference between functionally
different patterns.

Finally, we showed how the internal representations obtained through prediction
learning do not only include information about the topological structure of the
environment in which the robot has been trained but also an indication of the relative
position of the robot in the environment. The fact that these two types of information are
obtained by the dynamical interaction of the robot with the environment and are
represented over the same pattern of units allows the robot to easily recover its ability to
localize itself after being replaced in a completely different location of the environment.

An aspect of our model which we want to stress is the fact that it involves a
developmental process (the network is trained in three successive phases). The fact that
the training process of different layers is conducted in successive phases going from
lower to higher levels is important because higher layers operate on the results of lower
levels. In other words, what is learned by the first layers constrains what can be learned
by the higher layers12. From this point of view the architecture proposed in this paper
has some similarities with other models which involve a developmental process.
Shrager and Johnson (in press) and Elman et al (1996) investigated the effects of a
developmental wave of plasticity in which different regions of a neural network were
plastic in different points in time (weights were changed according to a Hebbian
learning rule). By comparing the results obtained by training the network with and
without the wave of plasticity they found that in the first case some neurons  learned to
perform complex functions such as the exclusive OR (XOR). These neurons tended to
be on regions which were late in reaching maturity. On the contrary, in the case in
which all regions of the network were trained from the beginning, neurons only learned
to compute simple functions such as the logical AND and OR. The reason why the

                                                       
12 In principle, the second level prediction layer wil l receive in input the same information after the first
phase whether it is trained from the beginning or is trained after the first phase. However this does not
imply that the second level layer wil l converge in the same solution in the two cases. The plasticity of a
network trained by back-propagation, in fact, progressively decreases during the training. As a
consequence, if the second prediction layer is trained by the beginning, it may fail to re-adapt to the
changes that occur in the first level prediction layer.
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developmental process allowed some neurons to compute more complex functions is
that they did not learn until later, after early neurons had learned simpler functions.
These early learning neurons, in fact, became additional inputs to the units which
learned later. Since the XOR function can be decomposed into the AND and OR
functions, this made it possible to learn a function which could not otherwise have been
learned. In another study on grammar acquisition which we already mentioned in the
introduction, Elman (1993) trained a simple recurrent neural network with a corpus of
sentences of a pseudo-natural language. Words were presented one at a time and the
network was asked to predict the next word which would occur. The author showed
how the network was unable to solve the task through ordinary backpropagation
learning. However, success could be achieved in either of two ways: (a) by dividing the
training data into graded batches beginning with simple sentences and progressing to
more complex ones; (b) by starting the learning process with a limited memory window
(i.e. the activation state of the recurrent neurons was reset every third or fourth word)
and then increasing it as training progressed.

Both these two examples and our hierarchical architecture show how some complex
functions that are not normally learned in a static mature system in which learning
occurs everywhere simultaneously can be learned in systems in which different regions
are plastic in different periods of time. As claimed by Elman et al. (1996) and Clark &
Thornton (1997) this can be explained by considering that the re-coding of the sensory
representation achieved in the first learning phase reduces the complexity of the
subsequent search (see also Schmidhuber, 1992a, 1992b). In our experiment and in the
experiment with the wave of plasticity described in Elman et al. (1996) the
representation acquired by the first layers of the network which initially undergoes the
learning process constitutes the input for the successive layers which are subjected to
the learning process later on. Similarly, in Elman (1993) the internal representation
which is initially learned on the basis of a short time window and which is copied back
into additional input units (memory units), constitutes a re-coded input for the
successive learning in which the time window is increased.

The difference, in the case of the model presented in this paper with respect to the
developmental models described above, is that representations are not only re-coded in
space but also in time (i.e. sequence of functionally similar patterns are transformed into
a single pattern going from lower to higher layers). In the architecture proposed in this
paper, the first and second prediction layers operate a transformation in space while the
first level segmentation layer operates a transformation in time. In particular, a set of
sensory patterns is transformed into a single pattern on the basis of their similarity at a
given level. This is only one possible way to accomplish a transformation in time and
may not be the best one. In particular, this type of transformation in time implies a
classification process in which each pattern should be necessarily grouped into one or
another category. This way to proceed has advantages and drawbacks. On one hand, the
change from one to another category can be used to easily compress patterns in time (all
patterns corresponding to a single category are treated as a single pattern at higher
levels). On the other hand, it is clear that patterns that lie between two categories tend to
be randomly categorized and that information concerning differences between a single
category (i.e. the differences between the sensory states which are grouped together by
the segmentation layers) is lost. It would be interesting to find another way to transform
information in time which does not necessarily imply a categorization process and at the
same time allows a compression of the information in time.
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Future directions of research may include, in addition to the study of different ways
to re-code information in time, the introduction of feedback signals. The predictions
elaborated by the higher levels of the architecture, in fact, may be usefully put back in
lower predicting layers. This may be accomplished introducing additional input units at
each level which encode the state of the hidden units of higher levels or by asking lower
levels to predict also the hidden states of higher levels (see Schmidhuber, 1992a).  In
this case, the prediction at each level except for the last would be performed both on the
basis of sensory data and of top down information (expectations). In this case, the
developmental process cannot be divided into three separate phases. Changes from one
to the next phase should be less abrupt so as to allow lower levels to learn how to use
the information coming from higher levels. Finally, another important direction to
explore is allowing the system to decide how to behave. This is both in order to use the
extracted information in order to perform some other task and to enhance the system’s
abil ity to predict (for an example of how a mobile robot may shape its behavior in order
to learn to perform a task see Nolfi &  Parisi, 1997).
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