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Abstract

We propose that the ability to extract regularities from time series through prediction
leaning can be enhanced if we use a hierarchical architedure in which higher layers are
trained to predict the internal state of lower layers when such states change significantly.
This hierarchical organization has two functions: (a) it forces the system to progressvey
re-code sensory information so as to enhance useful regularities and filter out usdess
information; (b) it progressvely reduces the length of the sequences which should be
predicted going from lower to higher layers. This, in turn, allows higher levels to extract
higher level regularities which are hidden at the sensory level. By training an architecure of
this type to predict the next sensory state of a roba navigating in a environment divided
into two rooms we show how the first level prediction layer extracts low level regularities
such as ‘walls, ‘corners’, and ‘corridors while the seaond level prediction layer extracts
higher level regularities auch as ‘the left side wall of the large room’. The extraction of
these regularities allows the robot to locali ze its position in the ewironment and to deted
changes in the environment (e.g. the presence of a new object or the fact that a door has
been closed).

1. Introduction

From the point of view of a natural or artificial agent the external environment does
not provide any dired cue on how the ggent should ad to attain a given goal. However,
the environment provides a rich feedbad: the sensory states. Such information, by
depending both on the ayent motor action and on the environmental structure, may be
used to extrad regularities’ from the environment which in turn may be useful to
adhieve the gent’s goal. For example, the agent may lean of the mnsequences of
different adions in different environmental contexts or it may lean to classify sensory
states also on the basis of the precaling and following sensory patterns.

A straightforward way to use sensory information to extrad regularities from the
environment is prediction learning i.e. to try to predict what the next sensory state will

! Most of the work described in this paper has been done whil e Stefano Nolfi was visiting SONY-CSL.

2 By regularities we mean a set of sensory or internal states which can be essily separated from the others
and which correspond to agent-environmental states which are stable over space or time (i.e. which are
predictable). Hopefully, the meaning of the term will become progressvely more dear in the next
sedions.



be given the arrent sensory state and the motor adion that the agent is going to perform
(Parisi & Cecmni, 1995. That prediction leaning can extrad high level regularities
from time series was first shown by Elman (Elman, 1990 1993. He showed how by
training a simple reaurrent neural network to predict the next word in sentences of a
pseudo-natural language, the network was able to extract high level regularities sich as
‘nouns’ or ‘verbs'.

Regularities can also be extraded in different manners without relying on the
information provided by the next sensory states. For example, Floreano & Mondada
(1996 showed how arobot may extrad a representation of the external environment by
using an evolutionary processin which individuals are rewarded for their overall ability
to achieve agiven task. In this case arobot was evolved for its ability to explore a
simple aena while periodically returning badk to a recharging station. However, this
technique seems to work only in relatively simple ases. In the cae of this work for
example, the recharging station was illuminated and the robot was able to dredly detea
its relative position in most of the cases.

In this paper we will investigate how prediction leaning can extract regularities
from the external environment in the cae of a mobile robot that navigates in a simple
environment divided into two rooms. As we will see regularities extraded in this way
can be used by the robot to locali ze its position in the environment and to detect changes
in the environmental topology such as the presence of a new object. In doing so we will
show why a simple prediction network such as that described above is not enough to
solve such tasks. A more complex architedure based on a cacade of prediction and
segmentation layers in which regularities can be extraded at different levels is needed
(seebelow).

1.1 What can and cannot be predicted

In pradical cases, it is not possble to predict all the sensory information coming
from the external environment for two reasons:

(1) Some sensory dtates or a part of each sensory state may be @mpletely
unpredictable. Consider, for example, the cae of predicting the next sounds. While
driving we @an predict the intensity of the noise produced by the engine of our own car
to a good extent on the basis of the gea into which we have shifted, the slope of the
road etc. However, the sounds coming from the other cars in a traffic jam cannot be
predicted at all.

(2) In general, only some feaures of the next sensory state can be predicted. For
example, "Heaing the first two words of the sentence 'Henrietta egts ..." allows you to
infer that the third word probably indicates omething to eat but you cannot tell what.
The class of the third word is predictable from the previous words - the particular
instance of the classis not." (Schmidhuber & Prelinger, 1993 pp.625).

Moreover we should consider that some of those features which can be predicted in
principle may be difficult to predict in pradice In particular:

(3) The longer the time lag between an event that can be predicted and the feaures
that can be used to infer its occurrence the harder the @rresponding prediction is
(Schmidhuber, 1992. The reason for that is that "the longer the time lag between an
event and the occurrence of a crresponding error the lessinformation is carried by the
corresponding badk-propagated error signals' (Schmidhuber, 1992 pp. 234).

(4) The training pocess may end up in a local minimum in which some of the
sensory states or some feaures of the sensory states which in principle ae predictable
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may not be predicted correctly. In particular, this tends to happen when most of the
states can be predicted easily (e.g. can be predicted by taking into acount only the
previous nsory state or few previous nsory states) while few other states can be
predicted with greaer difficulties. In such cases, as we will seg the leaning process
tends to converge on a solution in which the states which are eay to predict and are
frequent are predicted correctly while the states which are more difficult and are
infrequent are not (on the role of the learning experience regarding the outcome of the
leaning process £eElman et al., 1996. This type of problem is very general and might
affed the result of the leaning processin very different circumstances. However, its
negative effects may be particularly relevant in the cae of prediction leaning in
realistic circumstances in which sensory states might not change significantly for a long
time (i.e. in cases in which the prediction task is for the most part trivial).

In other words, it may be that regularities have only an attenuated existence in a
body of training data. If thisisthe cae we ae fadng a so-cdled type-2 problem (Clark
& Thornton, 1997). As claimed by Clark and Thornton the only way to solve these hard
problems is to re-code the data in a way that ensures that regularities will have ahigher
statistical visibility.

Different methods may be goplied to solve these problems. To solve the problem
that some states can be unpredictable and that, in other cases, not all the details can be
predicted (i.e. to solve (1) and (2)) Schmidhuber & Prelinger proposed to train a
network to produce the predictable class of the next states instead of the states
themselves. Sensory states were dassified into predictable classes by a second network
that try to classify the sensory states in classes that are predictable and still as gecific as
possible (Schmidhuber & Prelinger, 1993. To aleviate the problem of the time lag
between events to be predicted and the feaures that can be used to infer their
occurrence and the problem that most of the states may be easy to predict (i.e. to solve
(3 and (4)) Schmidhuber proposed focusing on unexpeded inputs and ignoring
expected ones. This may be obtained by using two networks: one that tries to predict all
sensory states and another that triesto predict the unexpeded sensory states. The inputs
which turn out to be unpredictable from the very first network are sent to a higher level
network which in turn predict its next input operating on a slower, self-organizing time
scale (Schmidhuber, 19922, 1992h for a variation of this idea in which unexpeded
states are identified by a network that predicts its own error seeSchmidhuber, 1991).

1.2 A sdlf-organizing hierarchy of prediction and segmentation layers

In this paper we propose an approach based on a hierarchy of prediction layers
(Figure 1) which try to predict the next internal states of the lower layers (or of the
sensory-motor states in the cae of the very first layer). In this architedure, as in
Schmidhuber & Prelinger (1993, higher layers are asked to produce a tassificaion of
the next sensory states and not the next sensory states themselves. The classification in
this case is produced by the lower level layers that try to predict the next input states at
their level. Moreover, in this type of architecture the sensory-motor information will be
progressively transformed going from lower to higher levels. What we exped is that
during the learning processweights will be modified so that in each transformation: (@)
information will be compressed in time (each internal state, in fact, will be afunction
both of the aurrent and of the next input state); (b) feaures which can be predicted at the
current level will be enhanced while other feaures will be dtenuated. To understand
why, we should consider that, after leaning, the internal representation in each
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predicting layer will be afunction both of the input state and of the output state (the
internal representation is an intermediate step between the input state and the output
state). At the end of learning the output state will tend to approximate the teading state.
However, this will be true only for states which are rrectly predicted. Therefore, the
internal state will be more dfeded by states which can be predicted at the airrent level®.
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Figure 1. Hierarchy of prediction layers. The first level prediction layer (at the battom) predicts the state
of the sensors at time t,; by recaving as input their state at time t and the planned motor action. The
higher level prediction layers predict theinternal state of the lower leve layers at timet.; by receaving as
input their state at timet.

Moreover, in order to focus on relevant states and reduce the time lag between the
events and the feaures that can be used to infer their occurrence we propose an
architedure in which, at ead level, a segmentation layer compresses sub-sequences of
homologous gates into a single state (Figure 2). These segmentation layers, by
identifying sequences of homologous dates at ead level, allow the network to
progressively reduce the frequency of states to be predicted going from lower to higher

3 Consider, for example, the @se of a state S, which is followed 50% of the times by a state S, and 5®%
of thetimes by the state S,. Moreover imagine that the distribution of S; and S, israndom (i.e. we annot
predict if Sy will be followed by S; or S, even by taking into account the previous gates). If S, and S, are
orthogona (i.e. if they are ompletely different) the next state is totally unpredictable. In this case S; and
S, will not affect the internal representation of the network because the network will lean to produce a
neutral state S; equally distant from S; and S,. On the @ntrary, if S; and S, are similar, the next state can
be predicted to a certain extent. In this case S; and S, will affect the interna representation because the
network will lean to produce a state S; which will be similar to bah S; and S,.



prediction layers. Therefore, while low level prediction layers, by being asked to predict
long sequences of states may only lean to detect short term regularities, higher level
layers, by being asked to predict shorter sequences, may be able to detect long term
regularities. The role of the segmentation layers is, as in Schmidhuber (19923, 199%),
to compressinformation in time by focusing on relevant states. The difference is how
relevant states are identified. In this case, relevant states are internal states, a a cetan
level, which differ significantly from the previous gates. In Schmidhuber (1992;
1992) instead, relevant states are states which cannot be predicted from the lower level
prediction layer.
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Figure 2. Hierarchy of prediction and segmentation layers. Each layer incdudes a prediction and a
segmentation sub-network. The frequency of the spreading of activation is reduced going from lower to
higher levels because high level layers predict only when the lower segmented state changes. So higher
level layers should predict the internal state of the lower level layers at timet,, where ‘n’ corresponds to
how many steps the interna states of the lower level do not change significantly from the state a timet.

Unfortunately, the processof compressing information in time & ead level may be
strongly affeded by the presence of unpredictable information. At ead level, in fad,
there is no way to discriminate between relevant dates (i.e. states which are
significantly different from the previous gsates or which are unpredictable from the
lower level prediction layer) and unpredictable states. States which are totally
unpredictable, in fad, will probably be different from the previous gates and will be
cetainly unpredictable from the lower level prediction layer. As a mnsequence the
process of focusing on relevant states risks ending up in a process that focuses on



unpredictable states as well. This may have serious consequences on the higher level
prediction layers.

For this reason it is important that, as we have mentioned above, each prediction
layer progressively re-codes information while filtering out unpredictable information.
It should be noted that a a given level we annot discriminate between feaures that are
completely unpredictable and feaures which are unpredictable a the aurrent level but
which may be predictable & higher levels. This implies that, by filtering out information
which is unpredictable & the aurrent level, we risk eliminating not only information
which is really unpredictable but also information which could be predicted by the
higher levels. However, as we will see information which is predictable and which is
stable throughout time does not risk being eliminated. Consider for example the
occurrence of the feaure x which occurs a timet and lasts n cycles. Moreover, imagine
that the occurrence of x can be predicted only by taking into ac@unt the presence of a
feaure y which occurred several time steps before. The first level prediction network
will probably fail to predict the occurrence of x a time t and as a @nsequence the
internal state of this network will not be affected by x. However, at time t.1 the sensory
state will include x. If x tends to last for a significant number of time steps after the first
occurrence, the first level prediction network will probably predict correctly that x will
occur also in the next sensory state. As a mnsequencethe feaure x will be filtered out at
time t but not in the next time steps in which it will be both present in the input and in
the output state.

1.3 Extracting regularities at different levels

This work has been inspired by a set of experiments described in Tani (1996. In
these experiments a mobile robot explored the workspace by means of collision-free
maneuvering. When the robot encountered a fork in the road, the robot dedded either to
take an alternative diredion or to maintain the same diredion. At these points (i.e. at the
points of intersedion) a reaurrent neural network would attempt to predict the next
sensory input which the robot will encounter at the next intersedion having as inpu the
current sensory state and the decision taken at the intersedion. These intersedions thus
play the role of landmarks and involve atemporal segmentation of the sensory-motor
flow. However, which are the landmarks and how the sensory motor flow should be
segmented is the result of a decision of the experimenter (see also Mataric, 1992. In
this paper we will try to eliminate these types of predefined mechanisms in the hope that
the robot itself will be ale to extract them by using the feedbadk of the environment.

Deciding in advance what will be landmarks and how the sensory-motor flow
should be segmented has at least two drawbadks. (@) if the environment changes
significantly the experimenter has to re-design, at least in part, the wntrol system of the
robot; (b) the difficulty in deteding the neaest landmark and in predicting the next
depends on which the landmarks are seleded by the experimenter. We should consider
that landmarks which are eaily perceived by a human observer may be hard to perceive
by a mobile robot that has a sensory motor system which is very different from our own.
Moreover, landmarks should be seleded by taking into acomunt several fadors such as
how different they are from the other selected landmarks and how stable they are, given
the aurrent motor behavior of the robot. What a good landmark is depends on several
fadors: the task of the robot, the environment, and the sensory-motor sructure of the
robot. From the point of view of the prediction task a good landmark is not only a set of



states which can be easily identified but also a set of states which are useful in
predicting the next landmarks. For these reasons it is clea that it would be better to
have the robot leaning what landmarks are axd how they are aranged in sequence d
the same time.

In this paper we will use the hierarchical architecture described in Figure 2 both to
extrad a set of landmarks from the environment and to predict the next landmark that
the robot will encounter. We will refer to extracted regularities (landmarks) as
segmented states to indicae that: (a) they are not identified in advance; (b) they may
correspond to sub-sequences of similar states at different levels (at the sensory-motor
level, at the internal level of the first level prediction layer, or at the internal level of
higher layers); (c) they do not necessarily correspond to environmental circumstances
which can be described by using a single or few words of our own language (such as the
name of an objed or of a topological structure such as an intersedion point). A
segmented state, for example, may correspond to a smilar sequence of sensory-motor
states which the robot experiences while it is moving along awall. Or it may correspond
to the states that the robot experiences by following the wall s of a square room which is
followed by a narrow corridor. Or, it may correspond to the states which the robot
experiences by encountering an objed from a particular angle or in a particular context,
for example after followingawall of a cetain length.

The hierarchical architedure described in Figure 2 may extrad regularities at
different levels of organizaion. The first level prediction layer, by being exposed to low
level information (sensory-motor states) and to long sequences of states can only extraa
low level regularities guch as, for example, ‘an obstacle is approaching from the frontal
diredion’. Higher level prediction layers however, by being exposed to higher level
internal states and to shorter sequences may be able to extrad higher level regularities
such as, for example, ‘1 am leaving the big room’.

It should be noted that athough in this paper we discuss the implications of this
hierarchical architecture in the cae of a mobile robot navigating in an structured
environment, the achitedure is quite general and can be gplied to very different
domains. For example, one can imagine gplying the same achitedure to extract
regularity at different levels of organizaion (e.g. phonemes, syllables, words etc.) in a
sound wave arresponding to a pieceof speech. In other words the strategy of forcing
the neural network to learn to re-code the sensory information by extrading regularities
in space and time @n be seen as a general strategy for solving different type-2
problems.

A final remark concerns the role of the motor adions produced by the robot. In this
paper we will assume that the behavior of the robot is predetermined and fixed. On the
other hand it is clea that the aility to predict the next sensory states might be strongly
affeded by the behavior of the robot. Indeed, by evolving plastic controllers which were
allowed to modify their behavior, it was sown that evolved individuals displayed an
initial behavior that enhanced their ability to lean to navigate in their environment
(Nolfi & Parisi, 1997). For afirst attempt to develop a ontrol system which extrads
regularities from the environment through prediction learning and uses this information
to modify its own behavior see(Ito & Tani, 1998.



2. The experimental setup

In this sedion we wil | describe the experimental setup and the detailed architecture
which we used in our experiments.

.

Figure 3. An environment made of two rooms joined by a short corridor. The straight lines represent the
walls and the full circle represents a cylindrical ojed. The drcle on the left-battom side represents the
roba and the trace on the terrain represents the trajedory of the roba during a few laps in the
environment.

Let us consider the cae of a mobile robot that navigates by performing a wall
following behavior in an environment like that described in Figure 3. The roba (see
Figure 4) is a miniature mobile roba developed at E.P.F.L. in Lausanne, Switzerland
(Mondada, Franzi, & lenne, 1998). It has a drcular shape with a diameter of 55 mm, a
height of 30 mm, and a weight of 70g. It is suppated by two wheds and two small
Teflon kalls. The wheds are mntrolled by two DC motors with an incremental encoder
(10 puses per mm of advancement by theroba). The roba is provided with eight infra-
red proximity sensors (Six sensors are positioned on the front of the roba, and the
remaining two on the bad). The infrared sensors can deted obstades within a range of
abou 3cm.

Figure 4. The Kheperarobd.

The Khepera robot, which is programmed to produce awall following behavior®, is
placal in an environment made of two rooms of 40x40 cm and 20x20 cm respectively
joined by a arridor of 10 cm in width. The robot is asked to predict what the state of
the 8 infrared sensors will be after ead movement, given the aurrent state of the sensors
and the seleded speed of the two motors. The state of the motors and sensors is updated
each 100ms (step) and the robot is asked to predict the sensory pattern it will experience

4 As we said above the behavior of the robot might strongly affect its ability to lean to predict the next
sensory states. We choose this behavior because it is easy to implement and because it al ows the roba to
explore environments with different topologies. A similar approach has been used by Nehmzow (1992).



after eat cycle (a cycle may correspond to one or more steps depending on the level of
the layer involved in the prediction, seebelow).

In doing so we eped that our robot will extrad a dynamica representation of the
environment that will i ncorporate the topologicd structure of the environment and the
relative position of the robot in the ewvironment. This type of representation may be
useful in achieving several different goals such as, for example, navigating to a desired
part of the environment®.

(b)

(©)

Figure 5. Threevariations of the environment described in Figure 3.

In this paper we will first consider the simplest use of the representation extraded
through prediction leaning. deteding if something changed in the environment.
Imagine asort of vigilant-robot which would chedk and report on any significant change
occurring in a delimited environment. We placein such an environment a robot which is
programmed to explore the ewvironment itself and we train the robot to predict its next

® The ability to diredly navigate to a target arearequires that the roba modifies its own motor behavior
(which is something that will not be discussed in this paper). On the other hand, a similar result can be
obtained by imagining that the robot stops to perform the wall-following behavior when he reaches the
target area Aswe will show in sedion 3.3, in fact, therobot can be trained to identify when it is traveling
along a cettain areaof the environment.



sensory states. Hopefully, during the training, the prediction error will be progressively
reduced upto a point in which it will remain relatively low. After that we can use the
margin of error as an indication of the environmental stability. If the margin of error
remains low, we may conclude that the environment is gable because the sequence of
sensory-motor states experienced by the robot confirms the robot expedations which
have been developed during the training phase. On the contrary, if the prediction error
suddenly increases, we may conclude that something has been changed in the
environment.

For instance we want a robot which, after being trained in the eavironment
described in Figure 3, is able to detect if the corridor between the two rooms has been
closed, if a new obstacle has been placead in the environment, or if the extension of one
of the two rooms has been altered (seeFigure 5 a, b, and c, respedively).

The experiments which will be described have been conducted in simulation (for
more details on the simulator see Miglino, Lund, & Nolfi, 1995. The simulator has
been designed by taking samples of a real environment using the real robot sensors and
motors’. Moreover, it has been shown that quite similar forms of behavior can be
obtained by testing the same ntrol system on the simulated and on the real robot (see
Miglino, Lund, & Nolfi, 1995 Nolfi, 1997. Finally, it should be noted that noise is
added to the sensors (sensors may have 1024different states ranging from 0.0 to 1.0 and
noise has been acaomplished by adding arandom generated value ranging from —0.05 to
+0.05 to ead sensor value). The presence of noise and the fad that the state of the
sensors and motors are updated ead 100ms implies that the tragjectory of the robot in
different laps in the environment may differ slightly (seeFigure 3).

The neural architedure is organized as a cacade of prediction and segmentation
layers arranged hierarchically. Although the number of layers can be abitrarily chosen
in the experiment described in this paper we will refer to an architecure with only two
layers (seeFigure 6).

The first level prediction layer is a feedforward network with 10 sensory units
(which encode the state of the eight infrared sensors of the robot and the speeal of the
two motors), 3 hidden units, and 8 output units (which encode the state of the infrared
sensors at time t+1). Moreover, the network is provided with 3 additional inpu units
which encode the adivation state of the hidden units at time t-1. This reaurrence gives
the network dynamical properties which make it possble for the network to process

® The walls and the o/lindrical objects were sampled by placing thered roba in front of one of them, and

by letting it turn 36, recording, at the same time, the state of the infra-red sensors at different distances
with resped to the objeds. The activation level of each of the eght infra-red sensors was recorded for 180
different orientations and for 20 dfferent distances. In this way two different matrices of activation were
obtained for the two types of objects (walls and cylinders). These matrices were then used by the
simulator to set the activation state of the simulated sensors depending on the relative position of Khepera
and of the oljeds in the smulated environment. The dfects of the two motors were sampled similarly by
measuring how Khepera moved and turned for each of the 20x20 posshble states of the two motors. At the
end of this process a matrix was obtained that was then used by the simulator to compute the
displacements of the roba in the simulated environment. This sampling procedure may prove to be time
consuming in the case of highly unstructured environments becuse it requires to sample each different
type of objeds present in the environment. However, it has the advantage of taking into account the fact
that different sensors, even if identical from the dedronic point of view, do respond differently. Sampling
the environment throughout the red sensors of the robot allowed us, by taking into account the
characterigtics of each individud sensor, to develop a smulator shaped by the actual physical
characterigtics of the individual robot we have (for more about methodol ogical issues eNolfi, Floreano,
Miglino, and Mondada, 1994, Miglino, Lund, and Nolfi, 1995.
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sequential inpus (Elman, 1993 see also Robinson & Fallside, 1987 Williams, 1989
Williams & Zipser 1992.
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Figure 6. The achitedure of the network. Single arows indicate the weights of thefirst and of the second
prediction layer which are taught by back-propagation and the weights of the segmentation layer which
are taught through unsupervised leaning. Empty double arrows indicate that the input state is used as
teaching input at time t+1 bath for the first and the second prediction layer (notice however that the first
level prediction layer cycles each 100ms while the seaond level prediction layer cycles when a new
segmentation occurs). The aurved double arrows indicate that the state of the hidden units of the first and
of the second prediction layer is copied after each cycle into a wrresponding set of additiona input units.
Finally, the full double arrow indicaes a‘winner take al’ network.

The segmentation network is a fully connected two-layer network with 3 input units
and 3 output units. The input layer is constituted by the hidden units of the first level
prediction layer. The output layer is constituted by a set of output units with reaurrent
connections which locally encode the arrent segmented state. The adivation state of
each output unit is fed into a‘winner takes all’ layer so that the output corresponding to
the most adivated unt is st to 1.0 and all other outputs are set to 0.0.

The seaond level prediction layer is a feedforward network with 4 sensory units
(which are ongtituted by the 3 outputs of the segmentation network and one input
encoding how many cycles the previous ssgmented state lasted), 30 hidden units, and 4
output units (which encode the next segmented state and after how many cycles the
segmentation will shift from the arrent to a new one). Moreover, the network is
provided with 30 additional input units which encode the adivation state of the hidden
units at time t.;.

In the cae of the first and second level prediction layers the units are adivated by
using the logistic function and the weights are updated by using standard back-
propagation (Rumelhart, Hinton, & Williams, 1986. A leaning rate of 0.2 and no
momentum were used. Weights were randomly initialized within -0.1 and +0.1 and
were updated after ead cycle. In the cae of the segmentation network, the adivation
state of a unit (i) is %t to a value proportionate to the inverse of the Euclidean distance
(normalized between 0.0 and 10) of the @rresponding weights (W;) from the arrent
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input pattern (X;) and to the previous adivation state (due to the reaurrent connedions).
The onstant 1 was st to 0.25.
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Weights were randomly initialized within -0.1 and +0.1. Leaning is accomplished
by reducing the distance between the weights of the winning urit (i) and the arrent
input pattern (X;) with a deaeasing learning rate (n is initially set to 0.3 and reduced by
50% ead 1000 cycles). The winning unit (i) is the unit which has the minimum
Euclidean distance from the aurrent input pattern (X;). This means that, unlike Self-
Orgar;izing Maps (Kohonen, 1982, only the weights of one unit are updated eadh
cycle’.
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Finally, it should be noted that while the first level prediction layer is updated ead
100ms (i.e. each step), the seaond level prediction layer is updated only when the
segmentation layer produces a new segmented state (i.e. when, after the processing of
the winner take dl weights, the aurrent adivated unt is different from that which was
adive the previous cycle). Therefore, if the segmentation state dnanges on an average of
eah 10 steps, for example, the second level prediction layer will be updated eah
sewmnd, onthe average.

The achitedure is trained in three phases. First the first level prediction layer is
trained, then the segmentation network, and finally the seaond level prediction layer.

In a recett paper we have proposed a different but related architedure (Tani &
Nolfi, 1998. In this work we used a mixture of reaurrent neural networks (MRE) which
is an extension of the achitecture proposed by Jacobs & Jordan (1991). Each module
competes to beaome an expert at predicting different sub-sequences of the sensory-
motor flow and the shift between experts is used to produce segmentations. Also in this
case we have an architedure which is hierarchically organized. However, the second
layer was updated ead 10 steps (i.e. at afixed rate) while in the case of the experiments
described in this paper the updete rate of the second level prediction layer is not fixed
and is determined by the lower level segmentation network.

3. Experimental results

In this sedion we will report the results of the training of the first-level prediction
layer, the segmentation layer, and the second level prediction layer. Moreover, we will

" Given that only the weights of the winning unit are updated it may happen that some units never become
the winning wnit and therefore ae never updated. This problem however does not tend to arise when, as
in the @se of the experiment describe in this paper, the input patterns are affected by noise (see Szu,
1986.
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provide an analysis which shows what type of regularities have been extraded through
the interadion with the environment.

3.1 First-level prediction

We ran 10 experiments garting with different randomly assigned weights. Each
network was trained for 100,000 steps (i.e. 100000 cycles given that the first level
prediction layer is update eab step). As can be seen in Figure 7, in all cases the
summed square eror deaeases until it reades a stable value aound 0.05. This means
that the network produces amost perfed performance (i.e. the network output closely
maps the state of the sensor at time t.).

0.25

0.2+

0.15+

0.1+

prediction erro

0.05+

0 f f f f
0 25000 50000 75000
leaning cycle

Figure 7. Sum of squared error over the 8 cutput units of the first level prediction layer. The average aror
and the standard deviation over 10 runs are shown. Before learning, the average error isaround 1.6 (data
not shown in the graph); however, during the first 1000 steps the error suddenly deaeases to abaut 0.2,

However, if we test the trained network in the three variations of the environment
shown in Figure 5 we can see how the prediction error remains quite low (seeFigure 8).
Thisimpliesthat in order to predict most of the next sensory states the network does not
need to extract knowledge about the topological structure of the environment. This can
be explained by considering that the state of the sensors does not change dramatically
during 10ms. Moreover, in most of the caes the aurrent state of the sensors and the
spead of the motors can be used to predict the next sensory state to a good extent
without taking into acount the previous gates (indeed, by training a first level
prediction network without memory units, we obtained almost identica performance)®.
This implies that the network can produce outputs very close to the desired teading
inpus without taking into aacount high level feaures of the environment such as the
length of the walls. Sometimes the eror increases significantly (for example when the
robot approaches a arner and as a mnsequence the frontal sensors gart to be adivated
for the first time). However, such situations are infrequent. As a @nsequence, the
network converges on a solution which does not take these cases into aacount”.

8 1f we just copy the state of the first 8 input units which encode the arrent state of the infrared sensors
into the output units we obtain an average error of 0.08 each 1000 cycles. The fact that the network
produce alower error imply that it is computing something more interesting. The network, in fact, is able
to corredly predict if sensorswill increase or deaease their activation level during 100ms in most of the
Cases.

° This also explains the variation of the prediction error in the threetesting environments. For example,
the fact that corners are encountered less frequently in environment (@) than in the other environments
may explain why the prediction error islower, on the average, in this environment.
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Figure 8. Prediction error for the first-level prediction layer in the @ase of the training environment (t) and
in the Gase of three variations of the training environment described in Figure 5. The graph shows the
average error and the standard deviation obtained by testing 10 dfferent networks throughout 5000 steps.
Networks have been tested after training without updating the weights.

3.2 First-level segmentation

After training the first level prediction layer we trained the segmentation layer
which takes as input the state of the hidden units of the lower layer and should classify
such patterns into three different classes on the basis of their similarities. The
segmentation layer has been trained for 100,000 steps (i.e. 100,000 cycles). The training
processhas been replicated for ead of the 10 networks sarting with different randomly
assigned weights. Figure 9 shows how the sensory-motor flow experienced by the robot
is caegorized in the cae of the training environment. As can be seen, after the training
process the internal states of the first level prediction layer are clasdfied into three
classes: (1) patterns experienced while the robot is doing wall following (full circle); (2)
patterns experienced while the robot is turning along a @wrner (full square); (3) patterns
experienced while the robot is traveling along the crridor (empty circle). The same
type of segmentation can be observed in the 10 replications of the experiment. In fad in
all cases, the input patterns during one lap in the environment are segmented into 16
different sequences corresponding to the threeclasses described above.

r .
*
. -om
*
»
- e ‘e oen )

Figure 9. Segmentations performed during one lap in the environment. Full circle, empty circle, and full
square indicate, respedivey, which of the threesegmentation unitsis active in a given cycle. The state of
the segmentation units is displayed only when a new segmentation ocaurs (i.e. when the activation state
of output units of the winner takes all layer changes with resped to the previous cycle). The arows
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indicae the diredion of the robot when the rresponding segmentation occurs. Results for a typical
network.

Of coursg, if we change the number of output units in the segmentation layer,
partially different segmentations are obtained. The number of output units, in fad,
determines the maximum number of classes in which the sensory-motor flow can be
divided. By replicating the experiment with two output units we observed that in 8 cases
the segmentation network converged in a solution in which one classcorresponds to the
patterns experienced while the robot was traveling along a crridor and the other class
to both the patterns experienced while the robot was traveling along walls and corners.
In the remaining two cases, the network converged in a solution in which one class
corresponds to the patterns experienced while the robot was traveling along a crner and
the other classto both the patterns experienced while the robot was traveling along
walls and corridors. By replicaing the experiment with four output units we observed
that in all cases the segmentation layer converged in a solution in which sensory
patterns were dasdfied into patterns corresponding to: wall following, traveling along
the crridor, negatiating the first part of a corner, and negotiating the second part of a
corner. It should be noted, however, that by increasing the number of segmentation
outputs the distance between different classes of patterns deaeases. As a @mnsequence,
segmentations beaome progressively less $able throughout time (i.e. for example, in the
case of the eperiments with four segmentation units, patterns experienced by
negotiating corners are usually segmented into two classes. Sometimes however,
because of noise and because the trgjedory of the robot may slightly differ in different
laps in the environment or during the negotiation of different corners, they are
segmented into only one class).

Notice that the segmentation layer takes as input the internal state of the first level
prediction layer (i.e. a representation which may significantly differ from the sensory-
motor flow). In particular, we exped that the first level prediction layer, by trying to
predict the next sensory state, will produce asimilar internal representation for sensory
patterns which are different from the sensory point of view but are functionally
equivalent (i.e. are followed by similar sensory patterns). On the ontrary, sensory
patterns which are similar but tend to be followed by different sensory-motor states will
be represented by different internal states. Moreover, we may exped that the internal
representation of the first level prediction layer will be organized so as to contain those
charaderistics of the sensory patterns which are useful in prediction and not necessarily
other charaderistics which are not useful in prediction. In other words, we may exped
that the first level prediction network will partially filter out information that is
unpredictable & thefirst level.

That the pre-processing of the sensory-motor flow is acamomplished by the first level
prediction layer affeds the type of segmentations produced by the segmentation layer
can be shown by replicaing the experiment using the sensory-motor patterns (instead of
the internal representation of the first level prediction retwork) as input for the
segmentation network'®. In doing so we observed that in 9 cases out of 10, despite the

19 In this case we used an architedure without the first level prediction layer and with a segmentation
network with 10 input units (which encode the state of the 8 infrared sensors and the speed of the two
motors) and 3output units. It should be noted that in the standard experiment the segmentation network
receves input patterns that may also be influenced by the previous ensory states whilein the replication
of the experiment the input patterns consist in the airrent sensory-motor states only. However, as we said
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segmentation networks had 3 output units, sensory-motor patterns were dassified in
only two classes. patterns experienced along a @rner and patterns experienced duing
wall following. This can be explained by considering that these two classes of patterns
are arealy significantly different at the sensory level given that they correspond to
partially different state of the sensors and quite different sate of the motors (the speed
of the left motor is all in the badk during corner negotiation and all in the front during
wall following). On the @ntrary, the patterns experienced traveling along the arridor
are not very different from the other patterns at the sensory-motor level (the only
difference is that the infrared sensor positioned on the left side of the robot is adivated
while traveling along the corridor). The difference between the patterns experienced
while traveling along walls and along the arridor is enhanced in the internal
representation of the first level prediction layer because they are useful to predict the
next sensory states. The left side infrared sensor, in fad, is only activated along the
corridor; therefore its gate is quite reliable and easy to predict after the sensor starts to
be adivated the first time.

3.3 Second level prediction

After training the first level prediction and segmentation layers we trained the
seoond level prediction layer which takes as input the airrrent segmented state (locally
encoded) and the time length of the previous sgmented state and should produce &
output the next segmented state and the time length of the arrent segmented state (i.e.
after how much time the new segmentation will occur). This layer has been trained for
10,000,000 steps. However, given that this layer is updated only when a new
segmentation occurs (ead 18.7 steps, on the average, given the type of segmentations
produced by the segmentation layer described in the previous section), training lasted
about 530,000 cycles. As can be seen in Figure 10, the summed square aror deaeases
until it reaches a value of around 0.04 on the average (the eror reades 0.012 in 8
replications and 0.13 in the other 2 replicaions). This means that networks produce
almost perfect predictions in 8 cases out of 10.
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Figure 10. Sum of squared error over the 4 autput units of the second level prediction layer. The average
error and the standard deviation over 10 runs are shown.

If we test the trained network in the three variations of the environment shown in
Figure 5 we can see how the second level prediction error significantly increases when

in sedion 3.1, similar performance ca be obtained by using a first level prediction network without
memory units.
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the robot experiences different environmental conditions (see Figure 11). This implies
that the second level prediction layer extraded internal representations which include
the topologicd structure of the environment. These representations allow the robot to
make the mrrect predictions in the training environment and, conversely, to produce
incorred predictions when the environment changes.
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Figure 11. Prediction error for the seaond leve prediction layer in the @ase of the training environment (t)
and in the @ase of threevariations of the training environment described in Figure 5. The graph shows the
average and the standard deviation of the eror oktained by testing 10 dfferent networks throughout
100,000 steps. Networks have been tested after training without updating the weights.

The knowledge extraded through prediction leaning allows the robot not only to
predict the next states but also to localize its own position in the environment. In Figure
12 we can seethe prediction error of the second level prediction layer in a test made by
moving the robot from one to another different position each 1000 steps. As can be
expected, after ead replacement, there is a sudden increase in the prediction error
because the robot is disoriented. It is expeding to percave asequence of sensory-motor
state corresponding to the part of the environment where it was located while it is
perceiving a sequence orresponding to another portion of the environment where it was
replacal. However, after relatively few cycles the prediction error deaeases again (the
robot is able to recover after one lap in the environment, on the average). This shows
how the robot has developed a dynamical representation which includes the relative
position of the robot itself in the environment. Moreover, this shows how such a
representation is robust enough to allow the robot itself to easily remver the right
representation of its relative position after a replacement.
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Figure 12. Prediction error for the second level prediction layer in the ase of atest in which the robot is
replaced each 10 steps. For each replacament, the roba is moved to the position in which it was 150
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steps before (given that the robas takes about 320 steps to perform a cmplete lap in the environment this
means that most of the times it is replaced from one to the other room). Result in the case of the best
replication (the replication in which the second level prediction layer reaches the lowest error). The
network has been tested after training without updating the weights.

That the robot extrads a representation of the topological structure of the
environment can be further shown by replicating the experiment with a second level
prediction layer which should not only predict the next segmented state but also should
produce @& output one or more labels which indicae where the robot is currently
locaed. This can be acomplished, for example, by adding to the second level
prediction layer two output units which should be turned on when the robot is traveling
along the left side wall of the large room and the right side wall of the small room. The
teading inpu for these two additional units will be provided by the experimenter and
not from the environment as in the cae of the other units trained by badk-propagation.
In particular, we provide & teading inpu the patterns [1 0 when the robot is a a
distance lower than 75mm from the left side wall of the large room, [0 1] when the
robot is at a distance lower than 75mm from the right side wall of the small room, and
[0 Q] inall other cases.
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Figure 13. Outputs and teaching inpus of the two additional units which locally encode: (1) when the
roba is located close to the left side wall of the large room; (-1) when the roba is located close to the
right side wall of the small room; (0) when theroba islocated el sewhere. The graph shows the difference
between the activation of the two units (i.e. 1.0 represents the vedor [1.0 0.0], 0.0 represents the pattern
[0.0 0.0], and -1.0 the vedor [0.0 10]). Data obtained by testing ane typical individual for 911 steps
corresponding to 50 cycles. The robd is initialy placed in a randomly seleded position and it is tested
without updating the weights.

In doing so, we can see that after a few cycles the robot, in addition to correctly
predicting, it is able to corredly label when it is traveling along the two chosen
locaions (seeFigure 13). Given that the robot starts from a random seleded position, it
takes me time to localize itself in the environment (about 200 steps in this case). In
this phase both the predictions and the labeling produced by the second level prediction
layer are incorred (see Figure 13). After such a phase, however, the robot garts to
produce correct predictions and to label the two rooms correctly. In other words the
robot is able to indicate when it is locaed in a cetain seleded locaion of the
environment. Notice that if we ald the two additional output units to the first level
prediction layer instead of to the second level the network is unable to lean to provide
the arrect labeling even if we increase the number of internal units (result not shown).

18



0.8

0.6

04+

prediction erro

02—+

I “ i \
0 [T T . }

0 2500000 5000000 7500000 10000000
learning step

Figure 14. Sum of squared error over the 6 autput units of the second level prediction layer (the two
additional units encode the airrent location of the roba). The average eror and the sandard deviation
over 10runs are shown. The error isinitialy higher than 0.8. However, we ke the same scale of Figure
10to allow an easier comparison of the two graphs.

Interestingly, in this last experiment in which we alded the two additional output
units and provided as teading input the @rrect label, the second level prediction layer
converges much faster (seeFigure 14) than in the @ase in which the layer is only asked
to predict the next segmentation (Figure 10). This can be explained by considering that
the aldition of the labeling unts, can be seen as a way of channeling the learning
process in the right direaion'. In fad, it is reasonable to think that, to produce the
corred predictions, the robot should be able to ‘know’, among ather things, when it is
locaed in the two chosen locaions. By asking the network to label these locations and
by providing the right teading inpu we force the robot to develop an internal
representation which includes such information. This internal representation is a first
step toward the development of a richer internal representation (which also includes
information concerning aher locaions) that is needed to correctly predict the next
segmented states.

4. Discussion

We proposed that the aility to extract regularities from time series through
prediction leaning can be enhanced if we use a hierarchical architedure in which
higher layers are trained to predict the internal state of lower layers when such states
change significantly. This hierarchical organization has two main functions: (a) it forces
the system to progressively re-code sensory information so as to enhance useful
regularities and filter out useless information; (b) it progressively reduces the length of
the sequences which should be predicted going from lower to higher layers. As a
consequence, while lower layers extrad low level regularities, higher layers can extrad
higher level regularities which are hidden at the sensory level.

We investigated this issue in the mntext of a mobile robot which ravigates in a
structured environment. In this context, as in many other redistic cases, the problem is
particularly hard because sensory information comes at high frequency and regularities

A similar technique has been used by Dorigo and Colombetti (1994) with the goal of facili tating the
leaning of complex tasks and has been named behavior shaping. The term shaping indicates that the
knowledge of the experimenter is used to channel theleaning processin theright diredion.
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at different levels of organization should be taken into acount to predict the next
sensory states.

By training a neural network organized in two layers to predict the next sensory
state in a robot navigating in a two room environment we showed how the first level
prediction layer was able to extract low level regularities such as ‘walls’, ‘corners’, and
‘corridors while the second level prediction layer was able to extract higher level
regularities such as ‘the left side wall of the large room'. The &ility to extrad
regularities at different levels allows the robot to detect if something changes in the
environment (i.e. the fad that a door has been closed, the presence of a new obstacle, or
an alteration of the shape of a room) or to lean to label a particular locaion of the
environment such as the left side wall of the large room.

We showed how these tasks, by requiring higher level regularities, can only be
acomplished by the seaond level prediction layer which hes available high level
regularities. On the other hand we showed how the regularities extracted by the second
level prediction layer depends on the re-coding of the sensory-motor information
performed by the first level prediction layer. Thisfirst level layer, in fad, transforms the
representation at the sensory-motor level by decreasing the difference between
functionally similar patterns and increasing the difference between functionally
different patterns.

Finally, we showed how the internal representations obtained through prediction
leaning d not only include information about the topological structure of the
environment in which the robot has been trained but also an indication of the relative
position of the robot in the environment. The fad that these two types of information are
obtained by the dynamical interacion of the robot with the environment and are
represented over the same pattern of units allows the robot to easily recver its ability to
localizeitself after being replacal in a mmpletely different locaion of the environment.

An aspect of our model which we want to stress is the fad that it involves a
developmental process(the network is trained in three successve phases). The fad that
the training process of different layers is conducted in successve phases going from
lower to higher levels is important because higher layers operate on the results of lower
levels. In other words, what is learned by the first layers constrains what can be learned
by the higher layers'® From this point of view the achitecure proposed in this paper
has me similarities with other models which involve a developmental process
Shrager and Johnson (in pres§ and Elman et a (1996 investigated the dfeds of a
developmental wave of plasticity in which different regions of a neural network were
plastic in different points in time (weights were danged acording to a Hebbian
leaning rule). By comparing the results obtained by training the network with and
without the wave of plasticity they found that in the first case some neurons learned to
perform complex functions such as the exclusive OR (XOR). These neurons tended to
be on regions which were late in reating maturity. On the @ntrary, in the ca&e in
which all regions of the network were trained from the beginning, neurons only leaned
to compute smple functions sich as the logical AND and OR. The reason why the

21n principle, the seaond level prediction layer will recéve in inpu the same information after the first
phase whether it is trained from the beginning o is trained after the first phase. However this does not
imply that the second level layer will converge in the same solution in the two cases. The plasticity of a
network trained hy back-propagation, in fact, progressvely deaeases during the training. As a
consequence, if the second prediction layer is trained by the beginning, it may fail to re-adapt to the
changes that ocaur in the first level prediction layer.
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developmental process allowed some neurons to compute more complex functions is
that they did not lean until later, after ealy neurons had leaned simpler functions.
These ealy learning neurons, in fad, became alditional inpus to the units which
leaned later. Since the XOR function can be decomposed into the AND and OR
functions, this made it possible to lean a function which could not otherwise have been
leaned. In another study on grammar aaquisition which we already mentioned in the
introduction, Elman (1993 trained a simple reaurrent neural network with a @rpus of
sentences of a pseudo-natural language. Words were presented one & a time and the
network was asked to predict the next word which would occur. The aithor showed
how the network was unable to solve the task through ordinary backpropagation
leaning. However, successcould be achieved in either of two ways: (a) by dividing the
training data into graded batches beginning with simple sentences and progressing to
more awmplex ones; (b) by starting the learning rocesswith a limited memory window
(i.e. the adivation state of the reaurrent neurons was reset every third or fourth word)
and then increasing it astraining progressed.

Both these two examples and our hierarchicd architecure show how some cmmplex
functions that are not normally leaned in a static mature system in which learning
occurs everywhere simultaneously can be learned in systems in which different regions
are plastic in different periods of time. As claimed by EIman et a. (1996 and Clark &
Thornton (1997 this can be explained by considering that the re-coding of the sensory
representation achieved in the first leaning phase reduces the cmplexity of the
subsequent search (seealso Schmidhuber, 19923, 1992b). In our experiment and in the
experiment with the wave of plasticity described in Elman et a. (1996 the
representation acquired by the first layers of the network which initially undergoes the
leaning process constitutes the input for the successive layers which are subjected to
the leaning process later on. Similarly, in EIman (1993 the internal representation
which isinitially leaned on the basis of a short time window and which is copied badk
into additional inpu units (memory units), congtitutes a re-coded input for the
successve leaning in which the time window is increased.

The difference, in the cae of the model presented in this paper with resped to the
developmental models described above, is that representations are not only re-coded in
gpacebut also in time (i.e. sequence of functionally similar patterns are transformed into
a single pattern going from lower to higher layers). In the achitecdure proposed in this
paper, the first and second prediction layers operate a transformation in spacewhile the
first level segmentation layer operates a transformation in time. In particular, a set of
sensory patterns is transformed into a single pattern on the basis of their similarity at a
given level. This is only one possible way to accomplish a transformation in time and
may not be the best one. In particular, this type of transformation in time implies a
classification processin which each pattern should be neaessarily grouped into one or
another caegory. Thisway to proceal has advantages and drawbadks. On one hand, the
change from one to another category can be used to easily compress patterns in time (all
patterns corresponding to a single cdegory are treded as a single pattern at higher
levels). On the other hand, it is clea that patternsthat lie between two categories tend to
be randomly caegorized and that information concerning differences between a single
caegory (i.e. the differences between the sensory states which are grouped together by
the segmentation layers) is lost. It would be interesting to find another way to transform
information in time which does not necessarily imply a cdegorizaion processand at the
same time allows a mmpression of the information in time.
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Future diredions of reseach may include, in addition to the study of different ways
to re-code information in time, the introduction of feedbad signals. The predictions
elaborated by the higher levels of the achitedure, in fad, may be usefully put bad in
lower predicting layers. This may be acomplished introducing additional input units at
each level which encode the state of the hidden units of higher levels or by asking lower
levels to predict also the hidden states of higher levels (see Schmidhuber, 19923). In
this case, the prediction at ead level except for the last would be performed both on the
basis of sensory data and of top down information (expedations). In this case, the
developmental processcannot be divided into three separate phases. Changes from one
to the next phase should be lessabrupt so as to allow lower levels to lean how to use
the information coming from higher levels. Finally, another important diredion to
explore is allowing the system to dedde how to behave. This is both in order to use the
extraded information in order to perform some other task and to enhance the system's
ability to predict (for an example of how a mobile robot may shape its behavior in order
to learn to perform atask seeNolfi & Parisi, 1997).
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