
Mobile Robot Learning of Delayed Response Tasks through Event Extraction:
A Solution to the Road Sign Problem and Beyond

Fredrik Linåker Henrik Jacobsson
Department of Computer Science, University of Skövde, Sweden

Department of Computer Science, University of Sheffield, United Kingdom
fredrik.linaker, henrik.jacobsson @ida.his.se

Abstract
We show how event extraction can be used for han-
dling delayed response tasks with arbitrary delay
periods between the stimulus and the cue for re-
sponse. Our approach is based on a number of in-
formation processing levels, where the lowest level
works on raw time-stepped based sensory data.
This data is classified using an unsupervised clus-
tering mechanism. The second level works on this
classified data, but still on the individual time-step
basis. An event extraction mechanism detects and
signals transitions between classes; this forms the
basis for the third level. As this level only is up-
dated when events occur, it is independent of the
time-scale of the lower level interaction. We also
sketch how an event filtering mechanism could be
constructed which discards irrelevant data from the
event stream. Such a mechanism would output a
fourth level representation which could be used for
delayed response tasks where irrelevant, or distract-
ing, events could occur during the delay.

1 Introduction
Consider an automated robot driver that navigates the streets
to reach a certain goal location. On its journey, it encounters
road signs, describing the upcoming junctions. Having de-
tected a road sign, the system needs to be able to later on make
the appropriate decision based on this information. That is,
based on a stimulus, the system needs to store information
and then make an appropriate response once the junction has
been reached. This may not occur for several seconds or even
minutes, depending on the vehicle’s traveling speed and the
distances involved. This problem was described in [Rylatt
and Czarnecki, 2000], which in turn was based on a more
abstract description by [Ulbricht, 1996].

The problem is in fact of a very general nature, in that it
involves a delayed response task (Figure 1). Such tasks are
quite common in real-life, involving associations between in-
puts and actions at different points in time. As shown by
[Rylatt and Czarnecki, 2000], most existing neural network
approaches are however quite inept at handling these sorts of
problems. Rylatt and Czarnecki showed that, in fact, even

stimulus 1
Goal if Goal if

stimulus 2

Response

Stimulus 1

Agent

Stimulus 2

L R

Delay

Figure 1: The delayed response task, adapted from
[Ulbricht, 1996]. The robot travels past a stimulus, here a
light either on the left or the right side, then continues down
the corridor for a number of steps until it reaches the junction
at which time the robot needs to decide whether it should turn
left or right, depending on the location of the light it passed
earlier.

their own, for the task specially constructed, recurrent neu-
ral network architecture was unable to learn the appropriate
associations if they lay more than just a few time-steps apart.

In this paper, we present a quite different approach from
Rylatt and Czarnecki, in that we do not work directly on the
input sequence but instead let an unsupervised system extract
a set of events from the inputs and then we work on this se-
quence of events. As we will show, the time intervals between
events may in fact be arbitrarily large without affecting the
performance of the system; a drastic change from previous
approaches. We also describe a more complex situation, the
‘Extended Road Sign Problem’, which involves having dis-
tractions occur during the delay period. Our solution is based
on having several information processing levels, as depicted
in Figure 2.

Level 1: Contains raw multi-dimensional sensor data,
which is time-step based1. This is the level where [Rylatt and
Czarnecki, 2000] approached the delayed response task. We
however argue, like [Nolfi and Tani, 1999], that real-world

1Where a time-step is defined as a single update of sensors, neu-
ronal elements, and actuators with a regular time interval, typically
in the millisecond range.

a a a ab a c d e

Classification

aaabbbbbaaaaaaaacccccaaaaddddaaaaaaaaaaaaaaaaaaaaaeeeeeaaaaaa

Event filtering

b d e

Event extraction

Level 4

Level 3

Level 2

Level 1

Figure 2: The proposed four-level information processing ar-
chitecture which can handle delayed response tasks with very
long-term dependencies.

task dependencies do most often not manifest themselves at
this level of individual time-stepped neuronal updates, but
rather on much slower time scales, involving several seconds
or even minutes. Rylatt and Czarnecki’s somewhat simpli-
fied simulations and specially modified neural network archi-
tecture was only able to learn dependencies which lay up to
13 time-steps apart. But as most robot systems have a high
sampling frequency, Rylatt and Czarnecki’s system would not
be sufficient. For example, the Khepera robot we use in our
experiments, has sensor sampling rates of approximately 20
times per second. Rylatt and Czarnecki’s system would there-
fore, in effect, not be able to learn tasks involving even just
single second delays. In the following, we will show that
by using event extraction, the delays can instead be arbitrar-
ily large and this enables the system to handle more realistic
long-term dependencies.

Classification: The process whereby the raw multi-
dimensional sensor data is divided into a set of classes. While
[Nehmzow and Smithers, 1991] employed a set of manually
pre-defined (fixed) classes for this, [Tani and Nolfi, 1998] in-
stead let the system determine the class structure by itself,
thereby reducing the user intervention. However, Tani and
Nolfi still had to manually specify the number of classes, and
had to divide the training into several different phases. They
also had large problems with inputs which were distinct but
not very frequent in the training set, and the learning process
was very slow. Recently, [Linåker and Niklasson, 2000] have
constructed a more flexible classification system, the AR-
AVQ, which is able to swiftly classify inputs into a dynamic
number of automatically extracted classes, overcoming most
of the problems in Tani and Nolfi’s system. (The ARAVQ
system is the one used in the following simulations.)

Level 2: Contains raw time-step based multi-dimensional
data which has been tagged with class labels. If each class
is alloted a character in the alphabet, the input can be re-
written, with some loss of information, as a (very long) let-
ter sequence. This is the level at which [Ulbricht, 1996] ap-
proached the road sign problem, trying to learn associations
between the letters in the sequence. She did not, however,

provide any account for how the input had become this let-
ter sequence (i.e. no Level 1 nor any classification), thereby
working on essentially ungrounded symbols. And, further, as
her system was still time-step based, she had the same diffi-
culties learning long-term dependencies as Rylatt and Czar-
necki had in their Level 1 system.

Event extraction: The process whereby only the transi-
tions between class membership of the lower level data are
extracted, thereby filtering out repetitions. This is a fairly
straightforward mechanism as long as the class membership
is exclusive (each input belonging to one—and only one—
class); if two succeeding inputs are classified differently, an
event is generated. The detection of an event generates a sig-
nal to the next level.

Level 3: Contains general events, interspersed over long
periods of time. Updates occur on a considerably slower
time-scale than the time-step based levels below. This means
that longer time-dependencies can be detected, as noted by
[Tani and Nolfi, 1998]. While Tani and Nolfi’s robot system
worked at this level, it did not involve any coupling back to
the real-world as the input was merely classified and filtered,
and not acted upon in any manner. That is, their system did
not use the extracted events to control the robot; it was only
an idle observer of what was going on. We here provide an
account for how extracted events can be used to learn delayed
response tasks and also how this can be used to identify can-
didates which should pass through an event filtering on to yet
another level.

Event filtering: The process which discards events which
are considered as irrelevant for accomplishing the task. This
process requires that the events have been rated with some
sort of ‘usefulness’ score, related to how relevant they are
for achieving the task. This event rating should ideally be
based on a delayed reinforcement learning system, such as
Q-learning, as rewards in the real world do often not come im-
mediately as an action is performed. In the following we pro-
vide a simpler but less realistic evaluation mechanism, based
on a recurrent neural network which has learnt a simple su-
pervised version of the task at Level 3 (see Section 4). The
idea behind this is that once a simple version of the task has
been learnt on a low level, it can be generalized to more com-
plex situations on higher information processing levels that
have access to longer time horizons.

Level 4: Contains only the events which are considered as
relevant for achieving the task. It is updated on an even slower
time-scale than Level 3 and thus can handle events that have
occurred even further apart.

It is worth noting that from Level 2 and upwards, the sys-
tem can work on an essentially symbolic representation of
the input sequence. These symbols provide a representation
whose size is virtually independent from the dimensionality
of the actual sensory and motor systems. This relaxes the
information processing and storage demands on the system,
assuming that the symbolic representation is more compact
than its corresponding input, which usually is the case.

The next section describes an example of how a simple
system can be constructed, based on straightforward building
blocks, in order to achieve the discussed information process-
ing.

2 Architecture
In addition to the information processing capabilities de-
scribed in the previous section, the system needs to be able to
control the robot, i.e. making the appropriate response once
the cue for responding comes. There are several possibili-
ties of executing actions. Levels 1 and 2 are both time-step
based, which means that the inputs can be directly coupled to
a single action which lasts a proportionate single time-step.
This can accommodate for simple, non-goal-oriented, and/or
‘innate’ reflex actions.

However, associations between inputs at Levels 3 and up-
wards are based on events. These events can occur at widely
interspersed points in time. A single time-step action is there-
fore not appropriate as a response; the response should ideally
affect the performance the entire time interval up to the next
event. A simple solution is to repeatedly execute the same
action until the next event occurs, e.g. to keep turning in one
direction until the next event occurs. This would however be
a very rigid and inflexible solution, not allowing the system
to modify its responses into smoother real-time interactions.

Instead, we propose, that the event-based levels affect,
or modulate, the actual input-to-output (sensation-to-action)
mapping of the time-step based levels. This modulation
would also give the system the ability to focus on particular
sensor subsets which are of most importance to the particu-
lar response. We show this by manually constructing a set of
very simple input-to-output mappings, or behaviours, which
the event-based levels can choose between. Each behaviour
only works on a subset of the available sensory channels. As
the higher levels themselves do not act directly on the actua-
tors, there is also no need for between-level action selection,
something which has caused problems in other layered con-
trol architectures such as Brooks’ well-known Subsumption
Architecture. Our architecture is summarized in Figure 3.

Unsupervised
classification
(ARAVQ)

winner
take all

winner
take all

Sensation Action

Response (SRN)

Specifies / affects
(hand!crafted)

Event classes Behaviours

Response (hand crafted)

Figure 3: The architecture realizing information processing
levels 1 through 3 in Figure 2, including the means for con-
trolling the agent’s actions.

Inputs from the robot sensors were fed through an ARAVQ
network (Section 2.1), which classified the inputs into a set
of classes. When the classification became different for two
succeeding time-steps, an event was generated and a localistic
representation of the winner was fed into a Simple Recurrent
Network (SRN, see Section 2.2), which learnt associations
between inputs (events) and outputs (behaviours) at differ-
ent time points. The SRN specified which of the behaviours
(Section 2.3) the robot was to employ until the next event oc-
curred.

2.1 The ARAVQ
The adaptive resource allocating vector quantization (AR-
AVQ) network [Linåker and Niklasson, 2000] is a vector
quantization network which contains a set of model vectors,
representing event classes. When a series of novel and stable
inputs are encountered, the system dynamically incorporates
additional model vectors. The number of allocated model
vectors is determined by the characteristics of the input sig-
nal, which in turn reflects the characteristics of the environ-
ment, or the agent-environment interaction, that underlies the
sensory flow which we apply the ARAVQ network to here. It
is also biased by the ARAVQ’s parameter settings.

The ARAVQ has four user-defined parameters: a novelty
criterion , a stability criterion , an input buffer size and
a learning rate . These are all explained below. In order to
cope with noisy inputs, the ARAVQ filters the input signal
using the last input vectors, which are stored in an input
buffer . The values in the input buffer are averaged to
create a more reliable, ltered, input to the rest of the
network. That is, a finite moving average is calculated
for the last time-steps.

There is a set of model vectors (each one represent-
ing an event class), which is initially empty. (The ARAVQ
does not start working until the input buffer is filled, i.e, until
time-step .) Additional model vectors are only allocated
when novel and stable inputs are encountered, i.e., when the
following criteria are fulfilled:

The input is considered as novel if the Euclidean dis-
tance between the existing model vectors and the
last inputs, compared to the distance between the mov-
ing average and the last inputs is larger than the
distance .
The input is considered stable if the difference between
the actual inputs and the
moving average is below the threshold .

For convenience, we define the following general distance
measure between a set of (model/filtered input) vectors and
a set of actual inputs :

(1)
where denotes the Euclidean distance measure. The dis-
tance between the filtered input and the actual inputs is de-
fined as:

(2)
and the distance between the existing model vectors and the
actual inputs is:

otherwise (3)

Event Class Incorporation: If both the stability and nov-
elty criteria are met, the filtered input is incorporated as an
additional model vector:

otherwise
(4)

Classification: Each time-step, a winning model vector
is selected, indicating which class the (filtered) input

currently matches:
arg (5)

Adaptation: If the winning model vector matches the (fil-
tered) input very closely, the (filtered) input is considered to
represent a ‘typical’ instance of the class, and the model vec-
tor is modified to match the input even closer:

otherwise
(6)

where is a user-defined learning rate. The structure of the
ARAVQ network is depicted in Figure 4.

x(t!1) x(t!n+1)x(t)

X(t)

m 1 m 2

M(t)

(to be allocated)

x(t)

Figure 4: The ARAVQ network. The last inputs are
buffered and used to calculate a filtered input . This
particular network has allocated two model vectors, and

; additional model vectors will be allocated automatically
when novel and stable inputs are encountered. (In the follow-
ing, model vectors are for convenience labeled , , , etc.
instead of , , , etc.)

2.2 The SRN
The simple recurrent network (SRN) [Elman, 1990] is essen-
tially a three-layer feed-forward network which stores a copy
of the previous hidden activation pattern and feeds it as ad-
ditional input at the next time-step. This provides a memory
trace of previous inputs which enables the network to learn
associations over several time-steps.

The output of the SRN (for an arbitrary number of nodes)
is defined as:

(7)

where the hidden activation is defined as

(8)

and is the input at time . The index is used for
identifying the output nodes, and are used for the hidden
nodes (at time and respectively), and is used for
the input. Biases are introduced as additional elements in the
weight matrices, and (indexed with). The function, ,
is the sigmoid activation function .

2.3 Behaviours
Three different input-to-output mappings, or behaviours,
were constructed: a corridor follower, a left wall follower,
and a right wall follower. Each behaviour only needed to use
a subset of the available sensor readings; see Figure 5. The
Khepera robot which was used has eight infrared proximity
sensors with integer activation in the range , denot-
ing no object present within sensor range and denoting
an obstacle very close. The robot has two separately con-
trolled wheels which can be set to integer values in the range

, denoting maximum backward spinning, no
wheel movement, up to which rotates the wheel forward
at maximum speed.

0

7

2
1

left motor right motor

5

4
3

6

} else {
 motor[LEFT] = 5;
 motor[RIGHT] = 5;
}

 motor[LEFT] = 5;
} else if (sensor[1] > 800) {

 motor[RIGHT] = 0;

 motor[LEFT] = 0;
 motor[RIGHT] = 5;

if (sensor[4] > 800) {
/* Corridor follower */

(a) (b)

if (sensor[1] > 200) {
 motor[LEFT] = 5;
 motor[RIGHT] = −4;

 motor[LEFT] = 2;
 motor[RIGHT] = 5;
} else {
 motor[LEFT] = 5;
 motor[RIGHT] = 5;
}

} else if (sensor[0] < 800) {

/* Left wall follower */

} else {
 motor[LEFT] = 5;
 motor[RIGHT] = 5;
}

if (sensor[4] > 200) {
 motor[LEFT] = −4;
 motor[RIGHT] = 5;
} else if (sensor[5] < 800) {
 motor[LEFT] = 5;
 motor[RIGHT] = 2;

/* Right wall follower */

(c) (d)

Figure 5: The Khepera robot and the hand crafted behaviours.

In addition to the three hand crafted behaviours, a simple
selection mechanism was implemented. At each time-step, it
detected the most active output node of the SRN and executed
the code associated with the behaviour.

3 Experiments
A simulated version of the Khepera robot was used in the ex-
periments. The activation of the eight distance sensors, the
two motors, and two of the robot’s light sensors, placed in
concert with distance sensors 0 and 5 in Figure 5(a), were
normalized to the range and fed as input to the ar-
chitecture. That is, the ARAVQ network received a total of 12
inputs. The parameter settings of the ARAVQ were ,

, and . This led to the extraction
of eight different event classes for the constructed T-maze en-
vironments shown in Figures 6 and 7; each event class was
allocated a separate shade and at each location, the winner of
the classification process was plotted, leaving the trail shown
in the figure.

The event extraction discards the repetitions of each class,
leaving sequences which are only six characters long. A char-
acter was manually assigned to each of the eight extracted
classes, for presentational purposes. An interpretation of each

20

d 24

a

a

a

b 61

113

f87 27

a

d 24

a

a 19

60

114

25 85

c

e

(a) (b)

Figure 6: The two different cases for the delayed response
task and the resulting input classification at each location
along the simulated robot’s path, the subscript denoting the
number of repetitions of each class.

class is shown in Table 1, based on how the ARAVQ seems
to apply the classes.

model vector interpretation

corridor
corridor + left light

corridor + right light
junction

wall on left side only
wall on right side only

left-turning corner
right-turning corner

Table 1: The eight automatically extracted model vectors and
how they can be interpreted.

Each of the three behaviours was also assigned a character,
this time creating an ’output alphabet’, as shown in Table 2.

behaviour description

corridor following
left side wall following

right side wall following

Table 2: The three hand crafted behaviours.

The SRN worked on this eight-character input and three-
character output alphabet. As two hidden nodes were used,
a 8-input, 2-hidden, 3-output SRN was created. Network
weights were randomly initialized in the interval ,
the learning rate was 0.01 and a momentum of 0.8 was used.
The training set was the two extracted sequences, for the left
and right turn, respectively, as shown in Table 3. The net-
work was trained for epochs using back-propagation
through time (BPTT) which unfolds the recurrent connections
of the network. The BPTT here unfolded the network 5 times.

The SRN had no problems learning the correct associations

case sequence

Left turn

Right turn

Table 3: The extracted sequences of model vector winners
and the behaviours that should be selected for the paths taken
in Figure 6.

between the light stimuli and and the behaviours and
occurring two events later. That is, the system could turn in
the right direction, irrespective of the length of the delay, as
this information was removed in the event extraction. The
Road Sign Problem was thus solved. We now, however, have
a similar problem to that of [Rylatt and Czarnecki, 2000],
but on the level of intermediate events instead of intermediate
time-steps. We call this problem ‘The Extended Road Sign
Problem’.

4 The Extended Road Sign Problem
While the length of the delay between the stimulus and the
response has become irrelevant through the use of event ex-
traction, the system would still have problems handling dis-
tracting events during the delay. That is, if the input changes
drastically during the delay, intermediate events will be gen-
erated. This means that the problem of finding relationships
between the stimulus and the subsequent response will be-
come harder as there are a number of distracting events which
have taken place in between. Examples of this are shown in
Figure 7 where there is a right or left turn in the corridor after
the stimulus has been passed, generating another three events
which however are of no relevance for the task, i.e. they serve
only as distractions.

ab f10 63 44 14

f 21

a

a

218

d
a 85

g

f

26

22

26

a

e
h e13 a a

d
a 95

c 106642
23

22

221

26

22e

(a) (b)

Figure 7: Two examples of distracting events (turns) happen-
ing in between the stimulus (light) and the cue (junction).

The SRN still managed to find the correct association, but
only if it was first trained on the simpler tasks, and then con-
tinued training on the more difficult examples shown above.
The hidden node activation plot of an SRN which has learnt

the task is depicted in Figure 8. Note that a number of clusters
have formed for each of the functional states the robot can be
in.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hidden node 1

H
id

de
n

no
de

 2

Goal undefined

Goal to the left

Goal to the right

Follow right wall

Follow left wall
following

Right wall
following

Left wall

Corridor following

Figure 8: Hidden node activation of the SRN.

When irrelevant inputs, such as corners (input characters
and), are received by the SRN, the state remains rela-

tively stable, i.e. it stays in the same location as the previous
time-step. That is, large movements in the internal (hidden
node) activation space occur only when functionally impor-
tant events occur. When, for instance, input character (left
stimulus) is received, the activation jumps to the upper right
corner and stays there until the input character (the cue
for responding) arrives. At that time, the activation quickly
jumps to the upper left corner, making the robot activate its
left wall following behaviour, effectively starting to turn left
at the junction. A similar situation occurs if instead the other
stimulus is present, where the bottom right and left corners
are used by the SRN. (Before either stimuli has been encoun-
tered, the SRN state is in the upper right corner, i.e. this par-
ticular robot has a bias for turning left at junctions.)

We can now also sketch how a solution to the Extended
Road Sign Problem might look. Note that if the hidden ac-
tivation space of this SRN was clustered, using for exam-
ple another ARAVQ network, the functionally unimportant
events would likely cause repetitions of the same class win-
ner as they would lead to only small perturbations in the state
space. Only when functionally important events occur, such
as the stimulus or cue, do large jumps in activation space oc-
cur, thereby leading to another class perhaps becoming the
best match. Then using the same filtering process used for
repetitions of input patterns, the irrelevant events would be
removed. Note that this solution is based on a Level 3 sys-
tem (SRN) which has already successfully learnt the associ-
ations in a relatively simple scenario. The filtering can then
extract information which effectively lets the next higher level
(Level 4) handle delays with an arbitrary number of distract-
ing events as they will be filtered out in the aforementioned
process.

5 Conclusions
We have shown how a layered information processing system
can be constructed which handles delayed response tasks like
the Road Sign Problem [Rylatt and Czarnecki, 2000]. Our

solution is based on attacking the problem at a higher level
of abstraction than the raw time-step based sensory data. As
shown, the learning system (in this case an SRN) has a con-
siderably easier task when the redundant data has been fil-
tered out, letting the system instead work on a sequence of
discrete events. These events are grounded in sensori-motor
interactions. As discussed, the event extraction provides the
means for handling arbitrarily long delays between the stim-
ulus and the subsequent cue for response.

In addition to handling the Road Sign Problem, we sug-
gest an Extended Road Sign Problem. This involves distrac-
tions during the delay, thereby putting further demands on
the system not to lose track of what it is supposed to do. As
discussed, another abstraction level, which works on ltered
event streams, could be added. This filtering would be task-
specific and would be based on that the system has already
learnt, on a simple version of the task, which of the inputs are
relevant. We believe this approach will steer us in the right di-
rection on the road to acquiring more complex and intelligent
behaviours from our robotic friends.

Acknowledgments
This research was funded by a grant from the Foundation for
Knowledge and Competence Development (1507/97), Swe-
den and the University of Skövde, Sweden.

References
[Elman, 1990] J. L. Elman. Finding structure in time. Cog-

nitive Science, 14:179–211, 1990.
[Linåker and Niklasson, 2000] F. Linåker and L. Niklasson.

Time series segmentation using an adaptive resource al-
locating vector quantization network based on change de-
tection. In Proc. of the Int. Joint Conf. on Neural Net-
works, volume VI, pages 323–328. IEEE Computer Soci-
ety, 2000.

[Nehmzow and Smithers, 1991] U. Nehmzow and
T. Smithers. Mapbuilding using self-organising net-
works in really useful robots. In Proc. of the First Int.
Conf. on Sim. of Adaptive Behavior, pages 152–159. MIT
Press, 1991.

[Nolfi and Tani, 1999] S. Nolfi and J. Tani. Extracting regu-
larities in space and time through a cascade of prediction
networks. Connection Science, 11(2):125–148, 1999.

[Rylatt and Czarnecki, 2000] R.M. Rylatt and C.A. Czar-
necki. Embedding connectionist autonomous agents in
time: The ‘road sign problem’. Neural Processing Letters,
12:145–158, 2000.

[Tani and Nolfi, 1998] J. Tani and S. Nolfi. Learning to per-
ceive the world as articulated. In Proc. of the Fifth Int.
Conf. on Sim. of Adaptive Behavior, pages 270–279. MIT
Press, 1998.

[Ulbricht, 1996] C. Ulbricht. Handling time-warped se-
quences with neural networks. In Proc. of the Fourth Int.
Conf. on Sim. of Adaptive Behavior, pages 180–189. MIT
Press, 1996.

