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Bootstrap learning of foundational representations
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To be autonomous, intelligent robots must learn the foundations of commonsense knowledge from
their own sensorimotor experience in the world. We describe four recent research results that contribute
to a theory of how a robot learning agent can bootstrap from the ‘blooming buzzing confusion’ of the
pixel level to a higher level ontology including distinctive states, places, objects, and actions. This
is not a single learning problem, but a lattice of related learning tasks, each providing prerequisites
for tasks to come later. Starting with completely uninterpreted sense and motor vectors, as well as an
unknown environment, we show how a learning agent can separate the sense vector into modalities,
learn the structure of individual modalities, learn natural primitives for the motor system, identify
reliable relations between primitive actions and created sensory features, and can define useful control
laws for homing and path-following.

Building on this framework, we show how an agent can use self-organizing maps to identify
useful sensory features in the environment, and can learn effective hill-climbing control laws to define
distinctive states in terms of those features, and trajectory-following control laws to move from one
distinctive state to another. Moving on to place recognition, we show how an agent can combine
unsupervised learning, map-learning, and supervised learning to achieve high-performance recognition
of places from rich sensory input. Finally, we take the first steps toward learning an ontology of
objects, showing that a bootstrap learning robot can learn to individuate objects through motion,
separating them from the static environment and from each other, and can learn properties useful for
classification. These are four key steps in a larger research enterprise on the foundations of human and
robot commonsense knowledge.
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1. Introduction

Commonsense knowledge is a bottleneck problem on the way to artificial intelligence
(McCarthy 1968). Common sense, and hence most other human knowledge, is built on
knowledge of a few foundational domains, such as space, time, objects, action, causality,
and so on (Piaget and Inhelder 1967, Minsky 1975). Spatial knowledge is arguably the most
fundamental of these foundational domains (Lakoff and Johnson 1980). We are investigating
how the foundations of spatial knowledge can be learned from unsupervised sensorimotor
experience.
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We have done extensive work on human and robot knowledge of large-scale space (the
cognitive map), leading to the spatial semantic hierarchy (SSH) (Kuipers 2000, Remolina and
Kuipers 2004, Kuipers et al. 2004). The multiple levels of the SSH demonstrate how higher
levels of representation can be based on lower, simpler levels. The SSH control level, the
lowest, makes a good target for bootstrap learning.

The basic idea behind bootstrap learning is to reach a learning goal by composing multiple
simple machine learning methods, using weak but general learning methods to create the
prerequisites for applying stronger but more specific learning methods. The result is a lattice
of learning methods that collectively learn the desired knowledge.

We assume that a learning agent†, human or robot, starts with a low-level ontology for
describing its sensorimotor interaction with the world. William James called this the ‘blooming
buzzing confusion’ that confronts the infant from its unfamiliar senses. From a robotics per-
spective, we call it the ‘pixel level’, referring to the individual pixels of a camera image, the
individual measurements in a laser range scan, the incremental motions caused by motor
signals, the individual cells of an occupancy grid map, and so on. The learning task is
to create useful higher level representations for space, time, objects, actions, and so on to
support effective planning and action in the world, bootstrapping up from experience at the
pixel level.

In the remainder of this article, after discussing the methodological framework for learning
without prior domain-specific knowledge, we describe four recent research results that carry
us significantly further toward autonomous learning of the foundational representations for
commonsense knowledge.

Section 3 describes a method for starting with a completely uninterpreted sensorimo-
tor system, applying a hierarchy of learning methods to define sensor modalities and their
structures, primitive actions, sensory features and how they are affected by actions, control
laws, and distinctive states. Section 4 re-examines how sensory features and control laws are
learned, providing an unsupervised method based on self-organizing maps. The self-organizing
distinctive-state abstraction (SODA) method uses self-organizing maps to learn the abstraction
from ‘pixel-level’ sensor inputs and motor outputs to perceptual features, distinctive states,
and hill-climbing and trajectory-following control laws. Section 5 shows how highly reliable
place recognition can be learned through a bootstrap learning process, combining unsuper-
vised learning, map-learning, and supervised learning. Section 6 describes how an ontology of
objects can be learned from pixel-level experience. These are initial steps toward a foundational
theory of how commonsense knowledge is possible.

2. Methodological framework

There are some serious questions about how one even begins to investigate the problem of
learning foundational representations from uninterpreted sensors and effectors.

There are four different nested learning problems, where each defines the learning target
for its predecessor.

1. As human researchers with limited resources of various kinds, we need to develop a suitable
research strategy and research methodology to allow this overall research enterprise to be
broken down into projects of manageable size. This research enterprise is a collective and
extended search for . . .

†We use the term ‘robot’ to refer to the physical system and its sensors and effectors. The ‘learning agent’ is the
computational process observing and learning to control the robot. Body and mind, if you wish.
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2. . . . a learning algorithm that takes as input a set of domain-independent statistical learning
methods and an uninterpreted set of sensors and effectors allowing exploratory behavior
in the environment, and eventually learns . . .

3. . . . a higher level ontology for commonsense knowledge, including such foundational
concepts as space, time, motion, objects, actions, causality, and so, along with inference
methods for abduction and planning, in order to . . .

4. . . . build higher level models (‘maps’) that describe the environment in terms of the concepts
in the learned high-level ontologies, to explain the observations the agent obtains during
exploratory behavior. The quality of such a ‘map’ is determined by its utility for generating
effective predictions and plans.

Our own extensive work on learning cognitive maps of unknown environments through
exploration is a contribution to problem 3, devising an appropriate ontology for knowledge of
large-scale space, and problem 4, the task of building the maps, given that ontology. The result
of this work is the SSH, which we use to define the target ontology for bootstrap learning of
spatial knowledge as part of problem 2.

Our own work on bootstrap learning (summarized in this article) contributes in various ways
to problem 2. Continuing progress in our map-learning research makes the SSH a moving
target. Nonetheless, we believe that the progress we have made so far on bootstrap learning
will have sufficient generality and robustness to survive changes in the target ontologies it is
intended to reach.

Problem 2 is itself an enormous problem, with many diverse aspects, so it must be solved by
the research community over an extended period of time, which raises the strategic questions
of problem 1.

Problem 1 is how to break the overall research enterprise of problem 2 into manageable
pieces. Each piece necessarily makes assumptions about what other research results, some to
be created in the future, will provide. Ideally, as the individual pieces are created, they will
fit together into a larger intellectual structure, the assumptions of each piece being satisfied
by the results from some pieces it rests on. In reality, we do not always guess right in making
those assumptions or deciding how to break the large problem into manageable pieces, so
some work will inevitably need to be modified or redone.

One research strategy that we have adopted is to avoid placing a prior constraint on the
set of domain-independent statistical learning methods to be used in solving problem 2. We
are pragmatic in our choice of methods, driven by the needs of the research problem at
hand, while attempting to ensure that the statistical learning methods chosen are as general
as possible, without domain-specific assumptions. After we have discovered sets of learning
methods sufficient to provide solutions for problem 2, we can begin to identify minimal
subsets of those methods compatible with particular implementation technologies, including
biological ones.

Another research strategy we have adopted is to place secondary importance on the question
of whether a particular learning problem is solved by the species (over evolutionary time) or
by the individual (over developmental time). In our work, we frame the learning problem as
a problem for the individual, but this is a gedankenexperiment or ‘intuition pump’ to help
us develop useful insights at this early stage of our research enterprise. Eventually, we will
need to consider whether particular kinds of learning take place during evolution, embryogeny,
development, or mature behavior. In the biological world, the answers clearly vary from species
to species.

The underlying hypothesis behind problem 2 is that the sophisticated higher level ontology
of human commonsense knowledge can arise from an undirected bootstrap learning search
through a space of representations. In the end, a solution to problem 2 in its entirety must be
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evaluated according to the ability of the learning process to construct a useful higher level
ontology for a complex world, without external direction. Our hypothesis is that the learning
process is directed by the structure of the knowledge that is being learned, not by external
supervision based on explicit goals.

However, problem 1 recognizes that human research efforts cannot be undirected. A parti-
cular research project, intended to be accomplished by a few researchers within a year or
two or three, must have an explicit target for the learning process to be developed. Is this
inconsistent with the overall goal of undirected learning? No.

We attempt to define manageable projects directed at particular aspects of successful human
commonsense knowledge. If we are successful in defining a project with an initial set of
assumptions and a learning target along the path that human learning followed, then the
target should be reachable by some undirected learning method. If the project succeeds, our
confidence in the selection of the initial assumptions and the learning target, not to mention
the learning method that was discovered, are all increased. If the project fails, it could be due
to insufficient cleverness in finding a learning method, but it also could be due to poor choice
of initial assumptions or learning target.

Considered within the context of a larger research enterprise, an individual research project
can succeed, not only by solving a stated problem, but also by modifying the given problem
into one that has a good solution. Such a problem–solution pair must interact well with its
neighbors, in the sense that the initial assumptions are satisfied by some prior process, and the
target of this learning process is useful to other processes.

Thus, we can resolve the apparent paradox of a directed research project to develop an
undirected learning method. Each individual research project is a part of the larger research
enterprise. Each explicit learning target is a working hypothesis about how the solution to the
overall research enterprise will look. The methods used in each project must be undirected,
encoding no domain-specific knowledge about the learning target. The solution to the overall
enterprise is obtained if the choice of intermediate learning targets leads to a set of compatible
undirected learning methods that together reach the overall goal (figure 2 is a preliminary
example of this).

3. Learning from uninterpreted sensors and effectors

The lowest level problem is faced by a learning agent in an unknown environment with
unknown sensors and effectors. Our goal is to learn the foundation for the SSH (Kuipers
2000). The SSH rests on a set of hill-climbing and trajectory-following control laws and the
knowledge of the sensorimotor interface to support them. How can this knowledge be learned
from unsupervised experience?

Pierce and Kuipers (1997) answered this question in the context of a simulated mobile robot
with unknown sensors and effectors. The learning agent conducted a variety of experiments
and analyzed the data, building a hierarchy of representations of both the sensory and motor
systems, and eventually creating control laws that could define distinctive states (figure 1).
The experiment had the following steps:

1. Gather observations during random sequences of actions. First, coarsely cluster the sensors
according to the qualitative properties of a histogram of values returned by each sensor.
Then, within appropriate clusters, compute pairwise correlations among sensor values and
interpret them as similarity measures.
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Figure 1. Exploring a simple world at three levels of competence. (a) The robot wanders randomly while learning a
model of its sensorimotor apparatus. (b) The robot explores by randomly choosing applicable homing and open-loop
path-following behaviors based on the static action model while learning the dynamic action model (see text). (c)
The robot explores by randomly choosing applicable homing and closed-loop path-following behaviors based on the
dynamic action model. (Reproduced with permission from Pierce and Kuipers 1997.)

2. Assign the sensors in a cluster to positions in a high-dimensional space reflecting their
pairwise similarities. Project to a low-dimensional subspace (2D in our examples) that best
accounts for most of the variance in the cluster. Once sensor values have a spatial as well
as temporal dependence, we can calculate spatial as well as temporal derivatives, and thus
define motion fields.

3. The motion fields corresponding to different motor signals are analyzed using principal
component analysis to determine the most significant motion effects and the motor signals
that correspond to them. These signals are used as the natural primitives for the motor
space.

4. Higher level sensory features are proposed on the basis of the spatial and temporal attributes
of the field of primitive sensory values. These include features such as discontinuities, local
minimum and local maximum, with magnitude, position, and scope. Proposed features are
evaluated according to stability, predictive power, and extensibility.

5. Evidence is collected of the effects of primitive motor commands on higher level fea-
tures, searching for motor commands that change features in predictable ways. ‘Local
state variables’ are defined for particular neighborhoods in the environment. Trajectory-
following and hill-climbing control laws are defined according to which local state variables
correspond to features that are both observable and controllable.

6. Open-loop control laws are defined by identifying commands that reliably change one fea-
ture while keeping another one relatively constant. Closed-loop control laws are defined
by searching for and identifying commands that can reduce deviations in the relatively
constant feature, actively keeping it close to a desired setpoint. (Think of moving along
a wall, turning slightly to maintain a desired distance from it. Compare figure 1(b)
and (c).)

Figure 1 shows exploration traces at three stages of the learning process. The analysis uses
a variety of mathematical methods, but only ones that can be applied to weakly interpreted
data, using local computations such as neural networks. The sequencing of the learning steps
arises because later learning methods depend on prerequisites learned by earlier ones. Figure 2
shows the lattice of learning methods that supported these conclusions.

One lesson from this work is that learning even an apparently simple sensorimotor skill
such as wall-following, starting from a pixel-level ontology, requires a large number of distinct
learning algorithms, constructing a lattice of different representations of the sensory and motor
capabilities of the robot.
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Figure 2. The lattice of learning methods and their results, from Pierce and Kuipers (1997). (Reproduced with
permission from Pierce and Kuipers 1997.)

4. Learning distinctive states

The learning of high-level sensory features and hill-climbing and trajectory-following control
laws in Pierce and Kuipers (1997) made use of certain background knowledge about sensors
and control, although of an abstract and domain-independent kind. In order to eliminate this
use of background knowledge, Provost et al. (2006) use more generic learning methods such
as self-organizing maps and reinforcement learning to achieve the same goals.

Modern robots are endowed with rich sensory systems, in which a high-dimensional sense
vector provides a high-bandwidth stream of information about a continuous environment.
In addition, many important real-world robotic tasks have high diameter, that is, their solu-
tions require a large number of primitive actions by the robot, for example, navigating to
distant locations using primitive motor control commands. Reinforcement learning meth-
ods show promise for automatic learning of robot behavior, but extending these methods to
high-dimensional, continuous, high-diameter problems remains a major challenge. Thus, the
success of reinforcement learning on real-world tasks still depends on human analysis of the
robot, environment, and task to provide a useful set of perceptual features and an appropriate
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decomposition of the task into subtasks. Our goal is to create autonomous learning agents,
relying on few assumptions about the nature of the robot and its world.

SODA (self-organizing distinctive state abstraction) is a new method for automatic dis-
covery of high-level perceptual features and large-scale actions for reinforcement learning in
continuous environments (Provost et al. 2006). A distinctive state is the isolated local maxi-
mum of a selected measure defined over the local neighborhood, so that a hill-climbing control
law can bring the robot to the distinctive state from any point in its neighborhood.

In SODA, we use a version of self-organizing maps (Kohonen 1995), called the growing
neural gas (GNG) (Fritzke 1995), to learn a small and general set of prototype units to represent
the sensory experience available in the domain. Unlike the original self-organizing map, the
GNG allows the number of units and the topology of the mesh to adapt to the properties of the
domain. To define distinctive states, we define the activation level of the leading GNG unit to
be the target value for hill-climbing. The activation levels of the GNG units therefore serve as
the perceptual features for this agent.

As the agent moves around the environment, different GNG units will have the leading
activation level and will thus define distinctive states based on different hill-climbers. Motion
from one distinctive state neighborhood to another is done using trajectory-following control
laws. In this preliminary version of SODA, these are simply repetitions of particular primitive
actions until the dominant GNG unit changes, so they correspond to open-loop path-following
control loops in Pierce and Kuipers (1997) (figure 1(b)).

Thus, without prior knowledge of the robot’s sensorimotor system or its environment, SODA
does several distinct types of abstraction. It does perceptual abstraction by abstracting a high-
bandwidth sense vector to a small set of GNG units, which serve as perceptual features. It
does state abstraction by defining locally distinctive states to represent large portions of the
continuous state space. And it does temporal abstraction by defining higher level actions that
take the agent from one distinctive state to the next, combining the effect of a trajectory-
following control law to take the agent to a new neighborhood, and a hill-climbing control law
to reach the distinctive state itself within that neighborhood. These abstractions reduce both
the dimensionality and the diameter of the robot’s tasks.

Given high-dimensional, continuous-valued sensory input and continuous motor output,
SODA works as follows:

1. Explore the environment with primitive (A0) actions, using a GNG (Fritzke 1995) self-
organizing feature map to learn a set of high-level perceptual features that define distinctive
states in the environment. Figure 3(bottom) shows examples of the learned perceptual
features.

2. Learn a set of high-level (A1) actions in the form of control laws that carry the robot from
one distinctive state to another. Each action consists of a trajectory-following control law
that repeats a primitive action until a new perceptual feature becomes dominant, followed
by a hill-climbing control law that maximizes the new dominant feature.

3. Use reinforcement learning in the abstracted space of high-level distinctive states and
actions to learn a policy for the same task, which now has much lower diameter with
respect to the A1 actions.

Each distinctive state created by SODA is characterized by the GNG unit whose activation is
maximized at that state. Different underlying states may be aliased according to this criterion,
leading to an action model that is non-deterministic due to state aliasing. In future work, we
plan to draw on our methods for learning causal and topological maps (Remolina and Kuipers
2004), to learn when distinctive states are and are not aliased, and to create a deterministic map.



152 B. Kuipers et al.

Figure 3. Navigation using learned abstraction. The upper diagram shows the robot’s environment and an example
episode after the agent has learned the task using the A1 actions. The triangles indicate the distinctive states the robot is
in at the start of each A1 action. The bottom part of the figure shows the sequence of perceptual features corresponding
to these distinctive states. The narrow line indicates the sequence of A0 actions used by the A1 actions. Navigating
to the goal requires only nine A1 actions, instead of hundreds of A0 actions – task diameter is vastly reduced. (Figure
from Provost et al. (2006).)

Nonetheless, even with a non-deterministic state-action map, reinforcement learning on the
abstracted states and actions is very successful.

An experiment on a simulated robot navigation task (figure 3) shows that the agent using
SODA can learn to perform a task requiring 300 small-scale, local actions using as few as nine
autonomously learned, temporally extended, abstract actions. The learning time is substantially
improved (figure 4).

The methods discussed so far can learn the properties of the pixel-level sensorimotor system
well enough to support autonomous learning of control laws and distinctive states suited to
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Figure 4. Learning performance. Comparison of the reward earned per episode using A0 actions vs. using A1

actions. Each curve is an average of 12 runs using each of 10 different learned feature sets. Error bars indicate +/−
one standard error.

the environment the robot is embedded in. These distinctive states and the actions connecting
them are the first steps toward a higher level ontology for describing the robot’s world. We now
turn to two learning scenarios that build further on this higher level ontology. First we look at
the problem of place recognition: overcoming the variability of the pixel-level sensory image
to recognize the current distinctive state directly and correctly from sensory input. Secondly,
we take an important step toward learning the concept of object, a higher level explanatory
concept that makes it possible to learn useful causal regularities about the world.

5. Bootstrap learning for place recognition

It is valuable for a robot to know its position and orientation with respect to its map of the
environment. This allows it to plan actions and predict their results, using its map. Kuipers
and Beeson (2002) applied the bootstrap learning approach to the problem of learning to
distinguish between different places that may have originally been categorized as the same.

We define place recognition as identifying the current position and orientation in a large-
scale space, a task sometimes called ‘global localization’ (Thrun et al. 2001). However, not
every location in the environment is a ‘place’, deserving of independent recognition. Humans
tend to remember places which are distinctive, for example, by serving as decision points,
better than intermediate points during travel (Lynch 1960).

We assume that the world and the agent’s sensors are both very rich, so distinguishing
information exists, but is hard to find. Real sensors are imperfect, so important but subtle
image features may be buried in sensor noise. Two complementary problems stand in the way
of reliable place recognition.



154 B. Kuipers et al.

• Perceptual aliasing: different places may have similar or identical sensory images.
• Perceptual variability: the same position and orientation may have different sensory images

on different occasions, for example, at different times of day.

These two problems trade off against each other. With relatively impoverished sensors (e.g. a
sonar ring), many places have similar images, so the dominant problem is perceptual aliasing.
With richer sensors such as vision or laser range-finders, discriminating features are more
likely to be present in the image, and so are noise and dynamic changes, so the dominant
problem for recognition becomes image variability. For this research, we use only real sensors
in real environments, in order to avoid assumptions that restrict us to certain types of sensors
or make it difficult to scale up to large environments.

When unique place recognition cannot be done using the current sensory image alone,
active exploration will provide history information that can localize the robot and determine
the correct place. However, when subtle features, adequate for discriminating between different
places, are buried in the noise because of image variability, we want to recover those features.

We build on the abstraction of the continuous environment to a discrete set of distinctive
states (dstates), provided by the SSH (Kuipers 2000). We assume that the agent has previously
learned a set of features and control laws adequate to provide reliable transitions among a set
of distinctive states in the environment (Pierce and Kuipers 1997, Provost et al. 2006). The
steps in our solution to the place recognition problem apply several different learning methods
(figure 5).

1. Restrict attention to recognizing distinctive states. Distinctive states are well separated in
the robot’s state space.

2. Apply an unsupervised clustering algorithm to the sensory images obtained at the dstates
in the environment. This reduces perceptual variability by mapping different images of

Figure 5. Bootstrap learning of place recognition. Solid arrows represent the major inference paths, whereas dotted
arrows represent feedback.
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the same dstate into the same cluster, even at the cost of increasing perceptual aliasing by
mapping images of different states into the same cluster. We define each cluster to be a
view, in the sense of the SSH (Kuipers 2000).

3. Build the SSH causal and topological maps – symbolic descriptions made up of dstates,
views, places, and paths – by exploration and abduction from the observed sequence of
views and actions (Kuipers 2000, Remolina and Kuipers 2004). This provides an unam-
biguous assignment of the correct dstate in the map to each experienced image, which is
feedback path (a) in figure 5.

4. The correct causal/topological map labels each image with the correct dstate. Apply a
supervised learning algorithm to learn a direct association from sensory image to dstate. The
added information in supervised learning makes it possible to identify subtle discriminating
features that were not distinguishable from noise by the unsupervised clustering algorithm.
This is feedback path (b) in figure 5.

We evaluated this method by experiments in two different real-world environments, one
constructed to have a subtle distinguishing feature in an otherwise simple and symmetrical
environment, and the other the main corridor in an office building. In both cases, unsupervised
clustering produced significant amounts of perceptual aliasing, but with the help of the learned
topological map, supervised learning was able to converge rapidly to 100% accurate place
recognition.

This is a paradigm example of bootstrap learning.A weak learning method (k-means cluster-
ing) provides the prerequisites for an abductive method (topological map-building), which in
turn provides the labels required by a stronger supervised learning method (nearest neighbor),
which finally achieves high performance.

6. Bootstrap learning of object representations

The blooming buzzing confusion of the pixel-level world is too variable to contain meaningful
causal regularities useful for prediction and planning. Among the many important achieve-
ments in early childhood development is learning the higher level concept of object, which
along with the higher level concept of action is capable of supporting learning of causal
regularities useful for understanding and manipulating the world (Spelke 1990).

In recent work toward this goal (Modayil and Kuipers 2004), we have shown how an agent
can autonomously learn an ontology of objects to explain many aspects of its sensor input
from an unknown dynamic world. For an agent to learn about an unknown world, it must
learn to identify the objects in it, what their properties are, how they are classified, and how
to recognize them.

The robot’s sensorimotor system provides time-varying sensor inputs and motor outputs.
From this, we assume that it can construct a description of the local environment in the ‘pixel-
level’ ontology of occupancy grid models.† The learning scenario described here takes place
in ‘small-scale space’, the space within the immediate sensory surround of the agent where it
can reliably localize itself (Kuipers et al. 2004).

The occupancy grid representation for local space does not include the concept of object.
The occupancy grid representation assumes that the robot’s environment can be divided into
cells that are empty and those that are occupied. Evidence provided by range sensors is used
to update the probability of occupancy of each cell. Simultaneous localization and mapping

†The learning methods in Pierce and Kuipers (1997) can learn the properties of sensors and effectors from experi-
ence. We assume that the occupancy grid representation and inference method can be learned in a similar way. We
have a sketch of such a learning scenario, but it is outside the scope of this research on objects.
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algorithms can efficiently construct an occupancy grid map and maintain accurate localization
of a mobile robot within it using range sensor data (Moravec 1988, Thrun et al. 2000).

In this bootstrap learning scenario, the learning agent acquires a working knowledge of
objects from unsupervised sensorimotor experience. We begin by using the properties of
occupancy grids to classify individual sensor readings as static or dynamic. A cell in the
occupancy grid is considered static if it is labeled ‘occupied with high confidence’, and has
never been labeled ‘free with high confidence’. A cell is considered dynamic if it has ever
been labeled free with high-confidence, even if it later becomes occupied. An individual
sensor reading is labeled ‘static’or ‘dynamic’according to the label of the cell it falls in. Static
readings are considered to be explained by the structure of the fixed environment, and are not
considered parts of objects.

The representation of objects is constructed from dynamic sensor readings in four steps:
individuation, tracking, image description, and categorization. Dynamic readings are clustered
and the clusters are tracked over time to identify objects, separating them both from the back-
ground of the static environment and from the noise of unexplainable sensor readings. Once

Figure 6. Multiple representations of a scene. The robot observer is the small round robot in the foreground. The
larger ATRV-Jr is used as a non-moving object. (a) A photograph of the scene. (b) A range image of the scene at
approximately the same time. (c) An occupancy grid representation of the scene. (d) An iconic representation of the
scene. This is a symbolic description of the robot’s environment enabled by the learned object ontology. The location
of the observing robot is indicated by a small triangle (�). A moving object (pedestrian) of amorphous shape is shown
with its trajectory. A non-moving object (ATRV-Jr) has been classified and is shown by the convex hull of its shape
model. The permanently occupied cells in the occupancy grid represent the static environment.
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trackable clusters of sensor readings (i.e. objects) have been identified, we build shape models
when shape is a stable and consistent property of these objects. However, the representation
can tolerate, represent, and track amorphous objects as well as those that have well-defined
shape. The shape models are classified, so that instances of the same type of object can be
categorized together.

In Modayil and Kuipers (2004), we demonstrate this learning process using a mobile robot
equipped with a laser range sensor, experiencing an indoor environment with significant
amounts of dynamic change. The agent learned to individuate and track dynamic objects
in the scene, acquired shape models where the shape was stable, and created a categoriza-
tion of shape models. The scene could then be described in terms of the static environment
(grounded to the static portions of the occupancy grid), and the dynamic objects (whose iden-
tities and trajectories could be described symbolically, grounded to the tracked objects in the
scene). Figure 6 shows selected steps leading to this result.

By this process, the agent has learned substantial portions of the concept of object. It has
learned to separate an object from the background environment, describing it as an individual
that has a spatial extent and persists over time. Some individual objects have a consistent
shape, which can be used to categorize individual objects into object types. A straight-forward
consequence of this, but not explored yet in this article, is the ability to identify new individual
elements of the object type, which might not have been identified using previous methods,
perhaps because it has never moved, or perhaps because its image has always been entangled
with other objects or the environment. We are also investigating the learning of appropriate
actions for interacting with object individuals and types.

7. Conclusions

To be autonomous, a robot must be able to learn its own ontology of higher level concepts
from its own pixel-level experience with the world, rather than obtaining it from an external
programmer. We have described recent research that shows how the structure of unknown
sensors and effectors can be learned (Pierce and Kuipers 1997); how high-level perceptual
features and actions can be learned and used to define distinctive states (Provost et al. 2006);
how high-performance place recognition can be learned by bootstrapping unsupervised learn-
ing, map-building, and supervised learning (Kuipers and Beeson 2002); and how an ontology
of objects can be learned from low-level experience with a dynamic world (Modayil and
Kuipers 2004).

There are many other aspects of commonsense knowledge of the physical world still to
be learned. We have already mentioned the need to learn the occupancy grid representation,
or more generally, a local perceptual map representation of the immediate sensory surround
(Kuipers et al. 2004). We are also extending the learned theory of objects with the actions that
affect those objects, along with their preconditions and postconditions (Modayil and Kuipers
2004).Another important research direction will be learning to use vision as a sensory modality.
Naturally, this kind of learning will straddle the evolutionary/developmental boundary.

Bootstrap learning of foundational representations may also be an important part of develop-
ing a scientific theory of consciousness (Kuipers 2005). One of several aspects of consciousness
is a property that philosophers call intentionality: the referential connection from concepts in
the mind to objects in the external environment (Searle 2004). Critics of ‘strong AI’ claim
that robots can never have ‘original’ intentionality (instrinsic to itself), but can only have
‘derived’ intentionality (from the mind of a human author or programmer). However we have
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seen, although in very simple forms, bootstrap learning of concepts of place and object, com-
plete with referential connections to individual places and objects in the world through the
causal properties of the sensorimotor system. The ability of a robot to learn its own higher
level concepts from its own low-level experience is the foundation for having its own original
intentionality.
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