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Abstract

In this paper we describe an intrinsic developmental algorithm designed to allow a mobile
robot to incrementally progress through levels of increasingly sophisticated behavior. We believe
that the core ingredients for such a developmental algorithm are abstractions, anticipations,
and self-motivations. We propose a multi-level, cascaded discovery and control architecture
that includes these core ingredients. Toward this proposal we explore two novel models: a
governor for automatically regulating the training of a neural network; and a path-planning
neural network driven by patterns of “mental states” which represent protogoals.

1 Introduction

Most intelligent robot control systems begin with the goal of creating a robot to carry out human-
issued tasks. While these tasks vary in difficulty, they must, by their very nature, involve abstract
concepts. For example, typical tasks might be: go to a specific location, identify an object, or pick
up an object. Attempting to directly achieve the goal of carrying out human commands creates
basic assumptions about the architectural design of a robot. We call this philosophy task-oriented

design.

Within the task-oriented design paradigm, there are two competing methodologies: top-down,
and bottom-up. Top-down designers apply computational algorithms that can be carried out on
the robots so as to accomplish a given task. There is a range of computational models employed
in robotics: dead reckoning (e.g., using internal measures of space), sensor fusion, behavior fusion,
and symbolic logic.

Bottom-up designers again usually take the task to be performed by the robot as a pre-specified
assumption. However, the control architecture of the robot is designed in a bottom-up fashion.
Examples include subsumption architectures, supervised learning schemes, and evolutionary com-
putation.
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We believe that a significant pitfall exists in both the top-down and bottom-up task-oriented
robot design methodologies: inherent anthropomorphic bias. This bias refers to the design of pre-
specified robot tasks: traditional research in the design of intelligent robots has attempted to get
robots to do the tasks a human can, and do it in a human-centered manner. Historically, this
methodology started out by imitating the physical actions of a child playing with blocks. A task
was decomposed into a planning problem, and then, with a robot equipped with an arm and a
gripper, the robot was asked to manipulate specific blocks. The inherent anthropomorphic bias
existed by design, since the issue was to explore models of intelligent behavior. The pitfall in this
approach is that the symbolic modeling of behavior is based on the capabilities of a human body
and human concepts. Both capabilities may be inappropriate assumptions for the physical body
and experiences of the robot.

Furthermore, even if we could build a robot with a human-like body and senses, it is not clear
that we can jump straight to the abstract task at hand. Many control issues need to be solved
in order to have a robotic system carry out even the simplest of tasks. After a half-century of
continued research, the artificial intelligence and robotics communities are still far from developing
any type of general purpose intelligent system.

Recently, a new approach called developmental robotics is being applied to the design of robot
behaviors. In this approach, an artifact under the control of an intrinsic developmental algorithm
discovers capabilities through autonomous real-time interactions with its environment using its
own sensors and effectors. That is, given a physical robot or an artifact, behaviors (as well as
mental capabilities) are grown using a developmental algorithm. The kinds of behaviors and mental
capabilities exhibited are not explicitly specified. The focus is mainly on the intrinsic developmental

algorithm and the computational models that allow an artifact to grow.

A developmental approach to robotics is partly an attempt to eliminate anthropomorphic bias.
By exploring the nature of development, the robot is essentially freed from the task of achieving a
pre-specified goal. As long as the intrinsic developmental algorithm demonstrates growing behavior
there is no need to pre-specify any particular task for the robot to perform. Indeed, it is the goal of
developmental robotics to explore the range of tasks that can be learned (or grown) by a robot, given
a specific developmental algorithm and a control architecture. This paper outlines our approach to
a developmental robotics program and two experiments toward an implementation.

2 Overview of a Developmental Robotics Paradigm

The ultimate goal of our developmental robotics program is to design a control architecture that
could be installed within a robot so that when that robot is turned on for the first time, it initiates
an ongoing, autonomous developmental process. This process should be unsupervised, unscheduled,
and task-less, and the architecture should work equally well on any robot platform—a fixed robot
arm, a wheeled robot, or a legged robot.

The intrinsic developmental process we are currently exploring contains three essential mecha-
nisms: abstraction, anticipation, and self-motivation. In a realistic, dynamic environment, a robot
is flooded with a constant stream of perceptual information. In order to use this information effec-
tively for determining actions, a robot must have the ability to make abstractions so as to focus its
attention on the most relevant features of the environment. Based on these abstractions, a robot
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must be able to anticipate how the environment will change over time, so as to go beyond simple
reflexive behavior to purposeful behavior. Most importantly, the entire process is driven by internal
motivations to push the system toward further abstractions and more complex anticipations.

We believe that the developmental process should be employed in a hierarchical, bootstrapping
manner, so as to result in the discovery of a range of increasingly sophisticated behaviors. That is,
starting with a basic, built-in innate behavior, the robot exercises its sensors and motors, uses the
mechanisms for abstraction and anticipation and discovers simple reflex behavior. A self-motivated
control scheme employs these discoveries in order to supercede its innate behavior. This constitutes
the first stage of the bootstrapping process.

The same intrinsic developmental algorithm can be employed recursively in subsequent stages,
using the knowledge discovered in previous stages. For example, a secondary stage may abstract
sequences of behaviors and corresponding perceptual views. These behavior sequences, termed
protoplans [12], can lead the robot through a series of views in the environment thus resulting in
‘interesting’ places to visit. We will call these places protogoals. Here, the proto prefix implies a
distinction between standard notions of plans and goals from the developmental ones used here.
The same developmental process may be cascaded beyond this stage to result in discovery of actual
goals and plans.

The control scheme that is responsible for driving the robot at each stage uses the discovered
abstractions and anticipations while being pushed by internal motivations. At the lowest level, the
motivational model indicates to the system how ‘comfortable’ it is in the given environment. If it
is too comfortable, it becomes bored, and takes measures to move the robot into more interesting
areas. Conversely, if the environment is chaotic, it becomes over-excited and attempts to return to
more stable and well known areas. These anthropomorphic terms will be described below in more
technical terms.

Ultimately, the robot will grow enough to start exhibiting purposeful behaviors. For example,
a robot could form a goal of getting to some place, and then be able to plan its behavior to go
to it. By its very nature, goal-directed behavior is decomposed using regression mechanisms, as
is traditionally done in most research on AI Planning. However, the ‘planning’ performed in a
developmental system is related less to a search than it is to a model of stimulus-response.

To summarize, we are proposing a multi-level, cascaded discovery and control architecture to
explore developmental robotics. Each level of the architecture uses an instantiation of the intrinsic
developmental algorithm and the control scheme. The key components of the developmental algo-
rithm are the processes of abstraction and anticipation in the context of a model of motivation. In
the rest of this paper, we elaborate on the details of this proposal.

3 The Intrinsic Developmental Algorithm

As in nature, the control architecture is not a completely blank slate, but contains a simple re-
flexive model for producing behavior, as well as the infrastructure necessary for adaptation. Over
time, through self-motivated interactions with the environment, the robot acquires the knowledge
necessary to exist in the environment in a purposeful way. The robot learns, not only about its envi-
ronment, but also about its own perceptual and motor capabilities via this process. This approach
to development proceeds hierarchically.
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Figure 1: Key components of intrinsic developmental algorithm.

Each level of the hierarchy combines two essential mechanisms—abstraction and anticipation—
with motivation playing an overarching role (see Figure 1). We are currently exploring two ab-
straction mechanisms, self-organizing maps and resource allocating vector quantizers. For the
anticipation mechanism we are focusing on simple recurrent networks.

3.1 Discovering Abstractions

Every robot is endowed with a suite of sensors and effectors. Data obtained from a robot’s sensors
and effectors in the process of exploring its environment, represents the robot’s experiences in the
environment. As an essential first step in the growth process, the robot has to derive abstractions
from such data. Even in the case of simple mobile robots, sensory-motor data tends to be very
high dimensional. Non-parametric clustering algorithms work well for abstracting high dimensional
data. Both self-organizing maps and resource allocating vector quantizers are examples of this class
of algorithms.

Self-organizing maps (SOMs) were pioneered by Kohonen [8]. Briefly, a SOM is a mapping of a
typically high dimensional input vector to a particular cell in a low-dimensional matrix. The matrix
is topologically arranged in a unsupervised manner such that very similar input vectors map to the
same cell, less similar inputs map to nearby cells, and very different inputs map to distant cells.

In a SOM, similarity is computed by comparing an input vector with a model vector associated
with each cell. The model vector that is closest (distance is determined by the sum of squared
differences to the input vector) is designated as the winner. The model vector of the winner and
the model vectors of the cells in its neighborhood are updated to more closely match the given
input vector.

The SOM idea is simple and effective. Any information that can be turned into a vector
of numeric values can be self-organized by such a map. The idea has been applied in a wide
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variety of problems ranging from creating maps for classifying the World Wide Web to analyzing
financial data. Resulting SOMs are useful for two related reasons: their ability to automatically
find abstractions, and their ability to help visualize complex data [8].

A resource allocating vector quantizer (RAVQ) [11] is closely related to a SOM. The primary
difference is that a SOM has a fixed number of model vectors arranged in a particular topology,
while an RAVQ has no topology but can dynamically create new model vectors. Constructive
systems of this kind can have problems distinguishing a new category of input from spurious noisy
input. An RAVQ ensures that occasional noisy inputs do not generate new categories by keeping a
buffer of the recent inputs and calculating a moving average based on them. Only a stable sequence
of new patterns will lead to the creation of a new model vector [11]. Like a SOM, an RAVQ is a
good tool for automatically discovering useful abstractions in high dimensional data.

3.2 Anticipating the Future

Once a robot has discovered some abstractions, it is important to try to use them to anticipate
what will happen next. This can help a robot predict its future and can also be used to begin
to take over control from a lower level. Anticipation is a temporal activity and thus requires a
time-sensitive computational mechanism.

The simple recurrent network (SRN) was created by Elman in the late 1980’s [4]. There are
two main classes of artificial neural networks: feed-forward networks in which all activation flows
in one direction and recurrent networks in which activation is allowed to flow both forward and
backward. In order to deal with time-dependent tasks, a feed-forward network usually requires a
fixed window of the past inputs, while a recurrent network can take the current input alone and
build up a contextual memory of the past inputs. Elman’s SRN has the simplicity of a feed-forward
network with the power of a recurrent network. Like SOMs, SRNs are also simple and effective.
They have been used to process many types of sequential data, including language and music.

3.3 Motivation

In a sense, our goal is to find a developmental motivational model that acts like a co-evolutionary
competitive arms race (see, for example, [7]). The basic idea of the competitive arms race is that
two populations of systems are pitted against one another, and continually one-up each other in a
spiraling increase of fitness. This works if the two populations begin with nearly equal fitness, and
remain relatively even throughout the race.

We imagine that a developmental motivational mechanism could play the same role, driving
the system in a similar manner to increased performance. One possibility that we are exploring is
an architecture design that pushes the robot into mental and environmental states that are neither
too easy nor too hard to correctly anticipate. In this manner, the robot would get “bored” in
environments in which it can easily predict the outcome of its actions, but retreat from environments
that seem chaotic. However, the area between predictability and randomness (an area one might
compare with the so-called “edge of chaos”) is suspected to be a prime area for learning (see, for
example, [9]). The exact nature of such a mechanism has yet to be fully developed.
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Figure 2: A general developmental robotics architecture.

3.4 The Control Scheme

Figure 2 depicts the hierarchical nature of the proposed control architecture. There is a Level 0
(not shown in the figure), which is built-in and contains a set of simple reflexes for controlling the
robot to avoid obstacles and wander. Each subsequent level combines an abstraction mechanism
and an anticipation mechanism to adapt to the environment based on experience. The anticipation
mechanism has a feedback loop to illustrate its time dependent nature. Each level produces a robot
control output and abstractions from each level are used as inputs to the next level. The control
outputs from all levels are integrated in a subsumption fashion, with higher levels having priority
over lower levels.

Input to the first level of the hierarchy comes directly from the robot’s sensors and motors.
The abstraction mechanism at this level begins to extract basic perceptual and motor features
observed during the robot’s initial reflexive movements. The anticipation mechanism observes the
abstractions being made and begins to recognize repeated multi-step sequences of features through
time, chunking them into new, more compact representations.1

The next level of the hierarchy takes these newly created chunked representations as input.
Using the same abstraction mechanism, this level begins to make abstractions about these chunked
sequences. Using the same anticipation mechanism, this level begins to recognize sequences of sub-
sequences from the previous level, chunking them again and sending them on to a further level. In
this way, each level of the hierarchy processes the input at a longer time scale than the previous
level.

This hierarchical development is driven by internal motivations rather than external goals. As
mentioned, one possible motivation is to avoid boredom while not straying into chaos, or in other
words maintaining a balance between exploitation and exploration. The anticipation mechanism
provides a good measure of where the developing system falls along this continuum. When the
anticipation mechanism of one level is able to accurately predict the behavior of the previous level,

1For a thorough overview of methods of storing sequences for use in autonomous robots, see [15].
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it is time for that level to subsume control of the robot and for exploration to begin at the next
level.

4 Implementing the Intrinsic Developmental Algorithm

Having described the fundamental elements for a developmental robotics program, we now explore
the possibility of implementing these ideas. Implementing the architecture described above will
have to be carried out in stages. The development of the architecture will involve extensive empir-
ical experiments that will help establish the viability of the components of the proposed intrinsic
developmental algorithm and how various alternatives might compare. For example, what is a good
choice for the abstraction component: the hidden layer of a neural network, a SOM, an RAVQ,
or something else? Along the way there will no doubt be numerous challenges that will have to
be addressed and several constraints that may have to be relaxed or modified. We believe that
focusing on task-less problems is imperative. Likewise, we believe that the system should generate
its own motivations and learn while under its own control. However, these constraints may not be
enforced until we have all pieces of the architecture in place. We therefore will begin by exploring
task-oriented, teacher-driven problems for our initial experiments. In the remainder of this paper,
we describe two such experiments that demonstrate the viability of our developmental algorithm,
and along the way address a few of the immediate problems that arise. In both cases, we will
discover that the abstractions generated by the developmental algorithm are very different from
those that a human might design but at the same time are appropriate for the robot’s behavior in
the environment.

• In the first experiment, we demonstrate how abstractions can be used to govern the learning
of a neural network robot controller.

• In the second experiment, we show how abstractions can be used to create purposeful behav-
iors for a robot.

All of our experiments have been implemented in Pyro [2, 16], which stands for Python Robotics,
an open source project with the aim of creating an abstract interface for robot programming. Pyro’s
abstractions facilitate the use of the same control program on different hardware platforms (such
as a Khepera [13] or a Pioneer [1] robot) as well as on different simulated platforms (such as
Player/Stage [6] or Aria [1]). Results reported in this paper are from experiments carried out on a
simulated Pioneer robot operating in a Player/Stage world. Our long term goal is to demonstrate
the viability of our developmental architecture by reporting consistent results on several different
robot platforms.

4.1 Experiment 1: Using Abstractions to Govern Neural Network Learning

It is well known that neural networks are quite sensitive to the order in which training patterns
are presented during learning. One serious problem that can occur has been termed catastrophic

forgetting [5], which is when new information completely destroys previously learned information.
Given that our goal is to create an autonomous developmental learner based on neural networks,
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Figure 3: A network governor for training the wall following task. Model vectors in the RAVQ
were 18 dimensions (16 sonars plus 2 motor commands). The network had 16 input units, 8 hidden
units, and 2 output units.

this sensitivity to training order is of great concern. We cannot hand pick the training patterns for
our developing robot. Instead, the robot will choose its own actions, initially based on its innate
reflexes, and eventually based on its internal motivations. It is quite likely that the robot will
experience long sequences of relatively static inputs, for instance while it is moving across a large
open space. Due to the repetition of similar sensor signals, a neural network controller could get
overtrained on the appropriate behavior for this state, and forget how to respond appropriately to
other important states. We need an autonomous mechanism to oversee the training process so as
to avoid catastrophic forgetting.

A governor is a mechanical device for automatically controlling the speed of a steam engine by
regulating its intake of fuel. We have adopted this terminology to describe a new method of de-
termining appropriate training patterns for neural networks. A network governor is an algorithmic
device for automatically regulating the flow of training patterns into the network so as to avoid
problems such as catastrophic forgetting.

One known solution to the catastrophic forgetting problem is to rehearse prior training patterns
as new training patterns are presented [5]. This allows the network to remember old information
while it is incorporating new information. Our network governor uses this solution while enhancing
it with the ability to decide when an input pattern should be considered new. The network governor
is implemented as an RAVQ. As discussed previously, one of the advantages of an RAVQ as an
abstraction mechanism is that it can dynamically generate as many categories as needed for the
given domain.

As shown in Figure 3, the governor sits between the network being trained and the robot. Its job
is to categorize the current situation, discarding repeated instances of the same category and saving
instances where the category changes. Model vectors in the RAVQ governor are made up of two
components: the current sensor values and desired motor command. On each time step, the RAVQ
determines whether the current situation can be described by the previous model vector or if it
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Control method Successful Trials Mean Score

Teacher 10 of 10 711.10
Governor-Trained Network 8 of 10 685.91
Standard Network 2 of 10 1241.27

Table 1: Performance in the wall following task. The score is based on sum of the robot’s distance
from the wall at each time step.

requires a different model vector. If the current situation is categorized as a change, then it is saved
into a training buffer. When the training buffer is full, the oldest entry in the buffer is dropped
to make room for the new entry. After the categorization step is complete, a back propagation
training step on the network follows. The RAVQ governor maintains a pointer into the training
buffer marking the position of the most recently trained pattern. This pointer is advanced and the
pattern stored in the next position of the buffer is trained. Over time, the governor’s training buffer
builds up a sequence of the unique situations that the robot has experienced in the recent past. In
this way, the governor can rehearse the key moments of change while ignoring long stretches where
no change occurs and thus avoid catastrophic forgetting.

Note that the network only sees raw sensor values and not the governor’s categorizations.
However, which instances of the sensors it sees and the order in which it sees them is determined
by the governor. The governor serves a purpose as a training supervisor. Once training is complete,
the network can stand alone to perform the tasks on which it was trained.

To illustrate the importance of a governor to the developmental approach, we present the
results from one experiment. The question to be addressed is: Does a governor-trained network
outperform a standard network in typical robot control tasks? For this experiment, the task is
wall-following. The environment is a 5-meter by 5-meter world consisting of an L-shaped room
with a narrow opening into a smaller square-shaped room. We created a program to generate the
desired translation and rotation motor commands to wall-follow on the left around the perimeter
of this environment. The teacher tried to keep the robot no closer than 0.7 robot units and no
further than 1.0 robot units from the wall (a robot unit is equal to the diameter of the robot). We
collected ten data sets using the teacher program to control a simulated Pioneer robot for 20,000
steps. Due to added noise in the simulation, each data set was different. Off-line, we trained ten
governed networks and ten standard networks on the saved data sets2.

After training was completed, we tested the networks in the same environment for 1,000 steps.
The performance score for this task was the sum of the distances recorded by the left sonar sensor
(in robot units). For this task, lower scores equate with better performance, as long as the robot
is not hitting the walls. If the resulting behavior caused the robot to get stuck against a wall, it
was deemed unsuccessful and was not used to calculate mean performance. Table 1 summarizes
the results. Not surprisingly, all ten tests of the teacher were successful. Eight of the governor-
trained networks were successful and actually obtained a lower mean (although the difference is
not statistically significant). Only two of the standard networks were successful, however they did
not display good wall following behavior, but got stuck cycling around one of the two rooms.

2The RAVQ governor parameter settings were: delta = 0.6, epsilon = 0.2, moving average buffer size = 2, training
buffer size = 100. The neural network parameter settings were: learning rate = 0.2, momentum = 0.9.
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Figure 4: Example paths of the teacher, a governed neural network, and a standard neural network
in the wall following task.

Representative paths of the teacher, a governor-trained network, and a standard network are
shown in Figure 4. Only the center point of the robot is depicted at each position along the path.
It is interesting to note that path of the governor-trained network is smoother than the path of
the teacher. This is partially due to the fact that the governor-trained networks slow down in the
corners. This can be seen in the density of the points at the corners in the center image of Figure 4.
Also the governor-trained network is better at returning to the wall after exiting the smaller room.
In contrast, the standard network seems to have learned to do wall following, but it is not willing
to get as close to the walls, which creates a problem as it tries to exit the smaller room. Clearly
for this task the governor-trained networks outperformed the standard networks.

On average, the governor-trained networks created 87 model vectors to categorize the situations
in this small two-room world. Figure 5 shows the series of model vectors that were activated by
one governor as the robot moved in a clockwise direction around the environment. The number
of model vectors that are created is highly dependent on the parameter settings of the RAVQ.
However, in related experiments (not discussed in this paper), we found that the settings used
here produced the most robust results for this task. It seems somewhat surprising that so many
categories would be useful for such a simple world. This illustrates why our human intuitions about
how to describe the world are probably not the right level of description for a robot and why we
should avoid such anthropomorphic biases. Recently, there has been an increased research interest
in how to equip robots with the ability to extract information from their own sensory stream. The
techniques applied include winner take all type networks [14], clustering algorithms [3], and RAVQs
[10].

Although such a governed neural controller is just a small step toward a fully developmental
system, it does exhibit several of the key traits of the intrinsic developmental architecture described
earlier. The targets of the network are generated by the system so as to anticipate what movement
follows from a set of sonar inputs. In order to generalize, the hidden layer of the network must be
making appropriate abstractions. It may appear that the system is completely lacking any type of
self-motivation. However, it is interesting to consider the ability of the governor to “pay attention”
to the inputs only when they are perceived to have changed. A possible next step would be to
connect a “desire” to maintain a certain level of perceived change to a movement generator. For
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Figure 5: The numbers indicate the model vectors associated with each position along the path of
a governor-trained network. The path starts with the points categorized by model vector 17 and
goes in clockwise direction, ending with the points categorized by model vector 15.

example, if the abstract states were changing too quickly (as determined by the governor), the
controller could signal the robot to slow down. The governor could then play a critical role in the
implementation of a model of motivation.

4.2 Experiment 2: Using Abstractions to Create Purposeful Behaviors

In the experiment described above, the governor mechanism acts as an intermediary between the
environment and the robot controller network during training by deciding which raw sonar sensory
patterns to use as training patterns for the network. These selected patterns are held in the training
buffer, while redundant patterns (as determined by the governor) are ignored. The controller
network is thus “temporally decoupled” from the raw sensory input during training, since the
training pattern used to update the network’s weights on a given cycle may not correspond to the
actual sonar pattern currently perceived by the robot. Insulating the controller from the robot’s
direct environmental experience is a necessary first step toward achieving abstraction.

As was seen in Figure 4, this type of mechanism can improve the overall behavior of the network.
However, it is still a relatively weak approach to abstraction, for at least two reasons. First of all,
the governor’s abstractions are used only during training. Once training is complete, the network
operates without the governor. Secondly, even during the training phase, the category generated by
the RAVQ is never used by the controller network. The network sees only raw, unfiltered sensory
information from the environment.

An alternative approach would be for the network to operate on higher-level representational
patterns derived from the sensory data, rather than on the raw sensory data itself. This seems

11

sebastien
Texte surligné 



& Sonar Values 

Camera Image 

Hidden Layer 

Sonar 
SOM 

Current SOM State Goal SOM State 

Anticipation 

Abstraction 

Image 
SOM 

Motor Outputs 

Figure 6: Using SOM abstractions to specify and go toward goals. The feed-forward network
consists of three layers, fully connected: 140 inputs units, 45 hidden units, and 2 output units.
This network was trained with momentum = 0.9, and all learning rates set to 0.1. Both SOMs
were trained with alpha = 0.2 and an initial neighborhood size of 5.

necessary if the robot is to develop increasingly sophisticated types of behaviors that rely on a
more conceptual view of the environment. These higher-level representational patterns might be
regarded as “mental states” of the robot, as opposed to direct sensory states. They would be created
by an appropriate abstraction mechanism interposed between the environment and the controller
network, again serving to insulate the network from the robot’s direct experience.

To test out such an approach, we implemented an abstraction mechanism as a pair of self-
organizing maps, one for camera images and one for sonar readings (see Figure 6). As the robot
moves through its environment under the control of some innate behavior, its camera images and
sonar readings are recorded and fed into the SOMs, which transform the high-dimensional sensory
data into a single compact, low-dimensional representation of the robot’s perceptual state (i.e.,
its “mental state”). These more abstract representations are then used by the controller network
to determine the robot’s next action. For this experiment, the network’s job on each time step
was to take two such patterns as input—one representing the robot’s current situation and one
representing a desired goal situation—and to generate an appropriate translation and rotation
signal for the motors. We were interested in seeing, first of all, whether the system could discover
such representations on its own; second, to what extent these abstract representations capture
relevant aspects of the environment; and third, whether the controller network could learn to use
these representations to guide the robot toward a particular goal.

Our experiment was carried out using a simulated Pioneer robot with a blob-vision camera
interface. A camera image consisted of a 20 × 15 array of pixels, where each pixel was a set of
three color values (red, green, blue). Thus the raw image data consisted of a 900-dimensional
vector. The sonar data consisted of a 16-dimensional vector of sonar values. Both SOMs used a
20 × 15 hexagonal topology. The robot’s simulated 5-meter by 5-meter world contained a central
obstacle surrounded by walls with regions of various colors.
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Figure 7: Protoplans and protogoals. The figure on the left shows the paths of the trained network
from the start state given each of the goals. The figure on the right shows the paths once noise is
added to the sensors. The network is able to generalize and direct the robot to its respective goals.

The first step was to train the SOMs to produce useful abstractions of the robot’s sensory inputs.
To generate the training data, we let the robot wander around its environment for 5000 time steps
under the control of an innate obstacle-avoiding behavior, recording at each step the robot’s raw
camera and sonar sensor readings, and its motor responses (determined by the innate behavior).
We then trained the SOMs, off-line, on the camera and sonar data, using 200 complete passes
through each of the data sets. Once trained, the SOMs could be used to transform the robot’s raw
sensory readings into a corresponding abstract representation of the robot’s perceptual state. The
next step was to determine whether the controller network could use these representations in place
of actual sensor readings to accomplish some task. That is, in contrast to Experiment 1 described
earlier, could the network learn to effectively control the robot solely in terms of these abstracted
patterns, without having direct access to the environment through sensor values?

Ideally, the task learned by the network should arise from the robot’s own internal motivations.
However, in order to establish the basic soundness of our approach, we chose to train the network to
simply follow a path through the world from one location to another, using training data generated
by manually driving the robot from a starting position to two different goal positions. The network’s
task was to take the robot’s current abstract “mental state” as input together with the desired final
state (both generated by using the SOMs to transform the sensory readings associated with each
position), and to output an appropriate motor response that brings the robot closer to achieving
its goal. Figure 6 shows the network architecture.

Ten different training paths were manually created for each of the two goal positions, always
beginning with the robot at the same position in the northeast corner of the world while varying
the orientation. Goal A consisted of the robot facing the west wall of the world directly in front
of a yellow region, while Goal B was at the southwest corner of the world with the robot facing
southwest, looking at a red region on one wall and a blue region on the other. The controller
network was trained without noise on these paths using ordinary back propagation, with the motor
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Figure 8: The trajectories through the SOM abstraction space for the two paths in the left hand
side of Figure 7.

values recorded for each path serving as training targets.

After training, we tested the robot to verify that it could behave appropriately when given
different goals to achieve starting from the same initial position. The left image in Figure 7 shows
the different paths taken by the robot when given the abstract representations of goals A and B.
This shows that the robot can navigate successfully through its environment to reach a desired goal
using only the abstractions created by the SOMs to guide it from where it currently is to where it
needs to go.

To test generalization, we varied the starting orientation of the robot and added 10% noise to
the sensors, using the same goals as before. The results are shown in the right image of Figure 7.
The robot was able to find its way to the appropriate goal in each case. Notice that some of the
paths overlap near the beginning of the runs, indicating that the robot was indeed paying attention
to the information contained in the abstract goal state in deciding which way to go.

In order to get a better sense of the layout of the robot’s “mental space”, we plotted the
trajectory of the camera SOM states encountered as the robot moved through the world from the
starting position to a goal, under control of the network. Figure 8 shows the sequence of camera
SOM model vectors that were activated for each of the paths shown in the left side of Figure 7.
Each path seems to activate a different region of the SOM. In the case of the path to goal B, the
SOM trajectory is largely confined to two small regions of the map, transitioning from one region
to the other as the robot curves around the bottom right corner of the obstacle, approximately
two-thirds of the way along the path. These regions are centered around model vectors (6, 2) and
(4, 11) on the SOM diagram. The fact that the path clusters in these two areas in abstraction
space is not too surprising, given that for each leg of the journey, the robot is looking at roughly
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the same region of the environment, and therefore sees similar camera images. Somewhat more
surprising is the abrupt jump to the upper right region of the map as the robot reaches goal B. A
similar jump occurs at the end of the trajectory for goal A. Implications of this observation will
require further experiments and analyses of the SOM abstraction topologies.

Again, as in the first experiment, it is surprising that the self-organization of the system is very
different from that which a human might design, but appears to be exactly appropriate for the
robot’s sensors and view of the environment. Likewise, this experiment contains elements of our
intrinsic developmental algorithm: abstractions are generated by the SOMs and used by the feed-
forward neural network; and the network is trained on anticipated movements. In addition, this
experiment showed that a network could use self-organized abstractions as protogoals. However,
where might might these goals come from? We believe that goals and motivations can be added by
building in a desire to reach self-selected protogoals. At first, such protogoals might be randomly-
selected perceptual states. If the robot can wander from an initial state to a randomly-select goal
state, it could begin to build protoplans.

5 Conclusions

In this paper, we have argued that there is a significant pitfall in the traditional task-oriented robot
design—an inherent anthropomorphic bias. Because a robot is equipped with very different sensor
and motor capabilities, it cannot easily share our conceptualizations. Furthermore, we have argued
to eliminate the anthropomorphic bias by adopting a developmental approach.

We have described an intrinsic developmental algorithm designed to allow a mobile robot to in-
crementally progress through levels of increasingly sophisticated behavior. We believe that the core
ingredients for such a developmental algorithm are abstractions, anticipations, and self-motivations.
To begin the explorations of this paradigm we described two experiments. The first introduced the
idea of a network governor. The governor trained network was shown to produce better behavior
than that of a standard feed-forward back-propagation network. In addition, the governor-trained
network produced smoother wall-following paths than the teacher. The second experiment demon-
strated the viability of using self-organized abstractions as representations of current states and
goal states in the context of a goal-seeking network.
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