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ABSTRACT
In this paper, we address the challenge of adaptively con-
trolling a home heating system in order to minimise cost
and carbon emissions within a smart grid. Our home en-
ergy management agent learns the thermal properties of the
home, and uses Gaussian processes to predict the environ-
mental parameters over the next 24 hours, allowing it to pro-
vide real-time feedback to householders concerning the cost
and carbon emissions of their heating preferences. Further-
more, we show how it can then use a mixed-integer quadratic
program, or a computationally efficient greedy heuristic, to
adapt to real-time cost and carbon intensity signals, adjust-
ing the timing of heater use in order to satisfy preferences
for comfort whilst minimising cost and carbon emissions.
We evaluate our approach using weather and electricity grid
data from January 2010 for the UK, and show our approach
can predict the total cost and carbon emissions over a day to
within 9%, and show that over the month it reduces cost and
carbon emissions by 15%, and 9%, respectively, compared to
using a conventional thermostat.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Distributed Artifi-
cial Intelligence

General Terms
Algorithms, Energy, Control, Learning

Keywords
Smart grid, machine learning, Gaussian process, mixed-integer
optimisation, energy feedback, carbon emissions

1. INTRODUCTION
The creation of a smart electricity grid represents one of the
greatest engineering challenges of this century, as countries
face dwindling non-renewable energy sources and work to
minimise the adverse effects of climate change due to car-
bon emissions [1, 2]. Key components of this vision include
ambitious targets for renewable generation, the roll-out of
smart meters to domestic consumers in order to facilitate
real-time pricing of electricity, and a shift toward the electri-
fication of heating through the use of air and ground source
heat pumps.1

1The UK government has committed to reducing carbon

However, these developments present a potential challenge
for householders, since the increased use of intermittent re-
newable generation means that both the price of electricity,
and also the carbon intensity of the electricity (quoted in
terms of gCO2/kWh and signifying the amount of carbon
dioxide emitted when one unit of electricity is consumed),
will vary in real-time. These real-time signals will likely be
passed to consumers, through their smart meters, who will
be expected to respond rationally in order to reduce demand
for expensive and carbon intensive electricity at peak times,
and to make better use of low carbon renewable energy when
it is available. However, the links between heater system
control settings and energy consumption is already poorly
understood by consumers [4], and these changes are likely to
compound this issue. Thus, it is essential that future home
heating systems are able to provide real-time feedback to
householders concerning the implications (in terms of both
cost and carbon emissions) of their heating preferences. Go-
ing further, these systems should adapt to these real-time
signals, adjusting the timing of heater use in order to satisfy
the home owners’ preferences for comfort while also min-
imising cost and carbon emissions.

Now, the idea of individual homes responding to real-time
signals from an electricity grid is not a new one, and indeed,
was first proposed by [10], who discussed the scheduling
of loads, and the prediction of both demand in the home,
and local weather conditions. However, their work dealt
mainly with predicting the overall system behaviour, and
used closed form solutions that required approximating and
homogenising the behaviours of the individual actors within
the systems. As such, it does not actually provide a solu-
tion that can be implemented within any individual home.
More recently, a number of researchers have revisited these
ideas, and proposed solutions that address parts of the chal-
lenge described above. For example, [7] use artificial neural
networks to predict the heat demand of individual homes
using several external factors, but make no attempt to then
optimise energy use. Conversely, [11] use mixed integer pro-
gramming to optimise energy storage within a home which
receives real-time price signals, but they consider electrical
loads, rather than heating, and hence they do not need to
consider the thermal characteristics of the home, nor the
external factors that affect it.

Thus, to address these shortcomings, in this paper we de-
velop a home energy management agent, or smart controller,

emissions by 80% by 2050, and aims to install smart meters
to all 26M UK homes by 2020 [6].
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that works on behalf of the householder, and is able to learn
the thermal characteristics of the home, and predict the ad-
ditional factors that affect the cost and carbon emissions of
heating use. It is then able to provide householders with the
required real-time feedback, and also to autonomously con-
trol the heating system on their behalf. In more detail, using
internal and external temperature sensors, and by monitor-
ing the activity of the home’s heating system, the smart con-
troller finds model parameters that describe the heat output
of the heating system and the thermal leakage rate of the
home. In addition, using a Gaussian process model that ex-
ploits periodicities and correlations between time series, the
smart controller predicts the local external temperature over
the next 24 hours by combining local measurements from a
sensor, with predictions from an online weather forecast. In
doing so, it creates a site-specific forecast for the next 24
hours. Similarly, using available predictions of future de-
mand, the smart controller predicts the carbon intensity of
the electricity supplied to the home. Using these factors it
can predict the consequences, in terms of cost and carbon,
of any heater control setting and provide this information to
the home owner through a graphical user interface. Going
further, the smart controller is then able to fully optimise the
use of heating (using either a mixed integer solver or a com-
putationally efficient greedy heuristic). In doing so, it seeks
to provide the same level of comfort as a standard thermo-
stat operating at the same set-point temperature (evaluated
using a comfort model based on the ANSI/ASHRAE Stan-
dard 55-2010) whilst also minimising either cost or carbon
emissions.

Thus, in more detail, in this paper we make the following
contributions to the state of the art:

• We present two novel formalisms that uses Gaussian
processes (GP) to predict external temperature and
carbon intensity by exploiting (i) periodicities within
each single time-series, and (ii) correlations between
each time series and another time series (in this case,
the temperature at a nearby location and total elec-
tricity grid demand) for which a prediction is made
available by an outside agency (e.g. a local weather
centre and the grid operator). The first extends an ex-
isting multi-output GP model that has previously only
been used for regression [8], rather than the prediction
that we do here. The second uses one time-series to
represent the mean value of the second, and applies a
single-output GP to model the difference. We empir-
ically evaluate both and indicate their strengths and
weaknesses in our domain.

• We present a novel approach to optimising heating
whereby the smart controller models the comfort that
would result from using a thermostat (set to any par-
ticular set-point temperature) to control the heating,
and then, optimises heating to ensure the same com-
fort level, at minimum cost or carbon. We show that
this problem has quadratic constraints introduced by
the comfort model used, and integer constraints deter-
mined by the heater output. Thus, we present both a
mixed-integer quadratic program, and a computation-
ally efficient greedy heuristic, to solve it. We show that
the greedy heuristic finds solutions that are as com-
petitive as those of a commercial solver (IBM ILOG
CPLEX), but in less time.

• We combine these within our smart controller and em-
pirically evaluate it using real UK weather and elec-
tricity grid data from January 2010, and show our ap-
proach can predict the total cost and carbon emissions
over a day to within 9%, and show that over the month
it reduces cost and carbon emissions by 15%, and 9%,
respectively, compared to a conventional thermostat.

The remainder of this paper is organised as follows. In Sec-
tion 2 we present our model of the home and heating system.
In Section 3 we describe how the smart controller provides
real-time feedback, and in Section 4 we describe how it op-
timises heating use. We conclude in Section 5.

2. HOME THERMAL PROPERTIES
We consider a standard thermal model in which heat leaks
from the home (by thermal conduction and ventilation losses)
at a rate that is proportional to the temperature difference
between the air inside and outside of the home [3]. In more
detail, let φ ∈ R

+ be the thermal leakage rate of the house
measured in W/K. We divide the day into a set of discrete
time slots, t ∈ T , and denote the internal temperature of the
home at time t as T t

in ∈ R
+ and the external temperature

(in K) as T t
ext ∈ R

+.
We assume that the home is heated by an electric heat

pump, whose thermal output (in kW) is given by rh. We
denote oh ⊆ T as the set of time slots at which the heat
pump is actively producing heat, and also define the variable
ηt

on ∈ {0, 1} for every t ∈ T such that ηt
on = 1 if t ∈ oh and

0 otherwise. Given this, the amount of energy delivered (or
lost) from the home, ηt, in any time slot is given by:

η
t = η

t
onrh − φ

(

T
t
in − T

t
ext

)

+ ǫ
t (1)

where ǫt is Gaussian noise reflecting additional effects due
to the householder’s activities (e.g. opening or closing win-
dows, cooking, etc.). The internal temperature of the home
after this energy transfer is then given by:

T
t+1
in = T

t
in +

ηt∆t

cairmair

(2)

where ∆t is the duration of the time slot (in seconds), and
the heat capacity and the total mass of air in the home are
cair ∈ R

+ (in J/kg/K) and mair ∈ R
+ (in kg) respectively.

The heat pump is controlled by a timer and a thermo-
stat. We denote ot ⊆ T as the set of time slots at which
the heat pump is enabled (but not necessarily actively pro-
ducing heat), and we define the variable ηt

timer ∈ {0, 1} for
every t ∈ T such that ηt

timer = 1 if t ∈ ot and 0 otherwise.
The thermostat acts to keep the internal temperature of the
home at the thermostat set point, Tset, by applying the rule:

η
t
on =











0 T t−1
int > Tset + ∆T,

1 T t−1
int < Tset −∆T,

ηt−1
on otherwise.

(3)

for all t ∈ ot. Note that ∆T induces hysteresis such that the
thermostat does not continually cycle at the set point.

Finally, we consider the cost and carbon emissions of the
electricity that supplies the heater. We assume that the elec-
trical power of the heat pump is given by re (in kW). Note
that the heat energy produced by a heat pump is greater
than the electrical power used, such that, rh = COP × re,
where COP , the coefficient of performance, is typically be-
tween 2 and 4. Thus the total cost of electricity consumed
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over T is given by
∑

t∈oh
rep

t∆t, and the total carbon emis-

sions are given by
∑

t∈oh
rec

t∆t, where pt is the price (pence

per kWh), and ct is the carbon intensity (in gCO2/kWh),
of the electricity at time t.

3. REAL-TIME ENERGY FEEDBACK
Now, to provide real-time feedback to householders on the
cost and carbon emissions of their heating preferences, it
is not sufficient to simply provide instantaneous measure-
ments of the heater’s use, since this requires that the house-
holder extrapolate these figures to the end of the current
day. Rather, we require that our smart controller perform
this integration automatically, and to do so, it must under-
stand the thermal properties of the home (specifically, the
thermal output of the heater and the leakage rate of the
home), and also the environmental factors that effect the
cost and emissions (specifically, the external temperature
and the carbon intensity of the electricity grid). In the next
sections, we show how we can learn the former through a
simple regression process, and show how we can make pre-
diction of the later, over a 24 hour period, using Gaussian
processes.

3.1 Learning Thermal Properties
As described in Section 2, the thermal characteristics of the
home is dependent on the thermal output of the heater, the
leakage rate of the home, and a number of parameters such
as the thermal capacity and the mass of air inside the home.
Rather than attempting to estimate all these parameters,
the smart controller uses a thermal model, is just as expres-
sive, but which is denoted in terms of the air temperature
increase over a time slot, R ∈ R

+ (in K), due to the heater
and the decrease, Φ ∈ R

+ (unitless), due to leakage:

T
t+1

in = T
t

in +Rη
t
on − Φ

(

T
t

in − T
t
ext

)

(4)

Given historical observations (typically over the preceding
24 hours) of internal, T t

in, external, T t
ext, temperatures and

the times when the heater was providing heat, ηt
on, the smart

controller can predict the evolution of the internal temper-

ature over the same period (initialising at T
1

in = T 1
in). The

error in this prediction is given by:

∑

t∈T

(

T
t

in − T
t
in

)2

(5)

Thus, the best estimates of the heater output, R, and leak-
age rate, Φ, are then those that minimise this error.

3.2 Predicting Environmental Factors
We now turn to predicting the future values of the environ-
mental factors that affect the cost and carbon emissions of
the home (specifically, the external temperature and the car-
bon intensity of the electricity grid). To do so, we exploit
the fact that these two time series are likely to be corre-
lated with other time series for which we are able to retrieve
predictions over the internet. For example, we expect the
external temperature to be correlated to that of the local
weather forecast (but not necessarily identical to it due to
additional local factors in the immediate environment of the
home). Similarly, we observe that carbon intensity is of-
ten closely correlated with the total demand for electricity

within the grid, for which the grid operators provide accu-
rate predictions in real-time for the next 24 hours. Thus,
to predict these correlated time series, we present two novel
variations of the Gaussian process (GP): a multi-output GP
which explicitly parameterises the correlations between the
time series, and a difference GP where we model the differ-
ence between the normalised time series as a single-output
GP.

3.2.1 Gaussian Process Prediction:
A Gaussian process (GP) represents a function as a multi-
variate Gaussian distribution [9]. It is specified by a covari-
ance function k(t, t′), describing correlations between obser-
vations of the function at different times, and a mean func-
tion, µ(t), typically taken to be zero, that is the expected
value of function prior to seeing any training data. Within
the energy domain, Leith et. al used GP for electrical de-
mand forecasting, and shown that it consistently generates
significantly more accurate forecasts than comparative time
series models [5]. However their work addresses a single
time series only, unlike our case where we consider multiple
correlated time series.

Now, as discussed above, we have one main time series,
for which we have local historical observations, TM , (i.e. ex-
ternal temperature and carbon intensity), and another cor-
related time series, for which we again have historical ob-
servations, TC , and also a future prediction over the next
24 hours supplied by an outside agency, T ∗

C , (i.e. historical
temperature measurements and a 24 hour forecast at the
local weather centre, and historical observations of demand
and a 24 hour prediction from the grid operator). Our aim
is to predict the values of the main time series over the same
interval as T ∗

C , and we denote these prediction T ∗

M .

3.2.2 Multi-Output Gaussian Process:
We first apply a multi-output GP in which the cross-correlation
between the time series is explicitly represented as a hyper-
parameter [8]. To this end, we represent the correlation be-
tween two observations in either time series as the Hadamard
product of a covariance function over time alone and a co-
variance function over the time series labels:

k([l, t], [l′, t′]) , kL(l, l′)kT (t, t′) (6)

The covariance function over labels is simply given by:

kL(l, l′) ,

{

1 if l = l′,

ρ otherwise,

where kL(l, l′) is unity if both inputs are from the same time
series and where ρ is a hyperparameter that determined the
cross-correlation between the time series.

The temporal covariance function, kT , provides more flex-
ibility and is composed of a number of more basic covariance
functions. Our first choice is to use the standard squared ex-
ponential function, given by

kSE(t, t′) = σ
2
f exp

(

− (t− t′)2

2ℓ2

)

(7)

where σ2
f is the amplitude of the process and ℓ is the char-

acteristic length-scale that determines how rapidly the cor-
relation between outputs should decay as t and t′ diverge.
As the squared exponential implies a strong smoothness as-
sumption regarding the process, we also use the Matérn class
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Table 1: Gaussian Process Covariance Functions

Quantity Method w Covariance Function, kT

Carbon
Intensity

Single-output 1 kSE + kP + kN

Multiple-output 2 kL · (kM + kSE · kP ) + kN

Difference 2 kSE + kSE · kP + kN

External
Temperature

Single-output 2 kSE + kSE · kP + kN

Multiple-output 2 kL · (kM + kSE · kP ) + kN

Difference 1 kSE + kSE · kP + kN

to represent processes with more erratic changes:

kM (t, t′) = σ
2
f

(

1 +

√
3(t− t′)

ℓ

)

exp

(

−
√

3(t− t′)

ℓ

)

(8)

Furthermore, since both the time series considered here ex-
hibit strong daily periodic patterns, we also use a squared
exponential periodic covariance function with unit periodic-
ity given by:

kP (t, t′) = σ
2
fexp

(

−sin2π(t− t′)

2ℓ2

)

(9)

Finally, we also consider the noise in measurements by ap-
plying an additive gaussian noise function given by:

kN (t, t′) = σ
2
nδt,t′ (10)

where δ is the Kronecker delta and σ2 represents the noise
variance.

3.2.3 Difference Gaussian Process:
In addition to the multi-output formalism presented above,
we also propose an alternative approach, whereby we use
a conventional single-output GP to predict the point-wise
difference between the normalised outputs of TM and TC ,
over the range of T ∗

C to recover T ∗

M , and then use the values
of T ∗

C to recover predictions of T ∗

M .

3.2.4 Empirical Evaluation:
We evaluate our GP formalisms by comparing them to a
number of benchmarks. For carbon intensity, we hypothe-
sise that the value of carbon intensity during any time slot
in the future will be equal to the value in that time slot, ex-
actly 1 day, and also 7 days, earlier (reflecting the 1 day and
7 day periodicity observed in the data). We also consider
a conventional single-output GP that does not take account
of the demand time series, and an approach that determines
the correlation between carbon intensity and demand by per-
forming a linear regression between the two, and uses this
linear relationship to directly convert a demand prediction
into a carbon intensity prediction. In the case of the exter-
nal temperature, we again consider a single-output GP, the
case any time slot is identical to the time slot 1 day earlier,
and when we use the online forecast directly.

To perform the evaluation, we use real external temper-
ature sensor data collected from the University of Southamp-
ton campus, and also observations and 24 forecasts of Southamp-
ton temperature available online through The Weather Chan-
nel (http://uk.weather.com/). We also make use of car-
bon intensity and demand observations from the UK grid
(for which, again, 24 hour predictions are available - see

Table 2: Prediction Accuracy

Quantity Method RMSE

Carbon
Intensity

(gCO2/kWh)

Single-output GP 32.9
Multi-output GP 22.3

Difference GP 20.1
Linear Regression 27.1

1-Day Repeat 37.7
7-Day Repeat 78.4

External
Temperature

(K)

Single-output GP 2.41
Multi-output GP 2.13

Difference GP 2.73
Weather Forecast 2.36

1-Day Repeat 3.04

http://www.bmreports.com). All data is at 30 minute in-
tervals, and we perform 31 sequential 24 hour predictions
over the entire month of January 2010.

We used Bayesian Monte Carlo to marginalise over the hy-
perparameters of the GP, and we note that the specification
of sensible initialisation values for this has not been actively
investigated. We employed a principled approach whereby
we investigated the autocorrelation properties of the time se-
ries under consideration. The knowledge of such correlations
also helped guide the choice of appropriate covariance struc-
ture. We set the history length for best performance based
on empirical observations, and Table 1 shows the covariance
functions, and the number of days of historical data, w, used
to generate the predictions in this section.

Our results, in terms of the root mean square error of
these predictions, are shown in Table 2. We note that the
multi-output GP significantly outperform our benchmark
approaches on both prediction tasks. This approach is able
to effectively exploit both the periodicities within each sin-
gle time series, and also correlations between them. We also
note the while the difference GP works very well in the case
of carbon intensity (providing the best predictions overall),
it performs less well on external temperature. When the
time series are strongly correlated, both approaches pro-
vide good predictions. However, when correlations are not
present (as is sometimes the case in the external temper-
ature time series) the difference GP has no mechanism to
compensate. In contrast, the multi-output GP can adjust
the hyperparameter that describes this correlation and per-
form well. Thus, the difference GP can be an effective ap-
proach, but must be used with care since it is not adaptive
to changing correlation.

3.3 Estimating Cost and Carbon Emissions
Now, given the external temperature and carbon intensity
time series predicted above, the thermal properties of the
home learned earlier, and the description of the thermostat,
the smart controller can predict the operation of the heater
over the course of the day, and hence predict the total cost
and carbon emissions that will result from any particular
thermostat setting. To evaluate these predictions we have
simulated a home and the smart controller installed within
it (see Figure 2). In doing so, we use leakage rate φ = 90
W/K and mair = 1205 Kg (corresponding to a small well-
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Figure 1: Comparison of Gaussian process predictions for (a) external temperature and (b) carbon intensity
using real data for January 2010.

insulated home), an electric heat pump with a thermal heat
output of 2.5kW and COP of 2.5, and used a standard value
of cair = 1000 J/Kg/K in the thermal model. We consider
a thermostat set point, Tset = 20 C, and we assume that
the heater is enabled (but not necessarily actively producing
heat) between 07:00 and 23:00 each day. Furthermore, we
consider a setting in which the price of electricity exhibits
a critical pricing period between 15:00 to 20:00 when the
price of electricity is £0.24 per kWh, a cheap overnight rate
between 20:00 and 06:00 of £0.08 per kWh, and a standard
rate of £0.12 per kWh at all other times.

Using the same data for January 2010, we predict the
cost and carbon emission for each day, comparing these to
the actual values as the true external temperature and car-
bon intensity is revealed. Over this period, the actual mean
daily heating cost is £1.59 and the root mean squared er-
ror in our predictions is £0.14, while the actual mean daily
carbon emissions are 5.99 kg and the root mean squared
error in our predictions is 0.54 kg (an error of 9% in both
cases). We observe that in both cases, the prediction errors
are less those achieved by simply using the current day as
a prediction for the next (in this case, £0.16 and 0.63 kg,
respectively). Crucially, our approach allows the effects of
changes to the thermostat set-point, or heater timing, to be
calculated since it explicitly models these variables. Further-
more, we note that the maximum error occurs at the very
start of the day; updating the predictions over the course of
the day will cause the predicted cost and carbon to converge
to the actual cost and carbon by the end of the day. Figure
2 shows this cost information being displayed on the smart
controller’s graphical user interface.

4. HOME ENERGY OPTMISATION
Having shown how our smart controller can predict the cost
and carbon emissions of the home’s heating system, we now
show how it can adapt to real-time cost and carbon inten-
sity signals, adjusting the timing of heater use in order to
satisfy the home owner’s preferences for comfort minimising
cost and carbon emissions. Our approach uses mathematical
programming to ensure that the smart controller delivers the

same level of comfort as a standard thermostat whilst also
minimising either cost or carbon. This is attractive since it
does not require the householder to explicitly trade-off be-
tween cost and comfort (or carbon and comfort), nor indeed,
even be aware of the underlying comfort model.

4.1 Evaluating Comfort
We use a standard model of comfort, based on the ANSI /
ASHRAE Standard 55-2010, that has previously been used
within the smart home environment [3]. To this end, we de-
note oc ⊆ T as the set of time slots at which the householder
requires comfort, and we define the instantaneous discom-
fort, ∆dt ∈ R

+, such that:

∆d
t =

{

ω1(τ
t
in − Topt)

φ1 T t
in ≥ Topt,

ω2(T
t
in − Topt)

φ2 T t
in < Topt

(11)

Then, the actual discomfort at time t is a combination of
the instantaneous discomforts at t and at t− 1, such that:

d
t = ∆d

t + γ∆d
t−1 (12)

where γ ∈ [0, 1] scales the effect of the previous time slot
on the current one (capturing the psychological persistence
of discomfort). The total discomfort over is the sum of the
discomfort at every t ∈ oc given by given by

∑

t∈oc
dt.

4.2 Optimising Heating
Given this comfort model, the smart controller can predict
the total discomfort that the thermostat will to deliver over
the day. We denote this as the target discomfort, Dtarget.
The aim of the smart controller is then to determine when
the heater should on in order that the total discomfort is less
than the target discomfort with the minimum cost or carbon
emissions. More formally, specifying ηt

on ∈ {0, 1}, ∀t ∈ T as
the decision variables, the objective function for cost and
carbon respectively, is given by:

arg min
ηt

on

∑

t∈T

η
t
onrep

t∆t and arg min
ηt

on

∑

t∈T

η
t
onrec

t∆t

where the evolution of the internal temperature is described
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Figure 2: Simulation of the home, the smart con-
troller and its graphical user interface.

by Equation 4, that of discomfort by Equations 11 and 12,
and the constraint that

∑

t∈oc
dt ≤ Dtarget.

4.2.1 Mixed-Integer Quadratic Programming:
Now, it is typical to consider that φ1 = φ2 = 2 within
Equation 11, and thus the objective function is quadratic.
In this case, the optimisation described above can be directly
implemented as a mixed-integer quadratic program, using a
standard solver, such as IBM ILOG CPLEX.

4.2.2 Greedy Heuristic Optimisation:
More generally, if φ1 6= φ2 6= 2, or if the computational
resources to implement a full mixed-integer quadratic solver
are not available on the hardware installed within the home,
we also present a greedy heuristic (see Algorithm 1) that
incrementally finds the individual time slot where switching
the heater on results in the largest reduction in discomfort,
for the minimum additional cost or carbon. This process
repeats until the total discomfort in equal to, or below, that
of the target discomfort.

4.3 Empirical Evaluation
We now compare the performance of the mixed-integer quadratic
solver and the greedy heuristic against thermostatic control
within the simulation setting previously described. For all
experiments, comfort is required between 8am and 11pm,
and we use values of ω1 = ω2 = 1, φ1 = φ2 = 2, γ = 0.8
and Topt = 23.5 ◦C in the comfort model. We consider time
slots that are 5 minute long, such that |T | = 288, we per-
form 31 sequential optimisations over the month of January
2010. We consider 5 minutes time slots (i.e. |T | = 288), and
thus, we limit the mixed-integer quadratic solver to 5 min-
utes of running time on a standard desktop PC (the greedy
heuristic runs in milliseconds).

Algorithm 1 Greedy Algorithm to Optimise Home Heating

while Dop > Dtarget do
index← 0; bestratio← 0
for j = 1 to |T | do

ηtest = ηop; ηj
test = 1

for t = 1 to |T | do
Compute T t

i , ∆dt
test and dt

test as per (4), (11) and
(12).

end for
Dtest =

∑

t∈oc
dt

test

∆D = Dop −Dtest;
if ∆dtest

pt
≤ bestratio then

bestratio = ∆dtest

∆p
; index← j

end if
end for
if index > 0 then

ηindex
op ← 1; Dop ← Dtest

end if
end while

Figure 3 show examples of the optimisation process. In
this case, using the MIQP optimisation routine to minimise
both cost and carbon. In both cases, we present the internal
temperature of the home when the heating is controlled by
both the standard thermostat and the smart controller. The
green shaded area represents the time interval over which
comfort is required, and the red shaded area represents when
the heating system is actually producing heat.

Consider Figure 3(a) where the smart controller is min-
imising cost. Note that the smart controller applies heat
before the peak pricing period, allowing the temperature
to increase, and then allows this heat to leak away over
this period. In contrast, the standard thermostat applies
heat uniformly across this period. Similarly, note that the
smart controller also exploits the low price of electricity be-
fore 06:00 and supplies heat even though it is not immedi-
ately required. In both cases, it is effectively storing cheap
electricity in the form of hot air, so that this stored energy
can be used when electricity is more expensive, and this
approach provides an alternative to the use of more costly
electrical storage batteries proposed by [11].

Figure 3(b) where the smart controller is minimising car-
bon. As before, we compare the internal temperature of the
home when the heating is controlled by both the standard
thermostat and the smart controller. Again the smart con-
troller applies more heat before the peak period when carbon
emissions would be the highest, allowing the temperature to
increase, and then allows this heat to leak away over this
period. In contrast, the standard thermostat again applies
heat uniformly across this period (indeed, the operation of
the thermostat is identical to the previous case). In addi-
tion, note that the smart controller also exploits the lower
carbon estimates before 06:00 and supplies heat even though
it is not immediately required.

Finally, in Table 3 we compare the total cost and car-
bon emissions of both the MIQP and greedy heuristic over
the month of January 2010. Overall, the smart controller
reduces cost and carbon emissions by 15%, and 9%, re-
spectively, compared to a standard thermostat, and that
the greedy heuristic performs well, being within 1% of the
mixed-integer quadratic program (MIQP) solutions (at a
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Figure 3: Example showing the MIQP formulation optimising heating use to maintain comfort whilst (a)
minimising cost in a setting with a critical price period between 15:00 and 20:00, and (b) minimising carbon
emissions given the variable carbon intensity of the electricity grid.

.

fraction of the computational cost).

5. CONCLUSIONS
In this paper, we addressed the challenge of adaptively con-
trolling a home heating system in order to minimise cost
and carbon emissions in response to real-time price and car-
bon intensity signals. We proposed a home energy manage-
ment agent, or smart controller, that operated on behalf of
the householder, and learned the thermal properties of the
home, used a Gaussian process model to predict the local en-
vironmental parameters, in order to both provide real-time
feedback concerning the cost and carbon emissions of their
heating preferences, and optimised their energy use. We
showed, using real-world data and a simulated home, that
our approach could reduce cost and carbon emissions by up
to 15%, and 9%, respectively compared to using a standard
thermostat.

Our future work is focused on deploying the home energy
management agent described here within a number of real

Table 3: Comparison of smart and thermostat con-
trol when optimising for cost and carbon emissions
for January 2010.

MIQP Greedy Thermostat

Cost (£) 42.44 42.81 50.37
Carbon (kg CO2) 174.60 174.90 191.48

homes in collaboration with our industrial partners. The
key challenges that we expect to face in doing so, are ensur-
ing that the relatively compuationally expensive prediction
and optimisation processes can be performed effectively on
the low power devices to be deployed, and to ensure that the
thermal model that we have developed is sufficiently repre-
sentative of a real house, such that it is able to accurate
costs and carbon emissions with the necessary accuracy.
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