
Knowledge Discovery in Entity Based Smart Environment Resident Data
Using Temporal Relation Based Data Mining

Vikramaditya Jakkula, Aaron Crandall, and Diane Cook

EECS, Washington State University, Pullman, WA-99164.
{vjakkula, acrandall, cook}@eecs.wsu.edu

Abstract

Time is an important aspect of all real world

phenomena. In this paper, we present a temporal
relations-based framework for discovering interesting
patterns in smart environment datasets, and test this
framework in the context of the CASAS smart
environments project. Our use of temporal relations in
the context of smart environment tasks is described
and our methodology for mining such relations from
raw sensor data is introduced. We demonstrate how
the results are enhanced by identifying the number of
individuals in an environment, and apply the resulting
technologies to look for interesting patterns which play
a vital role to predict activities and identify anomalies
in a physical smart environment.

1. Introduction

Smart home research has been around for some
time and significant progress has been achieved in the
areas of data analysis and mining of data collected in
smart environments. Despite this, there is still much
room for further work in the areas of temporal data
mining. Since smart home datasets are time-stamp
datasets, we see that temporal mining would make the
analysis and use of these datasets more effective and
efficient than simpler data mining strategies.

While making sense of sensor data can be
challenging for smart environment applications, the
problem is made even more complex when the
environment houses more than one resident. To aid
the capabilities of our temporal data mining, and to
reveal the complexities of multi-inhabitant spaces, an
entity discovery tool was developed. This tool analyzes
the raw sensor data to attribute given events with
entities in the space. By attributing events to different
entities the temporal miner will be in a position to
discover events series that occur, or do not occur,
based on occupancy of the space. This increased
granularity to the data will lead to a better

understanding and prediction of events in smart
environments. We will define a formal representation
for temporal relationships between events in a smart
home, and use this formalism as a basis for reasoning
over these relationships. Temporal reasoning gives us
the groundwork for performing such activities as
anomaly detection and prediction in the context of the
smart environment. Representing and reasoning about
activities, primarily about actions and events, is an
interesting problem within the smart home domain.
The focus of this paper is the mining for unique and
interesting patterns within the data that can eventually
be used for tasks such as event prediction and anomaly
detection.

Activities in a smart home include a resident’s
physical activities as well as instrumental activities.
Physical activities may include walking, sitting on a
couch, turning on a lamp, and using the coffeemaker,
for instance. We see that many of these activities are
not instantaneous, but have distinct start and end times.
We also see that there are well-defined relationships
between time intervals for different activities. These
temporal relations can be represented using Allen’s
temporal relations [1] and can be used for knowledge
and pattern discovery in day-to-day activities. These
discoveries can be used for developing systems which
act as reminder assistants, for detecting anomalies, and
for aiding smart homes in automatically taking
preventive measures to keep residents safe.

A question may arise as to why Allen’s temporal
relations should be used for generating temporal
intervals. The temporal relations defined by Allen form
the basic representation of temporal intervals. When
these are used with constraints they become a powerful
method of expressing expected temporal orderings
between events in a smart environment. There are
projects which employ sequential information to
predict activities [2], and other methods for identifying
suspicious states in a smart environment have been
researched [3]. We extend these methods to
incorporate valuable information about the interval of
time each event spans. While other methods treat each
event as a separate entity (including, for instance,

turning on a lamp and later turning off the same lamp),
our interval-based analysis considers these two events
as members of one interval. Each interval is expressed
in terms of start time and end time values. Let us
consider a typical activity in a smart environment
given below.

Consider a simple scenario which involves a
television, fan and a lamp being used in a smart home.
We see that the resident turns on the television and
after some period of time turns on the fan. As time
progresses, feeling cold, the fan is turned off and the
individual continues watching the television. Later on,
the television is turned off and the individual turns on
the lamp to illuminate the room. We see that this
scenario involved three activities each defined by
interaction with a single device, namely a television, a
fan and a lamp. Now we apply Allen’s logic to
establish the temporal relations among the activities
which occurred. The scenario is illustrated in figure 1.
These activities can be represented as television
“contains” fan and “meets” lamp. We can also
represent these relationships as television “meets”
lamp and fan “before” lamp.

The thirteen possible temporal relations are
illustrated in Table 1. Consider two general events X
and Y; we use this to represent the relations in the
table. In Table 1, the interval constraints compare the
start time (Start) and end time (End) of the activities, X
and Y [4].

In this paper we use the temporal relations and
identify interesting patterns of activity on the entity-
less and entity-tagged data collected in a smart
environment. Later we can use this mined knowledge
with a decision maker in a real world environment.

Figure 1. Illustration of temporal intervals

Table 1. Temporal relations representation.

Temporal Relations Pictorial Representation Interval constraints

X Before Y

Start(X)<Start(Y);
End(X)<Start(Y)

X After Y

Start(X)>Start(Y);
End(Y)<Start(X)

X During Y

Start(X)>Start(Y);
End(X)<End(Y)

X Contains Y

Start(X)<Start(Y);
End(X)>End(Y)

X Overlaps Y

Start(X)<Start(Y);
Start(Y)<End(X);
End(X)<End(Y)

X Overlapped-By Y

Start(Y)<Start(X);
Start(X)<End(Y);
End(Y)<End(X)

X Meets Y

Start(Y) = End(X)

X Met-by Y

Start(X)= End (Y)

X Starts Y

Start(X)=Start(Y);
End(X)≠End(Y)

X started-by Y

Start(Y)=Start(X);
End(X)≠End(Y)

X Finishes Y

Start(X)≠start(Y);
End(X) = End (Y)

X Finished-by Y

Start(X)≠Start(Y);
End(X)=End(Y)

X Equals Y

Start(X)=Start(Y);
End(X)=End(Y)

2. Environmental sensing

We define a smart environment as one with the
ability to adapt the environment to the residents in
order to improve their experience in the environment.
Our CASAS project treats a smart environment as an
intelligent agent, as well as working towards agents
that represent individual users. The current agent
perceives the state of the environment using sensors,
and can act upon the environment using power line
controllers, illustrated in figure 2. The intelligent agent
will select actions that optimize its goals. For a smart
environment, these goals could include energy
efficiency, enhancing resident productivity, improving
their comfort, and/or ensuring their safety. For the
study we report here, we focus on the CASAS goal of
ensuring the health and safety of the smart
environment resident. In order to achieve these goals,

the house should be able to predict, reason, and adapt
to its resident. In our smart workplace environment,
shown in figure 3, the sensor network data is the
primary source of data collection and collects entity-
less data, or data describing the events of a single
resident in the environment [4].

Figure 2. CASAS alpha room sensor layout

(source of entity-tagged datasets).

Figure 3. Smart workplace sensor layout
(source of entity-less datasets) [3].

The data collection system consists of an array of
motion sensors, which collect information using X10

devices and the sensor network. Our dataset is
collected for a resident working in the smart workplace
(see Figure 3) and consists of two months of data. The
lab consists of a presentation area, kitchen, student
desks, and faculty room. There are over 100 sensors
deployed in the lab that include light, temperature,
humidity, and reed switches. This data was collected
from a single resident and is being used as the entity-
less data source for the experimentation in this paper.

For the data collection process in the multi-
resident CASAS environment, we used a series of
repeated scripted events in our Alpha Room (see figure
2). The Alpha Room is the CASAS initial data
gathering environment, designed to be used for the
latest algorithms before they are used in spaces where
people are living and working. The room itself is laid
out to have two working desks and a white board for
collaboration in between. Currently, there are six
motion detectors on the ceiling, four lights controlled
by Insteon™ power line control devices, a pressure-
sensitive mat at the entrance door and a door
open/closed switch. A data collection computer
receives the power line events via a USB bridge, and
the rest of the sensors feed through a microprocessor
system to a serial port. The room itself is not large, but
big enough to make use of the Entity Discovery tool
with two people.

3. Experimentation Process and Results

3.1. Entity Discovery and Tagging

In the CASAS environment, we are enriching the
data with information about entities moving within the
space. This comes in the form of an entity (in this case,
resident) identification number that is attached to each
event, matching events to entities. As an entity
traverses the space they trigger events. Our Entity
Discovery tool uses only information about the space
and the raw sensor data to make these attributions. An
illustration of a single sensor neighborhood in CASAS
environment is given in figure 5. An illustration of
entity identification is shown in figure 6. For the Entity
Discovery tool, the concept of neighborhoods of
sensors was used to determine location and quantity of
entities within the space, as well as attributing events
to individuals. To get a neighborhood, the sensors
available are mapped to a Cartesian grid then
assembled into a graph connecting all close sensors
within a certain distance. This physical distance
around a given sensor (see figure 5) is the
neighborhood size, which turns out to be a vital value
for the operation of this system and needs to be tuned
properly for things to function. The result is that for

every sensor you get a list of neighbors, hence its
neighborhood.

Table 2. Entity Discovery Algorithm Pseudo-
code.

Entity Discovery Algorithm Pseudo-code:
1. Build model of sensors based on physical layout
2. Generate neighborhoods within sensor graph
3. While [Event Received]
4. Parse event
5. Query collection of live entities for
neighborhood
 membership of event
6. If zero entities returned then
7. Create new entity at event location, attribute
 event to entity
8. Else If one entity returned then
9. Move entity to location of event and attribute
 event to entity
10. Else If two or more entities returned then
11. Finish all entities and create a new entity at
 event location, attribute event to new entity
12. End if
13. Loop

Figure 5. An illustration of a single sensor
neighborhood in CASAS environment.

There are three possible scenarios encountered
using this tool:

Case A - No entities are returned: In this case,
there is no way to attribute the event to a known entity
properly so a new entity is created and placed at that
location, and that event is attributed to that new entity.
For an example of the attribution, see Table 3, below.

Case B - One entity is returned: Here we can
attribute the event to a single known entity. The result
is that the event is set to that entity's ID and the entity
is moved to the location of the event.

Case C - Two or more entities are returned:
Because we are unable to determine, with this early
strategy, which of the entities caused the event, the
tool must play it safe. All of the entities are “finished”
and no longer considered in the space, as we can no
longer say anything specifically about their impact on
the environment. A new entity is created and placed at
the location of the event for future consideration.

Table 3. Example event data before and after
being processed by the Entity Discovery tool

Example raw event data before being tagged with
an entity attribution:
Timestamp Sensor ID Event Message
2007-05-18 14:44:04 001.009 ON
2007-05-18 14:44:08 07.75.3d OFF
Example event data after being attributed to an
entity, in this case two separate entities are noted:
Timestamp Sensor ID Message Entity
2007-05-18 14:44:04 001.009 ON 0
2007-05-18 14:44:08 07.75.3d OFF 1

Figure 6. Internal world model update upon
event receipt.

The Entity Discovery tool has shown promise,
even with this basic of algorithms, at providing
information useful to the Knowledge Discovery tool.
The next step of this experimentation involves looking
for interesting patterns.

3.2. Mining for Interesting Patterns

A common technique used is the discovery of
patterns which are frequent and happen often. But
using temporal relations to mine, the entire concept of
sequence is now represented by temporal relations.
Thus, in a smart home scenario these attributes of

interestingness are as follows: frequency can be the
number of times that particular pattern is found, length
is the number of temporal relations involved in that
pattern and the periodicity can be the measure of time
span it takes before it repeats itself. The second step
after identifying the entities involve forming temporal
relations based datasets for mining.

Table 4. Temporal Relation Discovery
Algorithm Pseudo-code[16]

Temporal Relation Discovery Algorithm Pseudo-
code:
1. While [Event && Event + 1 found]
2. Find paired “ON” or “OFF” event in data to
 determine temporal range.
3. Read next event and find temporal range
4. Take both events and look up kind of relation
from
 possible relation types (see Table 1)
5. Write out relation type and related data
6. increment Event Pointer
7. Loop

As we use temporal related datasets, we mine

using the longest common subsequence technique with
maximal consecutive, where we find a long sequence
which is a subsequence, or a common subsequence of
all sequences in a set of sequences. In our
implementation, we look for maximal consecutive
sequences within a two-day period. The reason for
performing a maximal consecutive look up is that a
three commonly-shared subsequence is of significant
interest compared to one sequential subsequence. For
instance, we have two strings X and Y, where X =
“AA BB PP BB ZZ CC KK DD UU VV EE RR" and
Y = "AA BB CC DD EE FF GG". Using this
technique, AA BB CC DD EE is of more interest
compared to a simple AA BB CC DD subsequence
which is sequential in order.

Here we identify common patterns for two days at
a time and identify all interesting patterns over the 66
days of entity-less data and 33-days of entity-tagged
data. Later we analyze the attributes of interestingness
over the longest common subsequences identified in
the experimental datasets. The longest common
subsequence problem is NP-Hard for a general case of
arbitrarily long input sequences and the problem is
solvable in polynomial time using dynamic
programming [5]. The reason we are interested in
longest length and not the shortest one is because the
shortest ones just identify the simple temporal relations
which can be identified using other frequent mining
techniques but the interesting part is the longest length

because they are unique for most of the days based on
the inhabitant [6]. Using the longest common
subsequence tool we look for patterns in both the
entity-less and entity-tagged datasets and we patterns
found are noted. The next step of the experimentation
would be analysis of the results. Table 6 shows us the
number of patterns found and the total number of days
used, while Figure 7 visualizes these results.

Table 5. Number of patterns found in entity-
less vs. entity-tagged data sets

No of Patterns
Found

Total No of
Days

Entity-Less 18 66

Entity 0 30 33

Entity 1 21 33

Entity 2 0 33

Entity 3 0 33

Figure 7. Number of patterns found in entity-
less vs. entity-tagged data sets

Table 7 summarizes the frequency or the number of
times a particular pattern is repeatedly found. We note
that the entity-less dataset has no repeated patterns
whereas when we discover different entities and have
patterns associated to them we see that there are some
patterns which repeat over time. Figure 8 visualizes
these results.

Table 6. Pattern frequency found

Frequency (Number of
times a particular pattern
repeated)

Entity-Less 0

Entity 0 3

Entity 1 3

Entity 0 + Entity 1 4

Figure 8. Pattern frequency discovered

Table 8 and figure 8 illustrate the number of cycles
found among the patterns identified in the entity-less
and entity-tagged datasets. We see that we have three
cycles of repetitions in the entity-tagged datasets
compared to none in entity-less datasets.

Table 7. Periodicity discovered within the data.

Periodicity(Number of
cycles in Data)

Entity-Less 0

Entity-Tagged 3

Figure 9. Periodicity discovered within the data.

4. Conclusion

What makes this work novel is the unification of
identifying entities and pairing them with temporal
reasoning to look for interesting patterns solving the
problem of knowledge discovery for a multi-inhabitant
smart environment. We think this as an intuitive and
relatively simple framework made of complex

temporal relations for reasoning and mining. The
leveraging of entity discovery provides a new
dimension to the data available to the prediction
process. By having information about which entity in
the space is causing events, even in a rough manner,
we are able to mine out more detailed information
having to do with the event patterns in the space.
Often, people will act and prefer different things when
there are multiple individuals operating in a space. By
adding this extra interpretation of what is happening in
the space, the data mining and prediction systems can
take these kinds of higher-order interactions into
account.

5. Acknowledgement

This work is supported by NSF grant IIS-0121297.

6. References

[1] James F. Allen, and George Ferguson, “Actions and

Events in Interval Temporal Logic”, Technical Report
521, July 1994.

[2] K. Gopalratnam and D. J. Cook, “Active LeZi: An
Incremental Parsing Algorithm for Sequential
Prediction”, International Journal of Artificial
Intelligence Tools, 14(1-2):917-930, 2004.

[3] G. Michael Youngblood, Lawrence B. Holder, and
Diane J. Cook. “Managing Adaptive Versatile
Environments”, Proceedings of the IEEE International
Conference on Pervasive Computing and
Communications, 2005.

[4] Vikramaditya Jakkula, and Diane J. Cook, “Learning
temporal relations in smart home data”, Proceedings of
the second International Conference on Technology and
Aging, Canada, June 2007.

[5] Wikipedia, et al. Longest Common Subsequence
Problem. Wikipedia. Wikipedia Foundation, Inc.
Retrieved May 25, 2007.
http://en.wikipedia.org/wiki/Longest_common_subsequ
ence_problem

[6] Wikibooks, et al. Algorithm Implementation Strings
Longest Common Subsequence. Wikibooks. Wikimedia
Foundation, Inc. Retrieved May 25, 2007.
http://en.wikibooks.org/wiki/Algorithm_implementation
/Strings/Longest_common_subsequence.

