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Abstract 

 
Time is an important aspect of all real world 

phenomena. In this paper, we present a temporal 
relations-based framework for discovering interesting 
patterns in smart environment datasets, and test this 
framework in the context of the CASAS smart 
environments project.  Our use of temporal relations in 
the context of smart environment tasks is described 
and our methodology for mining such relations from 
raw sensor data is introduced.  We demonstrate how 
the results are enhanced by identifying the number of 
individuals in an environment, and apply the resulting 
technologies to look for interesting patterns which play 
a vital role to predict activities and identify anomalies 
in a physical smart environment. 

 
 
1. Introduction 
 

Smart home research has been around for some 
time and significant progress has been achieved in the 
areas of data analysis and mining of data collected in 
smart environments. Despite this, there is still much 
room for further work in the areas of temporal data 
mining. Since smart home datasets are time-stamp 
datasets, we see that temporal mining would make the 
analysis and use of these datasets more effective and 
efficient than simpler data mining strategies. 

While making sense of sensor data can be 
challenging for smart environment applications, the 
problem is made even more complex when the 
environment houses more than one resident.  To aid 
the capabilities of our temporal data mining, and to 
reveal the complexities of multi-inhabitant spaces, an 
entity discovery tool was developed. This tool analyzes 
the raw sensor data to attribute given events with 
entities in the space.  By attributing events to different 
entities the temporal miner will be in a position to 
discover events series that occur, or do not occur, 
based on occupancy of the space. This increased 
granularity to the data will lead to a better 

understanding and prediction of events in smart 
environments. We will define a formal representation 
for temporal relationships between events in a smart 
home, and use this formalism as a basis for reasoning 
over these relationships.  Temporal reasoning gives us 
the groundwork for performing such activities as 
anomaly detection and prediction in the context of the 
smart environment. Representing and reasoning about 
activities, primarily about actions and events, is an 
interesting problem within the smart home domain. 
The focus of this paper is the mining for unique and 
interesting patterns within the data that can eventually 
be used for tasks such as event prediction and anomaly 
detection. 

Activities in a smart home include a resident’s 
physical activities as well as instrumental activities.  
Physical activities may include walking, sitting on a 
couch, turning on a lamp, and using the coffeemaker, 
for instance. We see that many of these activities are 
not instantaneous, but have distinct start and end times. 
We also see that there are well-defined relationships 
between time intervals for different activities.  These 
temporal relations can be represented using Allen’s 
temporal relations [1] and can be used for knowledge 
and pattern discovery in day-to-day activities. These 
discoveries can be used for developing systems which 
act as reminder assistants, for detecting anomalies, and 
for aiding smart homes in automatically taking 
preventive measures to keep residents safe. 

A question may arise as to why Allen’s temporal 
relations should be used for generating temporal 
intervals. The temporal relations defined by Allen form 
the basic representation of temporal intervals.  When 
these are used with constraints they become a powerful 
method of expressing expected temporal orderings 
between events in a smart environment. There are 
projects which employ sequential information to 
predict activities [2], and other methods for identifying 
suspicious states in a smart environment have been 
researched [3]. We extend these methods to 
incorporate valuable information about the interval of 
time each event spans.  While other methods treat each 
event as a separate entity (including, for instance, 



turning on a lamp and later turning off the same lamp), 
our interval-based analysis considers these two events 
as members of one interval.  Each interval is expressed 
in terms of start time and end time values. Let us 
consider a typical activity in a smart environment 
given below.  

Consider a simple scenario which involves a 
television, fan and a lamp being used in a smart home. 
We see that the resident turns on the television and 
after some period of time turns on the fan. As time 
progresses, feeling cold, the fan is turned off and the 
individual continues watching the television. Later on, 
the television is turned off and the individual turns on 
the lamp to illuminate the room. We see that this 
scenario involved three activities each defined by 
interaction with a single device, namely a television, a 
fan and a lamp. Now we apply Allen’s logic to 
establish the temporal relations among the activities 
which occurred. The scenario is illustrated in figure 1.  
These activities can be represented as television 
“contains” fan and “meets” lamp. We can also 
represent these relationships as television “meets” 
lamp and fan “before” lamp. 

The thirteen possible temporal relations are 
illustrated in Table 1. Consider two general events X 
and Y; we use this to represent the relations in the 
table. In Table 1, the interval constraints compare the 
start time (Start) and end time (End) of the activities, X 
and Y [4]. 

In this paper we use the temporal relations and 
identify interesting patterns of activity on the entity-
less and entity-tagged data collected in a smart 
environment. Later we can use this mined knowledge 
with a decision maker in a real world environment. 

 

 

Figure 1. Illustration of temporal intervals 

Table 1. Temporal relations representation. 

Temporal Relations Pictorial Representation Interval constraints 

X Before Y 

 

Start(X)<Start(Y); 
End(X)<Start(Y) 

X After Y 

 

Start(X)>Start(Y); 
End(Y)<Start(X) 

X During Y 

 

Start(X)>Start(Y); 
End(X)<End(Y) 

X Contains Y 

 

Start(X)<Start(Y); 
End(X)>End(Y) 

X Overlaps Y 

 

Start(X)<Start(Y); 
Start(Y)<End(X); 
End(X)<End(Y) 

X Overlapped-By Y 

 

Start(Y)<Start(X);     
Start(X)<End(Y); 
End(Y)<End(X) 

X  Meets Y 

 

Start(Y) = End(X) 

X Met-by Y 

 

Start(X)= End (Y) 

X Starts Y 

 

Start(X)=Start(Y); 
End(X)≠End(Y) 

X started-by Y 

 

Start(Y)=Start(X);     
End(X)≠End(Y) 

X Finishes Y 

 

Start(X)≠start(Y); 
End(X) = End (Y) 

X Finished-by Y 

 

Start(X)≠Start(Y); 
End(X)=End(Y) 

X Equals Y 

 

Start(X)=Start(Y); 
End(X)=End(Y) 

 
2. Environmental sensing 
 

We define a smart environment as one with the 
ability to adapt the environment to the residents in 
order to improve their experience in the environment. 
Our CASAS project treats a smart environment as an 
intelligent agent, as well as working towards agents 
that represent individual users. The current agent 
perceives the state of the environment using sensors, 
and can act upon the environment using power line 
controllers, illustrated in figure 2. The intelligent agent 
will select actions that optimize its goals. For a smart 
environment, these goals could include energy 
efficiency, enhancing resident productivity, improving 
their comfort, and/or ensuring their safety. For the 
study we report here, we focus on the CASAS goal of 
ensuring the health and safety of the smart 
environment resident. In order to achieve these goals, 



the house should be able to predict, reason, and adapt 
to its resident. In our smart workplace environment, 
shown in figure 3, the sensor network data is the 
primary source of data collection and collects entity-
less data, or data describing the events of a single 
resident in the environment [4].  
 

 
Figure 2. CASAS alpha room sensor layout 

(source of entity-tagged datasets). 

 

Figure 3. Smart workplace sensor layout 
(source of entity-less datasets) [3]. 

The data collection system consists of an array of 
motion sensors, which collect information using X10 

devices and the sensor network. Our dataset is 
collected for a resident working in the smart workplace 
(see Figure 3) and consists of two months of data. The 
lab consists of a presentation area, kitchen, student 
desks, and faculty room. There are over 100 sensors 
deployed in the lab that include light, temperature, 
humidity, and reed switches. This data was collected 
from a single resident and is being used as the entity-
less data source for the experimentation in this paper. 

For the data collection process in the multi-
resident CASAS environment, we used a series of 
repeated scripted events in our Alpha Room (see figure 
2).  The Alpha Room is the CASAS initial data 
gathering environment, designed to be used for the 
latest algorithms before they are used in spaces where 
people are living and working.  The room itself is laid 
out to have two working desks and a white board for 
collaboration in between. Currently, there are six 
motion detectors on the ceiling, four lights controlled 
by Insteon™ power line control devices, a pressure-
sensitive mat at the entrance door and a door 
open/closed switch. A data collection computer 
receives the power line events via a USB bridge, and 
the rest of the sensors feed through a microprocessor 
system to a serial port.  The room itself is not large, but 
big enough to make use of the Entity Discovery tool 
with two people. 
 
3. Experimentation Process and Results 
 
3.1. Entity Discovery and Tagging 
 

In the CASAS environment, we are enriching the 
data with information about entities moving within the 
space. This comes in the form of an entity (in this case, 
resident) identification number that is attached to each 
event, matching events to entities.  As an entity 
traverses the space they trigger events. Our Entity 
Discovery tool uses only information about the space 
and the raw sensor data to make these attributions. An 
illustration of a single sensor neighborhood in CASAS 
environment is given in figure 5. An illustration of 
entity identification is shown in figure 6. For the Entity 
Discovery tool, the concept of neighborhoods of 
sensors was used to determine location and quantity of 
entities within the space, as well as attributing events 
to individuals. To get a neighborhood, the sensors 
available are mapped to a Cartesian grid then 
assembled into a graph connecting all close sensors 
within a certain distance. This  physical distance 
around a given sensor (see figure 5) is the 
neighborhood size, which turns out to be a vital value 
for the operation of this system and needs to be tuned 
properly for things to function.  The result is that for 



every sensor you get a list of neighbors, hence its 
neighborhood. 

Table 2. Entity Discovery Algorithm Pseudo-
code. 

Entity Discovery Algorithm Pseudo-code: 
1. Build model of sensors based on physical layout 
2. Generate neighborhoods within sensor graph 
3. While [Event Received] 
4.      Parse event 
5.      Query collection of live entities for 
neighborhood  
         membership of event 
6.      If zero entities returned then 
7.         Create new entity at event location, attribute  
            event to entity 
8.      Else If one entity returned then 
9.         Move entity to location of event and attribute  
            event to entity 
10.    Else If two or  more entities returned then 
11.       Finish all entities and create a new entity at  
            event location, attribute event to new entity 
12.    End if 
13. Loop 

 

 

Figure 5. An illustration of a single sensor 
neighborhood in CASAS environment. 

There are three possible scenarios encountered 
using this tool: 

Case A - No entities are returned: In this case, 
there is no way to attribute the event to a known entity 
properly so a new entity is created and placed at that 
location, and that event is attributed to that new entity.  
For an example of the attribution, see Table 3, below. 

Case B - One entity is returned: Here we can 
attribute the event to a single known entity.  The result 
is that the event is set to that entity's ID and the entity 
is moved to the location of the event. 

Case C - Two or more entities are returned: 
Because we are unable to determine, with this early 
strategy, which of the entities caused the event, the 
tool must play it safe.  All of the entities are “finished” 
and no longer considered in the space, as we can no 
longer say anything specifically about their impact on 
the environment.  A new entity is created and placed at 
the location of the event for future consideration.   

Table 3. Example event data before and after 
being processed by the Entity Discovery tool 

Example raw event data before being tagged with 
an entity attribution: 
Timestamp                   Sensor ID   Event Message    
2007-05-18  14:44:04   001.009           ON 
2007-05-18  14:44:08   07.75.3d          OFF 
Example event data after being attributed to an 
entity, in this case two separate entities are noted: 
Timestamp                Sensor ID    Message  Entity    
2007-05-18  14:44:04   001.009       ON            0 
2007-05-18  14:44:08   07.75.3d      OFF           1 

 

 

Figure 6. Internal world model update upon 
event receipt. 

The Entity Discovery tool has shown promise, 
even with this basic of algorithms, at providing 
information useful to the Knowledge Discovery tool. 
The next step of this experimentation involves looking 
for interesting patterns.   

 
3.2. Mining for Interesting Patterns  
 

A common technique used is the discovery of 
patterns which are frequent and happen often. But 
using temporal relations to mine, the entire concept of 
sequence is now represented by temporal relations. 
Thus, in a smart home scenario these attributes of 



interestingness are as follows: frequency can be the 
number of times that particular pattern is found, length 
is the number of temporal relations involved in that 
pattern and the periodicity can be the measure of time 
span it takes before it repeats itself. The second step 
after identifying the entities involve forming temporal 
relations based datasets for mining.  

Table 4. Temporal Relation Discovery 
Algorithm Pseudo-code[16] 

Temporal Relation Discovery Algorithm Pseudo-
code: 
1. While [Event && Event + 1 found] 
2.       Find paired “ON” or “OFF” event in data to  
         determine temporal range. 
3.       Read next event and find temporal range 
4.      Take both events and look up kind of relation 
from 
         possible relation types (see Table 1) 
5.      Write out relation type and related data 
6.      increment Event Pointer 
7. Loop 

 
As we use temporal related datasets, we mine 

using the longest common subsequence technique with 
maximal consecutive, where we find a long sequence 
which is a subsequence, or a common subsequence of 
all sequences in a set of sequences. In our 
implementation, we look for maximal consecutive 
sequences within a two-day period. The reason for 
performing a maximal consecutive look up is that a 
three commonly-shared subsequence is of significant 
interest compared to one sequential subsequence. For 
instance, we have two strings X and Y, where X = 
“AA BB PP BB ZZ CC KK DD UU VV EE RR" and 
Y = "AA BB CC DD EE FF GG". Using this 
technique, AA BB CC DD EE is of more interest 
compared to a simple AA BB CC DD subsequence 
which is sequential in order.  

Here we identify common patterns for two days at 
a time and identify all interesting patterns over the 66 
days of entity-less data and 33-days of entity-tagged 
data. Later we analyze the attributes of interestingness 
over the longest common subsequences identified in 
the experimental datasets. The longest common 
subsequence problem is NP-Hard for a general case of 
arbitrarily long input sequences and the problem is 
solvable in polynomial time using dynamic 
programming [5].  The reason we are interested in 
longest length and not the shortest one is because the 
shortest ones just identify the simple temporal relations 
which can be identified using other frequent mining 
techniques but the interesting part is the longest length 

because they are unique for most of the days based on 
the inhabitant [6]. Using the longest common 
subsequence tool we look for patterns in both the 
entity-less and entity-tagged datasets and we patterns 
found are noted. The next step of the experimentation 
would be analysis of the results. Table 6 shows us the 
number of patterns found and the total number of days 
used, while Figure 7 visualizes these results. 

Table 5. Number of patterns found in entity-
less vs. entity-tagged data sets 

 
No of Patterns 
Found 

Total No of 
Days 

Entity-Less 18 66 

Entity 0 30 33 

Entity 1 21 33 

Entity 2 0 33 

Entity 3 0 33 
 

 

Figure 7.  Number of patterns found in entity-
less vs. entity-tagged data sets 

Table 7 summarizes the frequency or the number of 
times a particular pattern is repeatedly found. We note 
that the entity-less dataset has no repeated patterns 
whereas when we discover different entities and have 
patterns associated to them we see that there are some 
patterns which repeat over time. Figure 8 visualizes 
these results. 

Table 6. Pattern frequency found 

 

Frequency (Number of 
times a particular pattern 
repeated) 

Entity-Less 0 

Entity 0 3 

Entity 1 3 



Entity 0 + Entity 1 4 
 

 

Figure 8. Pattern frequency discovered 

Table 8 and figure 8 illustrate the number of cycles 
found among the patterns identified in the entity-less 
and entity-tagged datasets. We see that we have three 
cycles of repetitions in the entity-tagged datasets 
compared to none in entity-less datasets. 

Table 7. Periodicity discovered within the data. 

 
Periodicity(Number of 
cycles in Data) 

Entity-Less 0 

Entity-Tagged 3 
 

 

Figure 9. Periodicity discovered within the data. 

 
4. Conclusion 
 

What makes this work novel is the unification of 
identifying entities and pairing them with temporal 
reasoning to look for interesting patterns solving the 
problem of knowledge discovery for a multi-inhabitant 
smart environment. We think this as an intuitive and 
relatively simple framework made of complex 

temporal relations for reasoning and mining. The 
leveraging of entity discovery provides a new 
dimension to the data available to the prediction 
process. By having information about which entity in 
the space is causing events, even in a rough manner, 
we are able to mine out more detailed information 
having to do with the event patterns in the space. 
Often, people will act and prefer different things when 
there are multiple individuals operating in a space.  By 
adding this extra interpretation of what is happening in 
the space, the data mining and prediction systems can 
take these kinds of higher-order interactions into 
account. 
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