
Learning Accurate Temporal Relations from
User Actions in Intelligent Environments

Asier Aztiria1 Juan C. Augusto2 Alberto Izaguirre1 and Diane Cook3

1 University of Mondragon, Mondragon, Spain
{aaztiria;aizaguirre}@eps.mondragon.edu

2 University of Ulster, Jordanstown, United Kigndom jc.augusto@ulster.ac.uk
3 Washington State University, Pullman, Washington, U.S.A cook@eecs.wsu.edu

Summary. Ambient Intelligence environments depend on their capability to learn
user’s preferences and typical behavior. In this paper we present an algorithm that
taking as starting point information collected by sensors finds out accurate temporal
relations among actions carried out by the user.

1 Introduction

Ambient Intelligence (AmI) [2] [8] [14] can be understood as ‘a digital envi-
ronment that proactively, but sensibly, supports people in their daily lives’ [3].
Such systems can improve the life of users in many ways: for example, by mak-
ing an environment safer, more comfortable and more energy efficient. These
environments should achieve such goals without creating any extra burden to
the users so as to maximize users’ acceptance. Let us consider for example
aims like adjusting the temperature automatically, turning off the lights if
the user has gone out of the house, or issuing an alarm when it detects an
unsafe situation. In order to accomplish these aims, the environment will need
information about user preferences and habits (i.e., their ‘normal’ behaviour).

This paper makes a contribution to the problem of discovering patterns of
activity. The problem is inherent to any intelligent environment. Here we will
focus on a Smart Home scenario but the results can be easily extrapolated
to similar environments. The next section summarizes previous related work.
Section 3 explains the nature of the collected data and how patterns are rep-
resented. Then in Section 4 we explain how those patterns are obtained using
the algorithm APUBS which is part of PUBS (Patterns of User Behaviour
System). Section 5 shows the results of the validation experiments. Section 6
explains our plans for current and future work in this system and finally we
provide our conclusions in Section 7.

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 



2 A. Aztiria, J.C. Augusto, A. Izaguirre and D. Cook

2 Related Work

Learning is an essential feature in any AmI system. However, given the di-
versity of elements in AmI systems, learning has not been devoted as much
attention in the literature as it may require. Even so, some notable exceptions
have been. Artificial Neural Networks were the first technique used to infer
rules for smart homes, and a survey of those works can be found in [7]. A
first attempt was made in the MavHome project to predict the next smart
home inhabitant action using pattern discovery and Markov model techniques
[5]. Jakkula and Cook [11] extend this work to predict actions using temporal
relations, defined by means of Allen’s temporal logic relations [1].

Other techniques, such as Fuzzy-Logic in iDorm [10], Case-Based Reason-
ing in MyCampus [13] or Decision Trees in SmartOffice [9] have been used.
Taking into account the characteristics of each problem we can state that each
problem favours the use of a certain technique, but as Muller pointed out [12]
‘the overall dilemma remains: there does not seem to be a system that learns
quickly, is highly accurate, is nearly domain independent, does this from few
examples with literally no bias, and delivers a user model that is understand-
able and contains breaking news about the user’s characteristics’.

3 Data Collected, Required patterns and their
Formalization

Our approach aims at obtaining user patterns from sensor data. Different
sensors provide different types of information; therefore the learning process
has to consider each accordingly. Three main different groups of sensors are
considered (we are aware there are more types of sensors, e.g., alarm pendants,
RFID, etc. but these are the relevant ones for the examples listed in this
paper).

• (type O) Sensors installed in objects (devices, furniture, domestic appli-
ances, etc). They provide direct information about user actions. For exam-
ple, a sensor installed in the bedroom lamp may indicate when that lamp
was switched on and off.

• (type C) Context sensors. These sensors provide information about context
and not about user actions directly. Temperature, light and smoke sensors
are examples of type C sensors.

• (type M) Motion sensors. These sensors can be used to infer where the
user is (in the bedroom, outside the house, etc.).

Let us consider the event sequence illustrated in Figure 1. As the figure
shows, sensors installed in the objects provide clues about users’ actions that
can be used to define patterns such as the one defined in (1):

‘Bedroom Lamp is turned on 5 seconds after Motion Bedroom is turned on If
and When bLight is <10’ (1)

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 



Learning Accurate Temporal Relation in Intelligent Environments 3

Fig. 1. Event sequence and context information

In order to use a clear and non ambiguous representation which can facili-
tate future automation, patterns will be described as ECA (Event-Condition-
Action) rules [4]. They will capture situations where an Action that is detected
through an activated sensor, called main sensor triggering (mainSeT ) (e.g.,
Bedroom Lamp), is related (in terms of time, e.g., 5 seconds) to an Event
involving another activated sensor, called the associated sensor triggering (as-
sociatedSeT ) (e.g., MotionBedroom), if some Conditions (e.g., Bedroom light
<10) are true. For more details see [6].

4 Learning temporal patterns with AP UBS

The process to identify patterns in data collected by sensors is summarized
in the following algorithm:

APUBS Algorithm (for learning patterns)

for each sensor of type O (consider it as mainSeT )
Identify the associatedSeT of type O or M (See Section 4.2.1)
for each associatedSeT

Identify possible time relations (See Section 4.2.2)
if there exists a time relation then make it more accurate using
context information, i.e., by using C-type (See Section 4.2.3)

Notice the emphasis on sensors type O as mainSeT given they are those
more closely linked with user’s explicit and intended actions.

4.1 Identifying associated sensor triggering

The aim of this first step is to get a list of possible related sensors (associ-
ated) in order to minimize the complexity of the learning process. For the
purpose of discovering possible associatedSeT, we search for previous events
of other sensors that happened before each event related to the mainSeT. If

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 



4 A. Aztiria, J.C. Augusto, A. Izaguirre and D. Cook

APUBS discovers that before an event instance of mainSeT there are frequent
occurrences of an event of another sensor triggering, then the later will be con-
sidered as associatedSeT. Finding an associatedSeT does not mean definitively
there will be a pattern that describes a relation associatedSeT - mainSeT, but
indicates there could potentially be one.

A list of possible associatedSeT is obtained with a similar approach to the
Apriori method for mining association rules with only two differences.

• Limit possible associations to the object we are analyzing (mainSeT ).
• The result does not consider a pair (mainSeT, associatedSeT ) as a se-

quence, but only as sensors that can be potentially related in a meaningful
way.

A modified Apriori algorithm (adding the aforementioned constraints) has
been used in this step. As in every association mining process, minimum
coverage, support and window size values must be provided. Let us consider
the mainSeT ’Bedroom Lamp’ again; the result of this first step will be a list
of associatedSeT s.

BedroomLamp = >[MotionReception, MotionBedroom, LuxoLamp]
where n <TotalSensorNumber

4.2 Identifying time relations

Once we know what other actions triggering sensors could be related to actions
triggering mainSeT, the next step is to discover if there are possible mean-
ingful relations. Those relations could be either quantitative (2) or qualitative
(3).

‘BedroomLamp is turned on 5 sec. after MotionBedroom is turned on’ (2)
‘BedroomLamp is turned on after MotionBedroom is turned on’ (3)
Quantitative relations include a specific measurement (e.g., 5 seconds)

whereas qualitative relations emphasize the relative occurrence of the ac-
tions/events (e.g., after). Numerical relations carry extra valuable information
with regards to qualitative ones which are useful for automation. For example,
knowing the user likes to listen to the radio news at a particular time or to
have the temperature of the house within 20oC-23oC at a particular month
of the year. Qualitative relations like ‘after dinner and before going to bed’
are not constrained enough to schedule a favorite TV program. Our work has
focused on numerical relations, as we know other reports in the literature had
covered qualitative relations.

Grouping instances

The starting point for discovering numerical time relations will be to generate
a table listing time distances between occurrences of mainSeT events and pre-
vious appearances of associatedSeT. Consider the scenario in Figure 2 where
the relations between Bedroom Lamp and associatedSeT s are depicted.

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 



Learning Accurate Temporal Relation in Intelligent Environments 5

Fig. 2. Time distances between mainSeT and associatedSeT

Once the temporal relations are collected, the next step is to find out if
there is any interesting time distance that is repeated frequently enough (see
subsection ‘extracting patterns’ for more details). In order to discover these
patterns, groups are made taking into account similarities among them. In
our case, considering the associatedSeT MBon (MotionBedroom’s ‘on’), the
distances would be ({e1,6s} {e2,312s} {e3,5s} {e4,-} {e5,70s} {e6,4s}) and
groups among (6,312,5,70,4) must be done. The technique to make groups
could be as complex as we can imagine and different techniques could be
suggested to accomplish this task. In this case the technique used is based on
joining values that are within a range established by:

[min,max] = x± (x ∗ tolerance) where x =
∑n

i=1 ai

n
(1)

with: tolerance = tolerated deviation from x (%); ai = time distance of a
element; and n = number of elements

If a value does not fulfill the requirements to join any group, a new group is
created using that value as the group mean. Every time a new value is added
to a group the mean value of that group is recalculated. Considering the
possible relation between Bedroom Lamp and MBon, the process of making
groups will be (considering 50% as tolerance percentage in all cases).

(e1,6s); There is no group, create(group0, x (6s), [3,9])
Tolerance = 6 ± (6 * 0.5)

(e2,312s) 6=[3,9], create(group1, x (312s), [156,468])
Tolerance = 312 ± (312 * 0.5)

(e3,5s)=[3,9], join(group0, x (5.5s), [2.75,8.25])
Tolerance = 5.5 ± (5.5 * 0.5)

(e4,70s) 6=[3,9] and 706=[156,468] create(group2, x (70s), [35,105])
Tolerance = 70 ± (70 * 0.5)

sebastien
Texte surligné 



6 A. Aztiria, J.C. Augusto, A. Izaguirre and D. Cook

(e6,4s)=[2.75,8.25], join(group0, x (5s), [2.5,7.5])
Tolerance = 5 ± (5 * 0.5)

Extracting patterns

Once groups are made, the following step is to evaluate what information
groups do and do not reveal about a pattern. As in the first step (identify
associatedSeT ) we consider interesting patterns to be those that cover more
instances than established by the minimum confidence level. If the minimum
confidence is, say, 25% the only group considered as interesting in our case
would be group 0, which covers 3 instances out of 6, creating a pattern:

‘BedroomLamp is turned on 5s after MotionBedroom is turned on’ (4)

4.3 Identifying appropriate conditions of pattern occurrence

Every pattern has a confidence level that indicates how many mainSeT in-
stances are covered by the pattern. The pattern (4) has a confidence level
of 50% because it covers the instances e1, e3 and e6 out of a total of 6. It
means that only in 3, out of 6 times, the Bedroom Lamp was switched on
when there was a motion detection at bedroom 5 seconds before. Having such
a confidence level (rarely a confidence in this point will be close to 100%) does
not mean that a pattern is not useful, but it means that it is not as accurate
as it would be desirable. Finding out (if possible) under what conditions a
pattern appears or not will be the last step to increase accuracy in patterns
detection.

The possible conditions are given by: (a) Time specifications (e.g., such
as: time of day, day of week, season, etc.) and (b) Context sensors (type C
sensors such as those to measure temperature, light, humidity, etc.).

Adding conditions

In order to discover the conditions, two tables, covered and non-covered tables,
are generated. In the covered table there will be instances classified well by the
pattern together with the context information collected when they happened.
The non-covered table will contain instances where the pattern fails. Dividing
both tables, using the information they contain helps to provide more accurate
patterns. Some example of these conditions are ‘when time is between 18hs
and 20hs’, ‘when day of the week is Saturday’, ‘when temperature is less than
25oC’ or ‘when light level is less than 10’.

Let us consider the tables in Figure 3 show the context information col-
lected when instances of our example happened. Separating both tables will
allow us to know when our pattern defines properly the relation between Bed-
room Lamp and Motion Bedroom. In this case the easiest way to separate
covered and non-covered tables seems to be by using the sensor bLight that

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 



Learning Accurate Temporal Relation in Intelligent Environments 7

indicates the light level in the bedroom when action happened. Adding that
condition, our pattern will be:

‘BedroomLamp is turned on 5s after MotionBedroom is turned on When
BedroomLight level is <10’ (5)

Adding these conditions do not increase the instances the pattern can
classify well, (still classifyies the same instances, 3/6), however we make sure
that it does not include instances that do not have that pattern.

Fig. 3. covered and non-covered tables

Patterns achieved up to now explain when and under what conditions
instances of mainSeT happen. That will allow us to understand the user’s
behavior, but this is insufficient if the objective is to automate a house. For
example, we may know that every time the bedroom lamp was turned on and
the bedroom light level was less than 10 units, there was a motion sensor
triggering in the bedroom 5s before. But this does not inform us about the
converse relation, i.e. we cannot make sure that every time there was a motion
sensor triggering in the bedroom and the bedroom light level was less than 10
units, 5s after that there was a bedroom lamp sensor activation. Therefore,
it is necessary to analyze the pattern from the opposite point of view and
find out the conditions to be able to automate. The way of getting these
conditions is the same as before. The only difference is that to generate the
tables, associatedSeT instances are considered instead of mainSeT instances
and an associatedSeT instance is considered as covered if there is an instance
of mainSeT just as the pattern indicates.

Classification technique

In order to separate the tables and get the conditions, we have used a mod-
ified JRip algorithm (JRip is a rule learning algorithm provided by Weka)
[15]. The unique modification done in the algorithm has been made to get
always conditions related to the covered table, i.e., JRip algorithm provides



8 A. Aztiria, J.C. Augusto, A. Izaguirre and D. Cook

rules without taking into account if they are related to one class or another,
its unique aim is to separate classes. Because in our case separation gives
us the conditions under which the pattern is useful, it is desirable that the
classification technique always provides rules about the covered class.

5 Results

APUBS has been validated by applying it to artificial data generated by the
authors and then to a real dataset collected from MavPad, a smart apartment
that was created to test algorithms as part of the MavHome project [16]. The
dataset we used was collected in three different time periods: Trial1 (spanning
15 days), Trial2 (spanning almost 2 months) and Trial3 (spanning 3 months).
The types of sensors installed are: 26 sensors on objects such as lamps, lights
or outlets, 53 context sensors such as light, temperature or humidity, and 37
motion sensors distributed in all the rooms.

Figure 4 shows the number of patterns discovered by APUBS in different
trials, considering different minimum confidence levels (25%, 50%, 75% and
100%). A 25% confidence level means that, at least, a quarter of the instances
must be covered by the pattern to consider it as interesting. On the other
hand, the number of accurate patterns indicates the number of patterns out
of total where it has been possible to define conditions to know when they
can be used.

Fig. 4. Number of patterns and accurate patterns obtained in different trials con-
sidering different confidence levels.

Some conclusions can be extracted from these results. First of all, it seems
clear that it is almost impossible to define patterns associated to a specific

sebastien
Texte surligné 



Learning Accurate Temporal Relation in Intelligent Environments 9

object based on only one relation (in fact, there is no pattern with 100%
confidence level) so the importance of defining conditions is clear. Moreover
figures show in most of the patterns (92 out of 121) it has been possible to
define conditions of occurrence in order to obtain patterns with relatively high
levels of accuracy. The system can be run successively with different requests
of accuracy to find the optimal balance in between a high accuracy in the
detection and achieving patterns with minimum level of confidence. Table 1
shows the runtime needed by APUBS in each trial.

Table 1. Experiments’ runtime considering different confidence levels

Confidence level (%) Trial 1 Trial 2 Trial 3

25 45.7s 336.2s 137.5s

50 30.1s 227.4s 101.7s

75 26.8s 194.2s 88.3s

6 Future Work

Once a methodology to learn patterns is clear, the way of getting the objectives
of each part can vary and different techniques or approaches can be suggested.
Our short-term efforts will be aimed to discover patterns with qualitative
relations, getting complex patterns where more than two activated sensors
would be related and experimenting with some other datasets. Further future
work will also include the possibility of incorporating user preferences and
user feedback which will provide a useful heuristic to achieve much more
personalized and user-adapted patterns.

7 Conclusions

Learning in AmI systems is a task that must be carried out as unobtrusively
as possible, for example, by considering the information collected from sen-
sors as the sole (or at least primary) source of information for user’s actions.
Discovering patterns on how objects are used, the places visited and the time
associated with those events is informative on user’s behaviour and prefer-
ences. This in turns helps an environment to accomplish the task of providing
a service tailored to the inhabitants of the environment.

A three step algorithm, APUBS , to find out temporal relations has been
described, where the first two steps are focused on finding out relations among
activated sensors and defining what type of relation these are, and the third
step attempts to define when or in what conditions they must be used.

Results obtained after validating APUBS on artificially generated dataset
and datasets collected by colleagues in a Smart Home indicate the importance

sebastien
Texte surligné 

sebastien
Texte surligné 



10 A. Aztiria, J.C. Augusto, A. Izaguirre and D. Cook

of including conditions as part of a pattern specification and also showed the
efficacy of APUBS to find such patterns in substantially large datasets with
acceptable performance.

References

1. J. Allen. Towards a general theory of action and time. In Artificial Intelligence,
volume 23, pages 123–154, 1984.

2. J. C. Augusto. Ambient Intelligence: the Confluence of Ubiquitous/Pervasive
Computing and Artificial Intelligence, pages 213–234. Intelligent Computing
Everywhere. Springer London, 2007.

3. J. C. Augusto and D. J. Cook. Ambient intelligence: applications in society
and opportunities for ai. In 20th International Joint Conference on Artificial
Intelligence (IJCAI-07), 2007.

4. J. C. Augusto and C. D. Nugent. The use of temporal reasoning and manage-
ment of complex events in smart homes, 2004.

5. J. C. Augusto and C. D. Nugent. Smart homes can be smarter. In Designing
Smart Homes. The Role of Artificial Intelligence, pages 1–15, 2006.

6. A. Aztiria, J. C. Augusto, and A. Izaguirre. Spatial and temporal aspects for
pattern representation and discovery in intelligent environments. In Workshop
on Spatial and Temporal Reasoning at 18th European Conference on Artificial
Intelligence (ECAI 2008) (to be published), 2008.

7. R. Begg and R. Hassan. Artificial neural networks in smart homes, pages
146–164. Designing Smart Homes. The Role of Artificial Intelligence. Springer-
Verlag, 2006.

8. D. J. Cook and S. K. Das. Smart Environments: Technology, Protocols and
Applications. Wiley-Interscience, 2005.

9. C. Le Gal, J. Martin, A. Lux, and J. L. Crowley. Smartoffice: Design of an
intelligent environment. IEEE Intelligent Systems, 16(4):60–66, 2001.

10. H. Hagras, V. Callaghan, M. Colley, G. Clarke, A. Pounds-Cornish, and H. Du-
man. Creating an ambient-intelligence environment using embedded agents.
IEEE Intelligent Systems, 19(6):12–20, 2004.

11. V. R. Jakkula and D. J. Cook. Using temporal relations in smart environment
data for activity prediction. In Proceedings of the 24th International Conference
on Machine Learning, 2007.

12. M. E. Muller. Can user models be learned at all? inherent problems in machine
learning for user modelling. In Knowledge Engineering Review, volume 19, pages
61–88. Cambridge University Press, 2004.

13. N. M. Sadeh, F. L. Gandom, and O. B. Kwon. Ambient intelligence: The my-
campus experience. Technical Report CMU-ISRI-05-123, ISRI, 2005.

14. M. Weiser. The computer for the 21st century. Scientific American, 265(3):94–
104, 1991.

15. I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques, 2nd ed. Elsevier, 2005.

16. G. M. Youngblood, D. J. Cook, and L. B. Holder. Managing adaptive versatile
environments. In IEEE International Conference on Pervasive Computing and
Communications, 2005.

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 

sebastien
Texte surligné 


