
Discovery as Autonomous Learning from the EnvironmentWei-Min ShenMicroelectronics and Computer Technology Corporation3500 West Balcones Center DriveAustin, TX 78759wshen@mcc.comSeptember 9, 1994AbstractDiscovery involves collaboration among many intelligent activities. However, little is known abouthow and in what form such collaboration occurs. In this paper, a framework is proposed for autonomoussystems that learn and discover from their environment. Within this framework, many intelligentactivities such as perception, action, exploration, experimentation, learning, problem solving, andnew term construction can be integrated in a coherent way. The framework is presented in detailthrough an implemented system called LIVE, and is evaluated through the performance of LIVE onseveral discovery tasks. The conclusion is that autonomous learning from the environment is a feasibleapproach for integrating the activities involved in a discovery process.
1 IntroductionLearning from the environment requires integration of a variety of activities. A learning systemmust be ableto explore, to plan, to experiment, to adapt, and to discover. These activities should be studied togetherin a coherent way so that they can bene�t each other. For example, cooperation between prediction,model construction, problem solving, exploration, experimentation, and new term construction can beseen as follows: prediction is used as an evaluation criterion for model construction; model construction(re�nement) provides a means for improving prediction; problem solving makes use of the approximatemodel and detects when and where exploration and experimentation are needed to further improve themodel; new term construction provides more building blocks for construction, prediction, and problemsolving.The main purpose of this paper is to de�ne the problem of learning from the environment and show howvarious intelligent activities can be integrated. The paper is organized as follows. Section 2 discusses relatedwork on learning from the environment. Section 3 de�nes the problem of learning from the environment.Section 4 introduces the notation for prediction sequences and their key role in integration. Sections 5through 8 present an implemented system called LIVE and describe how each of the integrated activitiesworks. I will use a variation of the Tower of Hanoi puzzle as the main example to illustrate most of theideas. The paper concludes with a discussion on the strengths and limitations of this approach.

2 Related WorkThe central problem of learning from the environment is model construction and its integration with modelapplication.A model of an environment is a set of mappings, S(t) � A(t) ! S(t + 1), each of which describes theconsequence of some action on the environment: if the action A is applied to the state S at time t, the resultstate, at time t+1, will be S(t+1). One way to build a model is to memorize the history of the interactionswith the environment [Stan�ll and Waltz, 1986; Atkeson, 1989]. This approach requires little e�ort formodeling but more e�ort for retrieving information. An alternative approach is to abstract/generalize thehistory into a condensed form. There are symbolic methods [Mitchell et al., 1983; Bundy et al., 1985;Angluin, 1978; Rivest and Schapire, 1989; Shen and Simon, 1989; Zytkow, 1991] and statistical methods[Friedman and Stuetzle, 1981; Nguyen and Widrow, 1989; Barron and Cover, 1991; Drescher, 1989] for doingthis. Each has its own strength: the symbolic methods can build models that are easiler to understand,while the statistical methods can build models from noisy data.The necessity of integration between model construction and model application is realized by Hayesand Simon [1974], and it is implemented in many existing systems, for example [Mitchell et al., 1983;Shrager, 1985; Shen and Simon, 1989; Laird et al., 1990]. Some integration approaches are based on �rmmathematical ground [Goodwin and Sin, 1984; Watkins, 1989].Compared to the related work, the approach in this paper has several unique features. First, it views thevariety of autonomous activities as instantiations of prediction sequences. Second, it uses a new learningmethod, called complementary discrimination, that utilizes both discrimination and generalization in auni�ed way. Finally, the approach provides a simple but e�ective way to coordinate the activities betweenmodel construction/re�nement and model application (the dual control problem in control theory). Incontrast with the strategy of periodically checking the correctness of the model [Kaelbling, 1990], ourstrategy is to have aplication of the model as the default while always being ready for model improvement.3 Learning from the EnvironmentLearning from the environment can be expressed as follows: An autonomous system L learns throughexperience what it can do and see in an environment E to the extent that L can drive E into a set of statesthat L wants E to be in.

ENVIRONMENT

LEARNER

(goals)

State Information

Actions Percepts

Figure 1: The basic de�nition of learning from the environmentFigure 1 shows the relation between the learner and the environment. The learner is a system that canperform a set of actions to the environment and perceive a set of percepts from the environment. It has aset of goals, expressed in terms of percepts, that are either self-generated or given by external commands.Its objective is to construct a model of the environment so that it can drive the environment into statesthat match its goals.The environment is a system that changes its states when acted upon. The environment changes itsstate according to some set of unknown rules or functions. The state of the environment is not necessarily1

completely perceived by the learner; it depends on the physical ability of the learner. For example, a colorblind learner cannot perceive the color of an object even though most objects in the environment may havecolors.In this paper, I assume that the environment is only manipulated by the learner and there is no noisein the observations and actions. Readers interested in \noisy" environments may �nd adaptive controltheories [Goodwin and Sin, 1984] useful. Moreover, I assume that the learner has su�cient computationalresources to process all of the perceived percepts. Readers interested in the problem of \focus of attention"can �nd more information in [Whitehead and Ballard, 1991].To be more precise about the learner, we need to de�ne the terms action, percept, mental language,goal, and model. An action is a physical change that occurs inside the learner. It is typically a signalsent to the interface devices that will e�ect the environment. For example, it can be a muscle contractioninside a human's arm, or a signal sent to the motor that controls a robot arm. Note that an action isseparated from its external consequence. A learner can execute its action in any environment regardless ofthe consequence of the action. For instance, a contraction of one's arm muscle can be executed regardlessof whether the arm is free to move. Ideally, actions are innate to learners while consequences depend onenvironments. In this paper, however, actions may still have external objects as their parameters.A percept is a representation inside the learner of information received from the environment. Thedevices for creating such an internal representation from the environment are innate to the learner. Forhumans, such devices are the sensing organs, and percepts are the signals that are sent to the brain fromthe sensing organs. In this paper, I assume that a percept can be a representation of an object (e.g., abook), a feature (e.g., blue), a function (e.g., Color: object!feature), or a relation (e.g., On: object�object).Of course, a percept can be something about the learner itself, such as whether the hand is open and howmuch the left arm is bent. We shall call the set of all percepts perceived from a state of the environmentan observation.A goal is a speci�c set of percepts representing some state of the environment. We say that a goalis satis�ed in an observation if the percepts of the goal are a subset of the observation. For example, agoal that is represented by a singleton set of percept f\blue-triangle"g is satis�ed in all observations thatcontain the percept \blue-triangle."Actions and percepts are part of a mental language of a learner. Besides the actions and percepts, thelanguage may also have other primitive symbols, such as logical quanti�ers and connectives (e.g., 9;^;:),predicates (e.g., =; >), or functions (e.g., +;�;�). In this paper, I assume each learner has a �xed mentallanguage. The learner uses this language to build new mental concepts. For example, if \force" f and\distance" d are percepts and multiplication � is a function, then a term \moment" can be de�ned as(f�d). Mental concepts can be built using not only percepts but also actions. For example, if \push" isan action, and \location" is a percept, then the concept \heavy" (not directly perceivable) can be builtas \the location before pushing is equal to the location after pushing." Concepts like this example areconjectures made dynamically by the learner; they are not directly perceived from the environment. Themajor use of the mental language is to de�ne models of the environment.A model of the environment is de�ned as a set of prediction rules. A prediction rule is a triple hconditionaction predictioni, where condition and prediction are expressions in the mental language that representsets of percepts that have certain properties (e.g., what they are, how they are related, and how theyhave come about). A condition or a prediction is satis�ed in an observation if the observation satis�es theproperties speci�ed in the condition or the prediction. A prediction rule says that if the action is appliedto a state whose observation satis�es the condition, then the observation of the resulting state shouldsatisfy the prediction. It is a prediction failure if the observation of the resulting state does not satisfy theprediction. Note that prediction rules are di�erent from strips operators [Fikes and Nilsson, 1971] in theway they are used. A prediction in a prediction rule is only a template to be matched to observations ofstates. It does not change states as the add/delete list would in strips's case. A prediction can fail, whileadd/delete lists, as they are used in strips, cannot.An interesting property of this kind of model is its bidirectional usage. Used in the forward direction,it can make predictions to monitor the consequences of executing actions (to detect the de�ciency of the2

current model). Used in the backwards direction, it can decompose a goal into subgoals in the planningprocess, thus selecting \control" actions.Now, with all the de�nitions in place, the precise de�nition of learning from the environment can begiven as follows:Given an Environment, a Learner, de�ned as a set of Actions, Percepts, and a MentalLanguage, is to learn a set of Prediction Rules that enable it to achieve its Goals deliberately(i.e., no prediction failure should occur in the solution plan).To illustrate the de�nition of learning from the environment, consider a special implementation of theTower of Hanoi puzzle. There are three balls and three plates. The balls have di�erent sizes and they canbe moved from one plate to another according to the following rules: (1) only one ball can be picked upfrom the plates at a time. (2) A ball can be put onto a plate only if that ball is smaller than all the balls onthat plate. (Attempts to put a ball into a plate that contains any smaller ball will cause the larger ball tobe popped onto the table). (3) A ball can be picked up from a plate only if it is the smallest on that plate.The reason I use balls and plates instead of disks and pegs is that these three rules are not given to thepuzzle solver. Instead, they must be learned through the interaction with the device. This environmentmay seem a little arti�cial, but I chose the puzzle for its familiarity in the literature of Arti�cial Intelligence.For convenience, let us call the puzzle the \Plate of Hanoi."Let us de�ne a learner, RML, in this environment as follows. It can see certain relations betweenobjects. In particular, it can see ON(ball,plate/table), SIZE>(ballx,bally), and INHAND(ball). It canPICK balls up from or PUT balls on the plates and the table. Let us assume that the learner's mentallanguage also has the primitives ^, : and 9, and its goal is to move all the balls to a particular plate, sayPLATE3. (Let us assume BALL1 is smaller than BALL2, and BALL2 is smaller than BALL3.)The RML Learner in the Plate of Hanoi environmentEnvironment: The \special" balls and plates.Percepts: ON(ball,plate/table), SIZE>(ballx,bally), INHAND(ball).Actions: PICK(ball,plate/table), PUT(ball,plate/table).Primitives: ^, : and 9.Goals: fON(BALL1,PLATE3),ON(BALL2,PLATE3),ON(BALL3,PLATE3)g.An example of prediction rule, Rule0, learned by RML may look like the following:Condition: INHAND(ballx)^ :ON(ballx plate=table)Action: PUT(ballx plate=table) [Rule0]Prediction: ON(ballx plate=table)^ :INHAND(ballx)It says that the action PUT can put a ball in hand onto a plate or the table if the ball is not already there.The reader can see that this rule, although legitimate, is clearly incomplete.Note that in this environment, other learners can be de�ned too. For example, I can de�ne a learnerto be a robot with a hand and an eye, with its percepts as features of objects (location, size, color, shape)and its actions as the movement of its hand and the rotation of its arm. In this paper, however, I willconcentrate on the RML learner due to space limitations. Interested readers may �nd more information onother types of learners in [Shen, 1989]. In general, the more primitive a learner's percepts and actions are,the more general the learner is. For example, the actions of the robot learner involve only its own bodyparts, it can learn from any environment in which it can move its arm and hand. While the actions of theRML learner involves objects in this particular environment (such as balls and plates), it can only learnfrom environments where balls are moved among plates and table. Naturally, the more general a learneris, the more di�cult its learning task is.4 Integration via Prediction SequencesAs I mentioned earlier, the main objective of learning from the environment is to integrate model applicationwith model construction. However, model application is a diverse notion in itself. A model can be used3

to solve problems (planning), to gather new information (exploration), or to �nd out why the model isincorrect (experimentation).Regardless of the super�cial di�erences, planning, exploration, and experimentation are all sequences ofactions with predictions. Recall that a prediction, relative to a condition and an action, is a statement thatdescribes the expected observation from the result state. In learning from the environment, predictionscan be sequenced as follows: hS0; a1; P1; a2; P2; � � � ; an; Pni;where S0 is the observation from the current state, ai is an action, and Pi is a prediction.As the actions in this sequence are executed, observations from the environmental states, Si, are per-ceived in a sequence: S0; a1; S1, a2; S2; � � � ; an; Sn: A prediction failure occurs as soon as a prediction Piis not satis�ed in the correspondent observation Si. Notice that a prediction failure is di�erent from afailure/success for achieving a goal. With respect to a goal, an action can be successful by accident (i.e.,the result state is the goal) but the prediction still fails (i.e., the result state does not satisfy the prediction).Thus, learning from prediction failures means both learning from failures and learning from successes.With a prediction sequence so de�ned, planning, exploration and experimentation are all special cases:� A plan is a prediction sequence whose accumulated prediction1, tni=1Pi, satis�es the goal G (recallthat a goal is a set of percepts). A plan may or may not produce prediction failures. A plan succeedsonly if no prediction failure occurs.� An exploration is a prediction sequence in which some of the predictions are \false." Since a falseprediction cannot be satis�ed by any observation, an exploration is guaranteed to produce predic-tion failures, thus improve the model. The motivation of this is that when you don't know whatmight happen after an action (i.e., when you explore an action), whatever happens will be valuableinformation for improving the model.� An experiment is a prediction sequence whose �nal prediction is expected to fail. This is an e�ectiveway to seek counterexamples (prediction failures) when the current model is known to have particularerrors. For example, if the model says (Pn�1; a)! Pn but there is a strong reason to believe this isfalse, then experiments of h� � � ; Pn�1; a; Pni will be very useful for revising the model because it mayproduce a prediction failure.Integration Loop:1. Generate a prediction sequence using the current model;2. Execute actions and perceive results in the environment;3. If there is a prediction failure,call model construction to expand or revise the model.Figure 2: The Integration LoopThe integration of model application and model construction is accomplished by the loop in Figure 2.We can see that the learner's default activity is model application (i.e., using the model to constructprediction sequences), and it switches to model construction only when there is a prediction failure. Whenthe model is revised, the learner starts model application again. This loop goes on until a successful planfor the goals is constructed and executed.It should be clear that learning from the environment is essentially rule induction from examples in thecontext of problem solving. The examples are the observed consequences of actions in the environment(i.e., the triples of (state action state)). The quality of the learned rules is then measured by their utilityfor problem solving. From this point of view, the integration loop is a special case of the theory of unifyingproblem solving with rule induction, �rst proposed in [Simon and Lea, 1974].1The operator t is a set union with undos. For example, if Pi = f:bg and Pi+1 = fbg, then Pi t Pi+1 = fbg because bundoes :b. 4

5 The Overview of LIVEThe integration idea presented in the last section is implemented in a system called LIVE. The struc-ture of LIVE is in Figure 3. Corresponding to the three steps in the integration loop, LIVE has threemodules: the prediction sequence generator (for model application), the model builder/reviser, and theexecutor/perceiver (for interfacing to the environment). LIVE is an architecture, in the sense that it canbe instantiated into di�erent learners by giving it di�erent percepts, actions, and mental languages, asdiscussed in Section 3.
ENVIRONMENT

Model

Prediction Sequence

Prediction Failure

Model Builder
Model Reviser

Prediction
Sequence
Generator

Rule Reviser

Term Constructor

Rule Builder

Experimenter Planner Explorer

Executor and PerceiverFigure 3: The LIVE ArchitectureThe prediction sequence generator is responsible for generating a prediction sequence, for both themodel and the goals. It has three submodules: the Planner, the Explorer, and the Experimenter. Thesubmodules are coordinated as follows. The Planner is called �rst to construct a solution for the goalsusing the current model. If it fails, then either the Explorer or the Experimenter will be called. TheExplorer is called if the failure of plan construction is due to the lack of prediction rules in the model(i.e., there is, given the current rule set, no chaining path between the current state and the goals.) TheExperimenter is called when prediction rules cause errors during planning. Two common types of planningerrors are regression deadlock or a regression loop. A regression deadlock means that subgoals proposedby rules con
ict with each other no matter how they are ordered. A regression loop means that the samesubgoal is repeatedly proposed forever. How the Explorer and the Experimenter generate their predictionsequences is described in later sections.The executor/perceiver module executes the generated prediction sequence in the environment. Thismodule compares the result of each action with the corresponding prediction. If there is a predictionfailure, it calls the builder/reviser module. At this point, the executor/perceiver will normally relinquishits control and wait for a new prediction sequence. But, if the current sequence is an exploration, it willresume execution after the model is revised. It relinquishes the control after the whole exploration sequenceis completed.The builder/reviser module has two submodules. If the failed prediction is equal to \false" (i.e., theaction is an exploration), the builder submodule will be called to create a new prediction rule. Otherwise,the reviser submodule will be called to revise the rule that made the incorrect prediction. If necessary, thereviser may also call its submodule, the term constructor, to de�ne new relations and terms.To illustrate the interrelation of all these modules, let us go through an example to see how theRML learner learns a model and solves a problem in the Plate of Hanoi environment (de�ned in Sec-5

tion 3). Suppose the observation from the initial state is ON(BALL1,PLATE1) ON(BALL2,PLATE1)ON(BALL3,PLATE1), and the given goals are ON(BALL1,PLATE3) ON(BALL2,PLATE3) ON(BALL3PLATE3). Since RML starts with an empty model, the Planner fails and the Explorer is called. An explo-ration fPICK(BALL1 PLATE1), False; PUT(BALL1 PLATE2), Falseg is generated (see Section 6). Twoprediction failures will occur in executing this sequence, out of which two rules, Rule0 (listed in Section 3)and Rule1 (see Section 6), will be created by the Rule Builder.Since the model now contains two rules, the Planner generates a prediction sequence intended to putballs on PLATE3 one by one, in an order that is arbitrarily chosen. As a result, BALL1 is successfully puton PLATE3, but not BALL2. After PUT(BALL2 PLATE3), a prediction failure occurs because BALL2is ON the TABLE. The Rule Reviser is called to revise Rule0, which made this failed prediction. Thisrevision causes Rule1 to be replaced by two new rules, Rule2 and Rule4.In the same fashion, Rule3 and Rule5 are learned because of a prediction failure caused by Rule1 (seeSection 7.1). Now the Planner tries again to construct a plan. This time it fails because of a regressiondeadlock caused by Rule2, which claims that in order to put a ball on a plate, the plate must be empty (seeSection 7.2). Thus, the Experimenter is called and an experiment is constructed to try to put a ball on anonempty plate. The experiment succeeds and produces a prediction failure for Rule4 (the sibling rule ofRule2), which triggers the Rule Reviser to replace Rule2 and Rule4 by Rule6 and Rule8 (see Section 7.1).After that, a new plan is constructed again. This time, the plan is successfully executed without producingany prediction failure. At the end of the plan, all the goals are accomplished and LIVE begins to generatenew goals.In the following sections, I discuss the submodules in detail according to the
ow of control. Section6 describes the Explorer and the Rule Builder, which are responsible for creating new prediction rules.Section 7 describes the Rule Reviser, the Planner, and the Experimenter, which are responsible for revisingprediction rules. Finally, Section 8 describes the the term constructor submodule, which is responsible forcreating new relations and new terms.6 Exploration and Rule CreationExploration in an unknown environment is a di�cult task because the number of possibilities is potentiallytoo large to be exhaustively explored. Here, a partial solution is presented as a set of three heuristics. Thegeneral idea is to direct the exploration towards the goals whenever possible.Heuristic 1 (goal-seeking): If an action B is known to change the feature F of objects, thenexplore B to change the value of F of the learner to be equal (or some other relation) to thevalue of F of some goal objects.For example, if the action Rotate is known to change the direction of an arm, then the arm should berotated to the direction of a goal ball.Heuristic 2 (anomolous behavior resolution): Explore actions that appearently have no e�ect inthe environment.For example, PICK has no e�ect when the ball to be picked is not the smallest on its plate, and PUT hasno e�ect when there is no ball in the hand. Such actions need to be explored until e�ects are observed.The philosophy behind this heuristic is that all actions ought to have some e�ect on the environment.Heuristic 3 (curiosity): Once in a while, randomly explore some not-yet-explored actions withrandom parameters.To illustrate these heuristics, suppose the RML is exploring the Plate of Hanoi environment. Heuristics2 and 3 force RML to repeatedly try PICK and PUT on randomly selected balls and plates until PICK6

picks up a ball. After that, Heuristic 2 will force RML to keep exploring Put until the ball in hand is putdown on some plate.The purpose of exploration is to create new prediction rules. This is the task of the Rule Builder.When triggered by a prediction failure in exploration, the Rule Builder creates a new prediction rule bythe algorithm in Figure 4.1. Compare the condition observation (before the action) with the result observation (after the action). Let the \vanished"percepts be those that are in the condition observation but not in the result observation, and the \merged" percepts be thosethat are in the result but not in the condition.2. Create a new prediction rule:Condition: the vanished percepts in conjunction with the negations of the merged percepts;Action: the executed action with parameters speci�ed in terms of objects which were acted upon;Prediction: the merged percepts in conjunction with the negations of the vanished percepts.and generalize all objects in the rule, except those belonging to the learner (such as Hand and Arm), into variables.Figure 4: Create new predcition rulesTable 1: A prediction failure in explorationAction: PICK(BALL1 PLATE1)Condition Observation Prediction Resulting ObservationON(BALL1 PLATE1) False INHAND(BALL1)ON(BALL2 PLATE1) ON(BALL2 PLATE1)ON(BALL3 PLATE1) ON(BALL3 PLATE1)SIZE>(BALL3 BALL2) SIZE>(BALL3 BALL2)SIZE>(BALL3 BALL1) SIZE>(BALL3 BALL1)SIZE>(BALL2 BALL1) SIZE>(BALL2 BALL1)As an example, suppose RML meets the prediction failure speci�ed in Table 1. (The prediction \False"is not satis�ed by the result observation.) It is easy to see that the vanished percept is ON(BALL1 PLATE1)and the emerged percept is INHAND(BALL1). A new rule is created as follows:Condition: ON(ballx plate) ^ :INHAND(ballx)Action: PICK(ballx plate) [Rule1]Prediction:INHAND(ballx) ^ :ON(ballx plate)In real world situations, a single action may cause many changes, and �nding the relevant changes isessentially a quali�cation problem [Ginsburg and Smith, 1988]. Here, LIVE takes a pragmatic approachcalled incremental enlargement [Shen, 1989]. The idea is to focus changes that are related to the learnerand use as few changes as possible in the new rule. Technically, the condition observation and the resultobservation are viewed as graphs with nodes being objects and links being relations. A comparison of thetwo graphs begins from a small set of nodes that correspond to the learner itself (e.g., the arm, the hand, andthe body) or objects that are mentioned in the action. For example, when the action is Rotate(Arm; 30�),the comparison starts from the object ARM. When the action is PICK(BALL1 PLATE1), the comparisonstarts from BALL1 and PLATE1. If changes are found in these small subgraphs, the search will terminate.Otherwise, the subgraphs are enlarged incrementally through links until changes are found. Furthermore,not all changes so found are used in the new rule. One one of each type of change is used by LIVE. Forexample, if a robot's hand is above a stack of disks Disk1, Disk2, ..., Diski, then moving the hand awaywill cause all the relations ABOVE(HAND,Diski) to \vanish." In this case, only one (any one) of themwill be used in the new rule. 7

7 Model Revision during Model ApplicationThe newly created rules, like the one produced in the last section, are clearly over-general and incomplete.However, they serve as a springboard for problem solving and further learning. Because of their generality,LIVE has chances to attempt goals, to meet prediction failures, and hence to increase its knowledge aboutthe environment. This section describes how these steps are accomplished by the Rule Reviser, the Plannerand the Experimenter.7.1 Revising Rules by Complementary DiscriminationRule revision is the task of the Rule Reviser. It is triggered by a prediction failure. The rule that made theprediction is called the faulty rule. The reviser uses Complementary Discrimination Learning [Shen, 1990]to explain prediction failures and revise the rules. The prediction rules in the model are organized as pairsof sibling rules. Two rules are siblings if they have the same action but have complementary conditionsand di�erent predictions. The purpose of rule revision is to adjust the boundary between sibling rules'conditions. In this paper, we assume each rule has at most one sibling. Extensions to multiple predictionscan be found in [Shen, 1992].Previous applications of each rule are remembered. Each application contains a rule index, a conditionstate observation (to which the rule is applied), and a set of variable bindings. When a prediction failureindicates a faulty rule, LIVE will search for the rule's previous, successful applications, and �nd thedi�erence between the condition states now and then. The di�erence is used either to split the rule intotwo new rules (if the faulty rule has no siblings), or to revise the rule and its sibling together. Noticethat sibling rules help each other in future development. If a rule's condition is too general (i.e., causes aprediction failure), then it will be specialized and its sibling condition is generalized. If a rule's conditionis too speci�c (its sibling must be too general), then it will be generalized when its sibling rule causes aprediction failure. The algorithm for revising prediction rules is given in Figure 5.To illustrate the algorithm, suppose RML meets the following prediction failure:Action: PICK(BALL2 PLATE1)Rule: Rule1Bindings: (ballx=BALL2) (plate=PLATE1)Condition Observation Prediction Resulting ObservationINHAND(BALL1) { INHAND(BALL1)ON(BALL2 PLATE1) INHAND(BALL2) ON(BALL2 PLATE1)ON(BALL3 PLATE1) { ON(BALL3 PLATE1)SIZE>(BALL3 BALL2) { SIZE>(BALL3 BALL2)SIZE>(BALL3 BALL1) { SIZE>(BALL3 BALL1)SIZE>(BALL2 BALL1) { SIZE>(BALL2 BALL1)To explain this prediction failure, the rule's last application, which was illustrated in Table 1 with thebindings ballx=BALL1 and plate=PLATE1, is fetched. After comparing these two applications, RML �ndsthe di�erence to be :INHAND(BALL1) and generalizes it to :INHAND(bally). Based on the di�erence,Rule1 is then split into the following two sibling rules:Index: Rule3Condition: ON(ballx plate) ^ :INHAND(ballx)^ :INHAND(bally)Action: (Pick ballx plate)Prediction: INHAND(ballx)^ :ON(ballx plate)Sibling: Rule5Index: Rule5Condition: ON(ballx plate) ^ :INHAND(ballx)^INHAND(bally)Action: (Pick ballx plate)Prediction: ON(ballx plate)Sibling: Rule3To illustrate how sibling rules are revised together, consider the following two rules:8

1. Explain the prediction failure by �nding the relation di�erences between the faulty rule's previous success and its current failure(using the incremental enlargement heuristic described before).2. If no di�erence is found, call Search-Rel-Terms (see Section 8) to �nd the \hidden" di�erences.3. Let the result be a set (D1 D2 : : : Dj), where Dj is either a conjunction of relations or a negation of conjunctive relations thatis true in the successful state but false in the surprising state.4. If the faulty rule m does not have a sibling (this means the rule has not failed since its creation), then it is split into a pair ofsibling rules as follows (the condition of rule m will be called the I-Condition for the purpose of explanation):Index m'I-Condition ^D1 ^D2 : : : ^Dj=) ActionIndex m PredictionI-Condition Sibling nActionPrediction Index nSibling () I-Condition ^:(D1 ^D2 : : : ^Dj)=) ActionThe unexpected e�ectsSibling m'5. If the faulty rule m already has a sibling n, then modify both of them as below. Notice that sibling rule n's non-I-conditionsO1 ; : : : ;Oi are replaced by :(C1 : : : ^ Ci ^D1 : : : ^Dj). This guarantees the result rules are still siblings.Index m Index mI-Condition ^C1 : : : ^ Ci I-Condition ^C1 : : : ^ Ci ^D1 : : : ^DjAction =) ActionPrediction PredictionSibling n Sibling nIndex n Index nI-Condition ^O1 : : : ^ Oi I-Condition ^:(C1 : : : ^ Ci ^D1 : : : ^Dj)Action =) ActionPrediction PredictionSibling m Sibling mFigure 5: The algorithm for revising prediction rulesIndex: Rule2Condition: INHAND(ballx)^ :ON(ballx plate) ^ :ON(bally plate)Action: PUT(ballx plate)Prediction: ON(ballx plate) ^ :INHAND(ballx)Sibling: Rule4Index: Rule4Condition: INHAND(ballx)^ :ON(ballx plate)^ON(bally plate)Action: PUT(ballx plate)Prediction: ON(ballx TABLE) ^ :INHAND(ballx)Sibling: Rule2Suppose RML now applies the action PUT(BALL2 PLATE1) in the state whose observation is: IN-HAND(BALL2) ON(BALL3 PLATE1) ON(BALL1 PLATE2) SIZE>(BALL3 BALL1) SIZE>(BALL2BALL1) SIZE>(BALL3 BALL2). The prediction of the action is ON(BALL2,TABLE), which is madeby Rule4 with variable bindings: (ballx=BALL2, plate=PLATE1, bally=BALL3). After executing theaction, RML is surprised because BALL2 is now on PLATE1. To explain this prediction failure, Rule4'slast application is fetched, which, in this case, is in an identical state observation but with a di�erent set ofbindings: (ballx=BALL2, plate=PLATE2, bally=BALL1). Comparing these two applications, RML �ndsthe di�erence to be (SIZE> ballx bally). Based on the di�erence, Rule4 is then revised into Rule6, and itssibling Rule2 is revised into Rule8. Notice that the �rst two condition elements of Rule4 are not changedbecause they are I-conditions. Rule6's condition is made by putting the di�erence in conjunction withRule4's condition. Rule8's condition is made by putting the I-Conditions in conjunction with the negationof non-I-Conditions of Rule6.Index: Rule6Condition: INHAND(ballx)^ :ON(ballx plate)^ON(bally plate)^SIZE>(ballx bally)Action: PUT(ballx plate)Prediction: ON(ballx TABLE) ^ :INHAND(ballx)Sibling: Rule8 9

Index: Rule8Condition: INHAND(ballx)^ :ON(ballx plate) ^ :[ON(bally plate)^SIZE>(ballx bally)]Action: PUT(ballx plate)Prediction: ON(ballx plate) ^ :INHAND(ballx)Sibling: Rule67.2 Generating Plans and ExperimentsPlans and experiments are generated by the Planner and the Experimenter respectively. Since the Planneruses the standard goal regression method [Waldinger, 1977; Genesereth and Nilsson, 1987], I will focus ourdiscussion on the Experimenter.As I mentioned in Section 5, the Experimenter is called when the Planner meets either a regressiondeadlock or a regression loop. This indicates that the rule that causes such problems is erroneous (or theproblem is unsolvable, in which case LIVE will fail). The objective of the Experimenter is to design asituation in which a prediction failure may occur in such a way that the faulty rule will be revised.An error at planning time does not provide enough information about how to �x a faulty rule. It onlyindicates that the condition of the rule is too restrictive. For example, Rule2 claims that in order to put aball on a plate, the plate must be empty (:ON(bally plate)). This causes a regression deadlock because nomatter how the subgoals (to put each ball on the same plate) are arranged, they always con
ict with eachother. Since it has been observed before that more than one ball can be on the same plate, there must existsituations in which Rule2's action, currently forbidden to apply, can indeed realize Rule2's prediction.The purpose of an experiment is to �nd a situation in which the condition of a faulty rule F can beproven to be too restrictive. Moreover, such a \proof" should be a prediction failure that \involves" F,possibly through another rule R, so that F can be revised using complementary discrimination learning.Thus, an experiment must specify a situation S and an existing rule R such that (1) R can be applied toS but F cannot, (2) R's action is the same as F's, and (3) R's prediction is complementary to F's so thatwhenever F's prediction is realized where will be a corresponding prediction failure for R.Fortunately, the relationship between F and R is exactly the \sibling" relation of the prediction rules.For example, for sibling rules Rule2 and Rule4, their respecitve predictions and conditions are complementsof each other and their actions are the same. This is not a coincidence. It is an advantage of learning bycomplementary discrimination. If a rule is known to be overly speci�c, then its sibling rule must be overlygeneral. Since they are siblings, the only thing the learner needs to do is to �nd a chance to specialize thesibling rule so that the faulty rule will be generalized as a by-product.Therefore, an experiment is nothing but an instantiation of the faulty rule's sibling. The sibling'scondition speci�es a set of states Se as the experiment's setting; its action ae speci�es the action to beperformed in the experiment; and its prediction Pe speci�es the experiment's prediction. Once these areidenti�ed, the Experimenter calls the Planner to �nd a plan J =< s; a1; P1; � � � ; ai; Se > to reach theexperiment's condition states. The concatenation of this plan and the experiment's action and prediction,< J; ae; Pe >, is the �nal prediction sequence.An experiment is successful if the outcome of its action produces a prediction failure. Otherwise, newexperiments must be proposed by instantiating the sibling rule di�erently. In general, experiments areinstantiated from a faulty rule's sibling by alternately assigning di�erent objects to the parameters of theaction. For instance, if the action in an experiment is PICK(ball, plate), then di�erent balls will be assignedto the variable ball, and di�erent plates to plate. When instantiating a rule in an experiment, the heuristicof trying to keep the required \preparing sequence," J , as short as possible is taken into consideration.Back to our example, Rule4 can be instantiated to construct the following experiment:Experiment: Instantiated from Rule4Condition: INHAND(BALL2)^:ON(BALL2 PLATE1)^ON(BALL3 PLATE1)Action: PUT(BALL2 PLATE1)Prediction: ON(BALL2 TABLE)^:INHAND(BALL2)Bindings: ((ballx . BALL2) (plate . PLATE1) (bally . BALL3))This experiment is preferred to others because its condition can be easily established from the current10

state, i.e., simply picking up BALL2 from TABLE, and the action has not been previously performed. Theexperiment will be a success because it will indeed cause a prediction failure. Based on the predictionfailure, Rule2 and Rule4 are revised into Rule6 and Rule8 as described in Section 7.1.8 Constructing New Relations and TermsNo matter how many percepts a learner is capable of, there are always entities in the environment that itcannot perceive. New relations and terms must be constructed when such invisible entities are essentialfor building a correct model of the environment.New relations and terms are necessary when the learner �nds that executing the \same" action in the\same" state produces di�erent consequences. In LIVE, this is when the Rule Reviser (see Figure 5) failsto �nd any di�erences between a successful state and a failed state. Consider, for example, a new learnerRML2 modi�ed from RML as follows. RML2 cannot perceive the relation SIZE>. Instead, it can perceive\size" of objects (e.g., size(BALL3)=3). To RML2, the two states listed at the end of Section 7.1 areperceived as follows:2S0 = fBALL1, BALL2, BALL3, PLATE1, PLATE2, PLATE3, INHAND(ballx), ON(bally plate), ON(BALL1PLATE2),size(bally)=3, size(ballx)=2, size(BALL1)=1g, where ballx=BALL2, plate=PLATE1, bally=BALL3.T0 = fBALL1, BALL2, BALL3, PLATE1, PLATE2, PLATE3, INHAND(ballx), ON(BALL3PLATE1), ON(bally plate),size(BALL3)=3, size(ballx)=2, size(bally)=1g, where ballx=BALL2, plate=PLATE2, bally=BALL1.Since SIZE> is not perceivable, RML2 cannot �nd any relation di�erence between S0 and T0 according tothe incremental enlargement heuristic (see Section 6).Given two such states, where no di�erences are found according to the learner's percepts, the search fornew relations and terms is accomplished as follows. The learner applies its mental relations and functionsto the objects in S0 and T0 to see if any new relations or terms can be de�ned to distinguish S0 and T0.For example, suppose RML2 has mental relations \>" and \=", then applying them to S0 and T0 willresult the following expanded states:3S0 = fBALL1, BALL2, BALL3, PLATE1, PLATE2, PLATE3, INHAND(ballx), ON(bally plate), ON(BALL1PLATE2),size(bally)=3, size(ballx)=2, size(BALL1)=1,>(size(bally) size(ballx)) >(size(bally) size(BALL1)),>(size(ballx) size(BALL1))gwhere ballx=BALL2, plate=PLATE1, bally=BALL3.T0 = fBALL1, BALL2, BALL3, PLATE1, PLATE2, PLATE3, INHAND(ballx), ON(BALL3PLATE1), ON(bally plate),size(BALL3)=3, size(ballx)=2, size(bally)=1, >(size(BALL3) size(ballx)), >(size(BALL3) size(bally)), >(size(ballx) size(bally))gwhere ballx=BALL2, plate=PLATE2, bally=BALL1.From these two enlarged states, the di�erence can be easily found. The relation>(size(ballx) size(bally))is true in T0 but false in S0. Since it is the relation >(size(objx) size(objy)) makes the di�erence, a newrelation REL(objx objy) is de�ned as >(size(objx) size(objy)), and the di�erence REL(ballx bally) is thenreturned to the Rule Reviser (see Section 7.1). Subsequently, RML2 will always apply the relation REL toobjects. In some sense, its perceptual ability is improved.In general, mental functions are applied to features of objects to de�ne new terms, and then mentalrelations are applied on these new terms to form new relations. For example, the term \torque" is de�nedas a function � on visible features \distance" and \weight", i.e., torque(x)=distance(x)�weight(x)). Thenthe relation \torque>(x y)" is de�ned as >(torque(x),torque(y)). The process of de�ning new relations andterms is essentially a process of search. The learner systematically selects mental functions and relationsand applies them to objects until such applications result in di�erences between states. At present, LIVEuses only a breadth-�rst strategy for this search.The procedure for searching for new relations and terms is listed in Figure 6. Relating this procedureto the example of RML2 above, the relation r speci�ed in the algorithm is \>", the function f is identity,and feature functions are p1 = size and p2 = size. Related to the example of torque>, the relation r is2Objects in relations are replaced by variables if they are bound.3All the plates are of the same size and they are larger then the balls. But for simplicity these relations are not includedin the description. 11

Procedure Search-Rel-Terms(S,T):Let Di�erence=Search-Action-Independent-Rel-Terms(S,T),return Di�erence to the Rule Reviser (Figure 5).Procedure Search-Action-Independent-Rel-Terms(S,T):1. Select a relation r (of arity n) and a function f (of arity m);2. Select m unary functions p1 ; p2; � � � ; pm whose domains are features;3. If there exists n objects o1 ; o2; � � � ; on such thatr[vS1 ; vS2 ; � � � ; vSn] 6= r[vT1 ; vT2 ; � � � ; vTn]where vSi = f [p1 (oi); p2(oi); � � � ; pm(oi)] in state S,and vTi = f [p1 (oi); p2(oi); � � � ; pm(oi)] in state T ;then return r[vS1 ; vS2 ; � � � ; vSn].4. If all the sections are exhausted, then return FAIL, else goto 1.Figure 6: Searching for action-independent relations and terms\>," the function f is �, the feature functions are p1 = distance and p2 = weight, and the new term istorque(x)�distance(x)�weight(x)). Notice that all the terms de�ned in this fashion are action-independent,for they can be de�ned without actions.Discovering action-independent terms is not the end of the story in learning from the environment.When all the mental relations and functions cannot help the learner to �nd any di�erence between states(this is possible when the learner does not have enough percepts to start with), then the procedure Search-Action-Independent-Rel-Terms(S0; T0) will return FAIL. For example, suppose RML2 is further restrictedto become RML3. The learner RML3 is the same as RML2 except it cannot see the size of objects. ToRML3, balls are of the same size and the states S0 and T0 are perceived as:S0 = fBALL1, BALL2, BALL3, PLATE1, PLATE2, PLATE3, INHAND(ballx), ON(bally plate), ON(BALL1PLATE2)g,where ballx=BALL2, plate=PLATE1, bally=BALL3.T0 = fBALL1, BALL2, BALL3, PLATE1, PLATE2, PLATE3, INHAND(ballx), ON(BALL3PLATE1), ON(bally plate)g,where ballx=BALL2, plate=PLATE2, bally=BALL1.Since RML3 cannot perceive any features of objects, applying the mental functions and relations will notresult any di�erence between these two states.When situations like this arise, we say that the environment has hidden features that are action-dependent. The learner must search back into the history of S0 and T0 to �nd the di�erences there. Newterms must be de�ned in terms of not only percepts but also actions. These terms are de�ned to carry thedi�erence to the present so that the learner can predict the future. In the case of RML3, what must bediscovered are the following conditions for the actions PICK and PUT:PICKable(x,p)(t) ON(x,p)(t) ^ :INHAND(z)(t) ^ :[ON(y,p)(t) ^ [y was put on p more recently than x]][y was put on p more recently than x] 8(n)9(n0)[PUT(x,p)(t�n) ^ PUT(y,p)(t�n0) ^ (n'<n)]PUTable(x,p)(t) INHAND(x)(t) ^ :[ON(y,p)(t) ^ [y was pickable from p' when ON(x,p')]][y was pickable from p' when ON(x,p')] 9(n)[ON(y,p')(t�n) ^ ON(x,p')(t�n) ^ PICK(x,p')(t�n) ^ INHAND(y)(t�n+1)]The predicate PICKable(x; p)t says that x can be picked up from p at time t, if x is on p, the hand isempty, and there is no y on p such that y was put on p more recently than x. The predicate PUTable(x; p)tsays that x can be put on p at time t, if x is in hand and there is no y on p such that y was pickablefrom a plate p0 at a previous point in time when x was on p0. From these de�nitions, one can see thataction-dependent terms are de�ned in terms of both actions and percepts. Moreover, their values maydepend on the values in previous states and can be changed by actions. (In this sense, they are also knownas \recursive theoretical terms," see [Shen and Simon, 1990].)To discover action-dependent terms, LIVE searches back into the history of S0 and T0 when Search-Action-Independent-Rel-Terms(S0; T0) returns FAIL. It then identi�es two \relevant" historical sequencesof S0 and T0 and �nds the di�erence between them. This di�erence then becomes the de�nition of a newpredicate that is returned to the Rule Reviser. 12

tn History S0 's Ancestors T0's Ancestorsx=2,p=2,y=1 x=2,p=1,y=3t1 ON(1 1)ON(2 1)ON(3 1) PICK(1 1) S�3 ON(y 1)ON(x 1) PICK(y 1)t2 INHAND(1)ON(2 1)ON(3 1) PUT(1 2) S�2 INHAND(y)ON(x 1) PUT(y p)t3 ON(1 2)ON(2 1)ON(3 1) PICK(2 1) S�1 ON(y p)ON(x 1) PICK(x 1) T�3 ON(y p)ON(x p) PICK(x p)t4 INHAND(2)ON(1 2)ON(3 1) PUT(2 2) S0 ON(y p)INHAND(x) PUT(x p) T�2 ON(y p)INHAND(x) PUT(x 2)t5 ON(1 2)ON(2 Tbl)ON(3 1) PICK(2 Tbl) T�1 ON(y p)ON(x Tbl) PICK(x Tbl)t6 INHAND(2)ON(1 2)ON(3 1) PUT(2 1) T0 ON(y p)INHAND(x) PUT(x p)Table 2: Search for historical di�erencesIn the current example, the history of LIVE is listed in the �rst column of Table 2. As described inSection 7.1, each historical item contains a rule index (omitted in this column), a state observation towhich the rule's action was applied, and a set of variable bindings (also omitted in this column). As wecan see, the item t6 is what we call T0. It is the current state in which the application of Rule4 results in aprediction failure. The item t4 is what we call S0 for it was the last successful application of Rule4 in thehistory. The second and third columns in Table 2 are the ancestor states of S0 and T0 respectively. Theyare \views" of the items in the �rst column of the same row through the varaible bindings of S0 and T0(listed in the top rows of these two columns). Such views are created by copying the corresponding itemfrom the �rst column, replacing the balls and plates with the variables according to the bindings, thendeleting those elements that have no variables. For example, S�1 is a view of t3, according to the bindings(x=2 p=2 y=1), in which ON(1 2) is replaced by ON(y p), ON(2 1) is replaced by ON(x 1), ON(3 1) isdeleted, and PICK(2 1) is replaced by PICK(x 1). Likewise, T�3 is also a view of t3, but according to thebindings (x=2 p=1 y=3).This particular way of \viewing" ancestor states from a particular rule application is a general heuristic,and a very powerful one, to identify the relevant histories. It focuses the learner's attention to the historyof the objects that are related to the current action. When comparing two histories, LIVE identi�es therelevant historical sequences, say from time t0�u to t0�v, where (0 � u)<(0 � v) and they are relative toS0 and T0), and �nd the di�erence there.The time t0�u is identi�ed by seaching back from T0 and S0 to the �rst states, say Tt0�u and St0�u ,where the objects (now represented as varaibles) that do not have apparent relations in T0 and S0 hadsome visible relations. In our current example, searching back from T0 in this way leads to T�3 becausethe object x and y, which do not related in T0, were both on the plate p. Likewise, searching from S0 inthe same way leads to S�3.The time t0�v is identi�ed by seaching back from T0 and S0 to the �rst states, say Tt0�v and St0�v ,where the di�erence between Tt0�v and St0�v �rst become visible. In our example, this leads to T�2 andS�2 where INHAND(x) was true in S�2 while INHAND(x) was true in T�2.After (S0�u � � �S0�v) and (T0�u � � �T0�v) are identi�ed, the di�erence between these two history se-quences are those relations and actions (except the action at time 0 � v) that appear in (S0�u � � �S0�v)but not in (T0�u � � �T0�v). In our current example, this di�erence is [ON(y,1)(0�3) ^ ON(x,1)(0�3) ^PICK(y,1)(0�3) ^INHAND(y)(0�3+1) ^ ON(x,1)(0�3+1)]. Generalizing this di�erence, say plate 1 to p',time 0 to n, and time -3 to -n, we have the de�nition of a new predicate: [ON(y,p')(t�n) ^ ON(x,p')(t�n)^ PICK(y,p')(t�n) ^INHAND(y)(t�n+1) ^ ON(x,p')(t�n+1)], which is equivalent to the predicate \y waspickable from p' when ON(x,p')" as we described in PUTable. This new predicate is then returned to theRule Reviser in Figure 5 and a correct rule for PUT will be built.We can modify the procedure Search-Rel-Terms in Figure 6 to search for both action-independentand action-dependent terms. The new version of Search-Rel-Terms is illustrated in Figure 7. When theprocedure Search-Action-Independent-Rel-Terms(S0; T0) returns FAIL, this new procedure will search intothe history of S0 and T0, �nd the di�erence there, and return the di�erence in terms of some newly de�nedaction-dependent predicates. 13

Procedure Search-Rel-Terms(S; T):Let Di�erence= Search-Action-Independent-Rel-Terms(S; T),If Di�erence6=FAIL, then return Di�erence to the Rule Reviser (Figure 5), elseIdentify the revelant history of S0 and T0,De�ne new predicates based on the di�erence between the identi�ed history,Return the di�erence so found to the Rule Reviser.Figure 7: Search for both action-independent and action-dependent terms9 Performance of LIVELIVE has been tested in many di�erent domains. These include the Plate of Hanoi, the Balance Beamproblem, de�ned in [Siegler, 1983], the gene discovery experiments [Shen and Simon, 1990; Shen, 1989], thelittle prince world, de�ned in [Rivest and Schapire, 1987], the hidden bits register problem, also de�nedin [Rivest and Schapire, 1987], and randomly generated Moore machines with hidden states. Before I givethe results of the experiments in the �rst two domains in detail, let me brie
y describe the gene discoveryexperiments.The gene discovery experiments are formalized as an environment in which LIVE can breed gardenpeas that have di�erent colors. This is inspired by Mendel's experiments [Mendel, 1865] that lead himto discover genes. It is a case where the importance of action-depedent terms is illustrated naturally. Inthis environment, LIVE has a single action Breed, and can observe only the colors of peas. Its mentallanguage includes relations such as = and < and functions such as max (maximum),min (minimum), andEvenDistr (EvenDistr(uv; xy) = (ux; uy; vx; vy).) LIVE's task is to predict the colors of o�spring whentwo peas are bred. To make the task feasible for LIVE, the environment is simpli�ed so that two parentpeas produce four and only four o�spring and their genes are evenly distributed into their children. LIVEis given a �xed sequence of actions instead of free to choose which peas to breed. In this environment,LIVE must de�ne action-depedent terms because genes are not visible and two pairs of green peas maylook exactly the same yet they produce o�spring with di�erent colors. The action-depedent terms arede�ned by searching back to the ancestors of peas and �nd the di�erence there. In this environment, LIVEsuccessfully discovers the hidden genes of peas and incorporates them into the prediction rules. Interestedreaders may see [Shen and Simon, 1990; Shen, 1989] for details.9.1 The RML Learner and the Plate of HanoiIn the Plate of Hanoi environment, I have tested the RML learner by giving it (1) di�erent goals, (2)di�erent exploration plans, and (3) di�erent numbers of balls. LIVE's performance is sensitive to thedi�culty of the goals and to the order in which the goals are expressed. When the same goals are given butexpressed in di�erent orders, LIVE learns the same set of rules but the time spent is inversely proportionalto the correctness of the order of the goals. The correct order of goals, in this particular environment,means that larger balls are put on the goal plate before smaller ones. Interestingly, LIVE spends less timewhen the goals are expressed in an incorrect order than when they are in the correct order. This is becausethe goals in an incorrect order force LIVE to meet prediction failures at an earlier stage of problem solvingand thus correct rules are learned before wasting too much time on attempting to solve the goals with aset of bad rules. In other words, LIVE prefers to meet prediction failures as early as possible. This isconsistent with the fact that learning correct rules is more important than making super�cial progress inproblem solving.LIVE's performance is also sensitive to the di�culty of the goals. On the one hand, if the goals aredi�cult enough to achieve (i.e., they require the learner to know all the rules), LIVE will learn a completeset of rules to solve the Plate of Hanoi. This may require a longer time since LIVE makes more mistakesand designs more experiments. On the other hand, if the goals are too trivial, LIVE solves the problemquickly but may not have the chance to learn the complete rule set. For example, if a goal can be achievedby just moving the smallest ball to a di�erent plate, then LIVE will be satis�ed after learning two rules14

that accomplish the goal. This behavior is consistent with the de�nition of learning from the environment:to construct a model adequate enough for solving the problems (not for mastering the whole environment).The e�ect of exploration on LIVE's performance was tested by forcing LIVE to take di�erent explorationactions. This resulted in two interesting observations. First, problem solving will take less time whenexploration is more thorough. This is consistent with the earlier observation that learning and discoveryenhances problem solving. Second, in some exploration, LIVE learns some rules that are not directly usedin problem solving. For example, a rule says that the PUT action will cause no e�ect if the hand is empty.Although these rules are not used in solving problems, they prevent LIVE from creating similar rules againin future exploration.Finally, I also tested the RML learner in problems with more than three balls. It is observed thatthe time for learning the correct rule set is the same regardless of the number of balls (although the totalproblem solving time increases). This has a simple explanation. The rules that LIVE learned do notdepend on how many balls are on plates but how balls relate to each other in actions. The rules learnedare general. Once they are learned, they can be used to solve the Plate of Hanoi problem irrespective ofits size.9.2 The Balance Beam EnvironmentA balance beam is a see-saw with pegs on both sides of the fulcrum where weights can be placed. Thetask is to predict whether the beam will tip to the left, to the right, or balance. In this environment, LIVEis given the ability to perceive the weights on each side of the beam and the distances from the weightsto the center of the beam. To be able to predict correctly, LIVE must discover the invisible concept of\torque" (weight(x)�distance(x)). LIVE is tested in three kinds of experiments: (1) di�erent orders oftraining instances, (2) di�erent orders of mental relations and functions, and (3) di�erent number of mentalrelations and functions.To test how LIVE behaves when training instances are given in di�erent orders, I limited LIVE'smental functions to � and +, and mental relations to > and =. LIVE is given a large number of randomlygenerated sets of prediction tasks. It is observed that LIVE's discovery of torque in this environmentdepends on when \informative"" prediction failures happen (i.e., when the procedure Search-Rel-Terms iscalled). From the experiments I have run, LIVE always discovers the torque concept, although sometimesearlier and sometimes later.When mental relations and functions are given in di�erent orders, LIVE's performance changes. Forexample, if the list of relations is (= >) instead of (> =), LIVE will consider the relation (w�d)=(w�d)�rst. The correct relation (w�d)>(w�d) is discovered later when a prediction fails after (w�d)=(w�d) isde�ned. Similarly, if the list of functions is (+ �) instead of (� +), then the useless relation (w+d)>(w+d)will be de�ned before (w�d)>(w�d).Since LIVE's current strategy for searching new terms is brute force, the order of constructs a�ectsLIVE's performance dramatically. For example, LIVE can discover torque when the function and relationlists are (�; +; xy; �; max; min) and (>, =, <, �, �), respectively. However, it failed to do so whenthe �rst list is changed to (max; min; xy; �; +; �). In this case, LIVE is overwhelmed by too manyuseless terms, such as max(weight,distance) and weightdistance, and it runs out of resources. Obviously, abetter search strategy for new terms is essential.10 Strengths and WeaknessesThere are three principal strengths in this learning framework. First, it de�nes the problem of learningfrom the environment as constructing a model of the environment in the context of problem solving. Thede�nition makes a distinction between a learner's innate actions and the consequences of actions withrespect to the environment. An approximate model of the environment is extracted from an immense\raw" space determined by the learner's innate physical abilities and prior knowledge. This extraction15

process is guided by the information gathered during interactions with the environment.Second, the framework provides an integrated way to coordinate various activities, such as perception,action, exploration, experimentation, problem solving, learning, discovery, and new term construction. Tomy knowledge, LIVE is the �rst implemented system that incorporates so many activities. By viewingdiscovery as a form of learning from the environment, this integration provides some insights on whatactivities may be involved in discovery processes and how they interact with each other.Third, the framework identi�es the key to integration to be the notion of prediction sequences andlearning by complementary discrimination. Prediction sequences provide a uni�ed view of planing, explo-ration, and experimentation. They link these activities to learning and discovery via prediction failures.Learning by complementary discrimination provides a very adaptive way for generalizing, or abstracting,a model from the environment and can be extended readily to new term construction.The framework is still in its early developmental stage. It must overcome several weaknesses andlimitations in order to become a general solution for learning from the environment. For example, theframework cannot deal with uncertainty of actions. A single \noisy" prediction failure will cause the modelto be revised completely. It cannot react in real time: all its actions are deliberate and may take muchtime to decide.The incremental enlargement heuristic is not a general way to �nd the correct di�erence between twostates. It relies on the \hints" that are implied by the parameters of action. When actions do not havethese parameters, the learner needs to determine how objects in the environment are related to actions.This is a question I have not addressed.Perhaps the most severe limitation of LIVE is that the brute force search method for discovering newterms is too naive and relies on two strong biases. One is that the set of useful mental relations andfunctions must be given beforehand. The other is that the current way of discovering action-dependentterms is limited to consider only the features and the objects that are related to the current condition andaction. For example, in de�ning genes of pea, LIVE must assume that children's color is determined onlyby their ancestors' color. While in the real world, features in one state may be determined by di�erentfeatures in its previous states.AcknowledgmentsThis research was largely done at the School of Computer Science, Carnegie Mellon University. I thankHerbert Simon for his numerous suggestions and valuable advice throughout the course of this work. Ialso thank Jaime Carbonell, Tom Mitchell, Chuck Thorp, and many other friends for their warm supportand valuable comments. Special thanks to Jan Zytkow and two anonymous reviewers, as well as MarkDerthick, Brian Falkenhainer, Mike Huhns, Ganesh Mani, Avijit Saha, Richard Sutton, and Jim Talley fortheir help in improving the earlier versions of this paper.ReferencesAngluin, D. 1978. On the complexity of minimum inference of regular sets. Information and Control39:337{350.Atkeson, C. G. 1989. Learning arm kinematics and dynamics. Ann. Rev. Neurosci. 12.Barron, A. R. and Cover, T. M. 1991. Minimum complexity density estimation. IEEE Trans. on Infor-mation Theory 37(4).Bundy, A.; Silver, B.; and Plummer, D. 1985. An analytical comparison of some rule-learning programs.Arti�cial Intelligence 27.Drescher, Gary L. 1989. Made-up Minds: A Constructivist Approach to Arti�cial Intelligence. Ph.D.Dissertation, MIT. 16

Fikes, R.E. and Nilsson, N.J. 1971. STRIPS: A new approach to the application of theorem proving toproblem solving. Arti�cial Intelligence 2:189{208.Friedman, J. H. and Stuetzle, W. 1981. Projection pursuit regression. Journal of the American StatisticalAssociation 76(376).Genesereth, M.R. and Nilsson, N.J. 1987. Logical Fundations of AI. Morgan Kaufmann.Ginsburg, M.L. and Smith, D.E. 1988. Reasoning about action II: The quali�cation problem. Arti�cialIntelligence 35:311{342.Goodwin, G. C. and Sin, K. S. 1984. Adaptive Filtering, Prediction, and Control. Prentice Hall.Hayes, J.R. and Simon, H.A. 1974. Understanding written problem instructions. In Knowledge andCognition. Lawrence Erlbaum.Kaelbling, Leslie P. 1990. Learning in Embedded Systems. Ph.D. Dissertation, Stanford university.Laird, J.E.; Hucha, M.; Yager, E.S.; and Tuck, C.M. 1990. Correcting and extending domain knowledgeusing outside guidance. In The Proceedings of the 7th International Machine Learning Conference.Mendel, G. 1865. Experiments in plant-hybridization. In Peters, J.A., editor 1865, Classic Papers inGenetics. Prentice-Hall.Mitchell, T.M.; Utgo�, P.E.; and Banerji, R.B. 1983. Learning by experimentation: Acquiring and re�ningproblem-solving heuristics. In Machine Learning. Morgan Kaufmann.Nguyen, D. and Widrow, B. 1989. The truck backer-upper: An example of self-learning in neural networks.In Proceedings of IJCNN-89, volume 2.Rivest, R.L. and Schapire, R.E. 1987. Diversity-based inference of �nite automata. In Proceedings of 28thFoundation of Computer Science. IEEE.Rivest, R.L. and Schapire, R.E. 1989. Inference of �nite automata using homing sequences. In Proceedingsof 21th Annual ACM Sympposium on Theory of Computing.Shen, W.M. and Simon, H.A. 1989. Rule creation and rule learning through environmental exploration.In Proceedings of 11th IJCAI. Morgan Kau�man.Shen, W.M. and Simon, H.A. 1990. Fitness requirements for scienti�c theories containing recursivetheoretical terms. British Journal for the Philosophy of Science.Shen, W.M. 1989. Learning from the Environment Based on Actions and Percepts. Ph.D. Dissertation,Carnegie Mellon University.Shen, W.M. 1990. Complementary discrimination learning: A duality between generalization and dis-crimination. In Proceedings of Eighth AAAI, Boston.Shen, W.M. 1992. Complementary discrimination learning with decision lists. In Proceedings of TenthAAAI, San Jose.Shrager, J. 1985. Instructionless Learning: Discovery of the Mental Model of a Complex Device. Ph.D.Dissertation, Carnegie-Mellon University.Siegler, R.S. 1983. How knowledge in
uences learning. American Scientist 71.Simon, H.A. and Lea, G. 1974. Problem solving and rule induction: A uni�ed view. In Knowledge andCognition. Erlbaum, Hillsdale, N.J.Stan�ll, C. and Waltz, D. 1986. Towards memory-based reasoning. Communication of ACM 29:1213{1228.Waldinger, R. 1977. Achieving several goals simultaneously. In Machine Intelligence 8. Academic Press,New York.Watkins, C. 1989. Learning from delayed rewards. Ph.D. Dissertation, Cambridge University.Whitehead, S.D. and Ballard, D.H. 1991. Learning to perceive and act by trail and error. MachineLearning 7(1). 17

Zytkow, J. M. 1991. Integration of knowledge and method in real-world discovery. ACM SIGART Bulletin2(4).

18

