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Abstract 

 

This paper presents CALM (Constructivist 

Anticipatory Learning Mechanism), an agent 

learning mechanism based on a constructivist 

approach. It is designed to deal dynamically and 

interactively with environments which are at the 

same time partially deterministic and partially 

observable. We describe in detail the 

mechanism, explaining how it represents 

knowledge, and how the learning methods 

operate. We analyze the kinds of environmental 

regularities that CALM can discover, trying to 

show that our proposition follows the way 

towards the construction of more abstract or 

high-level representational concepts. 
 

1. Introduction 
The real world is a very complex environment, and the 

transition from sensorimotor intelligence to symbolic 

intelligence is an important aspect to explaining how 

human beings successfully deal with it (Piaget 1957). 

The problem is the same for a situated artificial agent 

(like a robot), who needs to incrementally learn the 

observed regularities by interacting with the world. 

In complex environments (Goldstein 1999), special 

‘macroscopic’ properties emerge from the functional 

interactions of ‘microscopic’ elements, and generally 

these emergent characteristics are not present in any of 

the sub-parts that generate it. The salient phenomena in 

this kind of environment tend to be related to high-level 

objects and processes (Thornton 2003), and in this case 

it is plainly inadequate to represent the world only in 

terms of primitive sensorimotor terms (Drescher 1991). 

An intelligent agent (human or artificial) who lives 

in these conditions needs to have the possibility to 

overpass the limits of direct sensorial perceptions, 

organizing the universe in terms of more abstract 

concepts. The agent needs to be able to detect high-

level regularities in the environment dynamics, but it is 

not possible if it is closed into a rigid ‘representational 

vocabulary’.  

The purpose of this paper is to present an agent 

learning architecture, inspired in a constructivist 

conception of intelligence (Piaget 1957), capable of 

creating a model to describe its universe, and using 

abstract elements to represent unobservable properties. 

The paper is organized as follows: Section 2 and 3 

describe both the agent and the environment 

conceptions. Section 4 and 5 show the basic CALM 

mechanism, respectively detailing how to represent the 

knowledge, and how to learn it. Section 6 presents the 

way to deal with hidden properties, showing how these 

properties can be discovered and predicted through 

synthetic elements. Section 7 presents example 

problems and solutions following the proposed method. 

Section 8 compares related works, and section 9 

finalizes the paper, arguing that this is an important step 

towards a more abstract representation of the world, and 

pointing some next steps. 

 

2. Agent and Environment 
 

The concepts of agent and environment are mutually 

dependent, and they need to be defined one in relation 

to the other. In this work, we adopt the notions of 

situated agent and properties based environment. 

A situated agent is an entity embedded in and part 

of an environment, which is only partially observable 

through its sensorial perception, and only partially 

liable to be transformed by its actions (Suchman 1987). 

Due to the fact that sensors will be limited in some 

manner, a situated agent can find itself unable to 

distinguish between differing states of the world. A 

situation could be perceived in different forms, and 

different situations could seem the same. This 

ambiguity in the perception of states, also referred to as 

perceptual aliasing, has serious effects on the ability of 

most learning algorithms to construct consistent 

knowledge and stable policies (Crook and Hayes 2003). 

An agent is supposed to have motivations, which in 

some way represent its goals. Classically, the machine 

learning problem means enabling an agent to 

autonomously construct polices to maximize its goal 

reaching performance. The model based strategy 

separates the problem in two parts: (a) construct a world 

model and, based on it, (b) construct a policy of actions.  

CALM (Constructivist Anticipatory Learning 

Mechanism) responds to the task of constructing a 

world model. It tries to organize the sensorial 

Berthouze, L., Prince, C. G., Littman, M., Kozima, H., and Balkenius, C. (2007). 
Proceedings of the Seventh International Conference on Epigenetic Robotics: Modeling 

Cognitive Development in Robotic Systems. Lund University Cognitive Studies, 135.
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information in a way to represent the regularities in the 

interaction of the agent with the environment. 

There are two common ways to describe an 

environment: either based on states, or based on 

properties. A states based environment can be 

expressed by a generalized states machine, frequently 

defined as POMDP (Singh et al. 2003) or as a FSA 

(Rivest and Shapire, 1994). We define it as Є = {Q, A, 

O, δ, γ} where Q is a finite not-empty set of underlying 

states, A is a set of agent actions, O is a set of agent 

observations, δ : Q × A → Q is a transition function, 

which describes how states change according to the 

agent actions, and γ : Q → O is an observation function, 

which gives some perceptive information related to the 

current underlying environment state.  

A properties based environment can be expressed 

by ξ = {F, A, τ} where F is a finite not-empty set of 

properties, composed by F(p), the subset of perceptible 

or observable properties, and F(h), the subset of hidden 

or unobservable properties, A is a set of agent actions, 

and τ(i): F1 × F2 × ... × Fk × A → Fi is a set of 

transformation functions, one for each property Fi in F, 

describing the changes in property values according to 

the agent actions. 

The environment description based on properties (ξ) 

has some advantages over the description based in 

states (Є) in several cases. Firstly because it promotes a 

clearer relation between the environment and the agent 

perception. In general we assume that there is one 

sensor to each observable property. Secondly, because 

the state identity can be distributed in the properties. In 

this way, it is possible to represent ‘generalized states’ 

and, consequently, compact descriptions of the 

transformation functions, generalizing some elements in 

the function domain, when they are not significant to 

describe the transformation. A discussion that 

corroborates our assumptions can be read in (Triviño-

Rodriguez and Morales-Bueno 2000). 

The most compact expression of the transition 

function represents the environment regularities, in the 

form λ*
(i): F1|ε × F2|ε × ... × Fk|ε × A|ε → Fi . This 

notation is similar to that used in grammars, and it 

means that at each property j, we can consider it for the 

domain or not (Fj|ε). 

 

3. Types of Environments 
 

We adopt the properties based description (ξ), 

defining 3 axis to characterize different types of 

environments. The axis ∂ represents the environment 

determinism in the transformations, the axis ω indicates 

the perceptive accessibility that the agent has to the 

environment, and the axis ϕ represents the information 

gain related to the properties. 

The determinism axis level (∂) is equivalent to the 

proportion of deterministic transformations in τ in 

relation to the total number of transformations. So, in 

the completely non-deterministic case (∂ = 0), the 

transformation function (τ) to any property i needs to be 

represented as F1 × F2 × ... × Fk × A → Π(Fi), where 

Π(Fi) is a probabilistic distribution. On the other hand, 

in the completely deterministic case (∂ = 1), every 

transformation can be represented directly by F1 × F2 × 

... × Fk × A → Fi. An environment is said partially 

deterministic if it is situated between these two axis 

extremities (0 < ∂ < 1). When ∂ = 0.5, for example, half 

of the transformations in τ are deterministic, and the 

other half is stochastic. 

It is important to note that a single transition in the 

function δ of an environment represented by states (Є) 

is equivalent to k transformations in the function τ of 

the same environment represented by properties (ξ). So, 

if only one transformation that integrates the transition 

is non-deterministic, all the transition will be non-

deterministic. Conversely, a non-deterministic transition 

can present some deterministic component 

transformations. This is another advantage of using the 

properties representation, when we combine it with a 

learning method based on the discovery of deterministic 

regularities. 

The accessibility axis level (ω) represents the degree 

of perceptive access to the environment. It is equivalent 

to the proportion of observable properties in F in 

relation to the total number of properties.  

If ω = 1 then the environment is said completely 

observable, which means that the agent has sensors to 

observe directly all the environment properties. In this 

case there is no perceptual confusion, and the agent 

always knows what is its current situation. If ω < 1, 

then the environment is said partially observable. The 

lesser ω, the higher the proportion of hidden properties. 

When ω is close to 0, the agent is no longer able to 

identify the current situation only in terms of its 

perception. 

In other words, partially observable environments 

present some determinant properties to a good world 

model, which cannot be directly perceived by the agent. 

Such environments can appear to be arbitrarily complex 

and non-deterministic on the surface, but they can 

actually be deterministic and predictable with respect to 

unobservable underlying elements (Holmes and Isbell 

2006). 

There is a dependence relation between these two 

axis – accessibility and determinism. The more an agent 

has sensors to perceive complex elements and 

phenomena, the more the environment will appear 

deterministic to it. 

Finally, the informational axis level (ϕ) is 

equivalent to the inverse of the average number of 

generalizable properties to represent the environment 

regularities (λ*), divided by the total number of 

properties in F. The greater is ϕ (rising to 1), the more 

compactly the transformation function (τ) can be 

expressed in terms of regularities (λ*). 
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In other words, higher levels of ϕ mean that the 

information about the environment dynamics is 

concentrated in the properties (i.e. there is just a small 

sub-set of highly relevant properties for each 

prediction), and lower levels of ϕ indicate that the 

information about the dynamics is fuzzily distributed 

over all the set of properties, and in this case the agent 

needs to describe the transformation in function of 

almost all properties. 

Learning methods based on the discovery of 

regularities can be very efficient in environments where 

the properties are highly informative. 

 

4. The Basic Idea 
 

In this section we present the basic CALM 

mechanism, which is developed to model its interaction 

with a completely observable but partially deterministic 

environment (COPDE), where ω=1, but ∂<1 and ϕ<1. 

CALM tries to construct a set of schemas to 

represent perceived regularities occurring in the 

environment through its interactions. Each schema 

represents some regularity checked by the agent during 

its interaction with the world. It is composed by three 

vectors: Ξ = (context + action → expectation). The 

context and expectation vectors have the same length, 

and each of their elements are linked with one sensor. 

The action vector is linked with the effectors. 

In a specific schema, the context vector represents 

the set of equivalent situations where the schema is 

applicable. The action vector represents a set of similar 

actions that the agent can carry out in the environment. 

The expectation vector represents the expected result 

after executing the given action in the given context. 

Each element vector can assume any value in a discrete 

interval defined by the respective sensor or effector.  

Some elements in these vectors can undertake the 

undefined value. For example, an element linked with 

a binary sensor must have one of three values: true, 

false or undefined (represented, respectively, by ‘1’, ‘0’ 

and ‘#’). In both the context and action vectors, ‘#’ 

represents something ignored, not relevant to make the 

anticipations. But for the expectation vector, ‘#’ means 

that the element is not deterministically predictable. 

The undefined value generalizes the schema because 

it allows to ignore some properties to represent a set of 

situations. There is compatibility between a schema 

and a certain situation when the schema’s context 

vector has all defined elements equal to those of the 

agent’s perception. Note that compatibility does not 

compare the undefined elements. For example, a 

schema which has the context vector = ‘100#’ is able to 

assimilate the compatible situations ‘1000’ or ‘1001’. 

The use of undefined values makes possible the 

construction of a schematic tree. Each node in that tree 

is a schema, and relations of generalization and 

specialization guide its topology (quite similar to 

decision trees or discrimination trees). The root node 

represents the most generalized situation, which has the 

context and action vectors completely undefined. 

Adding one level in the tree is to specialize one 

generalized element, creating a branch where the 

undefined value is replaced by different defined values. 

This specialization occurs either in the context vector or 

in the action vector. The structure of the schemas and 

their organization as a tree are presented in Figure 1. 

### # ###

### 0 #0# ### 1 111

0## 0 000 1## 0 10#

context

action

expectation

 

Figure 1. Schematic Tree. Each node is a schema composed of 

three vectors: context, action and expectation. The leaf nodes 

are decider schemas. 

The context in which the agent is at a given moment 

(perceived through its sensors) is applied in the tree, 

exciting all the schemas that have a compatible context 

vector. This process defines a set of excited schemas, 

each one suggesting a different action to do in the given 

situation. CALM will choose one to activate, and then 

the action proposed by the activated schema will be 

performed through the agent’s effectors. The algorithm 

always chooses the compatible schema that has the 

most specific context, called decider schema, which is 

the leaf of a differentiated branch. Each decider has a 

kind of episodic memory, which represents (in a 

generalized form) the specific and real situations 

experimented in the past, during its activations. 

 

5. Learning Methods  
 

The learning process happens through the refinement 

of the set of schemas. The agent becomes more adapted 

to its environment as a consequence of that. After each 

experienced situation, CALM checks if the result 

(context perceived at the instant following the action) is 

in conformity to the expectation of the activated 

schema. If the anticipation fails, the error between the 

result and the expectation serves as parameter to correct 

the tree or to adjust the schema. 

CALM combines top-down and bottom-up learning 

strategies. In the schematic tree topology, the context 

and action vectors are considered together. This 

concatenated vector identifies the node in the tree, 

which grows up using the top-down strategy. 

The agent has just one initial schema. This root 

schema has the context vector completely general 
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(without any differentiation, ex.: ‘#####’) and 

expectation vector totally specific (without any 

generalization, ex.: ‘01001’), created at the first 

experienced situation, as a mirror of the result directly 

observed after the action.  

The context vector will be gradually specialized by 

differentiation. In more complex environments, the 

number of features the agent senses is huge, and, in 

general, only a few of them are relevant to identify the 

situation class (1 > ϕ >> 0). In this case, a top-down 

strategy seems to be better, because there is a shorter 

way beginning with an empty vector and searching for 

these few relevant features to complete it, than 

beginning with a full vector and having to eliminate a 

lot of useless elements. 

Selecting the good set of relevant features to 

represent some given concept is a well known problem 

in AI, and the solution is not easy, even to 

approximated approaches. As it will be seen, we adopt a 

kind of forward greedy selection (Blum and Langley 

1997). 

The expectation vector can be seen as a label in each 

decider schema, and it represents the predicted 

anticipation when the decider is activated. The 

evolution of expectations uses a bottom-up strategy. 

Initially all different expectations are considered as 

different classes, and they are gradually generalized and 

integrated with others. The agent has two alternatives 

when the expectation fails. In a way to make the 

knowledge compatible with the experience, the first 

alternative is to try to divide the scope of the schema, 

creating new schemas, with more specialized contexts. 

Sometimes it is not possible and the only way is to 

reduce the schema expectation.  

Three basic methods compose the CALM learning 

function, namely: differentiation, adjustment and 

integration. Differentiation is a necessary mechanism 

because a schema responsible for a context too general 

can hardly make precise anticipations. If a general 

schema does not work well, the mechanism divides it 

into new schemas, differentiating them by some 

element of the context or action vector.  

In fact, the differentiation method takes an unstable 

decider schema and changes it into a two level sub-tree. 

The parent schema in this sub-tree preserves the context 

of the original schema. The children, which are the new 

decider schemas, have their context vectors a little bit 

more specialized than their parent. They attribute a 

value to some undefined element, dividing the scope of 

the original schema. Each one of these new deciders 

engages itself in a part of the domain. In this way, the 

previous correct knowledge remains preserved, 

distributed in the new schemas, and the discordant 

situation is isolated and treated only in its specific 

context. Differentiation is the method responsible to 

make the schematic tree grows up. Each level of the 

tree represents the introduction of some constraint into 

the context vector. Figure 2 illustrates the 

differentiation process. 

### A 000

100 A

010

### A 0#0

0## A 000 1## A 010

(a)

(b)

(d)

(c)
 

Figure 2. Differentiation method; (a) experimented situation 

and action; (b) activated schema; (c) real observed result; (d) 

sub-tree generated by differentiation. 

The algorithm needs to choose what will be the 

differentiator element, and it could be from either the 

context vector or the action vector. This differentiator 

needs to separate the situation responsible for the 

disequilibrium from the others, and the algorithm 

chooses it by calculating the information gain. 

When some schema fails and it is not possible to 

differentiate it, then CALM executes the adjustment 

method. This method reduces the expectations of an 

unstable decider schema in order to make it reliable 

again. The algorithm simply compares the activated 

schema’s expectation and the real result perceived by 

the agent after the application of the schema, setting the 

incompatible expectation elements to undefined value 

(‘#’). 

As CALM always creates schemas with 

expectations totally determined (as a mirror of the result 

of its first application), the walk performed by the 

schema is a reduction of expectations, up to the point it 

reaches a state where remains only those elements that 

really represent the regular results of the action carried 

out in that context. Figure 3 illustrates it with an 

example. 

100 A 000

100 A

010

(a)

(b)

(d)

(c)

100 A 0#0

 

Figure 3. Adjust method; (a) experimented situation and 

action; (b) activated schema; (c) real observed result; (d) 

schema expectation reduction after adjustment. 

The adjustment method changes the schema expectation 

(and consequently the anticipation predicted by the 

schema). Successive adjustments can reveal some 

unnecessary differentiations. After an adjustment, 

CALM needs to verify the possibility to regroup some 

related schemas. It is the integration method that 

searches two schemas with equivalent expectations to 

approach different contexts in a same sub-tree, and join 

these schemas into a single one, eliminating the 

differentiation. The method is illustrated in figure 4. 
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### A 0#0

0## A 0#0 1## A 0#0

(b)(a)

### A 0#0

 

Figure 4. Integration method; (a) sub-tree after some 

adjustment; (b) an integrated schema substitutes the sub-tree. 

To test this basic CALM method, we have made 

some experiments in simple scenarios showing that the 

agent converges to the expected behavior, constructing 

correct knowledge to represent the environment 

deterministic regularities, as well as the regularities of 

its body sensations, and also the regular influence of its 

actions over both. We may consider that these results 

have corroborated the mechanism ability to discover 

regularities and use this knowledge to adapt the agent 

behavior. The agent has learned about the consequences 

of its actions in different situations, avoiding 

emotionally negative situations, and pursuing those 

emotionally positive. A detailed description of these 

experiments can be viewed in (Perotto and Alvares 

2006). 
 

6. Dealing with the Unobservable 
 

In this section we will present the extended 

mechanism, developed to deal with partially 

observable and partially deterministic environments 

(CALM-POPDE), where ∂<1, ϕ<1, and also ω<1.  

In the basic mechanism (CALM-COPDE), 

presented in previous sections, when some schema fails, 

the first alternative is to differentiate it based on direct 

sensorimotor (context and action) elements. If it is not 

possible to do that, then the mechanism reduces the 

schema expectation, generalizing the incoherent 

anticipated elements. When CALM reduces the 

expectation of a given schema, it supposes that there is 

no deterministic regularity following the represented 

situation in relation to these incoherent elements, and 

the related transformation is unpredictable. 

However, sometimes the error could be explained 

by considering the existence of some abstract or 

hidden property in the environment, which could be 

able to differentiate the situation, but which is not 

directly perceived by the agent sensors. In the extended 

mechanism, we introduce a new method which enables 

CALM to suppose the existence of a non-sensorial 

property in the environment, which it will represent as a 

synthetic element. 

When a new synthetic element is created, it is 

included as a new term in the context and expectation 

vectors of the schemas. Synthetic elements suppose the 

existence of something beyond the sensorial perception, 

which can be useful to explain non-equilibrated 

situations. They have the function of amplifying the 

differentiation possibilities. 

In this way, when dealing with partially observable 

environments, CALM has two additional challenges: a) 

infer the existence of unobservable properties, which it 

will represent by synthetic elements, and b) include 

these new elements into its predictive model. A good 

strategy to do this task is looking at the historical 

information. Holmes and Isbell (2006) have proved that 

it is always possible to find sufficient little pieces of 

history to distinguish and identify all the underlying 

states in D-POMDPs. 

The first CALM-POPDE additional method is called 

abstract differentiation. When a schema fails in its 

prediction, and when it is not possible to differentiate it 

by the current set of considered properties, then a new 

boolean synthetic element is created, enlarging the 

context and expectation vectors. Immediately, this 

element is used to differentiate the incoherent situation 

from the others. The method attributes arbitrary values 

to this element in each differentiated schema. These 

values represent the presence or absence of some 

unobservable condition, necessary to determine the 

correct prediction in the given situation. The method is 

illustrated in figure 5, where the new elements are 

represented by card suites. 

010 A 000

010 A

011

# 010 A # 0##

(a)

(b)

(d)

(c) ♣ 010 A # 000 ♦ 010 A # 011

010 A 000

010 A

011

# 010 A # 0##

(a)

(b)

(d)

(c) ♣ 010 A # 000 ♦ 010 A # 011
 

Figure 5. Synthetic element creation method; (d) incremented 

context and expectation vectors, and differentiation using 

synthetic element. 

Once a synthetic element is created, it can be used in 

next differentiations. A new synthetic element will be 

created only if the existing ones are already saturated. 

To avoid the problem of creating infinite new synthetic 

elements, CALM can do it only until a determined limit, 

after which it considers that the problematic 

anticipation is simply unpredictable, undefining the 

expectation in the related schemas by adjustment. 

The synthetic element is not associated to any 

sensorial perception. Consequently, its value cannot be 

observed. This fact can place the agent in ambiguous 

situations, where it does not know whether some 

relevant but not observable condition (represented by 

this element) is present or absent.  

Initially, the value of a synthetic element is verified 

a posteriori (i.e. after the execution of the action in an 

ambiguous situation). Once the action is executed and 

the following result is verified, then the agent can 

rewind and deduce what was the situation really faced 

in the past instant (disambiguated). Discovering the 

value of a synthetic element after the circumstance 

where this information was needed can seem useless, 

but in fact, this delayed deduction gives information to 
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the second CALM-POPDE additional method, called 

abstract anticipation. 

If the unobservable property represented by this 

synthetic element has a regular behavior, then the 

mechanism can “backpropagate” the deduced value for 

the activated schema in the previous instant. The 

deduced synthetic element value will be included as a 

new anticipation in the previous activated schema. 

For example, in time t1 CALM activates the schema 

Ξ1 = (#0 + x → #1), where the context and expectation 

are composed by two elements (the first one synthetic 

and the second one perceptive), and one action. 

Suppose that the next situation ‘#1’ is ambiguous, 

because it excites both schemas Ξ2 = (♣1 + x → #0) and 

Ξ3 = (♦1 + x → #1). At this time, the mechanism cannot 

know the synthetic element value, crucial to determine 

what is the real situation. Suppose that, anyway, the 

mechanism decides to execute the action ‘x’ in time t2, 

and it is followed by the sensorial perception ‘0’ in t3. 

Now, in t3, the agent can deduce that the situation really 

dealt with in t2 was ‘♣1’, and it can include this 

information into the schema activated in t1, in the form 

Ξ1 = (#0 + x → ♣1). 

 

7. Example Problem and Solution 
 

To exemplify the functioning of the proposed 

method we will use the flip problem, which is also 

used by (Singh et al. 2003) and (Holmes and Isbell 

2006). They suppose an agent who lives in a two states 

universe. It has 3 actions (l, r, u) and 2 perceptions (0, 

1). The agent do not have any direct perception to know 

what is the underlying current state. It has the 

perception 1 when the state changes, and the perception 

0 otherwise. Action u keeps the state the same, action l 

causes the deterministic transition to the left state, and 

action r causes the deterministic transition to the right 

state. The flip problem is showed as a Mealy machine 

in figure 6. 

 
Figure 6. The flip problem. 

CALM-POPDE is able to solve this problem. Firstly 

it will try to predict the next observation in function of 

its action and current observation. However, CALM 

quickly discovers that the perceptive observation is not 

useful to the model, and that there is not sufficient 

information to make correct anticipations. So, it creates 

a new synthetic element which will be able to represent 

the underlying left (♣) and right (♦) states.  

Figure 7 shows the first steps in the schematic tree 

construction for the flip problem. We suppose that the 

first movements do not betray the existence of a hidden 

property. These movements are: “r1, u0, l1, r1, l1, u0, 

r1”. Figure 8 shows the first abstract differentiation, 

after the sequence “r0”, and also the abstract 

anticipation, that refers to the immediately previous 

sequence (“r1”). Figure 9 shows the abstract 

anticipation coming from the repetition of  “r0”. Figure 

10 shows a new abstract differentiation and its 

anticipations by following “l1, l0, l0”. Finally, figure 11 

shows the final solution, with the last differentiation 

resulting from the execution of “u0, l0, r1, u0, r0”. 
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Figure 7. Initial schematic tree to the flip problem. The vector 

represents synthetic elements (Fh), perceptible elements (Fp) 

and actions (A). The decider schemas show the expectations. 

# # r

♣ # r

♦ 1

♦ # r

? 0

# # l

? 1

# # u

? 0

# # #

# # r# # r

♣ # r♣ # r

♦ 1♦ 1

♦ # r♦ # r

? 0? 0

# # l# # l

? 1? 1

# # u# # u

? 0? 0

# # ## # #

 

Figure 8. First abstract differentiation. 
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Figure 9. Abstract anticipation. 
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Figure 10. New abstract differentiations and anticipations. 
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 Figure 11. Final schematic tree to solve the flip problem. 

In a second problem, we consider a robot which 

have the mission of buying some cans in a drink 

machine. It has 3 alternative actions: “insert a coin” (i), 

“press the button” (p), or “go to another machine” (g); it 

can see the state of an indicator light in the machine: 

“off” (�) or “on” (�); and it perceives whether a can 

is returned (☺) or not (�). There are 2 hidden 

properties: “no coin inserted” (�) or “coin inserted” 

(�); and “machine ok” (�) or “machine out of service” 

(�). The light turns on (�) just during one time cycle, 

and only if the agent presses the button without having 

inserted a coin before, otherwise the light indicator is 

always off. The goal in this problem is to take a 

determined number of drinks without losing coins in 

bad machines. 

This example poses two challenges to the agent: 

First, the machine does not present any direct 

perceptible change when the coin is inserted. Since the 

agent does not have any explicit memory, apparently it 

faces the same situation both before and after having 

inserted the coin. However, this action changes the 

value of an internal property in the drink machine.  

Precisely, the disequilibrium occurs when the agent 

presses the button. In an instantaneous point of view, 

sometimes the drink arrives, and the goal is attained 

(�� + p → �☺), but sometimes only the led light 

turns on (�� + p → ��). To reach its goal, the agent 

needs to coordinate a chain of actions (insert the coin 

and press the button), and it can do that by using a 

synthetic element which represents this machine 

internal condition (� or �). 

Second, the agent does not have direct perceptive 

indications to know if the machine is working, or if it is 

out of service. The agent needs to interact with the 

machine to discover its operational condition (� or �). 

This second problem is a little bit different from the 

first, but it can be solved by the same way. The agent 

creates a test action, which enables it to discover this 

hidden property before inserting the coin. It can do that 

by pressing the button. 

Table 1 presents the set of decider schemas that 

CALM learns to the drink machine problem. We 

remarks that Ξ4 presents the unpredictable 

transformation that follows the action g (go to another 

machine) due to the uncertainty of the operational state 

of the next machine. The test is represented in Ξ1 and 

Ξ2, that can be simultaneously activated because the 

ambiguity of the result that follows the activation of Ξ4 

but anticipates the operational state of the machine. 

Table 1. Schemas to the drink machine problem. 

Ξ1 = ( � # # #  +  p →  �� ��) 

Ξ2 = ( �� # #  +  p  →  �� ��) 

Ξ3 = ( �� # #  +  p  →  �� �☺) 

Ξ4 = (  # # # #  +  g  →   # � ��) 

Ξ5 = ( � # # #  +  i  →  �� ��) 

Ξ6 = ( � # # #  +  i  →  �� ��) 

 

8. Related Works 
 

CALM-POPDE is an original mechanism that 

enables an agent to incrementally create a world model 

during the course of its interaction. This work is the 

continuity of our previous work (Perotto and Alvares 

2006), extended to deal with partially observable 

environments. 

The pioneer work on Constructivist AI has been 

presented by Drescher (1991). He proposed the first 

constructivist agent architecture (called schema 

mechanism), that learns a world model by an 

exhaustive statistical analysis of the correlation between 

all the context elements observed before each action, 

combined with all resulting transformations. Drescher 

has also suggested the necessity to discover hidden 

properties by creating ‘synthetic items’.  

The schema mechanism represents a strongly 

coherent model, however, there are no theoretical 

guarantees of convergence. Another restriction is the 

computational cost of the kind of operations used in the 

algorithm. The need of space and time resources 

increases exponentially with the problem size. 

Nevertheless, many other researchers have presented 

alternative models inspired by Drescher, like as (Yavuz 

and Davenport 1997), (Birk and Paul 2000), (Morrison 

et al. 2001), (Chaput 2004) and (Holmes and Isbell 

2005). 

Our mechanism (CALM) differs from these 

previous works because we limit the problem to the 

discovery of deterministic regularities (even in partially 

deterministic environments), and in this way, we can 

implement direct induction methods in the agent 

learning mechanism. This approach presents a low 

computational cost, and it allows the agent to learn 

incrementally and find high-level regularities. 

We are also inspired by (Rivest and Shapire 1994) 

and (Ron 1995), who had suggested the notion of state 

signature as an historical identifier to the DFA states, 

strongly reinforced recently by (Holmes and Isbell 

2006), who have developed the idea of learning 

anticipations trough the analysis of relevant pieces of 

history. 
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9. Discussion and Next Steps 
 

The CALM mechanism can provide autonomous 

adaptive capability to an agent, because it is able to 

incrementally construct knowledge to represent the 

deterministic regularities observed during its interaction 

with the environment, even in partially deterministic 

universes.  

We have also presented an extension to the basic 

CALM mechanism in a way which enables it to deal 

with partially observable environments, detecting high-

level regularities. The strategy is the induction and 

prediction of unobservable properties, represented by 

synthetic elements.  

Synthetic elements enable the agent to overpass the 

limit of instantaneous and sensorimotor regularities. In 

the agent mind, synthetic elements can represent 3 

kinds of “unobservable things”. (a) Hidden properties in 

partially observed worlds, or sub-environment 

identifiers in discrete non-stationary worlds. (b) 

Markers to necessary steps in a sequence of actions, or 

to different possible agent points of view. And (c), 

abstract properties, which do not exist properly, but 

which are powerful and useful tools to the agent, 

enabling it to organize the universe in higher levels. 

With these new capabilities, CALM becomes able to 

overpass the sensorial perception, constructing more 

abstract terms to represent the universe, and to 

understand its own reality in more complex levels. 

CALM can be very efficient to construct models in 

partially but highly deterministic (1 > ∂ >> 0), partially 

but highly observable (1 > ω >> 0), and its properties 

are partially but highly informative (1 > ϕ >> 0). 

Several problems found in the real world present these 

characteristics. 

Currently, we are improving CALM to enable it to 

form action sequences by chaining schemas. It will 

allow the creation of composed actions and plans. We 

are also including methods to search good policies of 

actions using the world model constructed by the 

learning functions.  

The next research steps comprehends: to formally 

demonstrate the mechanism efficiency and correctness; 

to make comparisons between CALM and related 

solutions proposed by other researchers; and to analyze 

the mechanism performance in more complex problems.  

Future works can include the extension of CALM to 

deal with non-deterministic regularities, noisy 

environments, and continuous domains. 
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