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Abstract

We present a method that allows an agent
through active exploration to autonomously
build a useful representation of its environ-
ment. The agent builds the representation by
iteratively learning distinctions and predictive
rules using those distinctions. We build on
earlier work in which we showed that by mo-
tor babbling an agent could learn a represen-
tation and predictive rules that by inspection
appeared reasonable. In this paper we add
active learning and show that the agent can
build a representation that allows it to learn
predictive rules to reliably control its hand
and to achieve a simple goal.

1. Introduction

The challenge is to build a robot that can learn
about itself and its environment in the same way
that children do. In Piaget’s [1952] theory of cog-
nitive development, children constructed this knowl-
edge in stages. More recently, Cohen [2002] has pro-
posed an information processing approach to cogni-
tive development in which children are endowed with
a domain-general information processing system that
they use to bootstrap knowledge.

In this work we focus on how a developing agent
can learn temporal contingencies in the form of pre-
dictive rules over events. There is evidence that
infants are able to detect contingencies shortly af-
ter birth [DeCasper and Carstens, 1981]. Watson
[2001] proposed a model of contingencies based on
his observations of infant behavior. In this model,
a prospective temporal contingency is one in which
an event B tends to follow an event A with a likeli-
hood greater than chance, and a retrospective tem-
poral contingency is one in which an event A tends
to come before an event B more often than chance.

Watson recognized that an impediment to learn-
ing contingencies is finding the distinctions necessary
to determine when an event has occurred. Watson’s

proposes looking for new distinctions when the prob-
ability associated with a prospective contingency on
two events does not match the probability associated
with the retrospective contingency on those same
events. He also uses this mismatch in probabilities
to indicate that a contingency may only hold in a
certain situation.

Drescher [1991] proposed a model of contingen-
cies inspired by Piaget, he refers to contingencies
as schemas and he finds these schemas by a pro-
cess called marginal attribution. Marginal attribu-
tion first finds results that follow actions in a method
similar to Watson’s prospective probabilities. Then
for each schema in the form of an action and a result
the algorithm searches for a context (situation) that
makes the result more likely to follow that action.

We represent both prospective contingencies and
contingencies in which two events happen simultane-
ously using predictive rules. These predictive rules
are learned using a method inspired by marginal at-
tribution, but we move beyond Drescher by work-
ing with continuous variables. This brings up the
issue, pointed out by Watson, of determining when
an event has occurred. For each predictive rule we
look for a new distinction that would make it more
reliable. And although we do not explicitly repre-
sent retrospective contingencies, for each event we
look for a new distinction that would allow us to
predict that event. These new distinctions allow the
agent both to learn more accurate contingencies and
to perceive new events that allow it to learn new
contingencies.

In [Mugan and Kuipers, 2007] we developed an
algorithm in which the agent used motor babbling to
learn distinctions and contingencies. However, using
undirected motor babbling does not allow learning to
scale to larger problems because too much effort is
wasted on uninteresting portions of the state space.
In this paper the algorithm is expanded to allow the
agent to purposefully explore its environment and to
learn as it seeks to achieve goals. This allows us to
demonstrate that the learned representation is useful
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(a) 6-month-old baby (b) simulated robot

Figure 1: We use the situation of six-month-old baby sitting in a highchair (a) as the setup to evaluate our method

using a simple “baby robot” (b). The robot is implemented in Breve [Klein, 2003]. It has a torso with a 2-dof arm and

is sitting in front of a tray with a block.

by measuring the agent’s increasing ability to achieve
a simple goal.

In the implementation of this algorithm, the agent
receives as input the values of time-varying continu-
ous variables, but the agent can only represent, rea-
son about, and construct knowledge using discrete
values. The agent discretizes its input using distinc-
tions in the form of landmarks. Landmarks are used
to create a discrete variable v(t) for each continuous
variable ṽ(t). If the real value of ṽ(t) falls between
two landmarks v1 and v2, then the discrete variable
v(t) will have the open interval between v1 and v2 as
its value, and v(t) = (v1, v2). Once v(t) is associated
with ṽ(t), the agent can then focus its attention on
changes in the discrete value of v, called events.

The agent greedily learns rules that use one event
to predict another. By storing the real values of the
variables used in a predictive rule each time the rule
is observed to be applicable in the environment, the
agent can use the success or failure of the rule as a
supervisory signal to learn more landmarks through
standard discretization techniques such as [Fayyad
and Irani, 1993]. These new distinctions in the form
of landmarks allow the agent to learn more predic-
tive rules, which in turn can lead to more landmarks.
Predictive rules can be made more deterministic by
adding context variables. The context of a rule in-
dicates when the rule will make accurate predictions
and when it will not.

We evaluate our algorithm using the simulated
robot shown in Fig. 1(b). The setup for the robot is
taken from the situation of a baby sitting at a high
chair, shown in Fig. 1(a). The value of this work is
that it provides a method for an autonomous agent
to break up the world at its joints. The agent learns
the distinctions that are relevant to the way that it
interacts with the world. In this paper we evaluate

these distinctions by how well they allow the agent
to reach out and move a block.

2. Knowledge Representation and
Learning

As described in [Mugan and Kuipers, 2007], a critical
task for the learning agent is to learn appropriate
abstractions from continuous to discrete variables.
Initially, the values of the continuous variables are
completely meaningless. Our goal is for the agent to
learn, from its own experience, to identify landmark
values that make important qualitative distinctions
for each variable. The importance of a qualitative
distinction is estimated from the reliability of the
rules that can be learned, given that distinction.

The qualitative representation is based on QSIM
[Kuipers, 1994]. For each continuous variable x̃(t)
two discrete variables are created: a discrete variable
x(t) that represents the magnitude of x̃(t), and a
discrete variable ẋ(t) that represents the direction of
change of x̃(t). (Non-zero directions of change that
persist fewer than three time-steps are filtered out.)

A continuous variable x̃(t) ranges over some sub-
set of the real number line (−∞,+∞). In QSIM, its
magnitude is abstracted to a discrete variable x(t)
that ranges over a quantity space Q(x) of qualita-
tive values. Q(x) = L(x) ∪ I(x), where L(x) =
{x1, · · ·xn} is a totally ordered set of landmark val-
ues, and I(x) = {(−∞, x1), (x1, x2), · · · (xn,+∞)}
is the set of mutually disjoint open intervals that
L(x) defines in the real number line. A quantity
space with two landmarks might be described by
(x1, x2), which implies five distinct qualitative val-
ues, Q(x) = {(−∞, x1), x1, (x1, x2), x2, (x2,+∞)}.

A discrete variable ẋ(t) representing the direc-
tion of change of x̃(t) has a single intrinsic land-
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mark at 0, so its initial quantity space is Q(ẋ) =
{(−∞, 0), 0, (0,+∞)}. Initially, when the agent
knows of no meaningful qualitative distinctions
among values for x̃(t), we describe the quantity space
as the empty list of landmarks, (). (Note that be-
cause we evaluate the algorithm with a discrete-
timestep simulator, if x1 is a landmark and x̃(t−1) <
x1 and x̃(t) > x1 then x(t) = x1.) Table 1 lists the
variables the “baby robot” knows about, and their
initial and final landmarks, the meaning of these vari-
ables is explained in Section 3. Note that for most
magnitude variables, zero is just another point on
the number line, so those variables initially have no
landmarks.

2.1 Events

If a is a qualitative value of a discrete variable A,
meaning a ∈ Q(A), then the event At→a is defined
by A(t − 1) 6= a and A(t) = a. That is, an event
takes place when a discrete variable A changes to
value a at time t, from some other value. We will
often drop the t and describe this simply as A→a.
We will also refer to an event as E when the variable
and qualitative value involved are not important.

Our goal is for the agent to learn predictive rules
and landmarks to describe regularities in the occur-
rence of events.

2.2 Predictive Rules

Temporal contingencies are described using predic-
tive rules. Consider a subset of the scenario shown
in Fig. 1(b). The continuous variable h̃x gives the
location of the hand in the x direction, and the con-
tinuous variable ũx gives the motor force applied in
the x direction. We would like the agent to learn
a rule that predicts ḣx→(0,∞), the event that the
hand begins to move to the right. The agent will
look at all other events and find that if a force is
given in the positive x direction, event ux→(0,∞),
then the event ḣx→ (0,∞) is more likely to occur
than it would otherwise. It will then create a rule of
the form r1 = 〈ux→(0,∞)⇒ ḣx→(0,∞)〉.

In the simulator it takes a force of 300 to move the
hand. By noting the real value ũx each time event
ux→(0,∞) occurs, the agent can use the occurrence
or nonoccurrence of event ḣx→(0,∞) as a supervi-
sory signal and create a new landmark at ũx = 300.
It can then update r1 to be r1 = 〈ux→(300,∞) ⇒
ḣx→(0,∞)〉.

The rule r1 is still not completely deterministic be-
cause if the hand is already all the way to the right
then it cannot go any farther, even if event ux→
(300,∞) occurs. But initially, the agent has no way
of reasoning about the location of the hand because
h̃x has no landmarks. In the simulator, the maxi-
mum value for h̃x = 2.0, so by storing the value h̃x

in r1 each time event ux→(300,∞) occurs, the agent
can find that as long as h̃x 6= 2.0 event ḣx→(0,∞)
almost always occurs. It then learns a landmark on
h̃x = 2.0 which allows it to add hx as a context to
r1 giving r1 = 〈{hx} : ux→(300,∞) ⇒ ḣx→(0,∞)〉.
Putting hx in the context of r1 allows the agent to de-
termine if event ḣx→(0,∞) will follow ux→(300,∞)
by looking at the value of hx(t).

Rule r1 is an example of a causal predictive rule.
There are two types of predictive rules: causal rules
represent that one event occurs after another later
in time, the linking of events appearing as causal to
the agent; and functional rules represent that two
events are linked by a function and so happen at the
same time. For both types of rules we focus only
on those that predict positive or negative changes
in direction of change variables. These two types of
predictive rules differ only in the time component,
so after initially discussing them separately, we will
simply refer to both types as predictive rules.

2.3 Causal Rules

We now formally describe causal rules. A causal rule
r has the form 〈C : E1 ⇒ E2〉, where E1(t) is one
event, say At→a, E2(t′) is another event over a di-
rection of change variable, say Bt′→ b, that takes
place relatively soon after t, and the context C is a
set of discrete magnitude variables. That E2 takes
place “relatively soon after” E1(t) is formalized in
terms of an integer time-delay k = 6.

soon(t, E2) ≡ ∃t′ [t < t′ < t+ k ∧ E2(t′)] (1)

A rule r = 〈C : E1 ⇒ E2〉 is activated when E1(t)
occurs and succeeds when:

succeeds(r, t) ≡ E1(t) ∧ soon(t, E2) (2)

Associated with a causal rule r = 〈C : E1 ⇒ E2〉
is a probability distribution of the form

P (soon(t, E2)|E1(t)= true, C(t−1)) (3)

which is the conditional probability distribution over
the binary random variable soon(t, E2), given that
E1(t) is true and the values of the variables in C at
time t− 1.

The agent greedily searches for rules that deter-
ministically predict when one event will follow an-
other. We use the entropy of a rule as a measure of
how deterministic it is. We define the entropy of a
rule r = 〈C : E1 ⇒ E2〉 as the conditional entropy
of soon(t, E2) given C(t), with the added restriction
that event E1(t) occurs. In equation form it is

H(r) = H(soon(t, E2)|E1(t)= true, C(t−1)). (4)

However, a rule r can have low entropy if it predicts
that E2 will almost never follow E1, so a rule must
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have more than low entropy to be useful. We define a
concept called best reliability represented as brel(r).
For rule r, brel(r) is the highest probability of success
for any value of C. If C = ∅ then brel(r) is just the
probability of success of r.

2.3.1 Learning a Causal Rule

The agent starts by searching for two events E1 and
E2 such that observing event E1 means that event
E2 is significantly more likely to occur than it would
have been otherwise.

The agent asserts an initial rule 〈∅ : E1 ⇒ E2〉
with empty context, when Pr(soon(t, E2)|E1(t)) >
0.1 and

ι(Pr(soon(t, E2)|E1(t)), P r(soon(t, E2))) > θa (5)

where the function on probabilities ι(p, q) = p
q ·

1−q
1−p

has been defined to have higher resolution near the
extremes, and lower resolution near the center, over
the interval (0, 1) of probability values. The param-
eter θa specifies how much more likely E2 should be,
after E1 has been observed. (Here and elsewhere we
require a minimum number of relevant observations
so the probability will be reliable.)

2.3.2 Learning a Context for a Causal Rule

Once the agent has learned a rule r = 〈∅ : E1 ⇒ E2〉,
it searches for a discrete magnitude variable v1 such
that if r is modified to be r′ = 〈{v1} : E1 ⇒ E2〉 the
variable v1 provides sufficient information gain

H(r)−H(r′) > θig. (6)

The parameter θig determines how much information
gain is required to augment the context. If there are
multiple discrete variables that meet this criterion,
then the one providing the largest information gain
is chosen.

Using an approach inspired by Drescher [1991],
once the agent has learned a rule r′ = 〈{v1} :
E1 ⇒ E2〉 it searches for another discrete magni-
tude variable v2 such that if r′ is modified to be
r′′ = 〈{v1, v2} : E1 ⇒ E2〉 the variable v2 provides
sufficient information gain H(r′) −H(r′′) > θig. In
principle, an arbitrarily large context can be learned,
but in this implementation the size is limited to two.

2.4 Functional Rules

A functional rule r = 〈C : E1 ⇒ E2〉 has the same
form as a causal rule, and behaves in a similar way,
with three exceptions. The first difference is in the
timing of the events: the predicate soon(t, E2) is re-
placed with E2(t), which means that the events E1

and E2 must happen in the same timestep. The sec-
ond difference is that functional rules are not used to

learn landmarks. And the third difference is because
there is no time delay. If a functional rule 〈C : E1 ⇒
E2〉 is learned but its opposite 〈C : E2 ⇒ E1〉 has
a significantly higher rate of success before the con-
text is considered, then 〈C : E1 ⇒ E2〉 is replaced by
〈C : E2 ⇒ E1〉. We will refer to both types of rules
simply as rules.

2.5 Learning a New Landmark

Inserting a new landmark x∗ into (xi, xi+1) allows
that interval to be replaced in Q(x) by two intervals
and the dividing landmark: (xi, x

∗), x∗, (x∗, xi+1).
Adding this new landmark into the quantity space
Q(x) allows a new distinction to be made that may
transform r into a new rule r′. (When a new land-
mark x∗ is learned we throw out the statistics for
(xi, xi+1) and start fresh with (xi, x

∗), x∗, (x∗, xi+1),
however this means that we must also check that the
reliability of r does not significantly deteriorate with
an improvement in H(r).) A new landmark can be
learned either by improving a predictive rule or by
reliably preceding an event leading to a new predic-
tive rule.

2.5.1 Landmarks that Improve Rules

If a landmark candidate for a rule r = 〈C : A→
b⇒ B→b〉 is on variable A, then the landmark must
improve the best reliability of r to be adopted. If the
landmark is on another variable then it must improve
the entropy of r to be adopted by modifying C.

For an example of a landmark that improves the
best reliability, recall the initial incarnation of our
rule r1 = 〈ux → (0,∞) ⇒ ḣx → (0,∞)〉. The
algorithm first learned a landmark on ũx at 300.
With this landmark rule r1 could be modified to be
r′1 = 〈ux→ (300,∞) ⇒ ḣx→ (0,∞)〉, which had a
higher rate of success. In general, we add a new land-
mark to the quantity space Q(A) when it increases
the best reliability of r by transforming it into r′ so
that ι(brel(r′), brel(r)) > θa.

For an example of a landmark that improves
the entropy of rule, recall that rule r1 = 〈ux →
(300,∞) ⇒ ḣx→ (0,∞)〉 was further improved by
learning a landmark on h̃x at 2.0. This allowed the
agent to make a distinction on hx and to add it to
the context of r1 improving its entropy. In general,
a new landmark is added to the quantity space Q(x)
when it makes a rule r more deterministic by trans-
forming it into r′ so that H(r)−H(r′) > θig.

Landmark candidates are chosen considering the
number of data points in the interval and the high-
est gain [Fayyad and Irani, 1993]. Depending on the
relative gains of nearby potential values for a new
landmark x∗, this search can result in either a pre-
cise numerical value, or a range of possible values
for x∗ on different occasions: range(x∗) = [lb, ub].
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Examples of both cases are shown in Table 1.
If a landmark candidate improving a rule is

adopted, then its location is continually updated as
the agent learns more.

2.5.2 Landmarks at Events

For each event E a histogram is maintained for each
continuous variable ṽ. Each time E occurs the his-
togram is updated with the current value of ṽ. A
landmark candidate is created for ṽ when the distri-
bution of ṽ when E occurs is significantly different
from its background distribution. The location of the
landmark is taken to be the middle of the histogram
bucket where the difference between distributions is
the greatest. This landmark candidate is adopted as
a new landmark if it leads to a rule that predicts the
event E.

2.6 Active Learning

Active learning allows the agent to systematically
explore parts of the state space that it might too in-
frequently explore using random movements. In this
work the agent engages in active learning by contin-
ually selecting a goal and then working to achieve
it. A goal g is of the form g = B→b where B is a
discrete variable and b ∈ Q(B) is a qualitative value.
Goal g is achieved at timestep t if B(t) = b.

Actively exploring the world requires forming a
plan. We use a simple recursive planning algorithm
similar to STRIPS [Nilsson, 1980] shown in Fig. 2.
The agent uses the SelectRule function to find a rule
r = 〈C : A→a ⇒ B→b〉 where B→b is the event
on the top of the stack. If no such rule is found but
top-of-stack is an event on a magnitude variable x,
then a new goal is pushed onto the stack based on
the direction of change variable ẋ.

If a rule r is found then the agent must determine
if its context C is satisfied using the Satisfied func-
tion. In this implementation a context C consists of
either a single discrete variable or a pair of discrete
variables and gives the probability of success of r for
each value of its variables at activation. The Satis-
fied function returns true if the probability of success
of r given by C for the current state of the world is
greater than 0.6.

If the context C is not satisfied, a subgoal for C is
chosen using the SelectEvent function. If C consists
of one variable v then it returns v→q where q ∈ Q(v)
maximizes the probability of the success of r given
the current state of the world. If C consists of two
variables v1 and v2, then the function checks to see
if the context can be satisfied by setting one of v1
or v2 to a value q. If this is so, say for v1, then
SelectEvent returns v1→q. If the context cannot be
satisfied by setting only one of the variables then it
finds the context value 〈v1 = q1, v2 = q2〉 with the

input: goal
push(goal)
loop
r := SelectRule(〈C : A→a⇒ top-of-stack〉)
if none then

let x→q := top-of-stack
if x is a magnitude variable then

if A(t) < a then
push(ẋ→(0,∞))
continue

else if A(t) > a then
push(ẋ→(−∞, 0))
continue

else
FAIL

end if
else

FAIL
end if

end if
if Satisfied(C) then

if A→a ≡ U→u then
PerformAction(U→u,stack)
return

else
push(A→a)

end if
else

push(A→a)
push(SelectEvent(C))

end if
end loop

Figure 2: A basic planning algorithm. Details for the

functions SelectRule, PerformAction, Satisfied, and Se-

lectEvent are given in Section 2.6

maximum probability of success for r and by random
choice one of v1→q1 or v2→q2 is returned.

If at any time the planner attempts to push a goal
g that is already on the stack, or if g is on a direction
of change variable and its opposite is on the stack,
then the planner returns FAIL.

When a motor variable is encountered as the left
hand side of r, the agent uses the PerformAction func-
tion to carry out the action. For the motor com-
mand U→u a force amount ũ is chosen randomly us-
ing a uniform distribution over finite range(u), and
all other motor variables are set to a force of 0 (an
event that is ignored by the rule learner). PerformAc-
tion is in the form of a test-operate-test-exit (TOTE)
unit [Miller et al., 1960] and the motor value is main-
tained until the exit criterion is satisfied. To deter-
mine how long this motor value should be maintained
the agent looks at the stack. The agent watches the
highest subgoal in the stack that is associated with a
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magnitude variable and if that subgoal is achieved it
terminates the action immediately if the subgoal was
from the context of a rule and in k timesteps other-
wise. (If no such subgoal on a magnitude variable
exits it watches the highest subgoal on a direction of
change variable and terminates the action after it is
achieved for three consecutive timesteps.) The agent
also watches the highest subgoal in the stack that
is associated with a direction of change variable. If
that subgoal is initially achieved and then later is
no longer achieved the agent assumes the plan is off
track and termites the action. The action is also ter-
minated if the real value of at least one variable does
not change at each timestep, or if 40 timesteps pass.

2.6.1 Goal Selection

Initially, the agent explores by motor babbling, but
as the agent learns more the probability of it choos-
ing a goal and purposefully pursuing it increases. A
new goal is chosen from a set of candidate goals, the
set of candidate goals is determined by a set M of
discrete variables. For each discrete variable v ∈M a
candidate goal g = v→q is created for each q ∈ Q(v).

When a goal g = v→q is chosen it is sent to the
planning module, the goal is achieved if v = q when
the planning module returns. The agent chooses the
candidate goals in succession until each goal is chosen
m = 20 times. After each goal has been chosen m
times, goals are chosen based on a learnability score,
with the goal with the highest score chosen at each
opportunity. The learnability score of a goal g is
determined by creating a vector of the success or
failure of the last m activations of g, and then taking
the entropy of that vector.

The learnability score is inspired by [Schmidhuber,
1991], a low entropy indicates that the agent can
either consistently achieve g and does not stand to
learn much by trying more, or the agent is not having
much success achieving g and therefore it is currently
too difficult for the agent to learn anything new by
trying to achieve it.

2.7 The Learning Process

During the learning process the algorithm builds a
stratified model on the discrete variables. Each stra-
tum Si consists of a set of discrete variables. The
purpose of the stratified model is serve as a focus of
attention and to constrain the proliferation of rules
by favoring those that emanate from the agent as the
causal source of events.

Each discrete variable can reside in at most one
stratum. Rules can only be learned that use an event
on a variable in stratum Si to predict an event on a
variable in stratum Si or Si+1 (with the exception
of a functional rule 〈C : E2 ⇒ E1〉 being learned
because it has a higher rate of success than 〈C : E1 ⇒

Table 1: Variables, their ranges of values, and initial and

final landmarks

Var. Range Initial Final Landmarks
ux [−500, 500] (0) (L1, 0, L2) L1 = −301.51
uy [−500, 500] (0) (L3, 0, L4) L2 = 297.71
hx [−2.0, 2.0] () (L5, L6) L3 = −298.54
ḣx (−∞, +∞) (0) (0) L4 = 300.18
hy [−2.0, 2.0] () (L7, L8, L9) L5 = [−2.04,−1.96]
ḣy (−∞, +∞) (0) (0) L6 = [1.93, 2.04]
ha {0, 1} Binary Binary L7 = [−2.01,−1.97]
bx (−∞, +∞) () (L10, L11, L12) L8 = −0.54
ḃx (−∞, +∞) (0) (0) L9 = [1.98, 2.01]
by (−∞, +∞) () (L13, L14) L10 = −8.61
ḃy (−∞, +∞) (0) (0) L11 = −0.14
ba {0, 1} Binary Binary L12 = 3.02
cx (−∞, +∞) () (L15, L16, L17) L13 = 2.75
ċx (−∞, +∞) (0) (0) L14 = 2.83
cy (−∞, +∞) () (L18, L19, L20) L15 = −2.08
ċy (−∞, +∞) (0) (0) L16 = 2.07
e [0, +∞) () (L21, L22) L17 = 6.64
ė (−∞, +∞) (0) (0) L18 = −2.04

L19 = −0.97
L20 = −0.52
L21 = 0.10
L22 = 0.23

Table 2: Learned Rules (T indicates either a causal rule

or functional rule)

Strata T Rule

S0= C {hx} : ux→(−∞,−303.31) ⇒ ḣx→(−∞, 0)
{ux, uy} C {hx} : ux→(300.78, +∞) ⇒ ḣx→(0, +∞)

C {bx} : uy→(301.64, +∞) ⇒ ḣy→(0, +∞)
C {hy} : uy→(−∞,−293.54) ⇒ ḣy→(−∞, 0)

S1= F ∅ : ḣx→(−∞, 0) ⇒ ċx→(−∞, 0)
{hx, ḣx, F ∅ : ḣx→(0, +∞) ⇒ ċx→(0, +∞)
hy , ḣy} F ∅ : ḣy→(−∞, 0) ⇒ ċy→(−∞, 0)

F ∅ : ḣy→(0, +∞) ⇒ ċy→(0, +∞)
S3= C {hx} : cx→[6.64] ⇒ ba→false

{e, ė, F {cx, cy} : e→[0.23] ⇒ ḃx→(0, +∞)
cx, ċx, F {cx} : ċx→(0, +∞) ⇒ ė→(0, +∞)
cy , ċy} C {by, cx} : e→[0.10] ⇒ ḃx→(−∞, 0)
S4= F {hy, cx} : ḃy→(0, +∞) ⇒ ċy→(−∞, 0)
{bx, ḃx, F {by, cx} : ḃy→(−∞, 0) ⇒ ḃx→(−∞, 0)
by , ḃy} F {by, cx} : ḃy→(0, +∞) ⇒ ḃx→(−∞, 0)

E2〉).
A discrete variable B is added to stratum Si+1 if B

is currently not a member of any stratum and there
is a rule r of the form r = 〈C : A→a⇒ B→b〉 where
A ∈ Si. A magnitude variable and its derivative are
always in the same stratum.

The initial stratum S0 consists of the motor prim-
itives. From there, the agent builds its model by
looping over the following sequence of steps

1. Do 7 times

(a) Actively explore the world with the set of
candidate goals coming from the discrete
variables inM = Si∪Si+1 for 1000 timesteps

(b) Learn new causal and functional rules

(c) Learn new landmarks by examining statis-
tics stored in rules and events

2. Gather 3000 more timesteps of experience to so-
lidify the learned rules

3. Update the strata

4. Goto 1

We call a rule sufficiently deterministic if it has both
low entropy and high best reliability. To update the



strata the agent builds the next stratum and ad-
justs the earlier strata using the sufficiently deter-
ministic rules. The agent also removes redundant
rules stemming from a motor variable. Intuitively, if
there are sufficiently deterministic rules 〈E1 ⇒ E2〉,
〈E2 ⇒ E3〉, and 〈E1 ⇒ E3〉, then 〈E1 ⇒ E3〉 is
redundant and can be pruned. The agent then re-
sumes the loop on the next stratum (i = i + 1). If
this stratum Si contains no variables the agent sets
the stratum index i to the highest stratum that does
contain variables.

3. Evaluation

3.1 Experimental Setup

The evaluation uses the simulation scenario shown in
Fig. 1(b). The robot has two motor variables ũx and
ũy that move the hand in the x and y direction re-
spectively. The perceptual system creates variables
for each of the two tracked objects in this environ-
ment: the hand and the block. The variables cor-
responding to the hand are h̃x(t), h̃y(t), and ha(t).
The continuous variables h̃x(t) and h̃y(t) represent
the location of the hand in the x and y directions,
respectively, and the Boolean variable ha(t) repre-
sents whether the hand is in view. The variables
corresponding to the block are b̃x(t), b̃y(t), and ba(t)
and they have the same respective meanings as the
variables for the hand. The relationship between the
hand and the block is represented by the continuous
variables c̃x(t), c̃y(t), and ẽ(t). The variables c̃x(t)
and c̃y(t) represent the coordinates of the center of
the hand in the frame of reference of the center of the
block, and the variable ẽ(t) represents the distance
between the hand and the block.

The conversion process from continuous to discrete
produces the variables that the agent can represent
and reason about. The motor variables are ux(t) and
uy(t) controlling the hand. The state of the hand
is given by hx(t), hy(t), ḣx(t), ḣy(t), and ha(t), the
state of the block is given by bx(t), by(t), ḃx(t), ḃy(t),
and ba(t), and the relation between them is given by
cx(t), cy(t), ċx(t), ċy(t), e(t), and ė(t). For each vari-
able, Table 1 provides the physical range of values it
can take on, the initial and final sets of landmarks,
and the numerical value or range representing the
agent’s knowledge of the value of each landmark.

During learning if the block is knocked off the tray
or if it is not moved for 300 timesteps, then it is put
back on the tray in a random position within reach
of the agent.

3.2 Experimental Results

We evaluate the algorithm using the simple task of
moving the block in a specified direction. We ran
the algorithm five times using active learning and

Figure 3: This graph shows the agent’s performance on

the task of hitting the block as a function of experience

as it executes the learning algorithm of Section 2.7. The

x axis represents the cumulative experience of the agent,

and the y axis represents the average number of times

the agent was able to hit the block within 1000 timesteps

when the agent’s current model was extracted and used

for evaluation. Each data point represents the average of

n = 5 runs and the error bars give the standard error.

five times using passive learning and each run lasted
120,000 timesteps. The landmarks learned during
one of the active runs are shown in Table 1, and
some example rules from that run are shown in Ta-
ble 2. Each active run of the algorithm resulted in
an average of 62 predictive rules.

Every 10,000 timesteps we evaluated each run on
the task, and each data point in Fig. 3 represents
the average of the five active runs or the five pas-
sive runs. The results in Fig. 3 show that using both
passive and active exploration the agent gains profi-
ciency as it learns until reaching threshold at approx-
imately 70,000 timesteps. After reaching threshold
performance there is high variance in the results due
to the fluctuations in the statistics affecting the de-
terminism of the rules that the agent uses to hit the
block (we are currently working to remedy this). We
also see in Fig. 3 that the agent learns more quickly
using active exploration. For example, we see that
the level reached by passive exploration after 60,000
timesteps is achieved by active exploration in just
over 40,000 timesteps.

During each evaluation the agent undergoes 10 tri-
als with each trial lasting 1,000 timesteps. During
each trial a goal g is continually specified and the
agent works until g is achieved or 50 timesteps pass,
at which time the hand is moved back to its initial
position and a new goal is specified. This process
continues until the end of the trial, at which point
the number of achieved goals is noted.



The specified goal g is either ḃx→(−∞, 0), ḃx→
(0,∞), or ḃy→ (0,∞) based upon the relative po-
sitions of the hand and the block. To achieve g
the agent continually forms a plan using the sim-
ple backchaining method described in Section 2.6. It
first attempts to make a plan for g, associated with
this plan is a probability of success calculated by
taking the product of the state-dependent reliabil-
ities of each rule during backchaining. If the plan
for g does not have a probability of success above
0.1 then the agent creates a plan for each of the
four goals ḣx→(−∞, 0), ḣx→(0,∞), ḣy→(−∞, 0),
and ḣy→(0,∞) and chooses one of these randomly
weighted by the reliability of its plan. If none of these
goals has a reliability above 0.1 then the agent sets
the plan to be a random action in the form of set-
ting the motor variables ũx and ũy to random values
with a termination criterion of ten timesteps. The
agent then executes the plan. If the plan is termi-
nated before g is achieved, then the agent creates
and executes a new plan.

4. Space and Time Complexity

The number of possible events e is the sum of the
number of qualitative values for each variable. The
storage required to learn new rules is O(e2). The
number of rules is O(e2), but only a small number
are learned by the agent. Using marginal attribution
each rule requires storage O(e), although we store all
pairs of events for simplicity. To learn landmarks the
agent saves the last 20,000 timesteps, and for each
rule that generates a landmark the agent saves the
real values of each variable at the last 500 activations.

During exploration, at each timestep the algorithm
examines and possibly updates statistics for each
pair events for rule learning, and updates the statis-
tics for each activated rule and event that occurs.

5. Conclusions and Future Work

We have presented a method that with the aid of ac-
tive learning allows an agent to learn contingencies
in its environment. At the beginning of the learning
process the agent could only determine the direction
of movement of an object, but by actively exploring
its environment and using rules to learn new distinc-
tions, and in turn using those distinctions to learn
more rules, the agent has progressed from having a
very simple representation towards a representation
that is aligned with the natural “joints” of its envi-
ronment. In future work we plan to move to a serial
arm and to improve the formalism of the method
to reduce the reliance on parameters and make the
method more parsimonious.
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