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Abstract.  The Piagetian Autonomous Modeler (PAM) is a 
proposed architecture for a system that constructs an internal 
representation of a real or simulated environment based on its 
interaction with the environment. The novel aspects of PAM 
are: (1) how it spreads activation; (2) its use of two kinds of 
schemata (structural and behavioral) to connect the represen-
tational units (monads); (3) its use of multi-strategy inference 
to extend the internal model; (4) its use of a consolidation 
component to provide automaticity and forgetting; and (5) its 
evolution of successful behaviors through genetic techniques. 
The system is called Piagetian because it employs the notion 
of Monads (fundamental representational units), Schemata 
(patterns of structure and behavior), Assimilation (incorporat-
ing external elements) and Accommodation (modifying inter-
nal structures in accordance with environmental feedback) 
which are essential to the theories of Human Cognitive De-
velopment espoused by Piaget [7] [8]. 

1  BACKGROUND  

The work in “early developmental AI” as surveyed by Guerin 
[17] is replete with examples of artificial intelligence comput-
er programs that can interact with an environment, learn, and 
synthesize new concepts. Most prominent among them is 
Gary Drescher’s seminal program, the  Schema Mechanism 
[1], which employed the theories of Jean Piaget to demon-
strate aspects of learning and planning in infant cognitive 
development.    

  The PAM architecture inter-connects and advances the 
work of earlier system architects such as Drescher [1], Heib & 
Michalski [2], Tecuci & Michalski [3], Holland et al. [4], 
Goldberg [5], Riesbeck & Schank [6], Chaput [14], and oth-
ers.   

 This architecture is compatible with the developmental 
theory and embodied-social cognition theory of language 
learning as described by Kaplan, Oudeyer, and Bergen [22].   

Although embodiment (sensing and acting upon the envi-
ronment) is central to the PAM system, this work deliberately 
does not address attention, curiosity, motivation, drives, be-
liefs, desires or intentions. This omission was made in order to 
limit architectural concerns in the initial design of the system.  
These phenomena may be revisited in later phases as the PAM 
system evolves. 

2  RESEARCH GOALS 

The PAM effort is a multi-phased inquiry into early develop-
mental AI which has several objectives:  

(1)  to replicate Piaget’s sensorimotor and pre-operational 
stages of cognitive development including language ac-
quisition; 

(2)  to create smarter computer systems based on Piaget’s 
genetic epistemology that   (a) are capable of modeling 
their environment, (b) exhibit stages of development, (c) 
predict transformations in their environments, (d) learn 
from failure,  and (e) perform multistrategy inference;  

(3)  to explore the validity of the hypothesis that monads and 
schemata can be used to model a learner’s environment;  

and (4) to unify the work of Drescher and Michalski. 

3  ARCHITECTURE 

The PAM architecture described herein represents the first 
phase1 of the research effort.   

3.1. Assumptions 

The system assumptions for PAM are: 
(1)  Human learners construct a mental model to represent 

(a) the structure of and (b) transformations within their 
environment. 

(2)  Monads and schemata are sufficient to construct a pre-
dictive model of an environment. 

(3)  The PAM system is implementable on existing compu-
ting technology. 

(4)  The system performs in real time, is resilient, available, 
and scalable. 

(5)  The system is domain agnostic.  Any  domain specific 
percept and effect assertions made to the system are irre-
levant since all assertions are transformed into an inter-
nal representation of monads and schemata.  Therefore, 
only the concurrence and recurrence of the assertions are 
salient. 

3.2. Views 

Figure 1 shows PAM interacting with its environment.  
Figure 2 depicts the data tiers of the evolving model.  
Figure 3 describes the structural and behavioral schemata that 
PAM employs. 
Figure 4 shows a sample inference operation on a portion of 
the heterarchy. 
Figure 5 shows the decomposition of the system elements by 
process and object.  
Figure 6 shows the use cases for each system element. 
Figure 7 shows the system elements as components exchang-
ing data. 
Figure 8 shows the actual data flows across the elements of the 
system. 

3.3. Monads  

A monad is a data structure which represents a percept, effect, 
or concept.  Percepts represent encodings of sensor data from 
an external environment.  Effects represent the status of ac-
tions that have been performed on the external environment. 
Concepts are internally synthesized monads which represent a 
completely new entity within the model arising from some 
underlying pattern of structure or behavior. Hence, a concept is  

                                                 
1 Note that language acquisition is a long term goal and will 
not be addressed in phase 1. 
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Figure 1. PAM Context view. 

 
a schema. Schemata are structural relationships among mo-
nads, or behavioral  patterns identifying transformations in the 
environment. 

In Drescher’s Schema Mechanism, concepts are called 
“Items” (which can be in a Boolean state of On or Off).  
Drescher’s “items” correspond to “monads”. In PAM monads 
are not Boolean and hence do not represent a binary On or Off 
state.  Instead, they are continuous and use an activation time 
which denotes when they were last considered active. This 
strategy establishes an implicit notion of “decay” which is 
novel.  

Monads actually have two activation times: fact activation 
and goal activation.  These denote when they were last per-
ceived or inferred (as a fact) and when they were last needed 
to enable a prediction (as a goal). Monads also contain the 
concept of Tier which sorts them into levels of abstraction and 
allows them to form hierarchies within the larger heterarchy2.  

3.4. Detectors and Effectors 

To use PAM, one or more detector programs and one or more 
effector programs must be constructed.  Each detector pro-
gram provides PAM with continuous or discrete sensor data 
transformed into PAM’s internal representation, percept mo-
nads.  

When sense data arrive in the detector program, the pro-
gram makes assertions in the model (Figure 2). Each assertion 
either creates a new percept monad or retrieves an existing 
percept monad, which is then marked active.   

Each effector program allows PAM to issue commands to a 
device and retrieve feedback about the status of the command 
issued.  The status (unknown, pending, executing, failure, or 
success) is asserted to PAM’s model and its corresponding 
monad is created or retrieved and marked active. 

                                                 
2 The model heterarchy is the sea of monads akin to Lenat’s 
sea of assertions in Cyc[16]. 

3.5. Schemata  

In contrast to Drescher’s Schema Mechanism, which has one 
type of schema, PAM has two types of schema: structural and 
behavioral. The two types of schemata are needed because of 
the system’s primary assumptions: that both structure and be-
havior exist in an environment, and that they are different. 
Structure pertains to the relationships among entities within the 
environment, while behavior pertains to the transformations 
occurring within the environment. Structural schemata are 
defined in PAM in order to allow PAM to perform inference 
above and beyond what would be encompassed by behavioral 
schemata alone because  a human (our archetypal learner) can 
make subtle inferences which go well beyond predicting the 
effects of actions.  

Drescher’s schema consisted of a context, action, and result. 
PAM’s schemata differ substantially (see Figure 3).   

As behavior, a schema defines a predicate then(C, P, s) that 
posits: when the context C is true, the prediction P will also be 
true within a given time span s. Thus, PAM’s behavioral 
schemata contain a context and a prediction. The context con-
tains two lists: enablers and impeders. The prediction also 
contains two lists: enables and impedes. Monads can be 
present in these lists within a behavioral schema.  

As structure, a schema defines a relation R(a1..a3, i) among 
monad collections  aj  in a1..a3 at a given instant in  time i.  
PAM uses several types of structures including unary relations, 
binary relations, ternary relations, to form cases, events, types, 
plans, goals, and other concepts. 

3.6. Activation  

In PAM activation is defined as “recency,” and therefore a 
system lifespan time function is used to mark active model 
entities. A system-wide activation interval parameter is also 
defined which demarcates the cutoff between active and inac-
tive model entities.  
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Figure 2. Assertions, monads and schemata. 
 

 
The Tier Activator system element is responsible for acti-

vating monads representing structural schemata, and the Pre-
diction Matcher system element is responsible for activating 
monads representing behavioral schemata. Percept monads are 
activated by Detectors and Effect monads are activated by 
Effectors. 
 
3.7. Cases and Events 
 
Holland et. al [4] describe mental models as “assemblages of 
synchronic and diachronic rules organized into default hierar-
chies and clustered into categories.”  The PAM system con-
tains processing elements which use structural schemata to 
form synchronic (concurrent) and diachronic (sequential) 
relationships among monads.   
As monads become activated within PAM, a concurrence 
associator process connects groups of concurrently active 
monads into “cases.” A case represents a synchronic relation-
ship (existing at one instant in time) as specified by Holland 
et. al.[4].  Similarly, a sequence associator process clusters 
monads into temporal “events.” An event represents a diach-
ronic relationship (existing across a period of time)[4]. 

 
3.8. Types and Plans  
 
Cases represent instances of types (i.e., Classes). An inductor 
process synthesizes new types and clusters existing cases into 
these types. Types can also be clustered to form hierarchies of 
types. In a similar fashion events represent instances of plans.  
The inductor process aggregates events into newly synthe-
sized plans, and may further form hierarchies of plans. Pickett 
& Oates [20] have done extensive work in concept formation -
- as demonstrated by their work on the Cruncher.  An incre-

mental concept formation algorithm based on the Cruncher is 
used in the Inductor. 

A reasoner processing element in PAM builds upon these 
cases, types, events and plans by using structural schemata to 
form other higher level relationships. 
 
3.9. Inference 
 
Ryszard Michalski [1] [3] [12] has long been involved in mul-
tistrategy learning and inference. His work has largely focused 
on logical models of inference in Artificial Intelligence sys-
tems.  He and his co-authors have developed a method of infe-
rence involving Dynamically Interlaced Hierarchies.  The 
premise is that language is organized into disparate hierarchies 
or taxonomies which are connected by traces (i.e., sentences, 
in PAM, cases).  Inference then is simply a matter of perform-
ing transformations on traces (i.e., substitutions of words with-
in sentences) according to the placement of the nodes (words) 
in the related hierarchies. (See Figure 4).  

In their work on Multistrategy Inference, Heib and Mi-
chalski [2] define some basic knowledge generation transmuta-
tions which can be performed by making simple substitutions 
of select nodes in a case or event (referred to as a “trace” in the 
literature) from various related taxonomies within a model.   
By substituting constituent monads of a case (or event) accord-
ing to specific transmutations, new cases (or events), and by 
extension new inferences, can be formed. 

Hauser [13] defines thinking as navigating through the con-
tent of a word bank   (a flat ontology, or heterarchy).  “Naviga-
tion is the temporary activation of certain propositions in a 
potentially vast amount of content for purposes of inference 
and conceptualization (selecting what to say).” This view is 
consistent with Michalski’s traces in Dynamically Interlaced 
Hierarchies.  
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Figure 3. Schemata varieties in PAM. 
 

 
Riesbeck & Schank [6] discuss the utility of Case based 

reasoning and implement a system to demonstrate their theo-
ries, Unfortunately, their system is largely constructed a-priori 
and does not employ dynamically constructed cases and 
events based on interaction with an environment.  The Rea-
soner element in PAM is responsible for performing inference 
based on Michalski’s theories of Inference [1] [3] [12]. This 
combination of interactionist model construction and multi-
strategy inference is novel. 

Tecuci and Michalski [3] further define specific transmuta-
tions which can be applied to cases and events to make infe-
rences: Generalization, Specialization, Abstraction, Concre-
tion, Similization, Dissimilization, Agglomeration, Decompo-
sition, Prediction, Explanation, Selection, Generation, Charac-
terization, Discrimination, Association, Disassociation, Re-
formulation, Randomization, Insertion, Deletion, Replication, 
Destruction, Sorting, Unsorting. 

3.10. Equilibration 

Piaget [7] [8] discusses the notion of equilibrium and equili-
bration. Soros [9] also discusses the notion and use of equili-
brium.  For Soros, equilibrium occurs when predictions are 
consistently successful (with minor divergences). Disequili-
brium, conversely, is when predictions are consistently failing 
[9]. Convergence with reality means trending towards more 
and more successful predictions. Divergence with reality 

means more and more failed predictions. (George Soros' theo-
ries of Human Uncertainty and Reflexivity are instructive 
here.) 

Soros further theorizes that divergences occur in two ways: 
through Static and Dynamic Disequilibrium. Static Disequili-
brium occurs when reality changes and the mental model does 
not change. Dynamic Disequilibrium occurs when a mental 
model changes but the underlying reality has not changed 

The PAM system contains an Equilibrator component 
which modifies predictions based on prediction success or 
failure.  The Equilibrator regulates the accuracy and consisten-
cy of the systems predictions.  Failed predictions are refined to 
identify a failure cause through a process called Marginal At-
tribution (Drescher [1]). 

In addition, PAM applies genetic techniques to successful 
predictions. Behavioral schemata which are successful in pre-
dicting outcomes of actions become candidates for genetic 
transformations such as crossover and mutation per Goldberg 
[5].  

3.11. Consolidation  

This component performs the automaticity and forgetting func-
tions within PAM and serves to reclaim any low utility or use-
less model entities.   
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Figure 4. An inference example (adapted from Heib & Michalski [2]). 
 
 

 
 

Figure 5. PAM Decomposition. Note that perception elements interact with the environment, structure ele-
ments activate and create new associations among structural schemata, behavior elements activate and re-
ward behavioral schemata, and action elements determine which actions should be performed. 
 



 
 

                                                                                                                       
 

 
 

Figure 6. PAM Use Cases. 
 

 
3.12  Components 
 

(1) Detector. Transforms sensor data into activated percept 
monads within the model.  

(2) Tier Activator. Activates the monads of structural schema-
ta. 

(3) Effector. Transforms actions into environmental com-
mands, receives feedback on the execution status of the 
commands, and activates the corresponding effect monads 
within the model.  

(4) Context Matcher.  Matches behavioral schemata contexts 
with activated monads in the model. A context is satisfied 
when all enabling  monads are active and no impeding 
monads are active. 

(5) Prediction Matcher.  Matches  expectations (i.e., expiring 
predictions) to activated monads in the model, and when 
satisfied, activates the monads representing the behavioral 
schemata.  

(6) Concurrence Associator. Creates “Cases” based on the 
concurrently activated monads in a lower tier. 

(7) Sequence Associator. Creates “Events” based on the se-
quentially activated monads in a lower tier. 

(8) Inductor. Aggregates “Cases” into “Types” and “Events” 
into “Plans”. 

(9) Reasoner. Infers new relationships using multiple strate-
gies. 

(10) Equilibrator. Revises behaviors according to failure and 
evolves behaviors according to success. 

(11)  Predictor.  Sets an expiration time for a behavior’s 
prediction (thereby creating  an “expectation”) based 
on actions the system has committed to undertake.  

(12) Action Requestor. Bids for actions to be performed 
based on goals (inactive predicted monads), and satis-
fied behavior contexts. 

(13) Action Selector. Decides which action to schedule for 
execution based on multiple biases [22]. 

(14) Executor.  Invokes an action.  
(15) Consolidator. Removes useless items and combines 

useful items.  
(16) Administrative User Interface. Provides a system con-

trol dashboard and allows parameter adjustment. 

4  EXPERIMENTS 

Two experimental domains are proposed for this phase. A 
foraging domain (based on the Pioneer 3 DX robot simula-
tion environment as described in Chaput [14]) , and a robot 
play domain  (similar to Kaplan et. al. [22]) where a wireless 
mobile robot with audio and visual sensors can interact with 
various objects. 

5  IMPLEMENTATION STATUS 

The prototype is in the detailed design phase. It will be im-
plemented using an agent platform and a database (either 
conventional SQL, high performance SQL, or NO-SQL).  

 



 

                                                                                                                                                    
 

 
 

Figure 7. PAM Components. 
 

 
Figure 8. PAM  Data Flow. 



 

                                                                                                                                                    
 

6  CONCLUSIONS & FUTURE WORK 

The PAM architecture promises to be an exciting direction for 
experimentation in early developmental AI.  In contrast to 
systems such as Chaput’s CLA [14] which uses self organiz-
ing maps (SOMs), the PAM architecture seeks to exploit 
structural schemata, multi-strategy inference, cases, events 
and novel time based interconnections between percepts, ac-
tion effects, and synthesized concepts. 
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