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Abstract

Schema learning is a way to discover probabilistic, constructivist, pre-
dictive action models (schemas) from experience. It includes meth-
ods for finding and using hidden state to make predictions more accu-
rate. We extend the original schema mechanism [1] to handle arbitrary
discrete-valued sensors, improve the original learning criteria to handle
POMDP domains, and better maintain hidden state by using schema pre-
dictions. These extensions show large improvement over theoriginal
schema mechanism in several rewardless POMDPs, and achievevery low
prediction error in a difficult speech modeling task. Further, we compare
extended schema learning to the recently introduced predictive state rep-
resentations [2], and find their predictions of next-step action effects to
be approximately equal in accuracy. This work lays the foundation for a
schema-based system of integrated learning and planning.

1 Introduction

Schema learning1 is a data-driven, constructivist approach for discoveringprobabilistic ac-
tion models in dynamic controlled systems. Schemas, as described by Drescher [1], are
probabilistic units of cause and effect reminiscent of STRIPS operators [3]. A schema pre-
dicts how specific sensor values will change as different actions are executed from within
particular sensory contexts. The learning mechanism also discovers hidden state features
in order to make schema predictions more accurate.

In this work we have generalized and extended Drescher’s original mechanism to learn
more accurate predictions by using improved criteria both for discovery and refinement of
schemas as well as for creation and maintenance of hidden state. While Drescher’s work
included mechanisms for action selection, here we focus exclusively on the problem of
learning schemas and hidden state to accurately model the world. In several benchmark
POMDPs, we show that our extended schema learner produces significantly better action
models than the original. We also show that the extended learner performs well on a com-
plex, noisy speech modeling task, and that its prediction accuracy is approximately equal
to that of predictive state representations [2] on a set of POMDPs, with faster convergence.

1This use of the termschemaderives from Piaget’s usage in the 1950s; it bears no relation to
database schemas or other uses of the term.



2 Schema Learning

Schema learning is a process of constructing probabilisticaction models of the environment
so that the effects of agent actions can be predicted. Formally, a schema learner is fitted
with a set of sensorsS = {s1, s2, . . .} and a set of actionsA = {a1, a2, . . .} through
which it can perceive and manipulate the environment. Sensor values are discrete:sj

i

means thatsi has valuej. As it observes the effects of its actions on the environment,
the learner constructs predictive units of sensorimotor cause and effect calledschemas. A
schemaC

ai−→ R essentially says, “If I take actionai in situationC, I will see resultR.”
Schemas thus have three components: (1) the contextC = {c1, c2, . . . , cn} , which is a set
of sensor conditionsci ≡ sk

j that must hold for the schema to be applicable, (2) the action
that is taken, and (3) the result, which is a set of sensor conditions R = {r1, r2, . . . , rm}
predicted to follow the action. A schema is said to beapplicableif its context conditions are
satisfied,activatedif it is applicable and its action is taken, and tosucceedif it is activated
and the predicted result is observed. Schema quality is measured byreliability, which is the
probability that activation culminates in success:Rel(C

ai−→ R) = prob(Rt+1|Ct, ai(t)).

Note that schemas are not rules telling an agent what to do; rather, they are descriptions of
what will happen if the agent takes a particular action in a specific circumstance. Also note
that schema learning has no predefined states such as those found in a POMDP or HMM;
the set of sensor readingsis the state. Because one schema’s result can set up another
schema’s context, schemas fit naturally into a planning paradigm in which they are chained
from the current situation to reach sensor-defined goals.

2.1 Discovery and Refinement

Schema learning comprises two basic phases:discovery, in which context-free action/result
schemas are found, andrefinement, in which context is added to increase reliability. In
discovery, statistics track the influence of each actionai on each sensor conditionsj

r.
Drescher’s original schema mechanism accommodated only binary-valued sensors, but we
have generalized it to allow a heterogeneous set of sensors that take on arbitrary discrete
values. In the present work, we assume that the effects of actions are observed on the
subsequent timestep, which leads to the following criterion for discovering action effects:

count(at, s
j

r(t+1)) > θd, (1)

whereθd is a noise-filtering threshold. If this criterion is met, thelearner constructs a
schema∅

ai−→ sj
r , where the empty set,∅, means that the schema is applicable in any situ-

ation. This works in a POMDP because it means that executingai in some state has caused
sensorsr to give observationj, implying that such a transition exists in the underlying (but
unknown) system model. The presumption is that we can later learn what sensory context
makes this transition reliable. Drescher’s original discovery criterion generalizes in the
non-binary case to:

prob(sj

r(t+1)|at)

prob(sj

r(t+1)|at)
> θod, (2)

whereθod > 1 andat meansa was not taken at timet. Experiments in worlds of known
structure show that this criterion misses many true action effects.

When a schema is discovered, it has no context, so its reliability may be low if the effect
occurs only in particular situations. Schemas therefore begin to look for context conditions



Criterion Extended Schema Learner Original Schema Learner

Discovery count(at, s
j

r(t+1)) > θd

prob(s
j

r(t+1)
|at)

prob(s
j

r(t+1)
|at)

> θod

Binary sensors only

Refinement
Rel(C ∪ {sj

c}
ai−→ R)

Rel(C
ai−→ R)

> θ
Rel(C ∪ {sj

c}
ai−→ R)

Rel(C
ai−→ R)

> θ

Annealed threshold Static threshold
Binary sensors only

Synthetic Item Creation 0 < Rel(C
ai−→ R) < θ 0 < Rel(C

ai−→ R) < θ

No context refinement possible Schema is locally consistent
Synthetic Item Maintenance Predicted by other schemas Average duration

Table 1:Comparison of extended and original schema learners.

that increase reliability. The criterion for addingsj
c to the context ofC

ai−→ R is:

Rel(C ∪ {sj
c}

ai−→ R)

Rel(C
ai−→ R)

> θc, (3)

whereθc > 1. In practice we have found it necessary to annealθc to avoid adding spurious
context. Once the criterion is met, a child schemaC ′

ai−→ R is formed, whereC ′ = C∪sj
c.

2.2 Synthetic Items

In addition to basic discovery and refinement of schemas, a schema learner also discovers
hidden state. Consider the case where no context conditionsare found to make a schema
reliable. There must be unperceived environmental factorson which the schema’s relia-
bility depends (see [4]). The schema learner therefore creates a new binary-valued virtual
sensor, called asynthetic item, to represent the presence of conditions in the environment
that allow the schema to succeed. This addresses the state aliasing problem by splitting
the state space into two parts, one where the schema succeeds, and one where it does not.
Synthetic items are said toreify thehost schemaswhose success conditions they represent;
they have value1 if the host schema would succeed if activated, and value0 otherwise.
Upon creation, a synthetic item begins to act as a normal sensor, with one exception: the
agent has no way of directly perceiving its value. Creation and state maintenance criteria
thus emerge as the main problems associated with synthetic items.

Drescher originally posited two conditions for the creation of a synthetic item: (1) a schema
must be unreliable, and (2) the schema must be locally consistent, meaning that if it suc-
ceeds once, it has a high probability of succeeding again if activated soon afterward. The
second of these conditions formalizes the assumption that awell-behaved environment has
persistence and does not tend to radically change from moment to moment. This was moti-
vated by the desire to capture Piagetian “conservation phenomena.” While well-motivated,
we have found that the second condition is simply too restrictive. Our criterion for creating
synthetic items is0 < Rel(C

ai−→ R) < θr, subject to the constraint that the statistics
governing possible additional context conditions have converged. When this criterion is
met, a synthetic item is created and is thenceforth treated as a normal sensor, able to be
incorporated into the contexts and results of other schemas.

A newly created synthetic item is grounded: it represents whatever conditions in the world
allow the host schema to succeed when activated. Thus, upon activation of the host schema,
we retroactivelyknow the state of the synthetic item at the time of activation(1 if the
schema succeeded,0 otherwise). Because the synthetic item is treated as a sensor, we can



Figure 1: Benchmark problems. (left) The flip system. All transitions are deterministic. (right)
The float/reset system. Dashed lines representfloat transitions that happen with probability 0.5,
while solid lines represent deterministicreset transitions.

discover which previous actions led to each synthetic item state, and the synthetic item can
come to be included as a result condition in new schemas. Oncewe have reliable schemas
that predict the state of a synthetic item, we can begin to know its state non-retroactively,
without having to activate the host schema. The synthetic item’s state can potentially be
known just as well as that of the regular sensors, and its addition expands the state represen-
tation in just such a way as to make sensory predictions more reliable. Predicted synthetic
item state implicitly summarizes the relevant preceding history: it indicates that one of the
schemas that predicts it was just activated. If the predicting schema also has a synthetic
item in its context, an additional step of history is implied. Such chaining allows synthetic
items to summarize arbitrary amounts of history without explicitly remembering any of it.
This use of schemas to predict synthetic item state is in contrast to [1], which relied on the
average duration of synthetic item states in order to predict them. Table 1 compares our
extended schema learning criteria with Drescher’s original criteria.

3 Empirical Evaluation

In order to test the advantages of the extended learning criteria, we compared four ver-
sions of schema learning. The first two were basic learners that made no use of synthetic
items, but discovered and refined schemas using our extendedcriteria in one case, and the
direct generalizations of Drescher’s original criteria inthe other. The second pair added the
extended and original synthetic item mechanisms, respectively, to the first pair.

Our first experimental domains are based on those used in [5].They have a mixture of
transient and persistent hidden state and, though small, are non-trivial.2 The flip system
is shown on the left in Figure 1; it features deterministic transitions, hidden state, and
a null action that confounds simplistic history approachesto handling hidden state. The
float/reset system is illustrated on the right side of Figure 1; it features both deterministic
and stochastic transitions, as well as a more complicated hidden state structure. Finally, we
use a modifiedfloat/reset system in which thef action from the two right-most states leads
deterministically to their left neighbor; this reveals more about the hidden state structure.

To test predictive power, each schema learner, upon taking an action, uses the most reliable
of all activated schemas to predict what the next value of each sensor will be. If there is
no activation of a reliable schema to predict the value of a particular sensor, its value is
predicted to stay constant. Error is measured as the fraction of incorrect predictions.

In these experiments, actions were chosen uniformly at random, and learning was allowed
to continue throughout.3 No learning parameters are changed over time; schemas stop
being created when discovery and refinement criteria cease to generate them. Figure 2
shows the performance in each domain, while Table 2 summarizes the average error.

2E.g. [5] showed thatflip is non-trivial because it cannot be modeled exactly by k-Markov models,
and its EM-trained POMDP representations require far more than the minimum number of states.

3Note that because a prediction is made before each observation, the observation does not con-
tribute to the learning upon which its predicted value is based.
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Figure 2: Prediction error in several domains. The x-axis represents timesteps and they-axis
represents error. Each point represents average error over 100timesteps. In the speech modeling
graph, learning is stopped after approximately 4300 timesteps (shown bythe vertical line), after
which no schemas are added, though reliabilities continue to be updated.

Learner flip float/reset modified f/r

Extended 0.020 0.136 0.00716

Extended baseline 0.331 0.136 0.128

Original 0.426 0.140 0.299

Original baseline 0.399 0.139 0.315

Table 2:Average error. Calculated over 10 independent runs of 10,000 timesteps each.

3.1 Speech Modeling

The Japanese vowel dataset [6] contains time-series recordings of nine Japanese speakers
uttering theaevowel combination 54-118 times. Each data point consists of12 continuous-
valued cepstral coefficients, which we transform into 12 sensors with five discrete values
each. The data is noisy and the dynamics are non-stationary between speakers. Each utter-
ance is divided in half, with the first half treated as the action of speakinga and the latter
half ase. In order to more quickly adapt to discontinuity resulting from changes in speaker,
reliability was calculated using an exponential weightingof more recent observations; each
relevant probabilityp was updated according to:

pt+1 = αpt + (1 − α)

{

1 if event occurred at timet
0 otherwise . (4)

The parameterα is set equal to the current prediction accuracy so that decreased accuracy
causes faster adaptation. Several modifications were necessary for tractability: (1) schemas
whose reliability fell below a threshold of their parents’ reliability were removed, (2) con-



text sizes were, on separate experimental runs, restrictedto two and three items, and (3)
the synthetic item mechanisms were deactivated. Figure 2 displays results for this learner
compared to a baseline weather predictor.4

3.2 Analysis

In each benchmark problem, the learners drop to minimum error after no more than 1000
timesteps. Large divergence in the curves corresponds to the creation of synthetic items and
the discovery of schemas that predict synthetic item state.Small divergence corresponds
to differences in discovery and refinement criteria. Inflip and modifiedfloat/reset, the ex-
tended schema learner reaches zero error, having a completemodel of the hidden state, and
outperforms all other learners, while the extended basic version outperforms both original
learners. Infloat/reset, all learners perform approximately equally, reflecting the fact that,
given the hidden stochasticity of this system, the best schema for actionr is one that, with-
out reference to synthetic items, gives a prediction of1. Surprisingly, the original learner
never significantly outperformed its baseline, and even performed worse than the baseline
in flip. This is accounted for by the duration-based maintenance ofsynthetic items, which
causes the original learner to maintain transient synthetic item state longer than it should.
Prediction-based synthetic item maintenance overcomes this limitation.

The speech modeling results show that schema learning can induce high-quality action
models in a complex, noisy domain. With a maximum of three context conditions, it aver-
aged only 1.2% error while learning, and 1.6% after learningstopped, a large improvement
over the 30.3% error of the baseline weather predictor. Notethat allowing three instead
of two context conditions dropped the error from 4.6% to 1.2%and from 9.0% to 1.6% in
the training and testing phases, respectively, demonstrating the importance of incremental
specialization of schemas through context refinement.

All together, these results show that our extended schema learner produces better action
models than the original, and can handle more complex domains. Synthetic items are seen
to effectively model hidden state, and prediction-based maintenance of synthetic item state
is shown to be more accurate than duration-based maintenance in POMDPs. Discovery
of schemas is improved by our criterion, missing fewer legitimate schemas, and therefore
producing more accurate predictions. Refinement using the annealed generalization of the
original criterion performs correctly with a lower false positive rate.

4 Comparison to Predictive State Representations

Predictive state representations (PSRs; [2]), like schemalearning, are based on grounded,
sensorimotor predictions that uncover hidden state. Instead of schemas, PSRs rely
on the notion of tests. A testq is a series of alternating actions and observations
a0o0a1o1 . . . anon. In a PSR, the environment state is represented as the probabilities that
each of a set of core tests would yield its observations if itsactions were executed. These
probabilities are updated at each timestep by combining thecurrent state with the new ac-
tion/observation pair. In this way, the PSR implicitly contains a sufficient history-based
statistic for prediction, and should overcome aliasing relative to immediate observations.
[2] shows that linear PSRs are at least as compact and generalas POMDPs, while [5] shows
that PSRs can learn to accurately maintain their state in several POMDP problems.

A schema is similar to a one-step PSR test, and schema reliability roughly corresponds to
the probability of a PSR test. Schemas differ, however, in that they only specify context and
result incrementally, incorporating incremental historyvia synthetic items, while PSR tests
incorporate the complete history and full observations (i.e. all sensor readings at once) into

4A weather predictor always predicts that values will stay the same as they are presently.



Problem PSR Schema Learner Difference Schema Learning Steps

flip 0 0 0 10, 000

float/reset 0.11496 0.13369 0.01873 10, 000

network 0.04693 0.06457 0.01764 10, 000

paint 0.20152 0.21051 0.00899 30, 000

Table 3:Prediction error for PSRs and schema learning on several POMDPs.Error is averaged
over 10 epochs of 10,000 timesteps each. Performance differs by less than 2% in every case.

a test probability. A multi-step test can say more about the current state than a schema, but
is not as useful for regression planning because there is no way to extract the probability
that a particular one of its observations will be obtained. Thus, PSRs are more useful as
Markovian state for reinforcement learning, while schemasare useful for explicit planning.
Note that synthetic items and PSR core test probabilities both attempt to capture a sufficient
history statistic without explicitly maintaining history. This suggests a deeper connection
between the two approaches, but the relationship has yet to be formalized.

We compared the predictive performance of PSRs with that of schema learning on some of
the POMDPs from [5]. One-step PSR core tests can be used to predict observations: as an
action is taken, the probability of each observation is the probability of the one-step core
test that uses the current action and terminates in that observation. We choose the most
probable observation as the PSR prediction. This allows us to evaluate PSR predictions
using the same error measure (fraction of incorrect predictions) as in schema learning.5

In our experiments, the extended schema learner was first allowed to learn until it reached
an asymptotic minimum error (no longer than 30,000 steps). Learning was then deactivated,
and the schema learner and PSR each made predictions over a series of randomly chosen
actions. Table 3 presents the average performance for each approach.

Learning PSR parameters required 1-10 million timesteps [5], while schema learning used
no more than 30,000 steps. Also, learning PSR parameters required access to the underly-
ing POMDP [5], whereas schema learning relies solely on sensorimotor information.

5 Related Work

Aside from PSRs, schema learning is also similar to older work in learning planning op-
erators, most notably that of Wang [7], Gil [8], and Shen [9].These approaches use ob-
servations to learn classical, deterministic STRIPS-likeoperators in predicate logic envi-
ronments. Unlike schema learning, they make the strong assumption that the environment
does not produce noisy observations. Wang and Gil further assume no perceptual aliasing.

Other work in this area has attempted to handle noise, but only in the problem of context
refinement. Benson [10] gives his learner prior knowledge about action effects, and the
learner finds conditions to make the effects reliable with some tolerance for noise. One
advantage of Benson’s formalism is that his operators are durational, rather than atomic
over a single timestep. Balac et al. [11] use regression trees to find regions of noisy,
continuous sensor space that cause a specified action to varyin the degree of its effect.

Finally, Shen [9] and McCallum [12] have mechanisms for handling state aliasing. Shen
uses differences in successful and failed predictions to identify pieces of history that reveal
hidden state. His approach, however, is completely noise intolerant. McCallum’s UTree
algorithm selectively adds pieces of history in order to maximize prediction of reward.

5Unfortunately, not all the POMDPs from [5] had one-step core tests to cover the probability of
every observation given every action. We restricted our comparisonsto the four systems that had at
least two actions for which the probability of all next-step observations could be determined.



This bears a strong resemblance to the history represented by chains of synthetic items, a
connection that should be explored more fully. Synthetic items, however, are for general
sensor prediction, which contrasts with UTree’s task-specific focus on reward prediction.
Schema learning, PSRs, and the UTree algorithm are all highly related in this sense of
selectively tracking history information to improve predictive performance.

6 Discussion and Future Work

We have shown that our extended schema learner produces accurate action models for a
variety of POMDP systems and for a complex speech modeling task. The extended schema
learner performs substantially better than the original, and compares favorably in predictive
power to PSRs while appearing to learn much faster. Buildingprobabilistic goal-regression
planning on top of the schemas is a logical next step; however, to succeed with real-world
planning problems, we believe that we need to extend the learning mechanism in several
ways. For example, the schema learner must explicitly handle actions whose effects occur
over an extended duration instead of after one timestep. Thelearner should also be able to
directly handle continuous-valued sensors. Finally, the current mechanism has no means
of abstracting similar schemas, e.g., to reducex1

1
a
−→ x2

1 andx2
1

a
−→ x3

1 to x
p
1

a
−→ x

p+1
1 .
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