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Abstract

Schema learning is a way to discover probabilistic, comsinst, pre-
dictive action models (schemas) from experience. It inetudheth-
ods for finding and using hidden state to make predictionsenagcu-
rate. We extend the original schema mechanism [1] to hanbigary

discrete-valued sensors, improve the original learniitgria to handle
POMDP domains, and better maintain hidden state by usingnsalpre-
dictions. These extensions show large improvement oveotiginal

schema mechanism in several rewardless POMDPs, and agkigMew

prediction error in a difficult speech modeling task. Furtiee compare
extended schema learning to the recently introduced pieelgtate rep-
resentations [2], and find their predictions of next-stefoaceffects to
be approximately equal in accuracy. This work lays the fatiod for a
schema-based system of integrated learning and planning.

1 Introduction

Schema learningis a data-driven, constructivist approach for discovegrapabilistic ac-
tion models in dynamic controlled systems. Schemas, agitdeddby Drescher [1], are
probabilistic units of cause and effect reminiscent of HRbperators [3]. A schema pre-
dicts how specific sensor values will change as differenbastare executed from within
particular sensory contexts. The learning mechanism assmyers hidden state features
in order to make schema predictions more accurate.

In this work we have generalized and extended Dreschergnaili mechanism to learn
more accurate predictions by using improved criteria bottdfscovery and refinement of
schemas as well as for creation and maintenance of hidden $thile Drescher’s work
included mechanisms for action selection, here we focukisixely on the problem of
learning schemas and hidden state to accurately model tHd.wio several benchmark
POMDPs, we show that our extended schema learner produp@fcsintly better action
models than the original. We also show that the extendeddegerforms well on a com-
plex, noisy speech modeling task, and that its predictimui@cy is approximately equal
to that of predictive state representations [2] on a set d¥PBs, with faster convergence.

1This use of the ternschemaderives from Piaget’s usage in the 1950s; it bears no relation to
database schemas or other uses of the term.



2 Schema Learning

Schema learning is a process of constructing probabiistion models of the environment
so that the effects of agent actions can be predicted. Flynaaschema learner is fitted
with a set of sensor§ = {s1,s2,...} and a set of actiond = {aq,as,...} through
which it can perceive and manipulate the environment. Seveloes are discretes’
means thak; has valuej. As it observes the effects of its actions on the environgment
the learner constructs predictive units of sensorimotaseand effect calleschemasA
schemaC %5 R essentially says, “If | take actiom in situationC', | will see resultR.”
Schemas thus have three components: (1) the cofitext{c;, ca, ..., c,} , Which is a set

of sensor conditions; = sf that must hold for the schema to be applicable, (2) the action
that is taken, and (3) the result, which is a set of sensoritond R = {ry,72,...,7m}
predicted to follow the action. A schema is said tcpelicableif its context conditions are
satisfiedactivatedif it is applicable and its action is taken, andsiocceedf it is activated
and the predicted resultis observed. Schema quality isume@byreliability, which is the
probability that activation culminates in succe®l(C' 2% R) = prob(Ri;1|Ct, ai(t))-

Note that schemas are not rules telling an agent what to tteerahey are descriptions of
what will happen if the agent takes a particular action inecHit circumstance. Also note
that schema learning has no predefined states such as thwskifioa POMDP or HMM;

the set of sensor readingsthe state. Because one schema’s result can set up another
schema’s context, schemas fit naturally into a planningdignain which they are chained
from the current situation to reach sensor-defined goals.

2.1 Discovery and Refinement

Schema learning comprises two basic phadiessoveryin which context-free action/result
schemas are found, amdfinementin which context is added to increase reliability. In
discovery, statistics track the influence of each actipron each sensor conditiosy..
Drescher’s original schema mechanism accommodated amdyysivalued sensors, but we
have generalized it to allow a heterogeneous set of sertsatrsake on arbitrary discrete
values. In the present work, we assume that the effects afnactre observed on the
subsequent timestep, which leads to the following critefar discovering action effects:

count(ay, si(tﬂ)) > 04, 1)

whered, is a noise-filtering threshold. If this criterion is met, tlearner constructs a
schemd %% s, where the empty seff, means that the schema is applicable in any situ-
ation. This works in a POMDP because it means that executiilgsome state has caused
senso,. to give observatior, implying that such a transition exists in the underlyingt(b
unknown) system model. The presumption is that we can lagnlwhat sensory context
makes this transition reliable. Drescher’s original disry criterion generalizes in the
non-binary case to:

prob(si(tﬂ) las)

- — > Hod, (2)
prob(s; 1 [at)

whered,, > 1 anda; meansas was not taken at time Experiments in worlds of known
structure show that this criterion misses many true actifates.

When a schema is discovered, it has no context, so its réfjabiby be low if the effect
occurs only in particular situations. Schemas therefogért® look for context conditions



| Criterion || Extended Schema Learner | Original Schema Learner
. ; prob(s? | lar)
Discovery count(at, s} ;1)) > 0a Prob(oL 1y > Bod
Binary sensors only
iy i Jy
Refinement Rel(C'U {s,;} — R) > 9 Rel(C'U {s%} — R) <9
Rel(C — R) Rel(C — R)
Annealed threshold Static threshold
Binary sensors only
Synthetic ltem Creation 0<Rel(C X R)< 0 0<Rel(C X R)< 0
No context refinement possible Schema is locally consistent
Synthetic Item Maintenancg Predicted by other schemas | Average duration

Table 1:Comparison of extended and original schema learners.

that increase reliability. The criterion for addirgjto the context of2 *% R is:

Rel(CU{sl} %5 R)
Rel(C %5 R)

> 0., 3

wheref. > 1. In practice we have found it necessary to anfigad avoid adding spurious
context. Once the criterion is met, a child schefffa™> R is formed, wher&’ = CUs.

2.2 Synthetic Items

In addition to basic discovery and refinement of schemasharsa learner also discovers
hidden state. Consider the case where no context condaienfound to make a schema
reliable. There must be unperceived environmental factorg/hich the schema’s relia-
bility depends (see [4]). The schema learner thereforaesemnew binary-valued virtual
sensor, called aynthetic itemto represent the presence of conditions in the environment
that allow the schema to succeed. This addresses the stdim@lproblem by splitting
the state space into two parts, one where the schema suceeddsne where it does not.
Synthetic items are said teify the host schemawhose success conditions they represent;
they have valud if the host schema would succeed if activated, and valogherwise.
Upon creation, a synthetic item begins to act as a nhormabsewgh one exception: the
agent has no way of directly perceiving its value. Creatind state maintenance criteria
thus emerge as the main problems associated with syntteatis.i

Drescher originally posited two conditions for the creatid a synthetic item: (1) a schema
must be unreliable, and (2) the schema must be locally demsjsneaning that if it suc-
ceeds once, it has a high probability of succeeding agaictifated soon afterward. The
second of these conditions formalizes the assumption tvatlebehaved environment has
persistence and does not tend to radically change from micimeroment. This was moti-
vated by the desire to capture Piagetian “conservationgrhena.” While well-motivated,
we have found that the second condition is simply too restecOur criterion for creating
synthetic items i) < Rel(C %> R) < 6,, subject to the constraint that the statistics
governing possible additional context conditions haveveaged. When this criterion is
met, a synthetic item is created and is thenceforth treatem rrormal sensor, able to be
incorporated into the contexts and results of other schemas

A newly created synthetic item is grounded: it representatefer conditions in the world
allow the host schema to succeed when activated. Thus, @tigatéon of the host schema,
we retroactivelyknow the state of the synthetic item at the time of activafjonf the
schema succeedeiptherwise). Because the synthetic item is treated as aisemsacan
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Figure 1: Benchmark problems. (left) Theflip system. All transitions are deterministic. (right)

The float/reset system. Dashed lines represdlioat transitions that happen with probability 0.5,
while solid lines represent deterministiset transitions.

discover which previous actions led to each synthetic itextesand the synthetic item can
come to be included as a result condition in new schemas. ®adwve reliable schemas
that predict the state of a synthetic item, we can begin tawkit® state non-retroactively,
without having to activate the host schema. The synthediv’'#t state can potentially be
known just as well as that of the regular sensors, and itsiaddixpands the state represen-
tation in just such a way as to make sensory predictions natigbte. Predicted synthetic
item state implicitly summarizes the relevant precedirggdny: it indicates that one of the
schemas that predicts it was just activated. If the predictichema also has a synthetic
item in its context, an additional step of history is impli&uch chaining allows synthetic
items to summarize arbitrary amounts of history withoutlieitty remembering any of it.
This use of schemas to predict synthetic item state is irrasnto [1], which relied on the
average duration of synthetic item states in order to ptédem. Table 1 compares our
extended schema learning criteria with Drescher’s origiriteria.

3 Empirical Evaluation

In order to test the advantages of the extended learningrieritwe compared four ver-
sions of schema learning. The first two were basic learnetsnmiade no use of synthetic
items, but discovered and refined schemas using our extenmideda in one case, and the
direct generalizations of Drescher’s original criteridhie other. The second pair added the
extended and original synthetic item mechanisms, resfygtto the first pair.

Our first experimental domains are based on those used inTlay have a mixture of
transient and persistent hidden state and, though smalhan-trivial> The flip system

is shown on the left in Figure 1; it features deterministensitions, hidden state, and
a null action that confounds simplistic history approacteebandling hidden state. The
float/reset system is illustrated on the right side of Figure 1; it featuboth deterministic
and stochastic transitions, as well as a more complicatidehistate structure. Finally, we
use a modifiefloat/reset system in which the¢ action from the two right-most states leads
deterministically to their left neighbor; this reveals ra@bout the hidden state structure.

To test predictive power, each schema learner, upon takirgiion, uses the most reliable
of all activated schemas to predict what the next value ofi sgnsor will be. If there is

no activation of a reliable schema to predict the value of riqudar sensor, its value is

predicted to stay constant. Error is measured as the freofimcorrect predictions.

In these experiments, actions were chosen uniformly atmandnd learning was allowed

to continue throughout. No learning parameters are changed over time; schemas stop
being created when discovery and refinement criteria caagerierate them. Figure 2
shows the performance in each domain, while Table 2 sumesatiie average error.

2E.qg. [5] showed thdftip is non-trivial because it cannot be modeled exactly by k-Markov fisode
and its EM-trained POMDP representations require far more than the mimimmber of states.

Note that because a prediction is made before each observation, #reailm does not con-
tribute to the learning upon which its predicted value is based.
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Figure 2: Prediction error in several domains. The z-axis represents timesteps and thaxis
represents error. Each point represents average error ovami@éteps. In the speech modeling
graph, learning is stopped after approximately 4300 timesteps (showvtinebyertical line), after
which no schemas are added, though reliabilities continue to be updated.

| Learner || flip | float/reset] modified f/r |
Extended|| 0.020 | 0.136 0.00716
Extended baselingl 0.331 | 0.136 0.128
Original || 0.426 | 0.140 0.299
Original baseline|| 0.399 | 0.139 0.315

Table 2:Average error. Calculated over 10 independent runs of 10,000 timesteps each.

3.1 Speech Modeling

The Japanese vowel dataset [6] contains time-series tiagardf nine Japanese speakers
uttering theaevowel combination 54-118 times. Each data point consist2afontinuous-
valued cepstral coefficients, which we transform into 12sesnwith five discrete values
each. The data is noisy and the dynamics are non-statioeamebn speakers. Each utter-
ance is divided in half, with the first half treated as the@ttf speaking and the latter
half ase. In order to more quickly adapt to discontinuity resultingrh changes in speaker,
reliability was calculated using an exponential weightifighore recent observations; each
relevant probabilityy was updated according to:

1 if event occurred at time
pre1=apt +(1—a) { 0 otherwise : )

The parametet is set equal to the current prediction accuracy so that dseckaccuracy
causes faster adaptation. Several modifications were seayder tractability: (1) schemas
whose reliability fell below a threshold of their parentsliability were removed, (2) con-



text sizes were, on separate experimental runs, restriocteglo and three items, and (3)
the synthetic item mechanisms were deactivated. Figurs@ayis results for this learner
compared to a baseline weather prediétor.

3.2 Analysis

In each benchmark problem, the learners drop to minimunr efter no more than 1000
timesteps. Large divergence in the curves corresponds wéation of synthetic items and
the discovery of schemas that predict synthetic item stateall divergence corresponds
to differences in discovery and refinement criteriaflimand modifiedloat/reset, the ex-
tended schema learner reaches zero error, having a compiet of the hidden state, and
outperforms all other learners, while the extended bagsisiae outperforms both original
learners. Irfloat/reset, all learners perform approximately equally, reflecting thct that,
given the hidden stochasticity of this system, the bestraelfer action- is one that, with-
out reference to synthetic items, gives a prediction.o8urprisingly, the original learner
never significantly outperformed its baseline, and evefopmed worse than the baseline
in flip. This is accounted for by the duration-based maintenanesgrahetic items, which
causes the original learner to maintain transient syrtliein state longer than it should.
Prediction-based synthetic item maintenance overconie$riitation.

The speech modeling results show that schema learning daicanhigh-quality action
models in a complex, noisy domain. With a maximum of thregedrconditions, it aver-
aged only 1.2% error while learning, and 1.6% after learsiogped, a large improvement
over the 30.3% error of the baseline weather predictor. Nuweallowing three instead
of two context conditions dropped the error from 4.6% to 129d from 9.0% to 1.6% in
the training and testing phases, respectively, demoimgjrtite importance of incremental
specialization of schemas through context refinement.

All together, these results show that our extended schearade produces better action
models than the original, and can handle more complex dam&ynthetic items are seen
to effectively model hidden state, and prediction-basehteaance of synthetic item state
is shown to be more accurate than duration-based mainteriarROMDPs. Discovery
of schemas is improved by our criterion, missing fewer legite schemas, and therefore
producing more accurate predictions. Refinement usingrtheaed generalization of the
original criterion performs correctly with a lower falsegikive rate.

4 Comparison to Predictive State Representations

Predictive state representations (PSRs; [2]), like schearaing, are based on grounded,
sensorimotor predictions that uncover hidden state. &dstef schemas, PSRs rely
on the notion of tests. A test is a series of alternating actions and observations
ap00a101 . .. ay0,. In @ PSR, the environment state is represented as the plitesihat
each of a set of core tests would yield its observations Hétsons were executed. These
probabilities are updated at each timestep by combiningthent state with the new ac-
tion/observation pair. In this way, the PSR implicitly caims a sufficient history-based
statistic for prediction, and should overcome aliasingtie¢ to immediate observations.
[2] shows that linear PSRs are at least as compact and geisd?@MDPs, while [5] shows
that PSRs can learn to accurately maintain their state erabPOMDP problems.

A schema is similar to a one-step PSR test, and schema ligjiabughly corresponds to
the probability of a PSR test. Schemas differ, however,anttiey only specify context and
result incrementally, incorporating incremental histeiy synthetic items, while PSR tests
incorporate the complete history and full observatiores @ll sensor readings at once) into

“A weather predictor always predicts that values will stay the same asgyesently.



| Problem|[| PSR | Schema Learnef Difference| Schema Learning Steps

flip || O 0 0 10,000
float/reset|| 0.11496 | 0.13369 0.01873 10, 000
network || 0.04693 | 0.06457 0.01764 10,000
paint || 0.20152 | 0.21051 0.00899 30,000

Table 3:Prediction error for PSRs and schema learning on several POMDP<%rror is averaged
over 10 epochs of 10,000 timesteps each. Performance differsbhien 2% in every case.

a test probability. A multi-step test can say more about tiveenit state than a schema, but
is not as useful for regression planning because there isayatevextract the probability
that a particular one of its observations will be obtainetiug; PSRs are more useful as
Markovian state for reinforcement learning, while schearasuseful for explicit planning.
Note that synthetic items and PSR core test probabilitiés &bempt to capture a sufficient
history statistic without explicitly maintaining historyrhis suggests a deeper connection
between the two approaches, but the relationship has yetfarinalized.

We compared the predictive performance of PSRs with thatledsa learning on some of
the POMDPs from [5]. One-step PSR core tests can be useddizipobservations: as an
action is taken, the probability of each observation is ttabability of the one-step core
test that uses the current action and terminates in thanaiigm. We choose the most
probable observation as the PSR prediction. This allow® wevaluate PSR predictions
using the same error measure (fraction of incorrect priedis} as in schema learnirg.

In our experiments, the extended schema learner was fiostedl to learn until it reached

an asymptotic minimum error (no longer than 30,000 stepsarihing was then deactivated,
and the schema learner and PSR each made predictions owigsacggandomly chosen

actions. Table 3 presents the average performance for pacbah.

Learning PSR parameters required 1-10 million timestehs\bile schema learning used
no more than 30,000 steps. Also, learning PSR parametargeddccess to the underly-
ing POMDP [5], whereas schema learning relies solely onag@mstor information.

5 Related Work

Aside from PSRs, schema learning is also similar to oldekvimtearning planning op-
erators, most notably that of Wang [7], Gil [8], and Shen [Bhese approaches use ob-
servations to learn classical, deterministic STRIPS-tigerators in predicate logic envi-
ronments. Unlike schema learning, they make the strongrvgstion that the environment
does not produce noisy observations. Wang and Gil furtrermas no perceptual aliasing.

Other work in this area has attempted to handle noise, bytinrthe problem of context
refinement. Benson [10] gives his learner prior knowledgeualaction effects, and the
learner finds conditions to make the effects reliable wittnedolerance for noise. One
advantage of Benson’s formalism is that his operators aratidnal, rather than atomic
over a single timestep. Balac et al. [11] use regressiors tredind regions of noisy,
continuous sensor space that cause a specified action tonwhe degree of its effect.

Finally, Shen [9] and McCallum [12] have mechanisms for higdstate aliasing. Shen
uses differences in successful and failed predictionsantify pieces of history that reveal
hidden state. His approach, however, is completely noisdeirant. McCallum’s UTree
algorithm selectively adds pieces of history in order to meze prediction of reward.

SUnfortunately, not all the POMDPs from [5] had one-step core testswerdbe probability of
every observation given every action. We restricted our comparisaihe four systems that had at
least two actions for which the probability of all next-step observationkldmidetermined.



This bears a strong resemblance to the history represepteldins of synthetic items, a
connection that should be explored more fully. Synthegmi, however, are for general
sensor prediction, which contrasts with UTree’s task-gjgefocus on reward prediction.

Schema learning, PSRs, and the UTree algorithm are allyhigiéted in this sense of
selectively tracking history information to improve pretilie performance.

6 Discussion and Future Work

We have shown that our extended schema learner producesatecaation models for a
variety of POMDP systems and for a complex speech modelsig Ehe extended schema
learner performs substantially better than the originad, @mpares favorably in predictive
power to PSRs while appearing to learn much faster. Builghofpabilistic goal-regression
planning on top of the schemas is a logical next step; how&vasucceed with real-world
planning problems, we believe that we need to extend thailggumechanism in several
ways. For example, the schema learner must explicitly faacdiions whose effects occur
over an extended duration instead of after one timestepleBnaer should also be able to
directly handle continuous-valued sensors. Finally, tineent mechanism has no means

of abstracting similar schemas, e.g., to redute® 22 andz?2 % 23 tox? L 2P+,
1 1 1 1 1
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