
An intrinsically-motivated schema mechanism to model and
simulate emergent cognition

Action Editor: Ron Sun

Olivier L. Georgeon a,b,⇑, Frank E. Ritter b

aUniversité de Lyon, CNRS, LIRIS, UMR5205, F-69622, France
bThe Pennsylvania State University, University Park, PA 16802, USA

Received 4 April 2011; accepted 30 May 2011

Abstract

We introduce an approach to simulate the early mechanisms of emergent cognition based on theories of enactive cognition and on
constructivist epistemology. The agent has intrinsic motivations implemented as inborn proclivities that drive the agent in a proactive
way. Following these drives, the agent autonomously learns regularities afforded by the environment, and hierarchical sequences of
behaviors adapted to these regularities. The agent represents its current situation in terms of perceived affordances that develop through
the agent’s experience. This situational representation works as an emerging situation awareness that is grounded in the agent’s interac-
tion with its environment and that in turn generates expectations and activates adapted behaviors. Through its activity and these aspects
of behavior (behavioral proclivity, situation awareness, and hierarchical sequential learning), the agent starts to exhibit emergent sensi-
bility, intrinsic motivation, and autonomous learning. Following theories of cognitive development, we argue that this initial autono-
mous mechanism provides a basis for implementing autonomously developing cognitive systems.
! 2011 Elsevier B.V. All rights reserved.

Keywords: Motivation; Autonomous learning; Cognitive development; Enactive cognition; Affordances; Constructivism; Cognitive architecture

1. Introduction

We introduce a model that simultaneously addresses
three issues regarding cognition: intrinsic motivation,
autonomously constructed internal state, and adaptive
learning. The first issue, intrinsic motivation, is the ques-
tion of implementing a system whose behavior is driven
by inward forces, impetus, or proclivity (e.g., Blank,
Kumar, Meeden, & Marshall, 2005; Oudeyer & Kaplan,
2007). Intrinsically motivated behavior contrasts with
extrinsically motivated behavior that consists of perform-
ing a task, seeking a goal, or solving a problem as pre-
scribed or defined by an external person.

The second issue is the question of autonomously con-
structing an internal state that reflects the agent’s situation.
Such an internal situational state allows the agent to adapt
its behavior to the current context. In cognitive science, the
agent’s situational state is generally referred to as the
agent’s representation of the situation or, in human factors,
situation awareness (Endsley, 1995). The term perception
may also be used insofar as perception is taken as a cogni-
tive construct rather than simple data received from the
environment (e.g., Bajcsy, 1988). If autonomously con-
structed, the internal situational state reflects how the agent
experiences the situation rather than how the designer
models the situation. In other words, we expect an auton-
omous situational state to rest upon minimal ontological
commitments made by the designer about the environment.
Moreover, the designer should neither predefine the
semantics of such situational states nor implement these
semantics in the form of a reasoning mechanism based

1389-0417/$ - see front matter ! 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.cogsys.2011.07.003

⇑ Corresponding author at: Université de Lyon, CNRS, LIRIS,
UMR5205, F-69622, France.

E-mail address: olivier.georgeon@liris.cnrs.fr (O.L. Georgeon).

www.elsevier.com/locate/cogsys

Available online at www.sciencedirect.com

Cognitive Systems Research xxx (2011) xxx–xxx

Please cite this article in press as: Georgeon, O. L., & Ritter, F. E. An intrinsically-motivated schema mechanism to model and sim-
ulate emergent cognition. Cognitive Systems Research (2011), doi:10.1016/j.cogsys.2011.07.003

http://dx.doi.org/10.1016/j.cogsys.2011.07.003
mailto:olivier.georgeon@liris.cnrs.fr
http://dx.doi.org/10.1016/j.cogsys.2011.07.003
http://dx.doi.org/10.1016/j.cogsys.2011.07.003
sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

on a predefined ontology. Many authors (e.g., Dennett,
1991; Hurley, 1998; Pfeifer, 1996) have agued against cog-
nitive modeling based on a predefined ontology. In essence,
these arguments prompt us not to implement a “Cartesian
theater” (Dennett, 1991) where the representation would be
interpreted by a “homunculus” (Pfeifer, 1996). Instead, the
internal state should be directly operative by being interwo-
ven with the motivational mechanism that gives rise to
behavior (Weill-Fassina, Rabardel, & Dubois, 1993).

The third issue is the question of adaptive learning
through interaction. Most studies in adaptive learning dis-
tinguish between a learning phase where the knowledge is
acquired, and a performance phase where the learning is
assessed. Aha (1998) highlights two categories of learning
algorithms according to how the computation is balanced
across these two phases: eager learning and lazy learning.
Eager learning algorithms compile input samples and use
only the compilation to make decisions (e.g., reinforcement
learning). Lazy learning algorithms perform little compila-
tion and reuse the stored input samples to make decisions
(e.g., schema mechanisms, case-based-reasoning). In agree-
ment with Aha (1998), Wolpert and Macready (1997)
argued that “there is no free lunch” in unsupervised learn-
ing algorithms: what is gained in performance is lost in gen-
erality, and vice versa. In this work, we investigate an
autonomous developmental approach where the system
gradually learns to process its input through its activity.
In this case, learning is intertwined with performance. We
expect the system to begin with lazy learning (making min-
imal assumptions about the environment), then gradually
trade generality in favor of performance through the sys-
tem’s development.

This work investigates the hypothesis that these three
issues (intrinsic motivation, self created state, adaptive
learning) are intertwined, and that a system addressing them
simultaneously will exhibit emergent cognition. The intui-
tion behind this hypothesis is that the system’s intrinsicmoti-
vation would provide criteria for autonomously assessing
the system’s learning; the system’s autonomous learning
would provide an evolving way to autonomously encode
the agent’s internal situational state; and the autonomous
internal situational state, in turn, would offer a way to aggre-
gate the agent’s experience into knowledge suited to the
agent’s motivation. We named this hypothesis the triple-
autonomy hypothesis: motivational autonomy, representa-
tional autonomy, learning autonomy.

With the triple-autonomy hypothesis, we want to con-
tribute to an ongoing debate on the notion of autonomy
in the cognitive sciences (e.g., Froese, Virgo, & Izquierto,
2007). Indeed, one could argue that even natural cognitive
organisms are not fully autonomous because they incorpo-
rate cognitive biases that implement knowledge gained
through phylogenetic evolution. In our case, we limit the
knowledge pre-implemented in the agent to two aspects:
(a) we predefine the possibilities of interaction that the agent
has with its environment in the form of valued primitive
interactions; (b) we implement a mechanism capable of

learning and exploiting hierarchical sequences of interac-
tions. We posit that the triple-autonomy hypothesis would
be falsified if these kinds of prerequisites proved insufficient
to implement agents that demonstrate emergent cognition.
We nonetheless acknowledge that other innate biases might
be needed to facilitate higher-level developmental stages, for
example, to learn spatial regularities or object permanency.

With emergent cognition, we refer to cognitive develop-
ment ab-nihilo—sometimes called bootstrapping cognition
(e.g., Dennett, 1998). Different developmental theories
have identified various stages in the cognitive development
process. We retain here Piaget’s (1937) idea of a sensorimo-
tor earliest stage that precedes the discovery of persistent
objects in the world and underpins later symbolic thought
upon such objects. For the present work, though, the ear-
liest stage can also fit the framework of phylogenetic evolu-
tion of animal cognition, as discussed for example by Sun
(2004). Because such early stage mechanisms focus primar-
ily on behavior organization rather than cognitive states,
these mechanisms can also be related to the situated (e.g.,
Hutchins, 1995; Suchman, 1987), embodied (e.g., Varela,
Thompson, & Rosch, 1991), and enactive (e.g., Noë,
2004; Stewart, Gapenne, & Di Paolo, 2008) theories of cog-
nition. For these authors, early stage cognitive phenomena
generally include processes such as learning and knowing
something about how to interact with the environment,
demonstrating emergent preferences and awareness of the
situation, and acquiring sequential behaviors capable of
generating anticipation of the consequences of actions.
More specifically, enactive theories suggest a developmen-
tal design principle according to which, “as a result from
action, the agent’s perception of its environment may be
altered in such a way that [the agent] will never again per-
ceive that environment in the same way” (De Loor, Man-
ac’h, & Tisseau, 2010, p. 330).

We report here a model as a proof-of-concept based on
the triple-autonomy hypothesis that exhibits emergent cog-
nition. We named this model the intrinsically-motivated
schema mechanism. In its current state, we should be clear
that we do not expect this model to account for symbolic
reasoning or reflecting as it is done in human-like intelli-
gence. Our motivation for this work comes from our belief
that studying such early mechanisms can open the way to
implementing autonomous higher-level intelligence, but,
for the moment, we can only rely on arguments proposed
by psychologists or philosophers to support this claim
(e.g., Dennett, 1991; Piaget, 1970). Yet, we expect this algo-
rithm to bring insights with regards to these theories, espe-
cially by informing our understanding of how agents can
autonomously construct emergent representations of the
situation that are grounded in the agent’s activity (Harnad,
1990).

2. Implementation background

Our intrinsically-motivated schema mechanism mostly
rests upon three different mechanisms of machine learning

2 O.L. Georgeon, F.E. Ritter / Cognitive Systems Research xxx (2011) xxx–xxx

Please cite this article in press as: Georgeon, O. L., & Ritter, F. E. An intrinsically-motivated schema mechanism to model and sim-
ulate emergent cognition. Cognitive Systems Research (2011), doi:10.1016/j.cogsys.2011.07.003

http://dx.doi.org/10.1016/j.cogsys.2011.07.003
sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

and cognitive modeling. The first mechanism is a mecha-
nism of reinforcement learning based on intrinsic reward
(Singh, Barto, & Chentanez, 2005). The second mechanism
is a hierarchical schema mechanism inspired from Piagetian
(1970) constructivist epistemology and from schema-based
approaches to cognition (e.g., Arbib, 1992; Rumelhart &
Norman, 1981) and hierarchy in systems (Simon, 1981).
The third mechanism is a mechanism of episodic memory
inspired by trace-based reasoning (Cordier, Mascret, &
Mille, 2009; Mille, 2006). Besides these three sources of
inspiration, the algorithm also implements an original view
of the agent’s inward drives that define the agent’s intrinsic
motivation.

The algorithm includes a notion of reinforcement learn-
ing in that the agent discovers the environment’s structure
through trial and error. Behaviors are weighted and their
weights are incremented when the behavior is enacted in
the environment. This weight operates as reinforcement
in that the agent selects the most strongly weighted behav-
iors. The algorithm, however, differs from classical rein-
forcement learning in that the learning does not come
from a reward that is given when the agent reaches a goal,
with the reward subsequently backward-propagated to pre-
vious states. By definition, an intrinsically motivated agent
has no pre-implemented mechanism that detects final goal
achievement, nor is the agent exploring a pre-defined prob-
lem space. Therefore, the agent cannot attribute the classi-
cal utility values to transitions within such a problem space.

To report our agent’s mechanism, we define the notion
of proclivity value in correspondence to the notion of utility
value in traditional reinforcement learning mechanisms.
Subjectively, the notion of proclivity value corresponds to
the agent’s intrinsic satisfaction in an equivalent way as
the notion of utility value corresponds to reward. The
nuance resides in that intrinsic satisfaction merely comes
from enacting the behavior while reward comes from the
outcome of the behavior. To an external observer, our
agent seems to enjoy enacting behaviors that have a posi-
tive proclivity value, and to dislike enacting behaviors that
have a negative proclivity value, regardless of the behav-
ior’s outcomes. With our algorithm, nonetheless, the agent
can learn to choose unsatisfying behaviors (negative pro-
clivity values) in one context to reach other contexts where
the agent can enact behaviors that are even more satisfying
(positive proclivity values). In the rest of this paper, we use
the terms proclivity value and satisfaction value equiva-
lently, the former term corresponding to a programming
perspective and the latter to an explanatory perspective.
Overall, this learning mechanism results in increasing the
agent’s average satisfaction, that is, improving the capacity
of the agent to enact the behaviors that have the highest
proclivity.

The model also is related to Piaget’s (1970) constructiv-
ist epistemology. Piaget’s foundational intuition is that the
distinction between the inner self and the external world is
not innate but is learned by the subject: “Intelligence (and
therefore knowledge) begins not with the knowledge of the

self, nor with the knowledge of things as such, but with the
knowledge of their interaction; intelligence organizes the
world while organizing itself by simultaneously considering
the two poles of this interaction”.1 Following this intuition,
Piaget suggests that atomic elements of cognition are not
symbols that represent individual things but schemes that
represent individual interactions.

Piaget’s theories have inspired a range of computer
implementations called schema mechanisms (e.g., Arkin,
1987; Chaput, 2004; Drescher, 1991; Guerin & McKenzie,
2008; Holmes & Isbell, 2005; Perotto, Buisson, & Alvares,
2007; Stojanov, Bozinovski, & Trajkivski, 1997). These
authors implemented schemes as triplets [perception1,
action, perception2] and referred to them with the term
schema. The agent randomly explores its environment
and records schemas that mean that a certain action in a
certain perceptual state (perception1) would likely result
in a certain perceptual outcome (perception2). These
authors, however, noted that this approach leads to a com-
binatorial explosion when the environment’s complexity
grows. We believe that this approach based on triplets
diverges from Piaget’s original views, in that this imple-
mentation of schemas presupposes the agent’s perception
of the world, whereas Piaget considered perception of the
world as a construct arising from interaction.

In our work, we address the scalability issues of current
schema mechanisms in three ways. First, we do not include
the perception of the environment in our schemes but
rather define the scheme’s context in terms of interactions.
Our schemes are modeled as a couple [interaction1, interac-
tion2], meaning that, in the context of interaction1, the
agent can enact interaction2. Describing the context in
terms of interaction means that the agent learns to “see”
its world in terms of affordances (Gibson, 1979) related to
its own prior experience. We follow Gibson’s definition
of affordances as possibilities of interaction afforded to
the agent by the environment. With this formalism,
schemes natively encode entire sequences of interactions
in a hierarchical fashion. To highlight this radical difference
from classical schema mechanisms, we choose to keep Pia-
get’s term scheme rather than use the term schema. Second,
our agent limits the number of schemes by making a selec-
tion on the basis of the schemes’ proclivity values. The
agent computes higher-level schemes’ proclivity values
from primitive schemes’ proclivity values, which are preset
by the modeler. Third, we do not use our agent to solve a
predefined problem but only expect it to construct satisfy-
ing behaviors to increase its average satisfaction through its
interaction with its environment.

Finally, our implementation uses a notion of episodic
memory because the algorithm involves a form of storage

1 Translated by the authors from the French “L’intelligence (et donc
l’action de connaı̂tre) ne débute ni par la connaissance du moi, ni par celle
des choses comme telles, mais par celle de leur interaction; c’est en
s’orientant simultanément vers les deux pôles de cette interaction qu’elle
organise le monde en s’organisant elle-même” (Piaget, 1937, p. 331).

O.L. Georgeon, F.E. Ritter / Cognitive Systems Research xxx (2011) xxx–xxx 3

Please cite this article in press as: Georgeon, O. L., & Ritter, F. E. An intrinsically-motivated schema mechanism to model and sim-
ulate emergent cognition. Cognitive Systems Research (2011), doi:10.1016/j.cogsys.2011.07.003

http://dx.doi.org/10.1016/j.cogsys.2011.07.003
sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

and reuse of the agent’s history (in the form of hierarchical
sequential schemes). Derbinsky and Laird (2009) have
noted that implementing episodic memory in a cognitive
system closely relates to the computer science domain of
learning through experience. Learning through experience
ranges from reusing declarative knowledge, in the case of
case-based reasoning (Kolodner, 1992), to reusing
procedural experience in the case of temporal case-based
reasoning (Sanchez-Marre, Cortes, Martinez, Comas, &
Rodriguez-Roda, 2005) or trace-based reasoning (Mille,
2006). In particular, Trace-based reasoning addresses the
issue of modeling non-Markovian sequences—sequences
that do not obey Markov’s hypothesis that each item in
the sequence depends only on a fixed number of previous
items, with this number being known a priori (Putterman,
1994). Trace-based reasoning, however, usually follows a
knowledge-representation approach that requires a human
modeler to define the process of encoding episodes, and a
human user to drive the process of reusing episodes.

Our approach differs from trace-based reasoning’s
knowledge-representation approach in that we neither ini-
tially endow our agent with knowledge of its environment,
nor do we supply it with knowledge during its life. Instead,
we propose a way for the agent to autonomously encode
and reuse episodes based on the agent’s intrinsic motiva-
tions. To be autonomous, the learning mechanism needs
to automatically address three issues related to modeling
non-Markovian sequences. First, it must determine appro-
priate start and end points for sequential episodes of inter-
est; second, it must appropriately encode the contexts so
that old episodes can be recalled based on context similar-
ity; and third, it must organize episodes into appropriate
hierarchical levels so that the appropriate level can be
reused (an episode at a given level being a sequence of
lower-level episodes). By automatically addressing these

issues, our model advances theories of learning through
experience in non-Markovian problems, moving towards
an implementation of episodic memory within autonomous
cognitive agents as we have defined them previously.

Sections 3 and 4 present the algorithm’s implementa-
tion. Section 5 reports the behavior of the algorithm in
two experiments. Although we did not yet intend to model
reasoning processes, we have, nevertheless, implemented
this algorithm in a cognitive architecture, namely Soar 9
(Laird & Congdon, 2009). Implementing this algorithm
in a cognitive architecture allows us to compare it to other
cognitive modeling approaches, which we do in Section 6.
Finally, in the conclusion, Section 7, we discuss our results
and the lessons learned for future work.

We have named our agent Ernest for Evolutionist pRag-
matic self-orieNted lEarning in a conStructivist and boT-
tom-up approach, or simply because it is Ernest. From
now on in this paper, we refer to Ernest with the pronoun
he for easier reading.

3. Main concepts in the algorithm

Ernest’s interactions with his world are represented
using two kinds of objects: schemes and interactions that
are hierarchically organized. Fig. 1 provides an example.

At its base level, Fig. 1 shows three example primitive
schemes: turn “ ”, touch forward “–” (this dash represents
Ernest’s antenna), and attempt to move forward “ ” (here,
we note schemes within double quotes). Ernest is initialized
with these primitive schemes as nodes in long-term mem-
ory. In Soar’s terms, the lattice of schemes and interactions
form working memory elements (WMEs) (i.e., extensions
of the state hsi). When Ernest is in a simulated world, the
primitive schemes’ effects are hard-coded in the environ-
ment and the environment returns a binary enaction status

()

Scheme

Succeeding Interaction

Scheme's context

Scheme's intention

Learning
(())

(Turn) (Touch) (Move)

.(-1) (-1) (0)

() .(-2) ().(-1) [],(-2?)

.(5) .(-5)

(),(5) [],(-1?)

(()).(4) [()].(-2?)

((())).(3) [(())].(-1?)()

 . Failing primitive interaction

Failing Interaction []

Fig. 1. Example hierarchical structure of schemes and interactions that arise over time.

4 O.L. Georgeon, F.E. Ritter / Cognitive Systems Research xxx (2011) xxx–xxx

Please cite this article in press as: Georgeon, O. L., & Ritter, F. E. An intrinsically-motivated schema mechanism to model and sim-
ulate emergent cognition. Cognitive Systems Research (2011), doi:10.1016/j.cogsys.2011.07.003

http://dx.doi.org/10.1016/j.cogsys.2011.07.003
sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

to Ernest (failure or success). Enacted primitive schemes
and their binary enaction feedback are the only informa-
tion exchanged between Ernest and his environment.

In Fig. 1, primitive interactions are represented above the
primitive schemes. Primitive failing interactions are repre-
sented with the scheme’s symbol being underlined. For
example, the interaction (!5) corresponds to bumping
into a wall while the interaction (5) corresponds to moving
and succeeding in moving forward. Each primitive interac-
tion is associated with a proclivity value in Ernest’s long-
term memory (here, we note interactions without double
quotes and followed by their proclivity value in parentheses,
to differentiate them from schemes). Proclivity values are
used to compute Ernest’s impetus to select a scheme for
enaction, as explained in Section 4.1 (scheme selection).

Primitive proclivity values are chosen and preset by the
modeler according to the behavior he or she intends to gen-
erate. In our example, interaction (5) means that Ernest
enjoys moving forward, while interaction (!5) means
that Ernest dislikes bumping into walls. Similarly, interac-
tion –(!1) means that Ernest touches a wall in front of him
and slightly dislikes it while –(0) means that Ernest touches
an empty square, leaving him indifferent. In these settings,
touching a wall is considered a success and touching an
empty square is considered a failure, which is an arbitrary
choice that has no consequence on the agent’s learning (but
the proclivity values do).

As introduced in Section 2, higher-level schemes—also
called composite schemes—consist of a sequence of two
interactions “interaction1 interaction2”, meaning that, in
the context when interaction1 was enacted, the agent can
intend to enact interaction2. Accordingly, we refer to inter-
action1 as the scheme’s context interaction and to interac-
tion2 as the scheme’s intention interaction. A scheme’s
context interaction and intention interaction are always
contiguous in time. Ernest learns composite schemes by
associating context interactions with intention interactions
as they are encountered during his activity. A composite
scheme will, in turn, propose to enact its intention interac-
tion if its context interaction matches again Ernest’s situa-
tion. Scheme learning consists of adding the newly-learned
scheme to Ernest’s long-term memory, as a node and two
edges pointing to its two sub-interactions, as depicted in
Fig. 1. This way, entire sequences of interactions can be
learned in a pairwise fashion. In the figures throughout
the paper, the edge pointing to a scheme’s context interac-
tion is represented as a dashed line and the edge pointing to
a scheme’s intention interaction as a dotted line. For exam-
ple, scheme “ ” is learned when Ernest has performed the
sequence of turning right and touching an empty square.
So, scheme “ ” indicates that, when Ernest has success-
fully turned right, he can expect to touch an empty square.
Similarly, scheme “ ” is learned when Ernest has success-
fully turned right and touched a wall, meaning that Ernest
has also learned this sequence.

In addition, schemes have a weight that holds the expec-
tation they generate. A scheme’s weight corresponds to the

number of times the scheme has been encountered, as
detailed in Section 4.3 (learning mechanism). Conse-
quently, over the course of Ernest’s interactions, the
relative scheme weights determine Ernest’s overall expecta-
tions in specific contexts. For example, at a given point in
time, if scheme “ ” has been encountered three times
(weight = 3) and “ ” only twice (weight = 2) then the
overall expectation generated by a simple right turn would
be of touching a wall with a weight of (3 ! 2 = 1). This
expectation can, however, be balanced by other elements
of context as we will see.

Once learned, composite schemes can be enacted as a
whole sequence. Like primitive schemes, composite
schemes can either succeed or fail when the agent tries to
enact them, as further explained in Section 4.2. Each com-
posite scheme can therefore again give rise to two higher-
level interactions: its failing interaction and its succeeding
interaction. Composite schemes’ succeeding interactions
are represented within parentheses (e.g., ()(5)) and com-
posite schemes’ failing interactions are represented within
square brackets (e.g., [](!1?)). This parentheses and
square brackets notation reflects the hierarchical structure
of composite schemes and interactions.

While Fig. 1 displays how the schemes and interactions
are stored in Ernest’s long-term memory, it does not render
the schemes’ temporal structures. We illustrate these tem-
poral structures with an example in Fig. 2.

Fig. 2 shows the enaction of scheme “ ” (touch
wall – turn right – touch empty – move forward) on the
84th decision cycle in our experiment. During this cycle,
the intention to enact this scheme came from the activation
of higher-level schemes (not represented in Fig. 2) that
matched the previous context, resulting in this scheme
being proposed and then selected. In the figures throughout
this paper, the selected scheme is represented with double
lines, and the enacted interaction with a wider gray line.
A scheme’s enaction consists of recursively following the
scheme’s hierarchical structure down to the primitive

Time

Selected scheme

Enacted interaction

84
(Touch) (Touch) (Turn) (Move)

 (-1) .(-1) (0) .(5)

().(-1)

()

(()).(4)

(())

((())).(3)

Fig. 2. Enaction of an example scheme.

O.L. Georgeon, F.E. Ritter / Cognitive Systems Research xxx (2011) xxx–xxx 5

Please cite this article in press as: Georgeon, O. L., & Ritter, F. E. An intrinsically-motivated schema mechanism to model and sim-
ulate emergent cognition. Cognitive Systems Research (2011), doi:10.1016/j.cogsys.2011.07.003

http://dx.doi.org/10.1016/j.cogsys.2011.07.003
sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

schemes, and sequentially enacting the primitive schemes in
the environment. For example, scheme ’s enaction
consisted of successfully enacting scheme “–” (touch a
wall), then successfully enacting scheme “ ”, consisting
of successfully enacting “ ” (turn right) then enacting “–”
with an expected failure status (touch an empty square),
and finally successfully enacting “ ” (move forward).
While a composite scheme’s enaction results in a flat
sequence of primitive schemes, the algorithm keeps track
of the scheme’s hierarchical structure to construct a hierar-
chically organized context (as detailed in Section 4.4,
scope) and to support higher-level hierarchical learning.
Notably, schemes do not encompass branching behaviors.
Instead, branching behaviors are obtained during the
scheme selection phase where higher-level schemes compete
to propose different possible intentions.

Note that in Fig. 2, scheme “–” is represented twice in
“ ’s” temporal structure because it is enacted twice,
whereas in Fig. 1, “–” is represented once in “ ’s”
storage structure because “–” corresponds to a single node
in Ernest’s long-term memory. In this example, because all
sub-schemes in the hierarchy met their expected status,
scheme “ ” was successfully enacted. Therefore, the
enacted interaction was ()(3).

Finally, we introduce the notion of the agent’s scope. The
scope is a data structure computed by the agent that repre-
sents the agent’s current situation. As such, the scope consti-
tutes the agent’s short-term memory that is, in fact, a set of
pointers pointing to interactions stored in long-term mem-
ory. The agent computes the next scope at the end of each
decision cycle. The scope is a subset of all the interactions
that have been completed during the previous decision cycle,
as explained in Section 4.4 (scope assessment). Therefore,
the scope corresponds to the agent’s internal representation
of its current situation in terms of interaction patterns. At
the beginning of a decision cycle, the agent uses the current
scope as a context to select the next scheme to enact, as
detailed in Section 4.1 (scheme selection).

Overall, the concepts of scheme, interaction, and scope
provide a novel way of representing the interaction between
an agent and its environment. In traditional methods, the
interaction is represented as a loop: perception-cognition-
action (the “cognitive sandwich” as criticized by Hurley
(1998)). Instead, in our approach, the scope represents per-
ception as a construct created within the agent’s cognitive
system. As such, we expect the scope to better capture the
entanglement of perception with intrinsic motivations and
decision processes. Moreover, because we do not encode
our ontological views about the environmental structure in
the agent’s perception, these views do not shape the agent’s
information processing. The agent is left alone to discover
the structure of its environment through its experience.

4. Algorithm procedure

The algorithm follows two overlapping cyclical loops.
These two loops are represented in Fig. 3. The highest-level

loop (large white circle) consists of: 1: selecting a scheme
for enaction, 2: trying to enact the selected scheme,
3: learning what can be learned from this trial, 4: comput-
ing the resulting scope, and finally looping back to step
1. We call this loop the control loop because it is at this
level that the agent decides what scheme to try to enact.
Step 2: (trying to enact a scheme) constitutes a nested loop
that goes through the selected scheme’s hierarchical struc-
ture and tries to enact each of its primitive interactions
recursively, as introduced in Section 3. We call this loop
the automatic loop (small white circle) because this loop
enacts sub-schemes below the agent’s decision process.

In Fig. 3, the gray circle represents the environment’s
loop. Each revolution of the automatic loop corresponds
to a revolution of the environment’s loop that returns the
binary feedback on the enacted primitive scheme. In the
control loop, the scheme’s enaction constitutes only one
step, regardless of the scheme’s level in the hierarchy.
Therefore, at the control loop level, all schemes are handled
similarly to primitive schemes, making it possible to recur-
sively learn hierarchically-organized higher-level schemes.
The automatic loop returns control to the control loop
either when the selected scheme has entirely been correctly
enacted, or when the automatic loop is interrupted because
one of the sub-interactions was not correctly enacted. The
four control loop steps are described next.

4.1. Scheme selection

On each decision cycle, the scheme to enact is selected
through an activation mechanism triggered by the current
scope. This mechanism is illustrated by an example in
Fig. 4.

Fig. 4 describes Ernest’s behavior up to the point of
Decision Cycle (DC) 56 in the experiment. In this figure,
the scheme’s weight is noted in the schemes’ boxes. On
DC 55, scheme “ ” was successfully enacted (move for-
ward). Accordingly, scheme “ ” was completed over

1. Select scheme

2. Enact scheme
in environment

3. Learn

4. Assess Scope

Agent Environment

Fig. 3. Algorithm procedure.

6 O.L. Georgeon, F.E. Ritter / Cognitive Systems Research xxx (2011) xxx–xxx

Please cite this article in press as: Georgeon, O. L., & Ritter, F. E. An intrinsically-motivated schema mechanism to model and sim-
ulate emergent cognition. Cognitive Systems Research (2011), doi:10.1016/j.cogsys.2011.07.003

http://dx.doi.org/10.1016/j.cogsys.2011.07.003
sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

DC 54 and 55 (touch empty – move forward), and scheme
“ ” was completed over DCs 53 through 55 (turn right
– touch empty – move forward). In this context, the scope
after DC 55 was made of interactions (5) and interaction
()(5) (the scope can include several interactions as
detailed in Section 4.4, scope assessment).

All schemes whose context interaction belongs to the
current scope are activated. All the activated schemes cre-
ate a weighted proposition for their intention interaction.
The weight of this proposition is equal to the weight of
the proposing scheme multiplied by the proclivity of the
proposed intention. On DC 56, the activated schemes are
the six schemes represented in gray in Fig. 4. All these
schemes have a weight of 1 because they all have been
recently learned and not yet reinforced. For example,
scheme “ ” proposes to enact scheme “ ” next with a
weight of 1 " 5 = 5. This proposition can be understood
as Ernest having an impetus to try to move forward
because he has previously succeeded once in this context
and he enjoys that. Alternatively, scheme “ ” proposes
to enact scheme “ ” with a weight of 1 " (!5) = !5. In
this case, Ernest’s impetus is counter-balanced by an appre-
hension to move forward because he has also previously
bumped into a wall in this context once before, and he dis-
likes that. In addition, primitive schemes receive a default
proposition with a weight of 0 if no higher-level scheme
proposes them. This is the case of scheme “–” in our exam-
ple (not shown in Fig. 4). This makes Ernest pick random
primitive schemes when he has not yet learned to compute
anticipations.

When a composite scheme is proposed, a little heuristic
applies (in this example, scheme “ ”). If its weight is
greater than a threshold, called the regularity sensibility
threshold, then it is effectively proposed for being enacted
as a whole. If its weight is lower than or equal to the thresh-
old and if its proclivity value is positive, then the scheme is
not proposed but its proposition is propagated to its first

(context) subscheme. In essence, this mechanism ensures
that higher-level schemes are sufficiently rehearsed before
being enacted as a whole. During each rehearsal, higher-
level schemes are reinforced, which tends to pass the rein-
forcement from one hierarchy level to the next. A lower
regularity sensibility threshold results in a faster adoption
of potentially less satisfying higher-level schemes. A higher
regularity sensibility threshold results in a slower adoption
of potentially more satisfying higher-level schemes. The
role of the regularity sensibility threshold is further dis-
cussed in Sections 4.4 (scope assessment) and 5 (experi-
ment). In our example, scheme “ ” has not reached the
regularity sensibility threshold (in this experiment, 4) in
DC 56, and its satisfaction is negative, so its proposition
is not considered further at that point in time.

Finally, propositions are summed by schemes, and the
scheme with the highest summed proposition is selected.
If several schemes are tied, one is picked randomly. Nota-
bly, such stochasticity is not necessary in Ernest’s algo-
rithm; we have also implemented deterministic versions
of Ernest that break the tie by simply picking the first
scheme in the list of tied schemes. In our example, the total
proposition for “ ” equals 1 " (!1) + 1 " (!1) = !2. The
total proposition for “ ” equals 5 ! 5 = 0. The highest
summed proposition was therefore 0 (for “ ” and “–”).
Scheme “ ” happened to be selected amongst these two
(shown with a double lined box).

Then, scheme “ ” happened to fail, Ernest bumped into
a wall, resulting in the enacted interaction (!5) on DC 56
(shown in a gray outlined box). This experience caused
scheme ’s weight to be incremented, and other schemes
to be learned according to the learning mechanism detailed
in Section 4.3 (learning).

This selection mechanism shows that proclivity values
do not operate as a reward but rather as inward drives that
either push the agent toward or restrain him from enacting
certain behavior. Moreover, the reinforcement does not

Time

Current Scope

55 5654

(0) (5)

, 2

(),(5)

, 2

().(-1)

() , 2

(()).(4)

.(-1)

.(5)

.(-5)

().(-1)

(), 1

()(), 1

, 1

, 1

() , 1

, 1

Activated schemes

Fig. 4. Example selection of a scheme.

O.L. Georgeon, F.E. Ritter / Cognitive Systems Research xxx (2011) xxx–xxx 7

Please cite this article in press as: Georgeon, O. L., & Ritter, F. E. An intrinsically-motivated schema mechanism to model and sim-
ulate emergent cognition. Cognitive Systems Research (2011), doi:10.1016/j.cogsys.2011.07.003

http://dx.doi.org/10.1016/j.cogsys.2011.07.003
sebastien
Texte surligné

operate as a form of reward propagation but as a mecha-
nism for experience counting. By driving the agent’s behav-
ior, this selection mechanism also shapes the agent’s
experience and consequently the agent’s learning. The
agent does not learn all that can be learned in the environ-
ment—which would be overwhelming—but only what its
motivations make it experience. Moreover, this mechanism
guarantees that higher-level regularities will only be con-
structed upon lower-level regularities that have been effec-
tively tested.

By including several interactions at different levels in the
scope, the selection mechanism is designed to capture dif-
ferent levels of regularities. Over time, the schemes that
capture the most robust level of regularity afforded by
the environment and that best fulfill the agent’s satisfac-
tions become prevalent. For example, the safest decision
to try to move forward will not rest upon the last primitive
step but rather requires exploiting regularities that cover
the experience of several steps.

4.2. Scheme enaction

Once a scheme has been selected, Ernest tries to enact it.
To do so, the algorithm recursively looks down the selected
scheme’s sub-interactions, as introduced in Section 3 and
illustrated in Fig. 2. When a primitive sub-interaction is
reached, its scheme is enacted in the environment. The
agent then compares the feedback status to the expected
status of the primitive interaction. If the received status
matches the expected status, the primitive interaction is
considered as correctly enacted, and the algorithm pro-
ceeds to the next interaction to enact. This enaction proce-
dure continues until the end of the selected scheme, unless a
sub-interaction does not meet its expectation at any level in
the hierarchy.

If an expectation is not met, whether because the sub-
interaction expects success but fails at some point, or the
sub-interaction expects failure somewhere but accidentally
succeeds, the enaction is interrupted and considered incor-
rect. In this case, an actually enacted scheme is constructed
based on the part of the hierarchy that has been actually
enacted before the interruption. This actually enacted
scheme is associated with a success status to form the actu-
ally enacted interaction that Ernest will include in the next
scope. In addition, the selected scheme that failed to com-
plete is assigned a failing status to form a failing interaction
that will also be part of the next scope. We call this failing
interaction the performed interaction. Including both the
actually enacted interaction and the performed interaction
in the next scope ensures that the next scope effectively
reflects the situation where Ernest ended up, both at the
hierarchy level of Ernest’s intention (the performed interac-
tion) and at the hierarchy level where Ernest has felt back
(the actually enacted interaction). Fig. 5 illustrates the
scheme failing mechanism with an example.

On Decision Cycle 72 of our experiment, scheme “ ”
was selected for enaction (touch empty square – move

forward). At this point, scheme “ ” has been learned dur-
ing earlier decision cycles and is about to dominate scheme
“ ” precisely because it brings less dissatisfaction when it
fails, as we are going to see.

As it happened when Ernest tried to enact ’s first step
(context interaction), Ernest touched a wall, an unexpected
success. This unexpected feedback from the environment
caused “ ” to be interrupted. Consequently, in this deci-
sion cycle, the actually enacted scheme was “–” and the actu-
ally enacted interaction was –(!1). The performed
interactionwas [](!1)made of selected scheme “ ” asso-
ciated with a failing status. Because scheme “ ” was inter-
rupted, Ernest did not suffer the dissatisfaction of bumping
into a wall but only the dissatisfaction of touching a wall.
Therefore, Ernest learned that the satisfaction value of the
performed interaction [] was equal to !1.

During forthcoming selection phases, higher-level
schemes will generate balanced expectations for success
or failure of scheme “ ”. Because scheme “ ” yields less
dissatisfaction in case of failure than scheme “ ”, scheme
“ ” will tend to win forthcoming selection phases over
scheme “ ”. Hence, Ernest has learned to touch before
possibly moving forward instead of directly trying to move
forward. Note that this is more than just learning an IF
THEN rule, this is adopting a proactive practice consisting
of touching in specific contexts to ensure safer moves (see
the comparison with bottom-up rule learning in the related
work, Section 6).

Notably, a composite scheme’s failing interaction can-
not have a fixed proclivity value because a composite
scheme can fail during any of its steps, each failure leading
to a possibly different proclivity value. To address this
problem, when the selected scheme fails more than once,
its failing interaction’s proclivity value is replaced by the
average of both its previous value and of the actually
enacted interaction’s proclivity value. This is a simple
way to have the failing interaction’s proclivity value reflect
some plausible proclivity value based on recent experience.
Note that this proclivity value will be balanced by higher-
level schemes’ weight when generating a failure expectation
during forthcoming selection phases.

Time
72

Enacted scheme

Actually enacted interaction

Selected scheme

(Touch)

(Move) (not enacted)

(),(5) [],(-1?)

 (0) (-1)

.(5)

Performed interaction

Fig. 5. Example of an interruption due to incorrect enaction of a scheme.

8 O.L. Georgeon, F.E. Ritter / Cognitive Systems Research xxx (2011) xxx–xxx

Please cite this article in press as: Georgeon, O. L., & Ritter, F. E. An intrinsically-motivated schema mechanism to model and sim-
ulate emergent cognition. Cognitive Systems Research (2011), doi:10.1016/j.cogsys.2011.07.003

http://dx.doi.org/10.1016/j.cogsys.2011.07.003
sebastien
Texte surligné

In effect, this scheme enaction mechanism, associated
with the selection mechanism, favors schemes that consist
of going through unsatisfying interactions at the scheme’s
beginning to reach more satisfying or safer interactions at
the end (in this example, touching before possibly moving
forward). This is because the automatic loop does not rely
on proclivity values to select sub-schemes. Therefore, Ern-
est is not limited to simple reflex interactions toward the
highest immediate satisfaction; Ernest also learns to enact
unsatisfying interactions to place him in situations where
he can enact more satisfying interactions.

4.3. Scheme learning

This section describes how new schemes are learned in
Ernest’s long-term memory or reinforced if they already
exist. This section uses the term learning in its computer
science sense, meaning the recording of new data, as
opposed to the rest of the paper that views learning as
an emergent phenomenon demonstrated by the agent’s
behavior. The learning of a higher-level scheme occurs
from the experience gained through trying to enact the
selected scheme in a given context. The learning mecha-
nism records higher-level schemes to memorize the associ-
ation of elements of context (interactions belonging to the
scope) with the enacted interactions. The proclivity value
associated with a higher-level interaction is set equal to
the sum of the proclivity values associated with its sub-
interactions. This means that enacting a scheme as a
whole is as satisfying as enacting all its sub-interactions
individually. Fig. 6 illustrates this learning mechanism
with an example.

On Decision Cycle 83, scheme “ ” was successfully
enacted, resulting in a current scope that included interac-
tions (5), ()(5), and (8), represented
inside a gray circle in Fig. 6. From this scope, DC 84’s
selection mechanism activated schemes “ ” and
“ ” (among other schemes not represented in
Fig. 6). These activated schemes proposed to enact scheme
“ ”. This proposition happened to win the selection
phase, and this scheme happened to be successfully
enacted, resulting in the enacted interaction ()(3).
Such a scheme’s enaction results in two learning
mechanisms.

The first learning mechanism consists of creating or rein-
forcing schemes whose context interaction belongs to the
current scope and whose intention interaction is the
enacted interaction. In Fig. 6’s example, the reinforced
schemes are the activated schemes “ ” and
“ ” (in light gray in the figure). The learning
consists of incrementing their weight from 4 to 5.
The newly created scheme in this case is
“ ” that is added to Ernest’s long-
term memory with a weight of 1. In addition, interaction
()(11) is added to Ernest long-term
memory with a proclivity value set equal to the sum of
its sub-interactions proclivity values: 8 + 3 = 11.

When the intended scheme is correctly enacted on step
n, the number of schemes learned or reinforced with the
first learning mechanism (noted L1

n) is equal to the number
of interactions in the current scope (noted Sn!1 because it
results from the previous cycle):

L1
n ¼ Sn!1

Time

Current
Scope

83 84

,1

82

Reinforced schemes

New schemes and interactions

.(5)

(),(5)

(()))()

(()))()).(8)

(())),(3)

(())), 5

((())), 5

(()))()) (())), 1

(((()))) (8)

(()))()) (()))) (11)

(((())))(((()))), 1

((((())))(((())))) (16)

Stream scheme and interaction

Previous
Scope

Fig. 6. Example of scheme learning.

O.L. Georgeon, F.E. Ritter / Cognitive Systems Research xxx (2011) xxx–xxx 9

Please cite this article in press as: Georgeon, O. L., & Ritter, F. E. An intrinsically-motivated schema mechanism to model and sim-
ulate emergent cognition. Cognitive Systems Research (2011), doi:10.1016/j.cogsys.2011.07.003

http://dx.doi.org/10.1016/j.cogsys.2011.07.003

When an intended composite scheme is incorrectly
enacted, new or reinforced schemes are constructed both
from the actually enacted interaction and from the per-
formed interaction. Hence, in this case:

L1
n ¼ 2" Sn!1

In effect, the first learning mechanism tends to append
new interactions to the right side of already existing schemes.
To extend schemes to their left side, a second learning mech-
anism applies. This second learning mechanism focuses on a
particular scheme that we call the stream scheme. The stream
scheme is the scheme that connects two consecutively
enacted interactions (i.e., whose context interaction and
intention interaction correspond to the two interactions that
have been consecutively enacted). We also define the stream
interaction as the stream scheme’s succeeding interaction. At
a given point in time, the stream scheme presents the partic-
ularity of being performed in the context of the previous
scope (if the intended scheme is incorrectly enacted, the
stream scheme is constructed from the actually enacted
interaction). The second learningmechanism consists of cre-
ating or reinforcing schemes that memorize the association
of elements of the previous context (interactions in the pre-
vious scope) with the stream interaction. Schemes learned
with the second learning mechanism will propose again the
stream scheme when situations similar to the previous con-
text are encountered again, which helps higher-level schemes
dominate lower level schemes when appropriate.

In DC 84’s example, the stream interaction is
(8) (underlined in Fig. 6). Fig. 6 shows scheme

“ ” (top left) as an example
scheme learned with the second learning mechanism on
DC 84. All the schemes learned with the second learning
mechanism associate a context interaction that belonged to
DC 82’s scope (interactions not represented in Fig. 6) with
the stream interaction. When scopes similar to DC 82’s
scope occur again, these schemes will propose to enact
scheme “ ” as a whole, which will result in this
scheme eventually replacing scheme “ ”.

On step n, the number of schemes learned or reinforced
with the second learning mechanism is:

L2
n ¼ Sn!2

Summing the two learning mechanisms, the total num-
ber of learned or reinforced schemes on step n is given by
the formulas:

Ln ¼ Sn!1 þ Sn!2 ðin case of correct enactionÞ
Ln ¼ 2" Sn!1 þ Sn!2 ðin case of incorrect enactionÞ

Notably, the enacted scheme is not reinforced
(“ ” on DC 84), nor are any of its sub-schemes.
The reinforcement is not associated with a scheme enaction
but with higher-level schemes learning. This highest-level
reinforcement principle contributes to letting higher-level
schemes possibly override lower-level schemes when
higher-level schemes manage to capture higher-level
regularities.

4.4. Scope assessment

The last step of the control loop consists of assessing the
resulting new scope. As noted in Section 3, the scope is a set
of interactions that were just completed. We call these
interactions the completed interactions. Completed interac-
tions are of three kinds: (a) the interactions that were just
learned or reinforced; (b) the interaction that was just
enacted, or in case of incorrect enaction, the actually
enacted interaction plus the performed interaction; (c) the
last subsequences of the interaction that were just enacted.
For example, Fig. 7 shows the completed interactions on
step 84.

As noted, on DC 84, interaction ()(3) was
enacted meaning its intention interaction ()(4) is also
being just completed. Similarly, ()(4)’s intention inter-
action (5) is also just completed. Moreover, interactions
on top of ()(3) are also being completed simulta-
neously. These are all the interactions learned or reinforced
during the learning phase.

If all the completed interactions were included in the
next scope, then after the next cycle, as many new schemes
would be learned. Cycle after cycle, this process would lead
to the construction of top-level schemes that would be data
structures representing Ernest’s entire experience since
being instantiated. In this case, we can approximate the
rate of memory growth by reckoning that all the learned
schemes would be part of the next scope, that is, referring
back to Section 4.3: Sn = Ln. Therefore, leaving apart the
case of incorrect enactions, the number of learned or rein-
forced schemes on step n is approximated by:

Ln ¼ Ln!1 þ Ln!2

This formula defines the Fibonacci sequence, which is
known to grow exponentially. To prevent such combinato-
rial explosion, the algorithm restrains the scope’s content.
Metaphorically, this restriction can be understood as Ern-
est not being aware of his full prior history at each instant.
Instead, Ernest’s awareness only covers the current stream
of his activity. His awareness of his current stream of activ-
ity is, however, framed by his full experience. At each
moment, Ernest internally represents his situation as a set
of interactions that are at the highest possible—while suffi-
ciently confirmed—level in the hierarchy that he has
learned thus far.

The heuristic we have implemented to restrain the scope
consists of only including the enacted interaction plus the
other completed interaction whose scheme’s weight has
passed the regularity sensibility threshold (introduced in
Section 4.1). This means that Ernest becomes aware of reg-
ularities only when they have been encountered a sufficient
number of times. Over Ernest’s learning process, regulari-
ties pop up in Ernest’s scope when they have sufficiently
been encountered. These regularities form higher-level
schemes that Ernest then tries to enact as a whole. These
schemes’ enactions open the way to even higher-level

10 O.L. Georgeon, F.E. Ritter / Cognitive Systems Research xxx (2011) xxx–xxx

Please cite this article in press as: Georgeon, O. L., & Ritter, F. E. An intrinsically-motivated schema mechanism to model and sim-
ulate emergent cognition. Cognitive Systems Research (2011), doi:10.1016/j.cogsys.2011.07.003

http://dx.doi.org/10.1016/j.cogsys.2011.07.003

regularities popping up in Ernest’s scope and even higher-
level schemes being learned.

In addition, only one sub-level of the actually enacted
interaction is included in the scope. That is, referring back
to Fig. 7, sub-intention interaction ()(4) is included in
the scope but not its sub-intention interaction (5). There-
fore, the scope construction mechanism works consistently
across any level of the enacted scheme in the hierarchy; this
enables the recursive learning of higher-level schemes. We
can interpret this as Ernest being unaware of the interac-
tions that he enacts at the lowest levels of the hierarchy;
this again helps Ernest deal with the situation complexity.
Following this heuristic, the current scope on DC 84 is thus
made of interactions ()(8), ()(8),
()(3), and (4) (in gray boxes in Fig. 7). This
scope covers 6 steps of interaction with the environment
that encode the sequence sense empty – move forward –
sense wall - turn right – sense empty – move forward.

In our experiments, the number of new learned schemes
per cycle proved to range from 0 to 10, making the memory
grow linearly with the number of cycles. An additional
decay function could be implemented to delete unused
schemes and keep the memory constant.

4.5. Implementation

Because we developed this algorithm to study and gen-
erate cognitive phenomena, it is natural to consider imple-
menting it with a cognitive architecture. The most widely-
used cognitive architectures, ACT-R (Anderson, 2007)
and Soar (Laird & Congdon, 2009), were originally
designed to model problem solving and symbolic process-
ing rather than adaptive mechanisms. It might thus appear

more natural to use cognitive architectures that are
designed to support implicit knowledge, for example
CLARION (Sun, Peterson, & Merrill, 1999), MicroPsi
(Bach, 2008), CLA (Chaput, 2004), ICARUS (Langley &
Choi, 2006), or ADAPT (Benjamin, Lyons, & Lonsdale,
2004). These later architectures, however, already imple-
ment specific learning algorithms, and we found that only
Soar offered enough flexibility for our research on a new
learning algorithm.

Moreover, the latest release of Soar, version 9, supports
reinforcement learning (Soar-RL). While we are not imple-
menting classical reinforcement learning, Soar-RL pro-
vides a mechanism that is useful to our approach, namely
the valued preference mechanism. This mechanism provides
an easy way to implement Ernest’s scheme selection phase
because it supports the weighted proposition of operators.
Soar-RL then easily supports selecting the most strongly
weighted operator. For these reasons, we have chosen Soar
9. The current version of the algorithm has 60 Soar produc-
tions,2 making it a not overly complex Soar model.

5. Experiments

We developed two experiments where the agent was
afforded hierarchical sequential regularities to learn and
organize. We used the first experiment to illustrate the
learning process in detail (Section 5.2) and to demonstrate
the gain in Ernest’s satisfaction over each run (Section 5.3).
We use the second experiment for a qualitative analysis of
Ernest’s emergent behavior (Section 5.4).

Time
84

,1

(())),(3)

(())), 5 ((())), 5 (())()) (())), 1

(((()))) (8) (())()) (()))) (11)

(((())))(((()))), 1

((((())))(((())))) (16)

(())

(()),(4)

()

((()))) (8)

,(5)

Interactions included
in the next scope

Fig. 7. Example of scope assessment.

2 http://e-ernest.blogspot.com/2009/10/ernest72-soar.html

O.L. Georgeon, F.E. Ritter / Cognitive Systems Research xxx (2011) xxx–xxx 11

Please cite this article in press as: Georgeon, O. L., & Ritter, F. E. An intrinsically-motivated schema mechanism to model and sim-
ulate emergent cognition. Cognitive Systems Research (2011), doi:10.1016/j.cogsys.2011.07.003

http://dx.doi.org/10.1016/j.cogsys.2011.07.003

5.1. Simple loop experiment

Although the interaction’s structure—resulting from
coupling the environment with the agent’s primitive
schemes—is fundamentally sequential, the environment
can be presented to external observers as a two-dimen-
sional grid. This environment is represented in Fig. 8 and
was implemented from Cohen’s (2005) Vacuum environ-
ment based on Russell and Norvig’s (1995) general vacuum
cleaner environment.

In Fig. 8, the triangle represents Ernest’s position and
direction, white squares represent empty squares where
Ernest can go, and filled squares represent walls. Ernest’s
primitive schemes and interactions are defined as described
above (“ ” = turn 90" right (!1/NA), “–” = touch the
square ahead (!1/0), “ ” = attempt to move one square
forward (5/!5)). Additionally, we have primitive scheme
“ ” consisting of turning to the left (!1/NA) (turning
schemes “ ” and “ ” always succeed in this environment).
Notably, the squares do not offer a unique identifier acces-
sible to the agent, in contrast with many experiments with
reinforcement learning mechanisms (e.g., Singh, Lewis, &
Barto, 2009; Sun & Sessions, 2000). This lack of unique
identifier for each agent’s state makes the learning more
challenging than in classical reinforcement learning experi-
ments because the agent cannot attribute a quality value to
transitions identified a priori. This additional difficulty
explains the choice of an environment whose topological
layout seems otherwise simpler than in traditional rein-
forcement learning experiments.

Our experimental settings offer a first notable regularity,
namely that Ernest can increase his average satisfaction by
touching ahead before trying to move forward, and by not
moving forward when he touches a wall. Next, Ernest can
increase its satisfaction by repeating sequences consisting
of moving forward twice and turning once. Higher-level
regularities consist of repeating this later sequence. The

effects of this learning mechanism are described in detail
in Section 5.2.

5.2. An example life of Ernest

Fig. 9 illustrates an example run. Videos of similar runs
can be seen online.3

In Fig. 9, enacted schemes are represented at the lowest
level in each line with a black outline. Learned schemes are
represented on top of the enacted schemes with a gray out-
line. Failing higher-level schemes are represented as gray
boxes (occurring at steps 68 and 72). The numbers from
1 to 91 indicate the control loop iterations (Decision
Cycles).

At the beginning, Ernest acts randomly because he has
not yet learned expectations. Every cycle, however, Ernest
constructs or reinforces several schemes. For clarity, Fig. 9
only reports the construction and the reinforcement of the
schemes that proved decisive in increasing Ernest’s satisfac-
tion in this run. Scheme “ ” is constructed on step 8.
Scheme “ ” is then reinforced on DC 28, 34, and 49. Then
scheme “ ” passes the regularity threshold and Ernest
attempts to enact it for the first time on step 68 but fails
and enacts “ ” instead.

Notably, a scheme “ ” is constructed on DC 19. This
scheme is reinforced on DC 33, 42, and 43. It is then
enacted twice on DC 44 and 45. It is, however, not used
any further because other options prove more satisfying
(its proclivity value is !2).

On DC 47, Ernest discovers the regularity touch empty-
move forward, allowing him to generate schemes “ ” and
“ ”. After DC 47, scheme “ ” always prompts Ernest
to try to move forward after touching an empty square.
Consequently, from then on, scheme “ ” is quickly rein-
forced (rehearsed) in DC 55, 59, 63, and 71. Ernest tries to
enact it for the first time on DC 72, but unsuccessfully. ’s
failure resulted in falling back to –(!1), as detailed Section
4.2 and Fig. 5. From then on, Ernest has learned to always
touch before moving forward. Scheme “ ” is then suc-
cessfully enacted on DC 74, 77, 80, 83, and 85.

On DC 69, scheme “ ” passed the regularity sensi-
bility threshold, and became included in the scope, which
resulted in the learning of the fourth-order scheme
“ ”. Then, on DC 73, the enaction of scheme
“ ” generated the learning of scheme “ ”.
Scheme “ ” is enacted for the first time on DC 84
as detailed in Fig. 2. Scheme ’s enaction generated
the learning of “ ” as described
in Section 4.3 and in Fig. 6. Scheme “ ” starts to
be enacted on DC 87.

After DC 87, Ernest keeps on performing the sequence
touch empty – move forward – touch wall – turn right –
touch empty – move forward. With this sequence, Ernest
obtains a satisfaction of 8 with 6 primary steps, i.e., 1.33

Fig. 8. The environment for experiment 1.

3 http://e-ernest.blogspot.com/2009/07/ernest-64.html

12 O.L. Georgeon, F.E. Ritter / Cognitive Systems Research xxx (2011) xxx–xxx

Please cite this article in press as: Georgeon, O. L., & Ritter, F. E. An intrinsically-motivated schema mechanism to model and sim-
ulate emergent cognition. Cognitive Systems Research (2011), doi:10.1016/j.cogsys.2011.07.003

http://dx.doi.org/10.1016/j.cogsys.2011.07.003

per primary step. If we keep Ernest running, the repetition
of this sequence generates higher-level schemes that keep
on doubling this sequence.

In this example, Ernest did not learn the optimum
sequence in the environment. In fact, Ernest has no
way of knowing whether the stabilized sequence is opti-
mum or not. Ernest only repeats a sequence when other
actions appear less likely to bring satisfaction, based on
what he has learned previously. In most instances, Ern-
est first learns to touch before moving, after which he
begins to build other regularities based on this initial
pattern.

The time before stabilization depends on the value of
the regularity sensibility threshold. As noted in Section
4.1, schemes are not proposed for enaction until they
pass this threshold. As said in Section 4.4, interactions
are not included in the scope until their scheme has
passed this threshold. Consequently, schemes do not con-
tribute to higher-level learning until they have passed this
threshold. As a tradeoff between satisfaction and the
pace of learning, the regularity sensibility threshold was
set to 4 in this experiment, meaning that a sequence
had to be encountered 4 times before being considered
for automatic enaction or retention in Ernest’s situation
awareness.

5.3. A hundred lives of Ernest

Experiment 1 was run 100 times, stopping each run
when Ernest had reached a stable sequence, and clearing
Ernest’s memory between each run. The results are summa-
rized in Table 1, the runs are aggregated by the proclivity
value (satisfaction) of the final stable sequence (third col-
umn). The fourth column indicates the number of primitive
steps that constitutes the stable sequence. The fifth column
indicates Ernest’s average satisfaction per step when he has
reached the stable sequence. The last column reports the
average number of decision cycles before reaching this
sequence. Rows 1 through 6 report 86 runs where Ernest
learned to circle the whole loop, achieving a satisfaction
per step greater than or equal to 1.33. Among these rows,
the first row represents 22 runs where Ernest found the
optimum sequence: move forward – move forward – turn
(this sequence may be implemented by different schemes).
Rows 7–14 report 14 runs where Ernest has reached a sta-
ble sequence that results in him staying on one lap of the
environment, with a satisfaction per step between 0.40
and 1.40.

The summary row shows that the average final satisfac-
tion per step was 1.92. It was reached in an average of 72
decision cycles. In comparison, other experiments yielded

[]

()

(())

() ()

()((()))

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 68 69 70 71 72 73 74 76 77 78 79 80 67 75 81 82 83 84

85 86 87 88 89 90

[]

()((())) ()((()))

(()((()))) (()((())))

()

() () ()

(()) (()) (()) (())

()((())) ()((())) () (()))

()((()))

(()((()))) (()((()))) (()((()))) (()((())))
(()((()))) (()((())))

(())

()((()))

(()((()))) (()((())))

X X Touch Move Right Left Succeed Fail

()

(())

()((()))

((()((()))) (()((())))) ((()((()))) (()((()))))

()((()))

91

(()((()))) (()((())))

Decision cycles

[XX] . Enacted . Learned/reinforced/activated

Fig. 9. An example run among the 18 reported in row 6 of Table 1.

O.L. Georgeon, F.E. Ritter / Cognitive Systems Research xxx (2011) xxx–xxx 13

Please cite this article in press as: Georgeon, O. L., & Ritter, F. E. An intrinsically-motivated schema mechanism to model and sim-
ulate emergent cognition. Cognitive Systems Research (2011), doi:10.1016/j.cogsys.2011.07.003

http://dx.doi.org/10.1016/j.cogsys.2011.07.003

an average satisfaction value per step of !0.93 without any
learning and !0.38 with only the first-level scheme learn-
ing. This data demonstrates that, in all the runs, the hierar-
chical learning mechanism substantially increased the
agent’s satisfaction, compared to no or non-hierarchical
learning.

These results vary depending upon the configuration of
the primitive proclivity values and the regularity sensibility
threshold. Our purpose was not to optimize this experi-
ment; other values would lead to other learning results.
For example, at the extreme, when Ernest is given a posi-
tive proclivity value for turning, he learns to keep spinning
in place forever, which indeed gets him a good satisfaction
but does not demonstrate much interesting behavior.

5.4. Ernest in other worlds

Because the mechanism works bottom-up, the learning
of low-level regularities does not depend on the environ-
ment’s overall complexity. To illustrate this, we placed Ern-
est in the more complex environment displayed in Fig. 10.

In Environment 2, Ernest was endowed with extra prim-
itive schemes to touch the square to the right and to the
left, and their associated proclivity values listed in Table 2
(the symbols n and / represent Ernest antenna toward his
right and left sides).

Ernest learned more elaborate perceptual behaviors in
experiment 2 than in Experiment 1 because he could
construct a better sense of his situation by touching on
his sides. These behaviors can be seen in videos online.4

Table 3 provides an example activity trace. Numbers from
1 to 205 indicate the first 205 decision cycles during which
Ernest learned to circle this new environment. For each
decision cycle, the actually enacted scheme is reported. If
the actually enacted scheme was not the intended scheme,
an exclamation mark (!) is appended.

Ernest completed a first tour on DC 171 and a second
tour on DC 205. The sequence “ ” was first encountered
on DC 38 and 39. Scheme “ ” was first incorrectly
enacted on DC 128 and first correctly enacted on DC
133. In parallel, Ernest learned “ ” and “ ” that
exploit the turning schemes’ feedback to ensure safe move

Table 1
Performance of Ernest over a hundred runs sorted by satisfaction of final scheme.

Rownumber Runs Satisfaction of
final scheme

Steps of
final scheme

Average satisfaction/step Decision Cycles
to stability

1 22 9 3 3.00 50
2 22 9 4 2.25 79
3 4 9 5 1.80 75
4 4 8 4 2.00 69
5 16 8 5 1.60 62
6 18 8 6 1.33 84
7 1 7 5 1.40 76
8 1 7 6 1.17 109
9 1 7 7 1.00 108
10 2 6 8 0.75 116
11 3 4 4 1.00 61
12 1 4 5 0.80 95
13 3 3 3 1.00 71
14 2 2 5 0.40 96

100 7.98 4.49 1.92 72

Table 2
Primitive interactions and their proclivity in the second experiment.

Interaction Description Proclivity

Move forward 10
Bump wall !10
Turn to the right toward an empty square 0
Turn to the right toward a wall !5
Turn to the left toward an empty square 0
Turn to the left toward a wall !5

– Touch a wall ahead 0
– Touch an empty square ahead !1
n Touch a wall on the right 0

Touch an empty square on the right !1
/ Touch a wall on the left 0

Touch an empty square on the left !1

Fig. 10. The environment for experiment 2. 4 http://e-ernest.blogspot.com/2009/10/enrest-72.html

14 O.L. Georgeon, F.E. Ritter / Cognitive Systems Research xxx (2011) xxx–xxx

Please cite this article in press as: Georgeon, O. L., & Ritter, F. E. An intrinsically-motivated schema mechanism to model and sim-
ulate emergent cognition. Cognitive Systems Research (2011), doi:10.1016/j.cogsys.2011.07.003

http://dx.doi.org/10.1016/j.cogsys.2011.07.003

forward (first enacted on DC 125 and 138). Due to the
effects of learning, Ernest stopped bumping into walls after
DC 67 and started exhibiting a more methodical explor-
ative behavior shown by more consistent touching, turn-
ings, and moving forward. On DC 128 through 131, we
can see that he started applying a strategy consisting of,
when he has touched a wall ahead, touching to the left,
then, if there is a wall to the left, touching to the right,
and, if there is no wall to the right, turning to the right.
This strategy let him safely circle around his environment.
This strategy is then implemented by the construction of
schemes “ ” and “ ” first enacted on DC 145
and DC 149. This association demonstrates the emergence
of the use of inexpensive behaviors (touching) as “percep-
tion” and the use of expensive behavior as “action” (turn-
ing). Then, on DC 203, the trace shows that Ernest started
enacting a higher-level scheme consisting of turning and
moving forward twice.

This trace also shows that the sequence representing
Ernest’s activity is non-Markovian because Ernest’s behav-
ior relies on regularities whose duration was not limited a
priori. Moreover, Ernest is capable of reusing knowledge
learned much earlier. For example, the behavior enacted
during the last decision cycle (DC 205) still relies on the
pattern that was first learned during DC 22 and 23.

It is not obvious to attribute emergent cognitive phe-
nomena to Ernest when observing a printed report of his
behavior, but we find it striking when watching the exper-
iment running. In particular, observers can infer Ernest’s
growing awareness of his sides as he begins to associate
touching with turning toward each side. Through empathy,
observers can also infer basic subjective states such as
enjoyment, pain, angst, hope, and growing knowledge of
the environment. Moreover, across runs, Ernest instances
differentiate themselves from each other through their
choices and resulting experiences. While these basic cogni-
tive phenomena are still rudimentary, we consider them as
supporting the triple-autonomy hypothesis. A model whose
implementation follows the principles of intrinsic motiva-

tion, autonomous situation awareness, and autonomous
learning did generate behaviors that arguably exhibit
early-stage cognitive phenomena.

Other experiments show that, when shifts in the environ-
ment occur during the course of Ernest’s activity, he reuses
low-level schemes that still apply and learns new higher-level
schemes applicable to the new environment. However,
studies in more complex environments show the current
algorithm’s limitations, which are discussed in the
conclusion.

6. Comparison with related work

We first must note that our model uses Soar in a signif-
icantly different way than traditional symbolic cognitive
models (Newell, 1990). In our case, although we use Soar’s
symbolic computation mechanism, we do not use physical
symbols (Newell & Simon, 1975) to transcribe our own
ontology of the environment into the agent (e.g., we do
not define a symbol for walls). In this sense, our model
can be seen as entirely situated at the sub-symbolic level
even though it uses Soar’s symbolic computation level.
As such, our model constitutes an example showing that
the distinction between symbolic and sub-symbolic levels
is not tied to the architecture’s commitments but rather
can depend on the modeler’s usage of the architecture.

Similarly, our work also differs from a bottom-up rule
learning mechanism (e.g., Sun, Merrill, & Peterson,
2001). Certainly, to an external observer, Ernest seems to
learn logical rules. For example, as discussed in Section
4.2, Ernest learns that if he touches a wall ahead, then he
should not move forward. As opposed to rule learning
mechanisms, however, our algorithm does not construct
explicit logical rules in the agent’s long-term memory,
nor are we claiming that our agent has learned to process
explicit logical knowledge. We do not expect our agent to
learn logic but only to exploit regularities of interaction.
This conforms to Piaget’s (1937) developmental theory that
states that logical knowledge processing will only arise

Table 3
Example activity trace in the second experiment.

O.L. Georgeon, F.E. Ritter / Cognitive Systems Research xxx (2011) xxx–xxx 15

Please cite this article in press as: Georgeon, O. L., & Ritter, F. E. An intrinsically-motivated schema mechanism to model and sim-
ulate emergent cognition. Cognitive Systems Research (2011), doi:10.1016/j.cogsys.2011.07.003

http://dx.doi.org/10.1016/j.cogsys.2011.07.003

after a long developmental process. This developmental
process would imply finding persistent objects in the envi-
ronment and representing them internally before eventually
learning language and logic (mostly through social
interaction).

Our work also differs from robotics studies that develop
mechanisms for autonomously learning the correlation
between actuators and sensors (e.g., Pierce & Kuipers,
1997). These studies conform to the perception-cognition-
action loop by implementing a mechanism that transfers
the sensors’ signal to a perceptual buffer independently
from the mechanisms that exploit the content of this buffer.
Instead, we pre-encode the association of the agent’s
actions with the agent’s inputs within primitive sensorimo-
tor schemes. Our agent does not need to learn the relation
between its actions and its inputs because these relations
are predefined. What our agent needs to learn is the appro-
priate behavior to construct its perceptual representation
of its situation. Our approach offers the advantage that
sensorimotor schemes provide a place to implement the
agent’s intrinsic motivations. We, nevertheless, expect diffi-
culties when implementing more complex perceptual
behaviors (such as vision) and will consider using a hybrid
approach in future studies, as suggested for example by
Norman (2002).

As we mentioned in Section 2, our work also borrows
from reinforcement learning principles. On the other hand,
our work differs from reinforcement learning in that the
reinforcement does not come from a reward that is given
when a final goal is reached. Because of this difference,
we could not use Soar’s built-in reinforcement learning
mechanism (Soar-RL, Laird & Congdon, 2009). Soar-
RL’s mechanism requires that all transitions between states
in the problem-space be identified a priori, in the form of
one or several operators. In this way, the reinforcement-
learning algorithm can backward propagate the reward
by modifying the operator preference values. Instead, we
do not encode all the transitions a priori in our agent’s
model; rather our agent dynamically learns to identify con-
texts and transitions. This dynamic context recognition
allows the agent to adapt to different environments. We
believe that this approach better accounts for natural
organisms that exist without uniquely identifying all the
possible situations they might encouter (a problem often
known as perceptual aliasing).

The algorithm also draws from work in the field of
trace-based reasoning (Mille, 2006) to implement a mecha-
nism that enables the agent to learn by reusing past sequen-
tial episodes of activity. With this mechanism, we bring an
innovative answer to the issues related to non-Markovian
sequence modeling introduced in Section 2—issues such
as automatically delimitating episodes, organizing episodes
in a hierarchy, and encoding context in a way that supports
the appropriate reuse of episodes. By addressing these
issues, our work differs from studies that require Markov’s
hypotheses, such as models based upon Bayesian statistics
(e.g.,Griffiths, Kemp, & Tenenbaum, 2008). Our answer to

the issues of non-Markovian problems rests upon the idea
that behavioral patterns should be constructed from the
bottom up in a hierarchical fashion. Our work, neverthe-
less, differs from approaches of mere statistical hierarchical
temporal learning such as Hawkins and Blakeslee’s (2004)
in that our agent interactively tests hypothetical patterns in
the environment and makes a selection based on the agent’s
intrinsic motivation before learning higher-level patterns.
These views relate to pragmatic epistemology (James,
1907), to evolutionist epistemology (Popper, 1972) that
suggest that knowledge evolves on the basis of usage, and
to constructivist epistemology (Piaget, 1970), that suggests
that knowledge selection is driven by the subject’s intrinsic
motivations.

Our autonomous mechanism of learning through inter-
action offers a novel way of implementing episodic mem-
ory. In essence, the agent’s encoding of its experience
reflects the way the agent has learned to understand this
experience. This approach also addresses the problem
introduced in Section 1 of getting the agent to gradually
learn to pre-encode its experience for future reuse. To this
end, we can see Fig. 9 and Table 3 as views on Ernest’s epi-
sodic memory in particular instances, where the agent’s
activity is represented in the form of increasingly elabo-
rated patterns of behavior. This approach of episodic mem-
ory differs from Soar’s built-in episodic memory (version
9.3). Soar’s episodic memory does not encode the temporal
structure of episodes but rather encodes snapshots; there-
fore, Soar’s episodic memory cannot be as directly queried
as Ernest’s. Furthermore, Soar’s manner of encoding does
not evolve over the agent’s experience, but rather consists
of the raw content of the agent’s working memory in each
interaction cycle (corresponding to our automatic loop
cycles that enact primitive schemes). Because of these dif-
ferences, we could not use Soar’s episodic memory.

The algorithm also draws lessons from genetic algo-
rithms (e.g., Mitchell, 1996) by adopting an evolutionist
approach. They, however, differ because genetic algorithms
typically focus on phylogenetic evolution of the learning
mechanism over generations of agents (e.g., Floreano,
Mondada, Perez-Uribe, & Roggen, 2004), whereas our
algorithm focuses on the ontogenetic cognitive develop-
ment of each agent through the selection of the most useful
knowledge. In the future, we nonetheless believe the phylo-
genetic approach can help us implement mechanisms to
adapt our agent’s inborn primitive proclivity values based
on an evolutionary selection over generations of agents.

There are currently two major approaches for imple-
menting intrinsic motivation in artificial agents. One
approach consists of implementing motivation as behav-
ioral rules that directly represent either emotions (e.g.,
Gadanho & Hallam, 1998) or drives (e.g., Sun, 2009).
The second approach implements intrinsic motivation as
curiosity and search for novelty (Blank et al., 2005;
Oudeyer & Kaplan, 2007; Schmidhuber, 2010). We follow
a third approach that implements an inversion of reasoning
argument as some authors have argued for (e.g., Dennett,

16 O.L. Georgeon, F.E. Ritter / Cognitive Systems Research xxx (2011) xxx–xxx

Please cite this article in press as: Georgeon, O. L., & Ritter, F. E. An intrinsically-motivated schema mechanism to model and sim-
ulate emergent cognition. Cognitive Systems Research (2011), doi:10.1016/j.cogsys.2011.07.003

http://dx.doi.org/10.1016/j.cogsys.2011.07.003

1991). With the inversion of reasoning argument, Dennett
postulates that humans do not “eat the cake because they
find it sweet” but humans rather “find the cake sweet
because they eat it”. Humans have evolved with the ten-
dency to enact this behavior, which defines their liking
for sweetness. Our algorithm implements this view by
incrementally organizing the agent’s behavior around
inborn proclivities. We consider that our algorithm illus-
trates this argument in the case of emergent cognition.
We, nonetheless, imagine that the three approaches could
be complementary in the case of higher-level cognition.

As for the test bed environment and for the experimen-
tal paradigm, our approach appears to be rather unique.
We must note that our experiment substantially differs
from maze solving experiments (e.g., Sun & Sessions,
2000) or from hierarchical sequence learning as depicted
in the classical taxi cab experiment (Dietterich, 2000). In
their experiments, the learning comes from a reward value
that is given when the goal is reached, the learning requires
that the agent has a pre-encoded way to uniquely identify
each state in the environment, and the learning occurs over
multiple runs (often thousands). In contrast, we have no
final goal for the agent that would provide a reward, and
states are not directly identifiable by the agent. Rather,
the learning occurs through each run; and all the agent’s
memory is reinitialized between each run (including all
forms of reinforcement, i.e., the schemes’ weight). Our
experimental paradigm also radically differs from those
proposed in Soar’s tutorial (e.g., the Eaters and TankSoar
environments, Laird & Congdon, 2009), in that our
approach does not encode the modeler’s strategy and prob-
lem analysis. Because we could not find experiments related
to our approach in the literature, we propose our experi-
ments as an initial test paradigm for investigating the tri-
ple-autonomy hypothesis.

7. Conclusion

This study advocates approaching cognition by primar-
ily focusing on interaction while conceiving of perception
and representation as secondary constructs. In a proof-
of-concept algorithm, we show that this approach offers a
way to implement intrinsic motivation in the form of
inborn proclivities associated with primitive possibilities
of interaction. This approach also offers a way for the
agent to construct a representation of the situation that is
not tied to the modeler’s ontological commitments about
the environment. In addition, this approach offers a way
to implement an autonomous learning mechanism where
the agent learns to encode its experience to cope with the
environment’s complexity in compliance with the agent’s
intrinsic motivation.

In our experiments, the agent appears to an observer as
if it learned to use certain schemes to inform its perceptions
(schemes “–”, “/”, and “n” to sense the squares around in
Section 5.4) and to determine subsequent actions based
upon these perceptions. Therefore, the agent seems to learn

to actively perceive its environment and pragmatically
understand its perception simultaneously. By pragmatic
understanding, we refer to a pragmatic epistemology
according to which “meaning is use” (Wittgenstein,
1953). This result is original in that nothing in our agent
initially differentiated perceptual behavior from action
behavior except their cost (predefined proclivity values).
Perceptual behavior emerged through the agent’s activity,
which also grounded the meanings of the agent’s percep-
tions in its activity (Harnad, 1990). Once this perceptual
behavior is learned, the agent perceives its environment
in a new way, which makes new behavior possible, specif-
ically, more systematic exploration. This conforms to the
developmental design principle suggested by enactive theo-
ries of cognition (De Loor, Manac’h, & Tisseau, 2010)
mentioned in the introduction.

Moreover, the way that the algorithm constructs a data
structure in short-term memory (namely the scope) to rep-
resent the agent’s situation can shed some light on the
notion of situation awareness. One of the most accepted
definitions of situation awareness (SA) is Endsley’s
(1995): “The perception of the elements in the environment
within a volume of time and space, the comprehension of
their meaning, and the projection of their status in the near
future”. Because the scope is usable by the agent for fol-
lowing its motivations, we argue that the agent understands
the scope in a pragmatic sense. Because the scope activates
schemes, the scope lets the agent construct a “projection of
its current state in the near future”. Our algorithm, there-
fore, offers an implemented model of these two aspects of
Endsley’s views. The scope is nevertheless not a representa-
tion of the agent’s environment as we see it. Instead, the
scope is a representation of the agent’s situation in terms
of the agent’s possibilities of behavior. As such, the scope
meets Gibson’s (1979) ecological understanding of situa-
tion awareness. Gibson suggested that the environment is
perceived in terms of interactions afforded to the agent
by the environment, i.e., affordances. Our algorithm, there-
fore, also illustrates Gibson’s views. This simulation gener-
ates emergent SA and acts like it has emergent SA, even
though the representation is not explicit to an outside
observer. As such, we consider this simulation not only
as a model but also as an implementation of an emergent
cognitive system.

In our implementation, the scope is, however, still rudi-
mentary. While it covers a certain “volume of time” as
Endsley called for, it does not cover the finding of distinct
“elements of the environment [. . .] within a volume of
space”. Developmental theories suggest that finding inter-
action regularities constitutes a prerequisite toward finding
persistent objects in the environment, but we still need to
investigate the concrete mechanisms that will implement
this passage.

Preliminary experiments in more complex environments
indicate that the current algorithm faces three notable lim-
itations. The first limitation concerns the management of a
large number of learned schemes. Although the number of

O.L. Georgeon, F.E. Ritter / Cognitive Systems Research xxx (2011) xxx–xxx 17

Please cite this article in press as: Georgeon, O. L., & Ritter, F. E. An intrinsically-motivated schema mechanism to model and sim-
ulate emergent cognition. Cognitive Systems Research (2011), doi:10.1016/j.cogsys.2011.07.003

http://dx.doi.org/10.1016/j.cogsys.2011.07.003

learned schemes is controlled as described in Section 4.4
(scope assessment), the algorithm, nevertheless, constructs
several hundred schemes during each run in the environ-
ment described in Fig. 10. The algorithm stores schemes
in Soar’s declarative working memory and Soar is not opti-
mized for a large working memory. This optimization
strategy adopted by Soar eventually became a serious con-
straint on developing the algorithm. Our agent’s knowl-
edge operates both as procedural (when a scheme is
enacted), and as declarative (when a scheme is part of the
agent’s situational representation in the scope). Soar’s
strong distinction between procedural and declarative
knowledge, therefore, further compromises future develop-
ments in Soar. These limitations of Soar regarding the han-
dling of schemes have also been noted by Benjamin et al.
(2004) who proposed the ADAPT cognitive architecture
as an extension of Soar that supports schema manipula-
tion. Additionally, more advanced implementations will
require mechanisms to reduce the number of schemes, for
instance, by forgetting unused schemes or merging schemes
that have similar primitive sequences.

The second limitation is that the algorithm is not good
at finding spatial regularities. For example, if we replace
the central wall square with an empty square in Fig. 8,
the agent becomes less likely to find the most satisfying reg-
ularity, that of making a continuous circuit around its envi-
ronment. We expected this limitation because we did not
design this algorithm to learn spatial regularities, but mov-
ing the agent to more complex 2-D or 3-D environments
will require addressing this issue in the future.

The third limitation is that the agent becomes quickly
trapped in local optima, preventing it from exploring com-
plex environments. As the agent continues to run, its recur-
sive learning mechanism causes it to learn schemes
representing increasingly long repetitions of a cyclical pat-
tern. Our current experimental setup stops the agent when
it detects these repetitions. To generate more interesting
behaviors, future algorithms should implement other forms
of intrinsic drives. For example, we can exploit the detec-
tion of cyclical behaviors to generate a sense of boredom
that would incite the agent to break the cycle and move
toward more exploration.

To move the agent to more complex environments, we
are currently re-implementing the algorithm in Java. We
have also implemented primitive interactions that react to
distal properties of the environment (a sort of rudimentary
vision) (Georgeon, Cohen, & Cordier, 2011). To help the
agent find spatial regularities, we are now working on
enhancing the agent’s architecture with additional mecha-
nisms to represent space (Georgeon, Marshall, & Ronot,
2011). The current results including the open source code
are online.5

The algorithm currently works as an advanced adaptive
mechanism but does not allow the agent to reflect upon or

reason about knowledge. To move toward reflection, we
envision making the agent capable of inhibiting its actions
and only simulating them internally, without enacting them
in the environment. We are now able to implement such an
internal simulation mechanism because our agent’s knowl-
edge is associated with expectations, that is, our agent
learns knowledge of its actions’ effects. The agent can inter-
nally simulate different possible courses of action based on
the expected outcomes associated with each action. The
agent can then choose the course of action that has the
greatest expected satisfaction based on these simulations.
Understanding the scope as the agent’s situation aware-
ness, we anticipate such internal simulations would resem-
ble a stream of awareness, in compliance with Cotterill’s
(2001) proposal that thought is an ‘‘internally simulated
interaction with the environment’’, and Hesslow’s (2002)
argument that this simulation hypothesis can explain our
experience of an inner world.

Acknowledgments

We gratefully thank Richard Carlson, Jonathan
Morgan, James Marshall, Amélie Cordier, and Mark
Cohen for their much-appreciated comments on this
report. Support for this study was provided by ONR
(N00014-06-1-0164 and N00014-08-1-0481), DTRA
(HDTRA 1-09-1-0054), and ANR (ANR-10-PDOC-007-
01).

References

Aha, D. W. (1998). Feature weighting for lazy learning algorithms. In H.
Liu & H. Motoda (Eds.), Feature extraction construction and selection:
A data mining perspective. Norwell, MA: Kluwer Academic Publishers.

Anderson, J. R (2007). How can the human mind occur in the physical
Universe? New York: Oxford University Press.

Arbib, M. (1992). Schema theory. In S. Shapiro (Ed.). Encyclopedia of
Artificial intelligence, 2nd ed. (Vol. 2, pp. 1427–1443). New York, NY:
John Wiley & Sons.

Arkin, R. (1987). Motor schema-based mobile robot navigation. The
International Journal of Robotics Research, 8(4), 92–112.

Bach, J. (2008). Principles of synthetic intelligence. Building blocks for an
architecture of motivated cognition. New York, NY: Oxford University
Press.

Bajcsy, R. (1988). Active perception. Proceedings of the IEEE, 76(8),
996–1005.

Benjamin, P., Lyons, D., & Lonsdale, D. (2004). ADAPT: A cognitive
architecture for robotics. In Sixth international conference of cognitive
modeling (pp. 337–338). Pittsburgh, PA: Lawrence Earlbaum.

Blank, D. S., Kumar, D., Meeden, L., & Marshall, J. (2005). Bringing up
robot: Fundamental mechanisms for creating a self-motivated, self-
organizing architecture. Cybernetics and Systems, 32(2), 125–150.

Chaput, H. H. (2004). The Constructivist Learning Architecture: A model
of cognitive development for robust autonomous robots. Unpublished
doctoral dissertation, The University of Texas, Austin.

Cohen, M. A. (2005). Teaching agent programming using custom
environments and Jess. AISB Quarterly, 120(Spring), 4.

Cordier, A., Mascret, B., & Mille, A. (2009). Extending case-based
reasoning with traces. In Grand Challenges for reasoning from
experiences, Workshop at IJCAI (pp. 23–32). Pasadena, CA.

Cotterill, R. (2001). Cooperation of basal ganglia, cerebellum, sensory
cerebrum and hippocampus: Possible implications for cognition,5 http://e-ernest.blogspot.com/

18 O.L. Georgeon, F.E. Ritter / Cognitive Systems Research xxx (2011) xxx–xxx

Please cite this article in press as: Georgeon, O. L., & Ritter, F. E. An intrinsically-motivated schema mechanism to model and sim-
ulate emergent cognition. Cognitive Systems Research (2011), doi:10.1016/j.cogsys.2011.07.003

http://dx.doi.org/10.1016/j.cogsys.2011.07.003

consciousness, intelligence and creativity. Progress in Neurobiology, 64,
1–33.

De Loor, P., Manac’h, K., & Tisseau, J. (2010). Enaction-based artificial
intelligence. Toward co-evolution with humans in the loop. Minds and
Machine, 19, 319–343.

Dennett, D. (1991). Consciousness explained. The Penguin Press.
Dennett, D. (1998). Brainchildren: Essays on designing minds. Cambridge,

MA: MIT Press.
Derbinsky, N., & Laird, J. E. (2009). Efficiently implementing episodic

memory. In 8th international conference on case-based reasoning,
ICCBR (pp. 403–417). Seattle, WA.

Dietterich, T. G. (2000). An overview of MAXQ hierarchical reinforce-
ment learning. In SARA02 4th international symposium on abstraction,
reformulation, and approximation (pp. 26–44). London, UK: Springer-
Verlag.

Drescher, G. L. (1991). Made-up minds, a constructivist approach to
artificial intelligence. Cambridge, MA: MIT Press.

Endsley, M. R. (1995). Toward a theory of situation awareness in dynamic
systems. Human Factors, 37(1), 32–64.

Floreano, D., Mondada, F., Perez-Uribe, A., & Roggen, D. (2004).
Evolution of embodied intelligence. In F. Iida, R. Pfeifer, L. Steels, &
Y. Kuniyoshi (Eds.), Embodied artificial intelligence (Vol. 3139)
(pp. 293–311). Berlin: Springer-Verlag.

Froese, T., Virgo, N., & Izquierto, E. (2007). Autonomy: A review and a
reappraisal. In 9th Conference on artificial life (pp. 455–464). Lisbon,
Portugal: Springer-Verlag.

Gadanho, S., & Hallam, J. (1998). Exploring the role of emotions in
autonomous robot learning. In AAAI fall symposium on emotional
intelligence (pp. 84–89). Orlando, FL: AAAI Press.

Georgeon, O., Cohen, M., & Cordier, A. (2011). A Model and simulation
of early-stage vision as a developmental sensorymotor process. In
Artificial Intelligence Applications and Innovations. Corfu, Greece.

Georgeon, O., Marshall, J., & Ronot, P.-Y. (2011). Early-stage vision of
composite scenes for spatial learning and navigation. In First joint
IEEE Conference on development and learning and on epigenetic
robotics. Frankfurt, Germany.

Gibson, J. J. (1979). The ecological approach to visual perception. Boston:
Houghton-Mifflin.

Griffiths, T. L., Kemp, C., & Tenenbaum, J. B. (2008). Bayesian models of
cognition. In R. Sun (Ed.), The Cambridge handbook of computational
cognitive modeling. Cambridge, MA: Cambridge University Press.

Guerin, F., & McKenzie, D. (2008). A Piagetian model of early
sensorimotor development. Paper presented at the Eighth International
Conference on Epigenetic Robotics. Retrieved.

Harnad, S. (1990). The symbol grounding problem. Physica D, 42,
335–346.

Hawkins, J., & Blakeslee, S. (2004).On intelligence. New York, NY: Times
Books.

Hesslow, G. (2002). Conscious thought as simulation of behaviour and
perception. Trends in Cognitive Science, 6(6), 242–247.

Holmes, M., & Isbell, C. (2005). Schema learning: Experience-based
construction of predictive action models. Advances in Neural Informa-
tion Processing Systems, 17, 583–592.

Hurley, S. (1998). Consciousness in action. Cambridge, MA: Harvard
University Press.

Hutchins, E. (1995). Cognition in the wild. Cambridge, MA: MIT Press.
James, W. (1907). Pragmatism.
Kolodner, J. (1992). An introduction to case-based reasoning. Artificial

Intelligence Review, 6(1), 3–34.
Laird, J. E, & Congdon, C. B (2009). The soar user’s manual version 9.1.

University of Michigan.
Langley, P., & Choi, D. (2006). Learning recursive control programs from

problem solving. Journal of Machine Learning Research, 7, 493–518.
Mille, A. (2006). From case-based reasoning to traces-based reasoning.

Annual Reviews in Control, 30(2), 223–232.
Mitchell, M. (1996). An introduction to genetic algorithms. Cambridge,

MA: MIT Press.

Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard
University Press.

Newell, A., & Simon, H. (1975). Computer science as empirical inquiry:
Symbols and search. Communications of the ACM, 19(3), 113–126.

Noë, A. (2004). Action in perception. Cambridge, MA: MIT Press.
Norman, J. (2002). Two visual systems and two theories of perception: An

attempt to reconcile the constructivist and ecological approaches.
Behavioral and Brain Sciences, 25(1), 73–144.

Oudeyer, P.-Y., & Kaplan, F. (2007). Intrinsic motivation systems for
autonomous mental development. IEEE Transactions on Evolutionary
Computation, 11(2), 265–286.

Perotto, F., Buisson, J., & Alvares, L. (2007). Constructivist anticipatory
learning mechanism (CALM): Dealing with partially deterministic and
partially observable environments. In Seventh international conference
on epigenetic robotics. Rutgers, NJ.

Pfeifer, R. (1996). Building fungus eaters: Design principles of autono-
mous agents. In 4th International conference on simulation of adaptive
behavior (pp. 3–12). Cambridge, MA: The MIT Press.

Piaget, J. (1937). The construction of reality in the child. New York: Basic
Books.

Piaget, J. (1970). L’épistémologie génétique. Paris: PUF.
Pierce, D., & Kuipers, B. (1997). Map learning with uninterpreted sensors

and effectors. Artificial Intelligence, 92, 169–227.
Popper, K. (1972). Objective knowledge. Oxford: Oxford University Press.
Putterman, M. L. (1994). Markov Decision Processes. Discrete stochastic

dynamic programming. New York, NY: Wiley-Interscience.
Rumelhart, D. E., & Norman, D. A. (1981). Analogical processes in

learning. In J. R. Anderson (Ed.), Cognitive skills and their acquisition
(pp. 335–359). Hillsdale: NJ: Erlbaum.

Russell, S., & Norvig, P. (1995). AI: A modern approach. Englewoods
Cliffs, NJ: Prentice-Hall.

Sanchez-Marre, M., Cortes, U., Martinez, M., Comas, J., & Rodriguez-
Roda, I. (2005). An approach for temporal case-based reasoning:
Episode-based reasoning. In ICCBR. Heidelberg: Chicago, IL:
Springer.

Schmidhuber, J. (2010). Formal theory of creativity, fun, and intrinsic
motivation. IEEE Transactions on Autonomous Mental Development,
2(3), 230–247.

Simon, H. (1981). The sciences of the artificial. Cambridge: MIT Press.
Singh, S., Barto, A. G., & Chentanez, N. (2005). Intrinsically motivated

reinforcement learning. In L. Saul, K. Y. Weiss, & L. Bottou (Eds.).
Advances in neural information processing systems (Vol. 17,
pp. 1281–1288). Cambridge, MA: MIT Press.

Singh, S., Lewis, R. L., & Barto, A. G. (2009). Where do rewards come
from? In 31st Annual conference of the cognitive science society (pp.
2601–2606). Austin, TX.

Stewart, J., Gapenne, O., & Di Paolo, E. (2008). Enaction: A new paradigm
for cognitive science. Cambridge, MA: MIT Press.

Stojanov, G., Bozinovski, S., & Trajkivski, G. (1997). Interactionist-
expectative view on agency and learning. Mathematics and Computers
in Simulation, 44(3), 295–310.

Suchman, L. A. (1987). Plans and situated actions. Cambridge: Cambridge
University Press.

Sun, R. (2004). Desiderata for cognitive architectures. Philosophical
Psychology, 17(3), 341–373.

Sun, R. (2009). Motivational representations within a computational
cognitive architecture. Cognitive Computation, 1(1), 91–103.

Sun, R., Merrill, E., & Peterson, T. (2001). From implicit skills to explicit
knowledge: A bottom-up model of skill learning. Cognitive Science, 25,
203–244.

Sun, R., Peterson, T., & Merrill, E. (1999). A hybrid architecture for
situated learning of reactive sequential decision making. Applied
Intelligence, 11, 109–127.

Sun, R., & Sessions, C. (2000). Automatic segmentation of sequences
through hierarchical reinforcement learning. In R. Sun & C. L. Giles
(Eds.), Sequence learning (pp. 241–263). Berlin Heidelberg: Springer-
Verlag.

O.L. Georgeon, F.E. Ritter / Cognitive Systems Research xxx (2011) xxx–xxx 19

Please cite this article in press as: Georgeon, O. L., & Ritter, F. E. An intrinsically-motivated schema mechanism to model and sim-
ulate emergent cognition. Cognitive Systems Research (2011), doi:10.1016/j.cogsys.2011.07.003

http://dx.doi.org/10.1016/j.cogsys.2011.07.003

Varela, F., Thompson, E., & Rosch, E. (1991). The embodied mind:
Cognitive science and human experience. Cambridge: MIT Press.

Weill-Fassina, A., Rabardel, P., & Dubois, D. (1993). Représentations
pour l’action. Toulouse: Octares.

Wittgenstein, L. (1953). Philosophical investigations. Malden, MA: Black-
well Publishing.

Wolpert, D., & Macready, W. (1997). No free lunch theorem for search.
IEEE Transactions on Evolutionary Computation, 1(1), 67–82.

20 O.L. Georgeon, F.E. Ritter / Cognitive Systems Research xxx (2011) xxx–xxx

Please cite this article in press as: Georgeon, O. L., & Ritter, F. E. An intrinsically-motivated schema mechanism to model and sim-
ulate emergent cognition. Cognitive Systems Research (2011), doi:10.1016/j.cogsys.2011.07.003

http://dx.doi.org/10.1016/j.cogsys.2011.07.003

	An intrinsically-motivated schema mechanism to model and simulate emergent cognition
	Introduction
	Implementation background
	Main concepts in the algorithm
	Algorithm procedure
	Scheme selection
	Scheme enaction
	Scheme learning
	Scope assessment
	Implementation

	Experiments
	Simple loop experiment
	An example life of Ernest
	A hundred lives of Ernest
	Ernest in other worlds

	Comparison with related work
	Conclusion
	Acknowledgments
	References

