
Course NotesReinforcement Learning I:IntroductionRichard S. Sutton and Andrew G. Bartoc All rights reserved[In which we try to give a basic intuitive sense of what reinforcementlearning is and how it di�ers and relates to other �elds, e.g., supervisedlearning and neural networks, genetic algorithms and arti�cial life, controltheory. Intuitively, RL is trial and error (variation and selection, search)plus learning (association, memory). We argue that RL is the only �eldthat seriously addresses the special features of the problem of learningfrom interaction to achieve long-term goals.]1 Learning from InteractionThe idea that we learn by interacting with our environment is probably the �rstto occur to us when we think about the nature of learning. When an infant plays,waves its arms, or looks about, it has no explicit teacher, but it does have a directsensorimotor connection to its environment. Exercising this connection producesa wealth of information about cause and e�ect, about the consequences of actions,and about what to do in order to achieve goals. This interaction is undoubtedlya major contributor to the infant's developing sense of its environment and ofits own role in it. Experience remains a powerful teacher as the infant growsinto a child and an adult, although the nature interaction changes signi�cantlyover time. Whether we are learning to drive a car or to hold a conversation, weare all acutely aware of how our environment responds to what we do, and weseek to inuence its behavior. Learning from interaction is a foundational ideaunderlying nearly all theories of learning.Reinforcement learning a computational approach to the study of learningfrom interaction. The last decade has seen the study of reinforcement learningdevelop into an unusually multi-disciplinary �eld; it includes researchers specializ-ing in arti�cial intelligence, psychology, control engineering, operations research,1



neuroscience, arti�cial neural networks, and genetic algorithms. Reinforcementlearning has particularly rich roots in the psychology of animal learning, fromwhich it takes its name. A number of impressive applications of reinforcementlearning have also been developed. The growing interest in reinforcement learn-ing is fueled in part by the challenge of designing intelligent systems that mustoperate in dynamic real{world environments. For example, making robots, orrobotic \agents", more autonomous (that is, less reliant on carefully controlledconditions) requires decision{making methods that are e�ective in the presenceof uncertainty and that can meet time constraints. Under these conditions, learn-ing seems essential for achieving skilled behavior, and it is under these conditionsthat reinforcement learning can have signi�cant advantages over other types oflearning.Here we develop reinforcement learning from the point of view of arti�cialintelligence (AI) and engineering. (Reinforcement learning has also been de-veloped with respect to psychology and neuroscience.) From this perspective,reinforcement learning corresponds to a particular mathematical formulation ofthe problem of learning from interaction. We examine this problem carefully andthen explore some of the many algorithms for solving it that have been proposedin several di�erent disciplines. By presenting these algorithms from a single per-spective and using a uni�ed notation, we try to make it easy to see how thedi�erent methods relate to one another and how they can can be combined mostpro�tably. Perhaps surprisingly, almost all of these algorithms can be understoodas various combinations of a few underlying principles.Perhaps the most surprising outcome of the modern view of reinforcementlearning is the close relationship it reveals between learning and planning, whereby planning we mean deciding on a course of action by considering possible fu-ture situations before they are actually experienced. The earliest, and simplest,reinforcement learning algorithms make it possible to learn directly from envi-ronmental interaction without ever having to consider any situations that arenot actually experienced. Using this type of reinforcement learning, a systemcan achieve highly skilled behavior without having any ability to predict howits environment might behave in response to its actions (that is, without havingany sort of model of its environment). This is almost the opposite of planning.However, more complex forms of reinforcement learning have been devised thatare closely related to computational methods known as dynamic programming,which do take advantage environment models, and these methods are closely re-lated to the state{space planning methods of arti�cial intelligence. Today it isclear that reinforcement learning, in one or another of its various forms, can beapplied to almost any planning problem, sometimes with signi�cant advantagesover more conventional planning methods.2



2 ExamplesA good way to introduce reinforcement learning is to consider some of the exam-ples and possible applications that have guided its development:� A master chess player makes a move. The choice is informed both byplanning|anticipating possible replies and counter{replies|and by imme-diate, intuitive judgements of the desirability of particular positions andmoves.� An adaptive controller adjusts parameters of a petroleum re�nery's opera-tion in real time. The controller optimizes the yield/cost/quality tradeo�based on speci�ed marginal costs without sticking strictly to the set pointsoriginally suggested by human engineers.� A gazelle calf struggles to its feet minutes after being born. Half an hourlater it is running at 30 miles per hour.� Phil prepares his breakfast. When closely examined, even this apparentlymundane activity reveals itself as a complex web of conditional behavior andinterlocking goal{subgoal relationships: Walking to the cupboard, openingit, selecting a cereal box, then reaching for, grasping, and retrieving it.Other complex, tuned, interactive sequences of behavior are required toobtain a bowl, spoon, and milk jug. Each step involves a series of eyemovements to obtain information and to guide reaching and locomotion.Rapid judgements are continually made about how to carry the objectsor whether it is better to ferry some of them to the dining table beforeobtaining others. Each step is guided by goals, such as grasping a spoon,or getting to the refrigerator, and is in service of other goals, such as havingthe spoon to eat with once the cereal is prepared and of ultimately obtainingnourishment.� A mobile robot decides whether it should enter a new room in search ofmore trash to collect or start trying to �nd its way back to its batteryrecharging station. It makes its decision based on how quickly and easily ithas been able to �nd the recharger in the past.These examples share features that are so basic that they are easy to over-look. All involve interaction between an active decision{making agent and itsenvironment in which the agent seeks to achieve a goal despite uncertainty aboutits the environment. The agent's actions are permitted to a�ect the future stateof the environment (e.g., the next chess position, the level of resevoirs of there�nery, the next location of the robot), thereby a�ecting the options and oppor-tunities available to the agent at later times. Correct choice requires taking into3



account indirect, delayed consequences of actions, and thus may require foresightor planning.At the same time, the e�ects of actions cannot be fully predicted, and sothe agent must frequently monitor its environment and react appropriately. Forexample, Phil must watch the milk he pours into his cereal bowl to keep it fromoverowing. All these examples involve goals that are explicit in the sense thatthe agent can judge progress toward its goal on the basis of what it can directlysense. The chess player knows whether or not he wins, the re�nery controllerknows how much petroleum is being produced, the mobile robot knows when itsbatteries run down, and Phil knows whether or not he is enjoying his breakfast.Moreover, an agent's goals are its own goals; not the goals of an outside agentor designer. If we want to use a reinforcement learning system for an engineeringapplication, such as improving the yield of a petroleum re�nery, we have to makea reinforcement learning system whose own goals are the same as ours.In all of these examples, the agent can use its experience to improve its per-formance over time. The chess player re�nes the intuition he uses to evaluatepositions, thereby improving his play; the gazelle calf improves the e�ciencywith which it can run; Phil learns to streamline his breakfast making. The levelof knowledge the agent brings to the task at the start|either from previous ex-perience with related tasks or from its genetic programming|inuences whatis useful or easy to learn, but interaction with the environment is essential foradjusting behavior to exploit speci�c features of each task.3 Reinforcement LearningReinforcement learning is the learning of a mapping from situations to actionsso as to maximizes a scalar reward or reinforcement signal. The learner doesnot need to be directly told which actions totake, as in most forms of machinelearning, but instead must discover which actions yield the most reward by tryingthem. In the most interesting and challenging cases, an action may a�ect notonly the immediate reward, but also the next situation, and consequently all sub-sequent rewards. These two characteristics|trial and error search and delayedreward|are the two most important distinguishing characteristics of reinforce-ment learning.All reinforcement learning algorithms require a particular synergistic com-bination of search and memory. Search is required to �nd good actions, andmemory is required to remember what actions worked well in what situationsin the past. The synergism arises because search provides the information thatmust be remembered, and memory makes search easier and faster. Reinforcementlearning involves the systematic caching of search results so that future searchcan be more e�cient, or perhaps even eliminated.4



Although search and memory are key computational elements of any rein-forcement learning algorithm, it is best to de�ne reinforcement learning in termsof a particular class of learning problems; not particular algorithms. Any algo-rithm that is well suited to solving one of these problems we consider to be areinforcement learning algorithm. In Chapter 2 we present a precise formulationof reinforcement learning problems, drawing heavily on the mathematical de�ni-tion of a Markov decision process. Although this formulation allows us to takeadvantage of a great wealth of existing mathematical theory, our primary intentit to provide a fairly straightforward representation of the real problem facing alearning agent interacting with its environment to achieve a goal (or to achievemultiple goals). Clearly, such an agent must be able to sense information perti-nent to the state of its environment and must be able to take actions that a�ectthe state. The agent must also have a goal, or goals, de�ned in terms of how theenvironment behaves over time under the inuence of its actions. These threeaspects|sensation, action, and goal|are the building blocks of the theoreticalframework that we use throughout this book.Reinforcement learning is very di�erent from supervised learning, the kindof learning studied in almost all current research in machine learning, statisticalpattern recognition, and arti�cial neural networks. Supervised learning is learn-ing under the tutelage of a knowledgeable supervisor, or \teacher," that explicitlytells the learning agent how it should respond to training inputs. Although thiskind of learning can provide an important component of more complete learningsystems, it is not by itself adequate for the kind of learning that autonomousagents must accomplish. It is often very costly, or even impossible, to obtaina set of examples of desired behavior that is both correct and representative ofthe situations in which the agent will have to act. In uncharted territory|whereone would expect learning to be most bene�cial|an agent must be able to learnfrom its own experiences rather than from a knowledgeable teacher. Althougha reinforcement learning agent might also take advantage of knowledgeable in-struction if it is available, the primary source of information and feedback is thisinteraction with its environment.One of the challenges that arises in reinforcement learning, and not in otherkinds of learning, has been called the tradeo� between exploration and exploita-tion. To obtain a lot of reward, a reinforcement learning agent must prefer actionsthat it has tried in the past and found to be e�ective in producing reward. Butto discover which actions these are, it has to select actions that it has not triedbefore. The agent has to exploit what it already knows in order to obtain re-ward, while it also has to explore in order to make better action selections inthe future. The dilemma is that neither exploitation nor exploration can bepursued exclusively without failing at the task. The agent must try a varietyof actions and progressively favor those that appear to be best. On a stochas-tic task, each action must be tried many times to reliably estimate its expected5



reward. The exploration{exploitation dilemma has been intensively studied bymathematicians for many decades. We simply note that the entire issue of bal-ancing exploitation and exploration does not even arise in supervised learning,as it is usually de�ned.Another key feature of reinforcement learning is that it explicitly considersthe whole problem of a goal{directed agent interacting with an uncertain envi-ronment. This is in contrast with many approaches that address subproblemswithout addressing how they might �t into a larger picture. For example, wehave mentioned that much of machine learning research is concerned with su-pervised learning without explicitly specifying how such an ability would �nallybe useful. Other researchers have developed theories of planning with generalgoals, but without considering planning's role in real{time decision{making, orthe question of where the predictive models necessary for planning would comefrom. Although these approaches have yielded many useful results, it is clearthat their focus on isolated subproblems has become a signi�cant limitation.Reinforcement learning takes the opposite tack by starting with a complete,interactive, goal{seeking agent. All reinforcement learning agents have explicitgoals, can sense aspects of their environments, and can choose actions to inuencetheir environments. Moreover, it is usually assumed from the beginning that theagent will have to operate despite signi�cant uncertainty about the environmentit faces. When reinforcement learning involves planning, it has to address theinterplay between planning and real{time action selection, as well as the questionof how environmental models are acquired and improved. When reinforcementlearning involves supervised learning, it does so for very speci�c reasons thatdetermine which capabilities are critical, and which are not. For learning researchto make progress, important subproblems surely have to be isolated and studied,but they should be subproblems that are motivated by clear roles in complete,interactive, goal{seeking agents, even if all the details of the complete agentcannot yet be �lled in.4 Components of a Reinforcement Learning AgentA reinforcement learning agent generally consists of four basic components: apolicy, a reward function, a value function, and a model of the environment.The policy is the decision{making function of the agent, specifying what actionit takes in each of the situations that it might encounter. In psychology, this wouldcorrespond to the set of stimulus{response rules or associations. This is the coreof a reinforcement agent, as suggested by Figure 1, because it alone is su�cientto de�ne a full, behaving agent. The other components serve only to change andimprove the policy. The policy itself is the ultimate determinant of behavior andperformance. In general it may be stochastic.6
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environmentFigure 1: Main Components of a Reinforcement Learning Agent.The reward function de�nes the goal of the reinforcement learning agent.The agent's objective is to maximize the reward that it receives over the longrun. The reward function thus de�nes what are the good and bad events for theagent. Rewards are the immediate and de�ning features of the problem facedby the agent. As such, the reward function must necessarily be �xed. It may,however, be used as a basis for changing the policy. For example, if an actionselected by the policy is followed by low reward then the policy may be changedto select some other action in that situation in the future.Whereas reward indicates what is good in an immediate sense, the valuefunction speci�es what is good in the long run, that is, because it predicts reward.The di�erence between value and reward is critical to reinforcement learning. Forexample, when playing chess, checkmating your opponent is associated with highreward, but winning his queen is associated with high value. The former de�nesthe true goal of the task|winning the game|whereas the latter just predictsthis true goal. Learning the value of states, or of state{action pairs, is the criticalstep in the reinforcement learning methods we consider here.The fourth and �nal major component of a reinforcement learning agent is amodel of its environment or external world. This is something that mimics thebehavior of the environment in some sense. For example, given a situation andan action, the model might predict the resultant next state and next reward. Themodel is drawn as the largest component in Figure 1 because one might expectit to take up the most storage space. If there are jSj states and jAj actions,then a complete model will take up space proportional to size jSj � jSj � jAj,because it maps state{action pairs to probability distributions over states, givingthe probability of each possible result state for each action taken in each state. Bycontrast, the reward and value functions might just map states to real numbers,and thus be of size jSj, while a stochastic policy is at most of size jSj � jAj.Not every reinforcement learning agent uses model of the environment. Meth-7



ods that never learn or use a model are called model{free reinforcement learningmethods. Model{free methods are very simple and, perhaps surprisingly, are stillgenerally able to �nd optimal behavior. Model{based methods just �nd it faster(with fewer experiences). The most interesting case is that in which the agentdoes not have a perfect model of the environment a priori, but must use learningmethods to align it with reality.5 SummaryIn this chapter we sketched some of the reasons that growing numbers of re-searchers are paying attention to reinforcement learning. First, reinforcementlearning focuses on learning online during normal interaction with a dynamicenvironment. This contrasts with the focus of much of machine learning, bothsymbolic and arti�cial neural network, on systems that learn o�ine from a pre{speci�ed set of training examples provided by an explicit and knowledgeable\teacher". Although a reinforcement learning system should also be able takeadvantage of knowledgeable teachers in its environment, if there are any, its realsource of information is its own experience. Moreover, most machine learning sys-tems do not learn while they are actually being used. It is more appropriate tocall them learned systems rather than learning systems. Although reinforcementlearning is sometimes used in this way, the conceptual bedrock of reinforcementlearning is that a learning system should use all of its experience, throughout itsentire existence, to improve its performance.Reinforcement learning uses a formal framework de�ning the interaction be-tween agent and environment in terms of situations (states), actions, and rewards.This framework is intended to be a simple way of representing essential features ofthe AI problem. These features include a sense of cause and e�ect, of uncertaintyand nondeterminism, and the existence of explicit goals. Most relevant is theformalism of Markov decision processes, which provides a precise, and relativelyneutral, way of including the key features. Although we only scratch its sur-face, this theory allows us to take advantage of related perspectives and methodsdeveloped in �eld of stochastic optimal control.The concepts of value and value functions are the key features of the kinds ofreinforcement learning methods that we consider in this book. We take the posi-tion that value functions are essential for e�cient search in the space of policies.Their use of value functions distinguish these reinforcement learning methodsfrom conceptually simpler evolutionary methods that search directly in policyspace, guided by scalar evaluations of entire policies. In our approach, valuefunctions enable algorithms to take advantage of the details of individual behav-ioral interactions. Although evolutionary methods may provide useful results forsome problems, and value function methods can pro�tably be used in conjunc-8



tion with them (much the way learning and evolution work together in nature),we believe that when applied to reinforcement learning problems, evolutionarymethods are inherently less e�cient than value function methods.Once one takes the estimation (learning) of value functions as a key compu-tational step, the question becomes how best to do this. In this book we identifythree principle classes of methods. Monte Carlo methods estimate the value ofa state by simply running many trials starting at that state. The actual totalrewards received on those trials are then averaged to obtain an estimate of thestate's value. Search methods such as dynamic programming and heuristic searchcan be viewed as straightforward model{based ways to estimate a value function.Finally, temporal{di�erence methods, a relatively new development, are based onlearning states' values by using the values of the states that follow them in actualtrials.This book is organized around the principle that these three classes of meth-ods for learning value functions are not totally di�erent: they can be viewedas members of one \super family" of methods. Although there are di�erencesbetween them, one need not pick between them, but can mix and match. Theyall have at their heart a common operation, called a \backup." Some performbackups based on experience, some based on a model, some backup from a wideset of possible next states, some only from one. The backups are of di�erentsizes, shapes, and sources, but they all share common features and contribute toa common computation.6 Bibliographical and Historical RemarksHere we provide a necessarily abridged discussion of the history of the main ideasof reinforcement learning. Although the speci�c term \reinforcement learning"has never been used by psychologists, the roots of reinforcement learning lie inthe learning theories developed by experimental psychologists throughout thiscentury. It would take us too far a�eld to attempt an overview of the reinforce-ment theories of psychology, something that is already available in many books(e.g., (Mackintosh, 1983)). We concentrate instead on the best{known of theearly explorations of the computational power of reinforcement learning, tryingnot to obscure the fact that computational and psychological perspectives aresometimes hard to distinguish.In the 1960s one �nds the terms \reinforcement" and \reinforcement learn-ing" being in the engineering literature for the �rst time (Minsky thesis? (Min-sky, 1961); Waltz & Fu (Waltz & Fu, 1965), Mendel, 1966; Mendel & McClaren(Mendel & McLaren, 1970)). These terms are used to refer to the general idea oflearning from rewards and punishments: trial{and{error learning, where actionsfollowed by good or bad outcomes are respectively strengthened or weakened.9



This early notion of reinforcement learning is an exact mirror of a classical psy-chological principle, Thorndike's (1911) \Law of E�ect":\Of several responses made to the same situation, those which areaccompanied or closely followed by satisfaction to the animal will,other things being equal, be more �rmly connected with the situation,so that, when it recurs, they will be more likely to recur; those whichare accompanied or closely followed by discomfort to the animal will,other things being equal, have their connections with that situationweakened, so that, when it recurs, they will be less likely to occur. Thegreater the satisfaction or discomfort, the greater the strengtheningor weakening of the bond."Although this principle has generated considerable controversy in psychol-ogy, as well as in other �elds, over the years (see ref ???), it remains inuentialbecause its general idea is supported by many experiments and it makes suchgood intuitive sense. It is an elementary, obvious way of combining search andmemory: search in the form of trying many actions, and memory in the form ofremembering what actions worked best. Dennett (?) provides a good accountof the continuing attractiveness of the Law of E�ect, and Cziko (?) provides avery broad account of the utility of methods, like the Law of E�ect, that operateusing selectional, as opposed to instructional, principles.The earliest computational investigations of the Law of E�ect that we knowof were by Minsky and by Farley and Clark, both published in 1954. In his Ph.D.dissertation, Minsky (Minsky, 1954) describes the construction of an analog ma-chine, the SNARC (Stochastic Neural{Analog Reinforcement Calculator) whichwas designed to to learn by trial{and{error. Farley and Clark ((Farley & Clark,1954); Clark and Farley, 1955) describe another neural{network learning machine,but noting its ability to \generalize", discussed it more in terms of supervisedlearning than of reinforcement learning. This began a pattern of confusion aboutthe relationship between these types of learning. Many researchers seemed tobelieve that they were studying reinforcement learning, while they were actuallystudying supervised learning, a confusion that persists to this day. Even mod-ern neural{network textbooks often describe networks that learn from trainingexamples as trial{and{error learning systems because they use error informationto update connection weights. While this is an understandable confusion, it sub-stantually misses the selectional character of of learning via the Law of E�ect,which is what the term trial{and{error was originally intended to describe.It is clear that neural{network pioneers such as Rosenblatt (1958, (Rosenblatt,1961)) and Widrow and Ho� (Widrow & Ho�, 1960), as well as the psychologistsBush and Mosteller (Bush & Mosteller, 1955), were thinking about reinforcementlearning|they used the language of rewards and punishments|but the systems10



they studied became more clearly supervised learning systems, suitable for pat-tern recognition and perceptual learning, but not for direct interaction with anenvironment. In the 1960s and 1970s, reinforcement learning was gradually over-shadowed and lost as a distinct topic, while supervised learning, particularly inthe form of pattern recognition, became widely studied. We discuss some ofthe �ne points of this transition, including exceptions such as learning automatatheory and Kiefer{Wolfowitz stochastic approximation methods in Chapter 3.Other clear exceptions to this trend deserve mention here. In 1963, Andreaedescribed a reinforcement learning machine called STeLLA (?), which includedwhat we would now call an environment model to facilitate learning. Andreaewas explicitly concerned with how a machine could learn by interacting withits environment. Later developments included an \internal monologue" to dealwith the problem of partial state observablility (?), something that is still animportant issue for reinforcement learning. Although later work by Andreaecontinued to emphasize learning by interaction, it placed more emphasis on therole of a teacher (?). Andreae's pioneering research is not well{known, but it stillholds lessons for modern reinforcement learning research.Also in the 1960s, Donald Michie maintained a clear focus on reinforcementlearning. He described a simple reinforcement learning system for learning howto play Tic-Tac-Toe (also known as Noughts and Crosses) called MENACE (forMatchbox Educable Noughts and Crosses Engine) (?; ?). It consisted of a match-box for each possible game position containing a number of colored beads, a colorfor each move available from that position. By drawing a bead at random fromthe matchbox corresponding to the current game position, one could determineMENACE's move. When a game was over, beads were added or removed from theboxes used during play to reinforce or punish MENACE's decisions. We wouldnow regard MENACE as a collection of simple stochastic learning automata(Chapter 3). In 1968, Michie and Chambers (Michie & Chambers, 1968) de-scribed a more advanced Tic-Tac-Toe reinforcement learner called GLEE (GameLearning Expectimaxing Engine) which estimated a value function using whatthey called Expectimaxing. We would now recognize this as closely related todynamic programming. Michie's Tic-Tac-Toe players served as inspiration for ourTic-Tac-Toe example of this chapter, and their discussion of how decomposing alarge problem into a number of mutually independent sub{problems can lead toe�cient reinforcement learning inuenced our discussion in which we contrastedvalue{function methods and evolutionary methods. (The latter methods do notdecompose problems in this way.)Michie and Chambers (Michie & Chambers, 1968) also described a moreadvanced version of the MENACE approach, implemented in a system calledBOXES, which they applied to the problem of learning to balance a pole hingedto a movable cart on the basis of a failure signal occuring only when the polefell or the cart reached the end of a track. This work was partially inspired by11



the 1964 pole{balancing system of Widrow and Smith (Widrow & Smith, 1964),which learned via supervised learning from a teacher already able to accomplishthe task. (Comparing the pole{balancing system of Widrow and Smith with thatof Michie and Chambers is a good very way to come to appreciate the di�erencebetween supervised and reinforcement learning.) BOXES, which did not estimatea value function, inspired the pole{balancing system of Barto, Sutton, and An-derson (Barto et al., 1983) which did estimate a value function. (These systemshave been followed by other pole{balancing reinforcement learning systems toonumerous to mention.)Although Widrow and colleagues maintained a clear emphasis on supervisedlearning, he recognized how it di�ered from reinforcment learning. In 1973,Widrow, Gupta, and Maitra (Widrow et al., 1973) modi�ed the Widrow{Ho�supervised learning rule (often called the Least{Mean{Square, or LMS, rule) toproduce a reinforcement learning rule which could learn from success and failuresignals instead of from training examples. They called this form of learning \se-lective bootstrap learning" and used the phrase learning "learning with a critic"instead of "learning with a teacher."Another researcher who bucked the supervised learning trend was Harry Klopf(Klopf, 1972; Klopf, 1982), who presented a \hedonic", or \heterostatic," theoryof neural function and AI. Klopf recognized that essential aspects of adaptivebehavior were being lost as learning researchers came to focus almost exclusivelyon supervised learning. These were the hedonic aspects: the drive to achievesome result from the environment, to control it toward desired ends and awayfrom undesired ends. This is of course an essential element of reinforcementlearning. Klopf's work was a especially important to the authors because ourassessment of Klopf's ideas (Barto & Sutton, 1981) led to our appreciation ofthe distinction between supervised and reinforcement learning, as well as to oureventual focus on reinforcement learning.Important contributions to reinforcement learning were also made by JohnHolland (Holland, 1975; Holland, 1986). Although best known for his devel-opment of genetic algorithms, Holland outlined a very general theory of adap-tive systems that stresses interactive learning based on selectional principles. Infact, his classi�er system (Holland, 1986) is a reinforcement learning system thatupdates value functions using what he called the \bucket brigade algorithm,"which is closely related to the value{function estimation methods we discuss inthis book. Although genetic algorithms are natural candidates for implementingwhat we called the evolutionary approach to reinforcement learning, which wecontrasted with value{function methods, Holland did not suggest this approach.Classi�er systems use both genetic algorithms and value functions.Although the idea of learning by estimating value functions from experienceappeared in Minsky's dissertaton (Minsky, 1954), it was most inuentially intro-duced by Samuel (Samuel, 1959) in his program for learning how to play the game12



of checkers using what we would now call a temporal di�erence method. We con-sider Samuel's work to be a seminal inuence on the approach to reinforcementlearning that we present in this book. His papers (Samuel, 1959; Samuel, 1967)reveal extraordinary insight into nearly all the issues that are still challengingcurrent researchers. These papers make highly worthwhile reading even today,and we have much more to say about Samuel's checkers player in later chapters.Although Minsky's dissertaion was an early foray into reinforcement learning,much more inuential was his 1960 paper \Steps Toward Arti�cial Intelligence,"which, like Samuel's papers, contains cogent discussions of issues that are stillrelevant to modern reinforcement learning. Of particular note is Minsky's discus-sion of what he considered to be the major computational problem that complexreinforcement learning systems would have to solve to be successful. He calledthis the credit{assignment problem:In applying such methods to complex problems, one encounters a seri-ous di�culty|in distributing credit for success of a complex strategyamong the many decisions that were involved.If the many decisions involved in achieving success are to be reinforced, thentheir relative contributions to that achievement have to be assessed. Minskydiscussed the value{function estimation method used in Samuel's checkers playeras an important approach to this problem, pointing out that it is closely relatedto the phenomenon of conditioned reinforcement that occurs in animal learning.All of the methods we discuss in this book are directed toward making credit{assignment less of a problem for reinforcement learning systems.It is clear from the brief account above that the main ideas of reinforcementlearning have been present in AI since its earliest days. However, it is only rela-tively recently that they have been attracting widespread attention. One of thereasons that reinforcement ideas have historically had little inuence in AI istheir association with behaviorist views of learning and intelligence. AI researchin 1960s followed the allied areas of psychology in shifting from approaches basedin animal behavior toward more cognitive approaches, leaving little room for re-inforcement theories; in fact, leaving little room for learning theories of any kind.Although we agree with the critics who have argued that one cannot understandor generate all intelligent behavior on the basis of reinforcement principles alone,we believe that AI systems and cognitive theories that steer clear of these ba-sic learning principles are handicapped as well. Indeed, the climate has grownconsiderably warmer toward classical learning principles, including reinforcementlearning, because researchers are using them in systems that owe as much tocognitive perspectives as they do to earlier theories of animal behavior.A related factor that limited the inuence of reinforcement learning principlesin AI is the reputation that they are too computationally weak to be of muchuse. However, there is now ample evidence that reinforcement learning can be13
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