
Journal of Arti�cial Intelligence Research � ������ ��	
��� Submitted ���� published ���

Reinforcement Learning� A Survey

Leslie Pack Kaelbling lpk�cs�brown�edu

Michael L� Littman mlittman�cs�brown�edu

Computer Science Department� Box ����� Brown University

Providence� RI ���������� USA

Andrew W� Moore awm�cs�cmu�edu

Smith Hall ���� Carnegie Mellon University� ���� Forbes Avenue

Pittsburgh� PA ����� USA

Abstract

This paper surveys the �eld of reinforcement learning from a computer�science per�

spective� It is written to be accessible to researchers familiar with machine learning� Both

the historical basis of the �eld and a broad selection of current work are summarized�

Reinforcement learning is the problem faced by an agent that learns behavior through

trial�and�error interactions with a dynamic environment� The work described here has a

resemblance to work in psychology� but di�ers considerably in the details and in the use

of the word �reinforcement�� The paper discusses central issues of reinforcement learning�

including trading o� exploration and exploitation� establishing the foundations of the �eld

via Markov decision theory� learning from delayed reinforcement� constructing empirical

models to accelerate learning� making use of generalization and hierarchy� and coping with

hidden state� It concludes with a survey of some implemented systems and an assessment

of the practical utility of current methods for reinforcement learning�

�� Introduction

Reinforcement learning dates back to the early days of cybernetics and work in statistics�
psychology� neuroscience� and computer science� In the last �ve to ten years� it has attracted
rapidly increasing interest in the machine learning and arti�cial intelligence communities�
Its promise is beguiling�a way of programming agents by reward and punishment without
needing to specify how the task is to be achieved� But there are formidable computational
obstacles to ful�lling the promise�

This paper surveys the historical basis of reinforcement learning and some of the current
work from a computer science perspective� We give a high�level overview of the �eld and a
taste of some speci�c approaches� It is� of course� impossible to mention all of the important
work in the �eld� this should not be taken to be an exhaustive account�

Reinforcement learning is the problem faced by an agent that must learn behavior
through trial�and�error interactions with a dynamic environment� The work described here
has a strong family resemblance to eponymous work in psychology� but di�ers considerably
in the details and in the use of the word �reinforcement�� It is appropriately thought of as
a class of problems� rather than as a set of techniques�

There are two main strategies for solving reinforcement�learning problems� The �rst is to
search in the space of behaviors in order to �nd one that performs well in the environment�
This approach has been taken by work in genetic algorithms and genetic programming�

c����� AI Access Foundation and Morgan Kaufmann Publishers� All rights reserved�

sebastien
Texte surligné

sebastien
Texte surligné

Kaelbling� Littman� � Moore

a

T

s
i

r
B

I
R

Figure 	
 The standard reinforcement�learning model�

as well as some more novel search techniques �Schmidhuber� 	���� The second is to use
statistical techniques and dynamic programming methods to estimate the utility of taking
actions in states of the world� This paper is devoted almost entirely to the second set of
techniques because they take advantage of the special structure of reinforcement�learning
problems that is not available in optimization problems in general� It is not yet clear which
set of approaches is best in which circumstances�

The rest of this section is devoted to establishing notation and describing the basic
reinforcement�learning model� Section � explains the trade�o� between exploration and
exploitation and presents some solutions to the most basic case of reinforcement�learning
problems� in which we want to maximize the immediate reward� Section � considers the more
general problem in which rewards can be delayed in time from the actions that were crucial
to gaining them� Section � considers some classic model�free algorithms for reinforcement
learning from delayed reward
 adaptive heuristic critic� TD��� and Q�learning� Section �
demonstrates a continuum of algorithms that are sensitive to the amount of computation an
agent can perform between actual steps of action in the environment� Generalization�the
cornerstone of mainstream machine learning research�has the potential of considerably
aiding reinforcement learning� as described in Section � Section � considers the problems
that arise when the agent does not have complete perceptual access to the state of the
environment� Section � catalogs some of reinforcement learning�s successful applications�
Finally� Section � concludes with some speculations about important open problems and
the future of reinforcement learning�

��� Reinforcement�Learning Model

In the standard reinforcement�learning model� an agent is connected to its environment
via perception and action� as depicted in Figure 	� On each step of interaction the agent
receives as input� i� some indication of the current state� s� of the environment� the agent
then chooses an action� a� to generate as output� The action changes the state of the
environment� and the value of this state transition is communicated to the agent through
a scalar reinforcement signal� r� The agent�s behavior� B� should choose actions that tend
to increase the long�run sum of values of the reinforcement signal� It can learn to do this
over time by systematic trial and error� guided by a wide variety of algorithms that are the
subject of later sections of this paper�

��	

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

Reinforcement Learning� A Survey

Formally� the model consists of

� a discrete set of environment states� S�

� a discrete set of agent actions� A� and

� a set of scalar reinforcement signals� typically f�� 	g� or the real numbers�

The �gure also includes an input function I � which determines how the agent views the
environment state� we will assume that it is the identity function �that is� the agent perceives
the exact state of the environment� until we consider partial observability in Section ��

An intuitive way to understand the relation between the agent and its environment is
with the following example dialogue�

Environment� You are in state ��� You have � possible actions�

Agent� I�ll take action ��

Environment� You received a reinforcement of � units� You are now in state

��� You have � possible actions�

Agent� I�ll take action ��

Environment� You received a reinforcement of �� units� You are now in state

��� You have � possible actions�

Agent� I�ll take action ��

Environment� You received a reinforcement of � units� You are now in state

��� You have � possible actions�

���
���

The agent�s job is to �nd a policy �� mapping states to actions� that maximizes some
long�run measure of reinforcement� We expect� in general� that the environment will be
non�deterministic� that is� that taking the same action in the same state on two di�erent
occasions may result in di�erent next states and�or di�erent reinforcement values� This
happens in our example above
 from state �� applying action � produces di�ering rein�
forcements and di�ering states on two occasions� However� we assume the environment is
stationary� that is� that the probabilities of making state transitions or receiving speci�c
reinforcement signals do not change over time��

Reinforcement learning di�ers from the more widely studied problem of supervised learn�
ing in several ways� The most important di�erence is that there is no presentation of in�
put�output pairs� Instead� after choosing an action the agent is told the immediate reward
and the subsequent state� but is not told which action would have been in its best long�term
interests� It is necessary for the agent to gather useful experience about the possible system
states� actions� transitions and rewards actively to act optimally� Another di�erence from
supervised learning is that on�line performance is important
 the evaluation of the system
is often concurrent with learning�

�� This assumption may be disappointing	 after all
 operation in non�stationary environments is one of the

motivations for building learning systems� In fact
 many of the algorithms described in later sections

are e�ective in slowly�varying non�stationary environments
 but there is very little theoretical analysis

in this area�

��

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

Kaelbling� Littman� � Moore

Some aspects of reinforcement learning are closely related to search and planning issues
in arti�cial intelligence� AI search algorithms generate a satisfactory trajectory through a
graph of states� Planning operates in a similar manner� but typically within a construct
with more complexity than a graph� in which states are represented by compositions of
logical expressions instead of atomic symbols� These AI algorithms are less general than the
reinforcement�learning methods� in that they require a prede�ned model of state transitions�
and with a few exceptions assume determinism� On the other hand� reinforcement learning�
at least in the kind of discrete cases for which theory has been developed� assumes that
the entire state space can be enumerated and stored in memory�an assumption to which
conventional search algorithms are not tied�

��� Models of Optimal Behavior

Before we can start thinking about algorithms for learning to behave optimally� we have
to decide what our model of optimality will be� In particular� we have to specify how the
agent should take the future into account in the decisions it makes about how to behave
now� There are three models that have been the subject of the majority of work in this
area�

The �nite�horizon model is the easiest to think about� at a given moment in time� the
agent should optimize its expected reward for the next h steps

E�
hX
t��

rt� �

it need not worry about what will happen after that� In this and subsequent expressions�
rt represents the scalar reward received t steps into the future� This model can be used in
two ways� In the �rst� the agent will have a non�stationary policy� that is� one that changes
over time� On its �rst step it will take what is termed a h�step optimal action� This is
de�ned to be the best action available given that it has h steps remaining in which to act
and gain reinforcement� On the next step it will take a �h� 	��step optimal action� and so
on� until it �nally takes a 	�step optimal action and terminates� In the second� the agent
does receding�horizon control� in which it always takes the h�step optimal action� The agent
always acts according to the same policy� but the value of h limits how far ahead it looks
in choosing its actions� The �nite�horizon model is not always appropriate� In many cases
we may not know the precise length of the agent�s life in advance�

The in�nite�horizon discounted model takes the long�run reward of the agent into ac�
count� but rewards that are received in the future are geometrically discounted according
to discount factor �� �where � � � � 	�

E�
�X
t��

�trt� �

We can interpret � in several ways� It can be seen as an interest rate� a probability of living
another step� or as a mathematical trick to bound the in�nite sum� The model is conceptu�
ally similar to receding�horizon control� but the discounted model is more mathematically
tractable than the �nite�horizon model� This is a dominant reason for the wide attention
this model has received�

���

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

Reinforcement Learning� A Survey

Another optimality criterion is the average�reward model� in which the agent is supposed
to take actions that optimize its long�run average reward

lim
h��

E�
	

h

hX
t��

rt� �

Such a policy is referred to as a gain optimal policy� it can be seen as the limiting case of
the in�nite�horizon discounted model as the discount factor approaches 	 �Bertsekas� 	�����
One problem with this criterion is that there is no way to distinguish between two policies�
one of which gains a large amount of reward in the initial phases and the other of which
does not� Reward gained on any initial pre�x of the agent�s life is overshadowed by the
long�run average performance� It is possible to generalize this model so that it takes into
account both the long run average and the amount of initial reward than can be gained�
In the generalized� bias optimal model� a policy is preferred if it maximizes the long�run
average and ties are broken by the initial extra reward�

Figure � contrasts these models of optimality by providing an environment in which
changing the model of optimality changes the optimal policy� In this example� circles
represent the states of the environment and arrows are state transitions� There is only
a single action choice from every state except the start state� which is in the upper left
and marked with an incoming arrow� All rewards are zero except where marked� Under a
�nite�horizon model with h � �� the three actions yield rewards of ���� ����� and ����� so
the �rst action should be chosen� under an in�nite�horizon discounted model with � � ����
the three choices yield �	��� ������ and ����� so the second action should be chosen�
and under the average reward model� the third action should be chosen since it leads to
an average reward of �		� If we change h to 	��� and � to ���� then the second action is
optimal for the �nite�horizon model and the �rst for the in�nite�horizon discounted model�
however� the average reward model will always prefer the best long�term average� Since the
choice of optimality model and parameters matters so much� it is important to choose it
carefully in any application�

The �nite�horizon model is appropriate when the agent�s lifetime is known� one im�
portant aspect of this model is that as the length of the remaining lifetime decreases� the
agent�s policy may change� A system with a hard deadline would be appropriately modeled
this way� The relative usefulness of in�nite�horizon discounted and bias�optimal models is
still under debate� Bias�optimality has the advantage of not requiring a discount parameter�
however� algorithms for �nding bias�optimal policies are not yet as well�understood as those
for �nding optimal in�nite�horizon discounted policies�

��� Measuring Learning Performance

The criteria given in the previous section can be used to assess the policies learned by a
given algorithm� We would also like to be able to evaluate the quality of learning itself�
There are several incompatible measures in use�

� Eventual convergence to optimal� Many algorithms come with a provable guar�
antee of asymptotic convergence to optimal behavior �Watkins � Dayan� 	����� This
is reassuring� but useless in practical terms� An agent that quickly reaches a plateau

��

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

Kaelbling� Littman� � Moore

Finite horizon, h=4

Infinite horizon, γ=0.9

Average reward

+2

+10

+11

Figure �
 Comparing models of optimality� All unlabeled arrows produce a reward of zero�

at ��� of optimality may� in many applications� be preferable to an agent that has a
guarantee of eventual optimality but a sluggish early learning rate�

� Speed of convergence to optimality� Optimality is usually an asymptotic result�
and so convergence speed is an ill�de�ned measure� More practical is the speed of
convergence to near�optimality� This measure begs the de�nition of how near to
optimality is su�cient� A related measure is level of performance after a given time�
which similarly requires that someone de�ne the given time�

It should be noted that here we have another di�erence between reinforcement learning
and conventional supervised learning� In the latter� expected future predictive accu�
racy or statistical e�ciency are the prime concerns� For example� in the well�known
PAC framework �Valiant� 	����� there is a learning period during which mistakes do
not count� then a performance period during which they do� The framework provides
bounds on the necessary length of the learning period in order to have a probabilistic
guarantee on the subsequent performance� That is usually an inappropriate view for
an agent with a long existence in a complex environment�

In spite of the mismatch between embedded reinforcement learning and the train�test
perspective� Fiechter �	���� provides a PAC analysis for Q�learning �described in
Section ���� that sheds some light on the connection between the two views�

Measures related to speed of learning have an additional weakness� An algorithm
that merely tries to achieve optimality as fast as possible may incur unnecessarily
large penalties during the learning period� A less aggressive strategy taking longer to
achieve optimality� but gaining greater total reinforcement during its learning might
be preferable�

� Regret� A more appropriate measure� then� is the expected decrease in reward gained
due to executing the learning algorithm instead of behaving optimally from the very
beginning� This measure is known as regret �Berry � Fristedt� 	����� It penalizes
mistakes wherever they occur during the run� Unfortunately� results concerning the
regret of algorithms are quite hard to obtain�

���

Reinforcement Learning� A Survey

��� Reinforcement Learning and Adaptive Control

Adaptive control �Burghes � Graham� 	���� Stengel� 	��� is also concerned with algo�
rithms for improving a sequence of decisions from experience� Adaptive control is a much
more mature discipline that concerns itself with dynamic systems in which states and ac�
tions are vectors and system dynamics are smooth
 linear or locally linearizable around a
desired trajectory� A very common formulation of cost functions in adaptive control are
quadratic penalties on deviation from desired state and action vectors� Most importantly�
although the dynamic model of the system is not known in advance� and must be esti�
mated from data� the structure of the dynamic model is �xed� leaving model estimation
as a parameter estimation problem� These assumptions permit deep� elegant and powerful
mathematical analysis� which in turn lead to robust� practical� and widely deployed adaptive
control algorithms�

�� Exploitation versus Exploration� The Single�State Case

One major di�erence between reinforcement learning and supervised learning is that a
reinforcement�learner must explicitly explore its environment� In order to highlight the
problems of exploration� we treat a very simple case in this section� The fundamental issues
and approaches described here will� in many cases� transfer to the more complex instances
of reinforcement learning discussed later in the paper�

The simplest possible reinforcement�learning problem is known as the k�armed bandit
problem� which has been the subject of a great deal of study in the statistics and applied
mathematics literature �Berry � Fristedt� 	����� The agent is in a room with a collection of
k gambling machines �each called a �one�armed bandit� in colloquial English�� The agent is
permitted a �xed number of pulls� h� Any arm may be pulled on each turn� The machines
do not require a deposit to play� the only cost is in wasting a pull playing a suboptimal
machine� When arm i is pulled� machine i pays o� 	 or �� according to some underlying
probability parameter pi� where payo�s are independent events and the pis are unknown�
What should the agent�s strategy be�

This problem illustrates the fundamental tradeo� between exploitation and exploration�
The agent might believe that a particular arm has a fairly high payo� probability� should
it choose that arm all the time� or should it choose another one that it has less information
about� but seems to be worse� Answers to these questions depend on how long the agent
is expected to play the game� the longer the game lasts� the worse the consequences of
prematurely converging on a sub�optimal arm� and the more the agent should explore�

There is a wide variety of solutions to this problem� We will consider a representative
selection of them� but for a deeper discussion and a number of important theoretical results�
see the book by Berry and Fristedt �	����� We use the term �action� to indicate the
agent�s choice of arm to pull� This eases the transition into delayed reinforcement models
in Section �� It is very important to note that bandit problems �t our de�nition of a
reinforcement�learning environment with a single state with only self transitions�

Section ��	 discusses three solutions to the basic one�state bandit problem that have
formal correctness results� Although they can be extended to problems with real�valued
rewards� they do not apply directly to the general multi�state delayed�reinforcement case�

���

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

Kaelbling� Littman� � Moore

Section ��� presents three techniques that are not formally justi�ed� but that have had wide
use in practice� and can be applied �with similar lack of guarantee� to the general case�

��� Formally Justi�ed Techniques

There is a fairly well�developed formal theory of exploration for very simple problems�
Although it is instructive� the methods it provides do not scale well to more complex
problems�

����� Dynamic�Programming Approach

If the agent is going to be acting for a total of h steps� it can use basic Bayesian reasoning
to solve for an optimal strategy �Berry � Fristedt� 	����� This requires an assumed prior
joint distribution for the parameters fpig� the most natural of which is that each pi is
independently uniformly distributed between � and 	� We compute a mapping from belief
states �summaries of the agent�s experiences during this run� to actions� Here� a belief state
can be represented as a tabulation of action choices and payo�s
 fn�� w�� n�� w�� � � � � nk� wkg
denotes a state of play in which each arm i has been pulled ni times with wi payo�s� We
write V ��n�� w�� � � � � nk� wk� as the expected payo� remaining� given that a total of h pulls
are available� and we use the remaining pulls optimally�

If
P

i ni � h� then there are no remaining pulls� and V ��n�� w�� � � � � nk� wk� � �� This is
the basis of a recursive de�nition� If we know the V � value for all belief states with t pulls
remaining� we can compute the V � value of any belief state with t � 	 pulls remaining

V ��n�� w�� � � � � nk� wk� � maxiE

�
Future payo� if agent takes action i�
then acts optimally for remaining pulls

�

� maxi

�
�iV

��n�� wi� � � � � ni � 	� wi � 	� � � � � nk� wk��
�	� �i�V

��n�� wi� � � � � ni � 	� wi� � � � � nk� wk�

�

where �i is the posterior subjective probability of action i paying o� given ni� wi and
our prior probability� For the uniform priors� which result in a beta distribution� �i �
�wi � 	���ni � ���

The expense of �lling in the table of V � values in this way for all attainable belief states
is linear in the number of belief states times actions� and thus exponential in the horizon�

����� Gittins Allocation Indices

Gittins gives an �allocation index� method for �nding the optimal choice of action at each
step in k�armed bandit problems �Gittins� 	����� The technique only applies under the
discounted expected reward criterion� For each action� consider the number of times it has
been chosen� n� versus the number of times it has paid o�� w� For certain discount factors�
there are published tables of �index values�� I�n� w� for each pair of n and w� Look up
the index value for each action i� I�ni� wi�� It represents a comparative measure of the
combined value of the expected payo� of action i �given its history of payo�s� and the value
of the information that we would get by choosing it� Gittins has shown that choosing the
action with the largest index value guarantees the optimal balance between exploration and
exploitation�

���

sebastien
Texte surligné

sebastien
Texte surligné

Reinforcement Learning� A Survey

1 2 3 N-1 N 2N 2N-1 N+3 N+2 N+1

a = 0 a = 1

r = 0

r = 1

1 2 3 N-1 N 2N 2N-1 N+3 N+2 N+1

a = 0 a = 1

Figure �
 A Tsetlin automaton with �N states� The top row shows the state transitions
that are made when the previous action resulted in a reward of 	� the bottom
row shows transitions after a reward of �� In states in the left half of the �gure�
action � is taken� in those on the right� action 	 is taken�

Because of the guarantee of optimal exploration and the simplicity of the technique
�given the table of index values�� this approach holds a great deal of promise for use in more
complex applications� This method proved useful in an application to robotic manipulation
with immediate reward �Salganico� � Ungar� 	����� Unfortunately� no one has yet been
able to �nd an analog of index values for delayed reinforcement problems�

����� Learning Automata

A branch of the theory of adaptive control is devoted to learning automata� surveyed by
Narendra and Thathachar �	����� which were originally described explicitly as �nite state
automata� The Tsetlin automaton shown in Figure � provides an example that solves a
��armed bandit arbitrarily near optimally as N approaches in�nity�

It is inconvenient to describe algorithms as �nite�state automata� so a move was made
to describe the internal state of the agent as a probability distribution according to which
actions would be chosen� The probabilities of taking di�erent actions would be adjusted
according to their previous successes and failures�

An example� which stands among a set of algorithms independently developed in the
mathematical psychology literature �Hilgard � Bower� 	����� is the linear reward�inaction
algorithm� Let pi be the agent�s probability of taking action i�

� When action ai succeeds�

pi
� pi � ��	� pi�

pj
� pj � �pj for j �� i

� When action ai fails� pj remains unchanged �for all j��

This algorithm converges with probability 	 to a vector containing a single 	 and the
rest ��s �choosing a particular action with probability 	�� Unfortunately� it does not always
converge to the correct action� but the probability that it converges to the wrong one can
be made arbitrarily small by making � small �Narendra � Thathachar� 	����� There is no
literature on the regret of this algorithm�

���

sebastien
Texte surligné

sebastien
Texte surligné

Kaelbling� Littman� � Moore

��� Ad�Hoc Techniques

In reinforcement�learning practice� some simple� ad hoc strategies have been popular� They
are rarely� if ever� the best choice for the models of optimality we have used� but they may
be viewed as reasonable� computationally tractable� heuristics� Thrun �	���� has surveyed
a variety of these techniques�

����� Greedy Strategies

The �rst strategy that comes to mind is to always choose the action with the highest esti�
mated payo�� The �aw is that early unlucky sampling might indicate that the best action�s
reward is less than the reward obtained from a suboptimal action� The suboptimal action
will always be picked� leaving the true optimal action starved of data and its superiority
never discovered� An agent must explore to ameliorate this outcome�

A useful heuristic is optimism in the face of uncertainty in which actions are selected
greedily� but strongly optimistic prior beliefs are put on their payo�s so that strong negative
evidence is needed to eliminate an action from consideration� This still has a measurable
danger of starving an optimal but unlucky action� but the risk of this can be made arbitrar�
ily small� Techniques like this have been used in several reinforcement learning algorithms
including the interval exploration method �Kaelbling� 	���b� �described shortly�� the ex�
ploration bonus in Dyna �Sutton� 	����� curiosity�driven exploration �Schmidhuber� 	��	a��
and the exploration mechanism in prioritized sweeping �Moore � Atkeson� 	�����

����� Randomized Strategies

Another simple exploration strategy is to take the action with the best estimated expected
reward by default� but with probability p� choose an action at random� Some versions of
this strategy start with a large value of p to encourage initial exploration� which is slowly
decreased�

An objection to the simple strategy is that when it experiments with a non�greedy action
it is no more likely to try a promising alternative than a clearly hopeless alternative� A
slightly more sophisticated strategy is Boltzmann exploration� In this case� the expected
reward for taking action a� ER�a� is used to choose an action probabilistically according to
the distribution

P �a� �
eER�a��TP

a��A e
ER�a���T

�

The temperature parameter T can be decreased over time to decrease exploration� This
method works well if the best action is well separated from the others� but su�ers somewhat
when the values of the actions are close� It may also converge unnecessarily slowly unless
the temperature schedule is manually tuned with great care�

����� Interval�based Techniques

Exploration is often more e�cient when it is based on second�order information about the
certainty or variance of the estimated values of actions� Kaelbling�s interval estimation
algorithm �	���b� stores statistics for each action ai
 wi is the number of successes and ni
the number of trials� An action is chosen by computing the upper bound of a 	�� � �	����

���

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

Reinforcement Learning� A Survey

con�dence interval on the success probability of each action and choosing the action with
the highest upper bound� Smaller values of the � parameter encourage greater exploration�
When payo�s are boolean� the normal approximation to the binomial distribution can be
used to construct the con�dence interval �though the binomial should be used for small
n�� Other payo� distributions can be handled using their associated statistics or with
nonparametric methods� The method works very well in empirical trials� It is also related
to a certain class of statistical techniques known as experiment design methods �Box �
Draper� 	����� which are used for comparing multiple treatments �for example� fertilizers
or drugs� to determine which treatment �if any� is best in as small a set of experiments as
possible�

��� More General Problems

When there are multiple states� but reinforcement is still immediate� then any of the above
solutions can be replicated� once for each state� However� when generalization is required�
these solutions must be integrated with generalization methods �see section �� this is
straightforward for the simple ad�hoc methods� but it is not understood how to maintain
theoretical guarantees�

Many of these techniques focus on converging to some regime in which exploratory
actions are taken rarely or never� this is appropriate when the environment is stationary�
However� when the environment is non�stationary� exploration must continue to take place�
in order to notice changes in the world� Again� the more ad�hoc techniques can be modi�ed
to deal with this in a plausible manner �keep temperature parameters from going to �� decay
the statistics in interval estimation�� but none of the theoretically guaranteed methods can
be applied�

�� Delayed Reward

In the general case of the reinforcement learning problem� the agent�s actions determine
not only its immediate reward� but also �at least probabilistically� the next state of the
environment� Such environments can be thought of as networks of bandit problems� but
the agent must take into account the next state as well as the immediate reward when it
decides which action to take� The model of long�run optimality the agent is using determines
exactly how it should take the value of the future into account� The agent will have to be
able to learn from delayed reinforcement
 it may take a long sequence of actions� receiving
insigni�cant reinforcement� then �nally arrive at a state with high reinforcement� The agent
must be able to learn which of its actions are desirable based on reward that can take place
arbitrarily far in the future�

��� Markov Decision Processes

Problems with delayed reinforcement are well modeled asMarkov decision processes �MDPs��
An MDP consists of

� a set of states S�

� a set of actions A�

���

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

Kaelbling� Littman� � Moore

� a reward function R
 S �A � �� and
� a state transition function T
 S�A � ��S�� where a member of ��S� is a probability

distribution over the set S �i�e� it maps states to probabilities�� We write T �s� a� s��
for the probability of making a transition from state s to state s� using action a�

The state transition function probabilistically speci�es the next state of the environment as
a function of its current state and the agent�s action� The reward function speci�es expected
instantaneous reward as a function of the current state and action� The model is Markov if
the state transitions are independent of any previous environment states or agent actions�
There are many good references to MDP models �Bellman� 	���� Bertsekas� 	���� Howard�
	��� Puterman� 	�����

Although general MDPs may have in�nite �even uncountable� state and action spaces�
we will only discuss methods for solving �nite�state and �nite�action problems� In section �
we discuss methods for solving problems with continuous input and output spaces�

��� Finding a Policy Given a Model

Before we consider algorithms for learning to behave in MDP environments� we will ex�
plore techniques for determining the optimal policy given a correct model� These dynamic
programming techniques will serve as the foundation and inspiration for the learning al�
gorithms to follow� We restrict our attention mainly to �nding optimal policies for the
in�nite�horizon discounted model� but most of these algorithms have analogs for the �nite�
horizon and average�case models as well� We rely on the result that� for the in�nite�horizon
discounted model� there exists an optimal deterministic stationary policy �Bellman� 	�����

We will speak of the optimal value of a state�it is the expected in�nite discounted sum
of reward that the agent will gain if it starts in that state and executes the optimal policy�
Using � as a complete decision policy� it is written

V ��s� � max
�

E

�
�X
t��

�trt

�
�

This optimal value function is unique and can be de�ned as the solution to the simultaneous
equations

V ��s� � max
a

�
�R�s� a� � �

X
s��S

T �s� a� s��V ��s��

�
A � �s 	 S � �	�

which assert that the value of a state s is the expected instantaneous reward plus the
expected discounted value of the next state� using the best available action� Given the
optimal value function� we can specify the optimal policy as

���s� � argmax
a

�
�R�s� a� � �

X
s��S

T �s� a� s��V ��s��

�
A �

����� Value Iteration

One way� then� to �nd an optimal policy is to �nd the optimal value function� It can
be determined by a simple iterative algorithm called value iteration that can be shown to
converge to the correct V � values �Bellman� 	���� Bertsekas� 	�����

��	

sebastien
Texte surligné

sebastien
Texte surligné

Reinforcement Learning� A Survey

initialize V �s� arbitrarily

loop until policy good enough

loop for s 	 S
loop for a 	 A

Q�s� a�
� R�s� a� � �
P

s��S T �s� a� s
��V �s��

V �s�
� maxaQ�s� a�
end loop

end loop

It is not obvious when to stop the value iteration algorithm� One important result
bounds the performance of the current greedy policy as a function of the Bellman residual of
the current value function �Williams � Baird� 	���b�� It says that if the maximum di�erence
between two successive value functions is less than 	� then the value of the greedy policy�
�the policy obtained by choosing� in every state� the action that maximizes the estimated
discounted reward� using the current estimate of the value function� di�ers from the value
function of the optimal policy by no more than �	���	� �� at any state� This provides an
e�ective stopping criterion for the algorithm� Puterman �	���� discusses another stopping
criterion� based on the span semi�norm� which may result in earlier termination� Another
important result is that the greedy policy is guaranteed to be optimal in some �nite number
of steps even though the value function may not have converged �Bertsekas� 	����� And in
practice� the greedy policy is often optimal long before the value function has converged�

Value iteration is very �exible� The assignments to V need not be done in strict order
as shown above� but instead can occur asynchronously in parallel provided that the value
of every state gets updated in�nitely often on an in�nite run� These issues are treated
extensively by Bertsekas �	����� who also proves convergence results�

Updates based on Equation 	 are known as full backups since they make use of infor�
mation from all possible successor states� It can be shown that updates of the form

Q�s� a�
� Q�s� a� � ��r � �max
a�

Q�s�� a��� Q�s� a��

can also be used as long as each pairing of a and s is updated in�nitely often� s� is sampled
from the distribution T �s� a� s��� r is sampled with mean R�s� a� and bounded variance� and
the learning rate � is decreased slowly� This type of sample backup �Singh� 	���� is critical
to the operation of the model�free methods discussed in the next section�

The computational complexity of the value�iteration algorithm with full backups� per
iteration� is quadratic in the number of states and linear in the number of actions� Com�
monly� the transition probabilities T �s� a� s�� are sparse� If there are on average a constant
number of next states with non�zero probability then the cost per iteration is linear in the
number of states and linear in the number of actions� The number of iterations required to
reach the optimal value function is polynomial in the number of states and the magnitude
of the largest reward if the discount factor is held constant� However� in the worst case
the number of iterations grows polynomially in 	��	 � ��� so the convergence rate slows
considerably as the discount factor approaches 	 �Littman� Dean� � Kaelbling� 	���b��

��

Kaelbling� Littman� � Moore

����� Policy Iteration

The policy iteration algorithm manipulates the policy directly� rather than �nding it indi�
rectly via the optimal value function� It operates as follows

choose an arbitrary policy ��

loop

�
� ��

compute the value function of policy �

solve the linear equations

V��s� � R�s� ��s�� � �
P

s��S T �s� ��s�� s
��V��s��

improve the policy at each state�

���s�
� argmaxa �R�s� a� � �
P

s��S T �s� a� s
��V��s

���
until � � ��

The value function of a policy is just the expected in�nite discounted reward that will
be gained� at each state� by executing that policy� It can be determined by solving a set
of linear equations� Once we know the value of each state under the current policy� we
consider whether the value could be improved by changing the �rst action taken� If it can�
we change the policy to take the new action whenever it is in that situation� This step is
guaranteed to strictly improve the performance of the policy� When no improvements are
possible� then the policy is guaranteed to be optimal�

Since there are at most jAjjSj distinct policies� and the sequence of policies improves at
each step� this algorithm terminates in at most an exponential number of iterations �Puter�
man� 	����� However� it is an important open question how many iterations policy iteration
takes in the worst case� It is known that the running time is pseudopolynomial and that for
any �xed discount factor� there is a polynomial bound in the total size of theMDP �Littman
et al�� 	���b��

����� Enhancement to Value Iteration and Policy Iteration

In practice� value iteration is much faster per iteration� but policy iteration takes fewer
iterations� Arguments have been put forth to the e�ect that each approach is better for
large problems� Puterman�s modi�ed policy iteration algorithm �Puterman � Shin� 	����
provides a method for trading iteration time for iteration improvement in a smoother way�
The basic idea is that the expensive part of policy iteration is solving for the exact value
of V�� Instead of �nding an exact value for V�� we can perform a few steps of a modi�ed
value�iteration step where the policy is held �xed over successive iterations� This can be
shown to produce an approximation to V� that converges linearly in �� In practice� this can
result in substantial speedups�

Several standard numerical�analysis techniques that speed the convergence of dynamic
programming can be used to accelerate value and policy iteration� Multigrid methods can
be used to quickly seed a good initial approximation to a high resolution value function
by initially performing value iteration at a coarser resolution �R ude� 	����� State aggre�
gation works by collapsing groups of states to a single meta�state solving the abstracted
problem �Bertsekas � Casta!non� 	�����

���

sebastien
Texte surligné

sebastien
Texte surligné

Reinforcement Learning� A Survey

����� Computational Complexity

Value iteration works by producing successive approximations of the optimal value function�
Each iteration can be performed in O�jAjjSj�� steps� or faster if there is sparsity in the
transition function� However� the number of iterations required can grow exponentially in
the discount factor �Condon� 	����� as the discount factor approaches 	� the decisions must
be based on results that happen farther and farther into the future� In practice� policy
iteration converges in fewer iterations than value iteration� although the per�iteration costs
of O�jAjjSj�� jSj�� can be prohibitive� There is no known tight worst�case bound available
for policy iteration �Littman et al�� 	���b�� Modi�ed policy iteration �Puterman � Shin�
	���� seeks a trade�o� between cheap and e�ective iterations and is preferred by some
practictioners �Rust� 	����

Linear programming �Schrijver� 	��� is an extremely general problem� and MDPs can
be solved by general�purpose linear�programming packages �Derman� 	���� D�Epenoux�
	��� Ho�man � Karp� 	��� An advantage of this approach is that commercial�quality
linear�programming packages are available� although the time and space requirements can
still be quite high� From a theoretic perspective� linear programming is the only known
algorithm that can solve MDPs in polynomial time� although the theoretically e�cient
algorithms have not been shown to be e�cient in practice�

�� Learning an Optimal Policy� Model�free Methods

In the previous section we reviewed methods for obtaining an optimal policy for an MDP

assuming that we already had a model� The model consists of knowledge of the state tran�
sition probability function T �s� a� s�� and the reinforcement function R�s� a�� Reinforcement
learning is primarily concerned with how to obtain the optimal policy when such a model
is not known in advance� The agent must interact with its environment directly to obtain
information which� by means of an appropriate algorithm� can be processed to produce an
optimal policy�

At this point� there are two ways to proceed�

� Model�free� Learn a controller without learning a model�

� Model�based� Learn a model� and use it to derive a controller�

Which approach is better� This is a matter of some debate in the reinforcement�learning
community� A number of algorithms have been proposed on both sides� This question also
appears in other �elds� such as adaptive control� where the dichotomy is between direct and
indirect adaptive control�

This section examines model�free learning� and Section � examines model�based meth�
ods�

The biggest problem facing a reinforcement�learning agent is temporal credit assignment�
How do we know whether the action just taken is a good one� when it might have far�
reaching e�ects� One strategy is to wait until the �end� and reward the actions taken if
the result was good and punish them if the result was bad� In ongoing tasks� it is di�cult
to know what the �end� is� and this might require a great deal of memory� Instead� we
will use insights from value iteration to adjust the estimated value of a state based on

��

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

Kaelbling� Littman� � Moore

AHC

RL

vs

r

a

Figure �
 Architecture for the adaptive heuristic critic�

the immediate reward and the estimated value of the next state� This class of algorithms
is known as temporal di�erence methods �Sutton� 	����� We will consider two di�erent
temporal�di�erence learning strategies for the discounted in�nite�horizon model�

��� Adaptive Heuristic Critic and TD���

The adaptive heuristic critic algorithm is an adaptive version of policy iteration �Barto�
Sutton� � Anderson� 	���� in which the value�function computation is no longer imple�
mented by solving a set of linear equations� but is instead computed by an algorithm called
TD���� A block diagram for this approach is given in Figure �� It consists of two compo�
nents
 a critic �labeled AHC�� and a reinforcement�learning component �labeled RL�� The
reinforcement�learning component can be an instance of any of the k�armed bandit algo�
rithms� modi�ed to deal with multiple states and non�stationary rewards� But instead of
acting to maximize instantaneous reward� it will be acting to maximize the heuristic value�
v� that is computed by the critic� The critic uses the real external reinforcement signal to
learn to map states to their expected discounted values given that the policy being executed
is the one currently instantiated in the RL component�

We can see the analogy with modi�ed policy iteration if we imagine these components
working in alternation� The policy � implemented by RL is �xed and the critic learns the
value function V� for that policy� Now we �x the critic and let the RL component learn a
new policy �� that maximizes the new value function� and so on� In most implementations�
however� both components operate simultaneously� Only the alternating implementation
can be guaranteed to converge to the optimal policy� under appropriate conditions� Williams
and Baird explored the convergence properties of a class of AHC�related algorithms they
call �incremental variants of policy iteration� �Williams � Baird� 	���a��

It remains to explain how the critic can learn the value of a policy� We de�ne hs� a� r� s�i
to be an experience tuple summarizing a single transition in the environment� Here s is the
agent�s state before the transition� a is its choice of action� r the instantaneous reward it
receives� and s� its resulting state� The value of a policy is learned using Sutton�s TD���
algorithm �Sutton� 	���� which uses the update rule

V �s�
� V �s� � ��r � �V �s��� V �s�� �

Whenever a state s is visited� its estimated value is updated to be closer to r � �V �s���
since r is the instantaneous reward received and V �s�� is the estimated value of the actually
occurring next state� This is analogous to the sample�backup rule from value iteration�the
only di�erence is that the sample is drawn from the real world rather than by simulating
a known model� The key idea is that r � �V �s�� is a sample of the value of V �s�� and it is

���

sebastien
Texte surligné

sebastien
Texte surligné

sebastien
Texte surligné

Reinforcement Learning� A Survey

more likely to be correct because it incorporates the real r� If the learning rate � is adjusted
properly �it must be slowly decreased� and the policy is held �xed� TD��� is guaranteed to
converge to the optimal value function�

The TD��� rule as presented above is really an instance of a more general class of
algorithms called TD���� with � � �� TD��� looks only one step ahead when adjusting
value estimates� although it will eventually arrive at the correct answer� it can take quite a
while to do so� The general TD��� rule is similar to the TD��� rule given above�

V �u�
� V �u� � ��r � �V �s��� V �s��e�u� �

but it is applied to every state according to its eligibility e�u�� rather than just to the
immediately previous state� s� One version of the eligibility trace is de�ned to be

e�s� �
tX

k��

����t�k
s�sk � where
s�sk �

�
	 if s � sk
� otherwise

�

The eligibility of a state s is the degree to which it has been visited in the recent past�
when a reinforcement is received� it is used to update all the states that have been recently
visited� according to their eligibility� When � � � this is equivalent to TD���� When � � 	�
it is roughly equivalent to updating all the states according to the number of times they
were visited by the end of a run� Note that we can update the eligibility online as follows

e�s�
�

�
��e�s� � 	 if s � current state
��e�s� otherwise

�

It is computationally more expensive to execute the general TD���� though it often
converges considerably faster for large � �Dayan� 	���� Dayan � Sejnowski� 	����� There
has been some recent work on making the updates more e�cient �Cichosz � Mulawka� 	����
and on changing the de�nition to make TD��� more consistent with the certainty�equivalent
method �Singh � Sutton� 	���� which is discussed in Section ��	�

��� Q�learning

The work of the two components of AHC can be accomplished in a uni�ed manner by
Watkins� Q�learning algorithm �Watkins� 	���� Watkins � Dayan� 	����� Q�learning is
typically easier to implement� In order to understand Q�learning� we have to develop some
additional notation� Let Q��s� a� be the expected discounted reinforcement of taking action
a in state s� then continuing by choosing actions optimally� Note that V ��s� is the value
of s assuming the best action is taken initially� and so V ��s� � maxaQ

��s� a�� Q��s� a� can
hence be written recursively as

Q��s� a� � R�s� a� � �
X
s��S

T �s� a� s��max
a�

Q��s�� a�� �

Note also that� since V ��s� � maxaQ��s� a�� we have ���s� � argmaxaQ��s� a� as an
optimal policy�

Because the Q function makes the action explicit� we can estimate the Q values on�
line using a method essentially the same as TD���� but also use them to de�ne the policy�

���

sebastien
Texte surligné

Kaelbling� Littman� � Moore

because an action can be chosen just by taking the one with the maximum Q value for the
current state�

The Q�learning rule is

Q�s� a�
� Q�s� a� � ��r � �max
a�

Q�s�� a��� Q�s� a�� �

where hs� a� r� s�i is an experience tuple as described earlier� If each action is executed in
each state an in�nite number of times on an in�nite run and � is decayed appropriately� the
Q values will converge with probability 	 to Q� �Watkins� 	���� Tsitsiklis� 	���� Jaakkola�
Jordan� � Singh� 	����� Q�learning can also be extended to update states that occurred
more than one step previously� as in TD��� �Peng � Williams� 	�����

When the Q values are nearly converged to their optimal values� it is appropriate for
the agent to act greedily� taking� in each situation� the action with the highest Q value�
During learning� however� there is a di�cult exploitation versus exploration trade�o� to be
made� There are no good� formally justi�ed approaches to this problem in the general case�
standard practice is to adopt one of the ad hoc methods discussed in section ����

AHC architectures seem to be more di�cult to work with than Q�learning on a practical
level� It can be hard to get the relative learning rates right in AHC so that the two
components converge together� In addition� Q�learning is exploration insensitive
 that
is� that the Q values will converge to the optimal values� independent of how the agent
behaves while the data is being collected �as long as all state�action pairs are tried often
enough�� This means that� although the exploration�exploitation issue must be addressed
in Q�learning� the details of the exploration strategy will not a�ect the convergence of the
learning algorithm� For these reasons� Q�learning is the most popular and seems to be the
most e�ective model�free algorithm for learning from delayed reinforcement� It does not�
however� address any of the issues involved in generalizing over large state and�or action
spaces� In addition� it may converge quite slowly to a good policy�

��� Model�free Learning With Average Reward

As described� Q�learning can be applied to discounted in�nite�horizon MDPs� It can also
be applied to undiscounted problems as long as the optimal policy is guaranteed to reach a
reward�free absorbing state and the state is periodically reset�

Schwartz �	���� examined the problem of adapting Q�learning to an average�reward
framework� Although his R�learning algorithm seems to exhibit convergence problems for
some MDPs� several researchers have found the average�reward criterion closer to the true
problem they wish to solve than a discounted criterion and therefore prefer R�learning to
Q�learning �Mahadevan� 	�����

With that in mind� researchers have studied the problem of learning optimal average�
reward policies� Mahadevan �	��� surveyed model�based average�reward algorithms from
a reinforcement�learning perspective and found several di�culties with existing algorithms�
In particular� he showed that existing reinforcement�learning algorithms for average reward
�and some dynamic programming algorithms� do not always produce bias�optimal poli�
cies� Jaakkola� Jordan and Singh �	���� described an average�reward learning algorithm
with guaranteed convergence properties� It uses a Monte�Carlo component to estimate the
expected future reward for each state as the agent moves through the environment� In

���

Reinforcement Learning� A Survey

addition� Bertsekas presents a Q�learning�like algorithm for average�case reward in his new
textbook �	����� Although this recent work provides a much needed theoretical foundation
to this area of reinforcement learning� many important problems remain unsolved�

�� Computing Optimal Policies by Learning Models

The previous section showed how it is possible to learn an optimal policy without knowing
the models T �s� a� s�� or R�s� a� and without even learning those models en route� Although
many of these methods are guaranteed to �nd optimal policies eventually and use very
little computation time per experience� they make extremely ine�cient use of the data they
gather and therefore often require a great deal of experience to achieve good performance�
In this section we still begin by assuming that we don�t know the models in advance� but
we examine algorithms that do operate by learning these models� These algorithms are
especially important in applications in which computation is considered to be cheap and
real�world experience costly�

��� Certainty Equivalent Methods

We begin with the most conceptually straightforward method
 �rst� learn the T and R

functions by exploring the environment and keeping statistics about the results of each
action� next� compute an optimal policy using one of the methods of Section �� This
method is known as certainty equivlance �Kumar � Varaiya� 	����

There are some serious objections to this method

� It makes an arbitrary division between the learning phase and the acting phase�

� How should it gather data about the environment initially� Random exploration
might be dangerous� and in some environments is an immensely ine�cient method of
gathering data� requiring exponentially more data �Whitehead� 	��	� than a system
that interleaves experience gathering with policy�building more tightly �Koenig �
Simmons� 	����� See Figure � for an example�

� The possibility of changes in the environment is also problematic� Breaking up an
agent�s life into a pure learning and a pure acting phase has a considerable risk that
the optimal controller based on early life becomes� without detection� a suboptimal
controller if the environment changes�

A variation on this idea is certainty equivalence� in which the model is learned continually
through the agent�s lifetime and� at each step� the current model is used to compute an
optimal policy and value function� This method makes very e�ective use of available data�
but still ignores the question of exploration and is extremely computationally demanding�
even for fairly small state spaces� Fortunately� there are a number of other model�based
algorithms that are more practical�

��� Dyna

Sutton�s Dyna architecture �	���� 	��	� exploits a middle ground� yielding strategies that
are both more e�ective than model�free learning and more computationally e�cient than

���

Kaelbling� Littman� � Moore

. Goal1 2 3 n

Figure �
 In this environment� due to Whitehead �	��	�� random exploration would take
take O��n� steps to reach the goal even once� whereas a more intelligent explo�
ration strategy �e�g� �assume any untried action leads directly to goal�� would
require only O�n�� steps�

the certainty�equivalence approach� It simultaneously uses experience to build a model � "T
and "R�� uses experience to adjust the policy� and uses the model to adjust the policy�

Dyna operates in a loop of interaction with the environment� Given an experience tuple
hs� a� s�� ri� it behaves as follows

� Update the model� incrementing statistics for the transition from s to s� on action a

and for receiving reward r for taking action a in state s� The updated models are "T
and "R�

� Update the policy at state s based on the newly updated model using the rule

Q�s� a�
� "R�s� a� � �
X
s�

"T �s� a� s��max
a�

Q�s�� a�� �

which is a version of the value�iteration update for Q values�

� Perform k additional updates
 choose k state�action pairs at random and update them
according to the same rule as before

Q�sk� ak�
� "R�sk� ak� � �
X
s�

"T �sk � ak� s
��max

a�

Q�s�� a�� �

� Choose an action a� to perform in state s�� based on the Q values but perhaps modi�ed
by an exploration strategy�

The Dyna algorithm requires about k times the computation of Q�learning per instance�
but this is typically vastly less than for the naive model�based method� A reasonable value
of k can be determined based on the relative speeds of computation and of taking action�

Figure shows a grid world in which in each cell the agent has four actions �N� S� E�
W� and transitions are made deterministically to an adjacent cell� unless there is a block�
in which case no movement occurs� As we will see in Table 	� Dyna requires an order of
magnitude fewer steps of experience than does Q�learning to arrive at an optimal policy�
Dyna requires about six times more computational e�ort� however�

���

Reinforcement Learning� A Survey

Figure
 A �����state grid world� This was formulated as a shortest�path reinforcement�
learning problem� which yields the same result as if a reward of 	 is given at the
goal� a reward of zero elsewhere and a discount factor is used�

Steps before Backups before

convergence convergence

Q�learning ��	���� ��	����

Dyna ����� ���������

prioritized sweeping ������ 	��	�����

Table 	
 The performance of three algorithms described in the text� All methods used
the exploration heuristic of �optimism in the face of uncertainty�
 any state not
previously visited was assumed by default to be a goal state� Q�learning used
its optimal learning rate parameter for a deterministic maze
 � � 	� Dyna and
prioritized sweeping were permitted to take k � ��� backups per transition� For
prioritized sweeping� the priority queue often emptied before all backups were
used�

���

Kaelbling� Littman� � Moore

��� Prioritized Sweeping 	 Queue�Dyna

Although Dyna is a great improvement on previous methods� it su�ers from being relatively
undirected� It is particularly unhelpful when the goal has just been reached or when the
agent is stuck in a dead end� it continues to update random state�action pairs� rather than
concentrating on the �interesting� parts of the state space� These problems are addressed
by prioritized sweeping �Moore � Atkeson� 	���� and Queue�Dyna �Peng � Williams�
	����� which are two independently�developed but very similar techniques� We will describe
prioritized sweeping in some detail�

The algorithm is similar to Dyna� except that updates are no longer chosen at random
and values are now associated with states �as in value iteration� instead of state�action pairs
�as in Q�learning�� To make appropriate choices� we must store additional information in
the model� Each state remembers its predecessors
 the states that have a non�zero transition
probability to it under some action� In addition� each state has a priority� initially set to
zero�

Instead of updating k random state�action pairs� prioritized sweeping updates k states
with the highest priority� For each high�priority state s� it works as follows

� Remember the current value of the state
 Vold � V �s��

� Update the state�s value

V �s�
� max
a

�
"R�s� a� � �

X
s�

"T �s� a� s��V �s��

�
�

� Set the state�s priority back to ��

� Compute the value change # � jVold � V �s�j�

� Use # to modify the priorities of the predecessors of s�

If we have updated the V value for state s� and it has changed by amount #� then the
immediate predecessors of s� are informed of this event� Any state s for which there exists
an action a such that "T �s� a� s�� �� � has its priority promoted to # � "T �s� a� s��� unless its
priority already exceeded that value�

The global behavior of this algorithm is that when a real�world transition is �surprising�
�the agent happens upon a goal state� for instance�� then lots of computation is directed
to propagate this new information back to relevant predecessor states� When the real�
world transition is �boring� �the actual result is very similar to the predicted result�� then
computation continues in the most deserving part of the space�

Running prioritized sweeping on the problem in Figure � we see a large improvement
over Dyna� The optimal policy is reached in about half the number of steps of experience
and one�third the computation as Dyna required �and therefore about �� times fewer steps
and twice the computational e�ort of Q�learning��

��	

Reinforcement Learning� A Survey

��� Other Model�Based Methods

Methods proposed for solving MDPs given a model can be used in the context of model�
based methods as well�

RTDP �real�time dynamic programming� �Barto� Bradtke� � Singh� 	���� is another
model�based method that uses Q�learning to concentrate computational e�ort on the areas
of the state�space that the agent is most likely to occupy� It is speci�c to problems in which
the agent is trying to achieve a particular goal state and the reward everywhere else is ��
By taking into account the start state� it can �nd a short path from the start to the goal�
without necessarily visiting the rest of the state space�

The Plexus planning system �Dean� Kaelbling� Kirman� � Nicholson� 	���� Kirman�
	���� exploits a similar intuition� It starts by making an approximate version of the MDP

which is much smaller than the original one� The approximateMDP contains a set of states�
called the envelope� that includes the agent�s current state and the goal state� if there is one�
States that are not in the envelope are summarized by a single �out� state� The planning
process is an alternation between �nding an optimal policy on the approximate MDP and
adding useful states to the envelope� Action may take place in parallel with planning� in
which case irrelevant states are also pruned out of the envelope�

�� Generalization

All of the previous discussion has tacitly assumed that it is possible to enumerate the state
and action spaces and store tables of values over them� Except in very small environments�
this means impractical memory requirements� It also makes ine�cient use of experience� In
a large� smooth state space we generally expect similar states to have similar values and sim�
ilar optimal actions� Surely� therefore� there should be some more compact representation
than a table� Most problems will have continuous or large discrete state spaces� some will
have large or continuous action spaces� The problem of learning in large spaces is addressed
through generalization techniques� which allow compact storage of learned information and
transfer of knowledge between �similar� states and actions�

The large literature of generalization techniques from inductive concept learning can be
applied to reinforcement learning� However� techniques often need to be tailored to speci�c
details of the problem� In the following sections� we explore the application of standard
function�approximation techniques� adaptive resolution models� and hierarchical methods
to the problem of reinforcement learning�

The reinforcement�learning architectures and algorithms discussed above have included
the storage of a variety of mappings� including S � A �policies�� S � � �value functions��
S � A � � �Q functions and rewards�� S � A � S �deterministic transitions�� and S �
A � S � $�� 	% �transition probabilities�� Some of these mappings� such as transitions and
immediate rewards� can be learned using straightforward supervised learning� and can be
handled using any of the wide variety of function�approximation techniques for supervised
learning that support noisy training examples� Popular techniques include various neural�
network methods �Rumelhart � McClelland� 	���� fuzzy logic �Berenji� 	��	� Lee� 	��	��
CMAC �Albus� 	��	�� and local memory�based methods �Moore� Atkeson� � Schaal� 	�����
such as generalizations of nearest neighbor methods� Other mappings� especially the policy

��

Kaelbling� Littman� � Moore

mapping� typically need specialized algorithms because training sets of input�output pairs
are not available�

�� Generalization over Input

A reinforcement�learning agent�s current state plays a central role in its selection of reward�
maximizing actions� Viewing the agent as a state�free black box� a description of the
current state is its input� Depending on the agent architecture� its output is either an
action selection� or an evaluation of the current state that can be used to select an action�
The problem of deciding how the di�erent aspects of an input a�ect the value of the output
is sometimes called the �structural credit�assignment� problem� This section examines
approaches to generating actions or evaluations as a function of a description of the agent�s
current state�

The �rst group of techniques covered here is specialized to the case when reward is not
delayed� the second group is more generally applicable�

����� Immediate Reward

When the agent�s actions do not in�uence state transitions� the resulting problem becomes
one of choosing actions to maximize immediate reward as a function of the agent�s current
state� These problems bear a resemblance to the bandit problems discussed in Section �
except that the agent should condition its action selection on the current state� For this
reason� this class of problems has been described as associative reinforcement learning�

The algorithms in this section address the problem of learning from immediate boolean
reinforcement where the state is vector valued and the action is a boolean vector� Such
algorithms can and have been used in the context of a delayed reinforcement� for instance�
as the RL component in the AHC architecture described in Section ��	� They can also be
generalized to real�valued reward through reward comparison methods �Sutton� 	�����

CRBP The complementary reinforcement backpropagation algorithm �Ackley � Littman�
	���� �crbp� consists of a feed�forward network mapping an encoding of the state to an
encoding of the action� The action is determined probabilistically from the activation of
the output units
 if output unit i has activation yi� then bit i of the action vector has value
	 with probability yi� and � otherwise� Any neural�network supervised training procedure
can be used to adapt the network as follows� If the result of generating action a is r � 	�
then the network is trained with input�output pair hs� ai� If the result is r � �� then the
network is trained with input�output pair hs� &ai� where &a � �	� a�� � � � � 	� an��

The idea behind this training rule is that whenever an action fails to generate reward�
crbp will try to generate an action that is di�erent from the current choice� Although it
seems like the algorithm might oscillate between an action and its complement� that does
not happen� One step of training a network will only change the action slightly and since
the output probabilities will tend to move toward ���� this makes action selection more
random and increases search� The hope is that the random distribution will generate an
action that works better� and then that action will be reinforced�

ARC The associative reinforcement comparison �arc� algorithm �Sutton� 	���� is an
instance of the ahc architecture for the case of boolean actions� consisting of two feed�

���

Reinforcement Learning� A Survey

forward networks� One learns the value of situations� the other learns a policy� These can
be simple linear networks or can have hidden units�

In the simplest case� the entire system learns only to optimize immediate reward� First�
let us consider the behavior of the network that learns the policy� a mapping from a vector
describing s to a � or 	� If the output unit has activation yi� then a� the action generated�
will be 	 if y � � � �� where � is normal noise� and � otherwise�

The adjustment for the output unit is� in the simplest case�

e � r�a� 	��� �

where the �rst factor is the reward received for taking the most recent action and the second
encodes which action was taken� The actions are encoded as � and 	� so a� 	�� always has
the same magnitude� if the reward and the action have the same sign� then action 	 will be
made more likely� otherwise action � will be�

As described� the network will tend to seek actions that given positive reward� To extend
this approach to maximize reward� we can compare the reward to some baseline� b� This
changes the adjustment to

e � �r � b��a� 	��� �

where b is the output of the second network� The second network is trained in a standard
supervised mode to estimate r as a function of the input state s�

Variations of this approach have been used in a variety of applications �Anderson� 	���
Barto et al�� 	���� Lin� 	���b� Sutton� 	�����

REINFORCE Algorithms Williams �	���� 	���� studied the problem of choosing ac�
tions to maximize immedate reward� He identi�ed a broad class of update rules that per�
form gradient descent on the expected reward and showed how to integrate these rules with
backpropagation� This class� called reinforce algorithms� includes linear reward�inaction
�Section ��	��� as a special case�

The generic reinforce update for a parameter wij can be written

#wij � �ij�r � bij�

wij
ln�gj�

where �ij is a non�negative factor� r the current reinforcement� bij a reinforcement baseline�
and gi is the probability density function used to randomly generate actions based on unit
activations� Both �ij and bij can take on di�erent values for each wij � however� when �ij
is constant throughout the system� the expected update is exactly in the direction of the
expected reward gradient� Otherwise� the update is in the same half space as the gradient
but not necessarily in the direction of steepest increase�

Williams points out that the choice of baseline� bij � can have a profound e�ect on the
convergence speed of the algorithm�

Logic�Based Methods Another strategy for generalization in reinforcement learning is
to reduce the learning problem to an associative problem of learning boolean functions�
A boolean function has a vector of boolean inputs and a single boolean output� Taking
inspiration from mainstream machine learning work� Kaelbling developed two algorithms
for learning boolean functions from reinforcement
 one uses the bias of k�DNF to drive

��

Kaelbling� Littman� � Moore

the generalization process �Kaelbling� 	���b�� the other searches the space of syntactic
descriptions of functions using a simple generate�and�test method �Kaelbling� 	���a��

The restriction to a single boolean output makes these techniques di�cult to apply� In
very benign learning situations� it is possible to extend this approach to use a collection
of learners to independently learn the individual bits that make up a complex output� In
general� however� that approach su�ers from the problem of very unreliable reinforcement

if a single learner generates an inappropriate output bit� all of the learners receive a low
reinforcement value� The cascademethod �Kaelbling� 	���b� allows a collection of learners
to be trained collectively to generate appropriate joint outputs� it is considerably more
reliable� but can require additional computational e�ort�

����� Delayed Reward

Another method to allow reinforcement�learning techniques to be applied in large state
spaces is modeled on value iteration and Q�learning� Here� a function approximator is used
to represent the value function by mapping a state description to a value�

Many reseachers have experimented with this approach
 Boyan and Moore �	���� used
local memory�based methods in conjunction with value iteration� Lin �	��	� used backprop�
agation networks for Q�learning� Watkins �	���� used CMAC for Q�learning� Tesauro �	����
	���� used backpropagation for learning the value function in backgammon �described in
Section ��	�� Zhang and Dietterich �	���� used backpropagation and TD��� to learn good
strategies for job�shop scheduling�

Although there have been some positive examples� in general there are unfortunate in�
teractions between function approximation and the learning rules� In discrete environments
there is a guarantee that any operation that updates the value function �according to the
Bellman equations� can only reduce the error between the current value function and the
optimal value function� This guarantee no longer holds when generalization is used� These
issues are discussed by Boyan and Moore �	����� who give some simple examples of value
function errors growing arbitrarily large when generalization is used with value iteration�
Their solution to this� applicable only to certain classes of problems� discourages such diver�
gence by only permitting updates whose estimated values can be shown to be near�optimal
via a battery of Monte�Carlo experiments�

Thrun and Schwartz �	���� theorize that function approximation of value functions
is also dangerous because the errors in value functions due to generalization can become
compounded by the �max� operator in the de�nition of the value function�

Several recent results �Gordon� 	���� Tsitsiklis � Van Roy� 	��� show how the appro�
priate choice of function approximator can guarantee convergence� though not necessarily to
the optimal values� Baird�s residual gradient technique �Baird� 	���� provides guaranteed
convergence to locally optimal solutions�

Perhaps the gloominess of these counter�examples is misplaced� Boyan and Moore �	����
report that their counter�examples can be made to work with problem�speci�c hand�tuning
despite the unreliability of untuned algorithms that provably converge in discrete domains�
Sutton �	��� shows how modi�ed versions of Boyan and Moore�s examples can converge
successfully� An open question is whether general principles� ideally supported by theory�
can help us understand when value function approximation will succeed� In Sutton�s com�

���

Reinforcement Learning� A Survey

parative experiments with Boyan and Moore�s counter�examples� he changes four aspects
of the experiments

	� Small changes to the task speci�cations�

�� A very di�erent kind of function approximator �CMAC �Albus� 	����� that has weak
generalization�

�� A di�erent learning algorithm
 SARSA �Rummery � Niranjan� 	���� instead of value
iteration�

�� A di�erent training regime� Boyan and Moore sampled states uniformly in state space�
whereas Sutton�s method sampled along empirical trajectories�

There are intuitive reasons to believe that the fourth factor is particularly important� but
more careful research is needed�

Adaptive Resolution Models In many cases� what we would like to do is partition
the environment into regions of states that can be considered the same for the purposes of
learning and generating actions� Without detailed prior knowledge of the environment� it
is very di�cult to know what granularity or placement of partitions is appropriate� This
problem is overcome in methods that use adaptive resolution� during the course of learning�
a partition is constructed that is appropriate to the environment�

Decision Trees In environments that are characterized by a set of boolean or discrete�
valued variables� it is possible to learn compact decision trees for representing Q values� The
G�learning algorithm �Chapman � Kaelbling� 	��	�� works as follows� It starts by assuming
that no partitioning is necessary and tries to learn Q values for the entire environment as
if it were one state� In parallel with this process� it gathers statistics based on individual
input bits� it asks the question whether there is some bit b in the state description such
that the Q values for states in which b � 	 are signi�cantly di�erent from Q values for
states in which b � �� If such a bit is found� it is used to split the decision tree� Then�
the process is repeated in each of the leaves� This method was able to learn very small
representations of the Q function in the presence of an overwhelming number of irrelevant�
noisy state attributes� It outperformed Q�learning with backpropagation in a simple video�
game environment and was used by McCallum �	���� �in conjunction with other techniques
for dealing with partial observability� to learn behaviors in a complex driving�simulator� It
cannot� however� acquire partitions in which attributes are only signi�cant in combination
�such as those needed to solve parity problems��

Variable Resolution Dynamic Programming The VRDP algorithm �Moore� 	��	�
enables conventional dynamic programming to be performed in real�valued multivariate
state�spaces where straightforward discretization would fall prey to the curse of dimension�
ality� A kd�tree �similar to a decision tree� is used to partition state space into coarse
regions� The coarse regions are re�ned into detailed regions� but only in parts of the state
space which are predicted to be important� This notion of importance is obtained by run�
ning �mental trajectories� through state space� This algorithm proved e�ective on a number
of problems for which full high�resolution arrays would have been impractical� It has the
disadvantage of requiring a guess at an initially valid trajectory through state�space�

���

Kaelbling� Littman� � Moore

G

Start

Goal

(a)

G

(b)

G

(c)

Figure �
 �a� A two�dimensional maze problem� The point robot must �nd a path from
start to goal without crossing any of the barrier lines� �b� The path taken by
PartiGame during the entire �rst trial� It begins with intense exploration to �nd a
route out of the almost entirely enclosed start region� Having eventually reached
a su�ciently high resolution� it discovers the gap and proceeds greedily towards
the goal� only to be temporarily blocked by the goal�s barrier region� �c� The
second trial�

PartiGame Algorithm Moore�s PartiGame algorithm �Moore� 	���� is another solution
to the problem of learning to achieve goal con�gurations in deterministic high�dimensional
continuous spaces by learning an adaptive�resolution model� It also divides the environment
into cells� but in each cell� the actions available consist of aiming at the neighboring cells
�this aiming is accomplished by a local controller� which must be provided as part of the
problem statement�� The graph of cell transitions is solved for shortest paths in an online
incremental manner� but a minimax criterion is used to detect when a group of cells is
too coarse to prevent movement between obstacles or to avoid limit cycles� The o�ending
cells are split to higher resolution� Eventually� the environment is divided up just enough to
choose appropriate actions for achieving the goal� but no unnecessary distinctions are made�
An important feature is that� as well as reducing memory and computational requirements�
it also structures exploration of state space in a multi�resolution manner� Given a failure�
the agent will initially try something very di�erent to rectify the failure� and only resort to
small local changes when all the qualitatively di�erent strategies have been exhausted�

Figure �a shows a two�dimensional continuous maze� Figure �b shows the performance
of a robot using the PartiGame algorithm during the very �rst trial� Figure �c shows the
second trial� started from a slightly di�erent position�

This is a very fast algorithm� learning policies in spaces of up to nine dimensions in less
than a minute� The restriction of the current implementation to deterministic environments
limits its applicability� however� McCallum �	���� suggests some related tree�structured
methods�

���

Reinforcement Learning� A Survey

�� Generalization over Actions

The networks described in Section �	�	 generalize over state descriptions presented as
inputs� They also produce outputs in a discrete� factored representation and thus could be
seen as generalizing over actions as well�

In cases such as this when actions are described combinatorially� it is important to
generalize over actions to avoid keeping separate statistics for the huge number of actions
that can be chosen� In continuous action spaces� the need for generalization is even more
pronounced�

When estimating Q values using a neural network� it is possible to use either a distinct
network for each action� or a network with a distinct output for each action� When the
action space is continuous� neither approach is possible� An alternative strategy is to use a
single network with both the state and action as input and Q value as the output� Training
such a network is not conceptually di�cult� but using the network to �nd the optimal action
can be a challenge� One method is to do a local gradient�ascent search on the action in
order to �nd one with high value �Baird � Klopf� 	�����

Gullapalli �	���� 	���� has developed a �neural� reinforcement�learning unit for use in
continuous action spaces� The unit generates actions with a normal distribution� it adjusts
the mean and variance based on previous experience� When the chosen actions are not
performing well� the variance is high� resulting in exploration of the range of choices� When
an action performs well� the mean is moved in that direction and the variance decreased�
resulting in a tendency to generate more action values near the successful one� This method
was successfully employed to learn to control a robot arm with many continuous degrees of
freedom�

�� Hierarchical Methods

Another strategy for dealing with large state spaces is to treat them as a hierarchy of
learning problems� In many cases� hierarchical solutions introduce slight sub�optimality in
performance� but potentially gain a good deal of e�ciency in execution time� learning time�
and space�

Hierarchical learners are commonly structured as gated behaviors� as shown in Figure ��
There is a collection of behaviors that map environment states into low�level actions and
a gating function that decides� based on the state of the environment� which behavior�s
actions should be switched through and actually executed� Maes and Brooks �	���� used
a version of this architecture in which the individual behaviors were �xed a priori and the
gating function was learned from reinforcement� Mahadevan and Connell �	��	b� used the
dual approach
 they �xed the gating function� and supplied reinforcement functions for the
individual behaviors� which were learned� Lin �	���a� and Dorigo and Colombetti �	����
	���� both used this approach� �rst training the behaviors and then training the gating
function� Many of the other hierarchical learning methods can be cast in this framework�

����� Feudal Q�learning

Feudal Q�learning �Dayan � Hinton� 	���� Watkins� 	���� involves a hierarchy of learning
modules� In the simplest case� there is a high�level master and a low�level slave� The master
receives reinforcement from the external environment� Its actions consist of commands that

���

Kaelbling� Littman� � Moore

s b1

b2

b3

g a

Figure �
 A structure of gated behaviors�

it can give to the low�level learner� When the master generates a particular command to
the slave� it must reward the slave for taking actions that satisfy the command� even if they
do not result in external reinforcement� The master� then� learns a mapping from states to
commands� The slave learns a mapping from commands and states to external actions� The
set of �commands� and their associated reinforcement functions are established in advance
of the learning�

This is really an instance of the general �gated behaviors� approach� in which the slave
can execute any of the behaviors depending on its command� The reinforcement functions
for the individual behaviors �commands� are given� but learning takes place simultaneously
at both the high and low levels�

����� Compositional Q�learning

Singh�s compositional Q�learning �	���b� 	���a� �C�QL� consists of a hierarchy based on
the temporal sequencing of subgoals� The elemental tasks are behaviors that achieve some
recognizable condition� The high�level goal of the system is to achieve some set of condi�
tions in sequential order� The achievement of the conditions provides reinforcement for the
elemental tasks� which are trained �rst to achieve individual subgoals� Then� the gating
function learns to switch the elemental tasks in order to achieve the appropriate high�level
sequential goal� This method was used by Tham and Prager �	���� to learn to control a
simulated multi�link robot arm�

����� Hierarchical Distance to Goal

Especially if we consider reinforcement learning modules to be part of larger agent archi�
tectures� it is important to consider problems in which goals are dynamically input to the
learner� Kaelbling�s HDG algorithm �	���a� uses a hierarchical approach to solving prob�
lems when goals of achievement �the agent should get to a particular state as quickly as
possible� are given to an agent dynamically�

The HDG algorithm works by analogy with navigation in a harbor� The environment
is partitioned �a priori� but more recent work �Ashar� 	���� addresses the case of learning
the partition� into a set of regions whose centers are known as �landmarks�� If the agent is

���

Reinforcement Learning� A Survey

2/5 1/5
2/5

printer

office

+100

hallhall

Figure �
 An example of a partially observable environment�

currently in the same region as the goal� then it uses low�level actions to move to the goal�
If not� then high�level information is used to determine the next landmark on the shortest
path from the agent�s closest landmark to the goal�s closest landmark� Then� the agent uses
low�level information to aim toward that next landmark� If errors in action cause deviations
in the path� there is no problem� the best aiming point is recomputed on every step�

	� Partially Observable Environments

In many real�world environments� it will not be possible for the agent to have perfect and
complete perception of the state of the environment� Unfortunately� complete observability
is necessary for learning methods based on MDPs� In this section� we consider the case in
which the agent makes observations of the state of the environment� but these observations
may be noisy and provide incomplete information� In the case of a robot� for instance�
it might observe whether it is in a corridor� an open room� a T�junction� etc�� and those
observations might be error�prone� This problem is also referred to as the problem of
�incomplete perception�� �perceptual aliasing�� or �hidden state��

In this section� we will consider extensions to the basic MDP framework for solving
partially observable problems� The resulting formal model is called a partially observable
Markov decision process or POMDP�

�� State�Free Deterministic Policies

The most naive strategy for dealing with partial observability is to ignore it� That is� to
treat the observations as if they were the states of the environment and try to learn to
behave� Figure � shows a simple environment in which the agent is attempting to get to
the printer from an o�ce� If it moves from the o�ce� there is a good chance that the agent
will end up in one of two places that look like �hall�� but that require di�erent actions for
getting to the printer� If we consider these states to be the same� then the agent cannot
possibly behave optimally� But how well can it do�

The resulting problem is not Markovian� and Q�learning cannot be guaranteed to con�
verge� Small breaches of the Markov requirement are well handled by Q�learning� but it is
possible to construct simple environments that cause Q�learning to oscillate �Chrisman �

���

Kaelbling� Littman� � Moore

Littman� 	����� It is possible to use a model�based approach� however� act according to
some policy and gather statistics about the transitions between observations� then solve for
the optimal policy based on those observations� Unfortunately� when the environment is not
Markovian� the transition probabilities depend on the policy being executed� so this new
policy will induce a new set of transition probabilities� This approach may yield plausible
results in some cases� but again� there are no guarantees�

It is reasonable� though� to ask what the optimal policy �mapping from observations to
actions� in this case� is� It is NP�hard �Littman� 	���b� to �nd this mapping� and even the
best mapping can have very poor performance� In the case of our agent trying to get to the
printer� for instance� any deterministic state�free policy takes an in�nite number of steps to
reach the goal on average�

�� State�Free Stochastic Policies

Some improvement can be gained by considering stochastic policies� these are mappings
from observations to probability distributions over actions� If there is randomness in the
agent�s actions� it will not get stuck in the hall forever� Jaakkola� Singh� and Jordan �	����
have developed an algorithm for �nding locally�optimal stochastic policies� but �nding a
globally optimal policy is still NP hard�

In our example� it turns out that the optimal stochastic policy is for the agent� when
in a state that looks like a hall� to go east with probability � � p

�
 �� and west with
probability

p
� � 	
 ���� This policy can be found by solving a simple �in this case�

quadratic program� The fact that such a simple example can produce irrational numbers
gives some indication that it is a di�cult problem to solve exactly�

�� Policies with Internal State

The only way to behave truly e�ectively in a wide�range of environments is to use memory
of previous actions and observations to disambiguate the current state� There are a variety
of approaches to learning policies with internal state�

Recurrent Q�learning One intuitively simple approach is to use a recurrent neural net�
work to learn Q values� The network can be trained using backpropagation through time �or
some other suitable technique� and learns to retain �history features� to predict value� This
approach has been used by a number of researchers �Meeden� McGraw� � Blank� 	���� Lin
� Mitchell� 	���� Schmidhuber� 	��	b�� It seems to work e�ectively on simple problems�
but can su�er from convergence to local optima on more complex problems�

Classi�er Systems Classi�er systems �Holland� 	���� Goldberg� 	���� were explicitly
developed to solve problems with delayed reward� including those requiring short�term
memory� The internal mechanism typically used to pass reward back through chains of
decisions� called the bucket brigade algorithm� bears a close resemblance to Q�learning� In
spite of some early successes� the original design does not appear to handle partially ob�
served environments robustly�

Recently� this approach has been reexamined using insights from the reinforcement�
learning literature� with some success� Dorigo did a comparative study of Q�learning and
classi�er systems �Dorigo � Bersini� 	����� Cli� and Ross �	���� start with Wilson�s zeroth�

��	

Reinforcement Learning� A Survey

i
b a

SE π

Figure 	�
 Structure of a POMDP agent�

level classi�er system �Wilson� 	���� and add one and two�bit memory registers� They �nd
that� although their system can learn to use short�term memory registers e�ectively� the
approach is unlikely to scale to more complex environments�

Dorigo and Colombetti applied classi�er systems to a moderately complex problem of
learning robot behavior from immediate reinforcement �Dorigo� 	���� Dorigo � Colombetti�
	�����

Finite�history�window Approach One way to restore the Markov property is to allow
decisions to be based on the history of recent observations and perhaps actions� Lin and
Mitchell �	���� used a �xed�width �nite history window to learn a pole balancing task�
McCallum �	���� describes the �utile su�x memory� which learns a variable�width window
that serves simultaneously as a model of the environment and a �nite�memory policy� This
system has had excellent results in a very complex driving�simulation domain �McCallum�
	����� Ring �	���� has a neural�network approach that uses a variable history window�
adding history when necessary to disambiguate situations�

POMDP Approach Another strategy consists of using hidden Markov model �HMM�
techniques to learn a model of the environment� including the hidden state� then to use that
model to construct a perfect memory controller �Cassandra� Kaelbling� � Littman� 	����
Lovejoy� 	��	� Monahan� 	�����

Chrisman �	���� showed how the forward�backward algorithm for learning HMMs could
be adapted to learning POMDPs� He� and later McCallum �	����� also gave heuristic state�
splitting rules to attempt to learn the smallest possible model for a given environment� The
resulting model can then be used to integrate information from the agent�s observations in
order to make decisions�

Figure 	� illustrates the basic structure for a perfect�memory controller� The component
on the left is the state estimator� which computes the agent�s belief state� b as a function of
the old belief state� the last action a� and the current observation i� In this context� a belief
state is a probability distribution over states of the environment� indicating the likelihood�
given the agent�s past experience� that the environment is actually in each of those states�
The state estimator can be constructed straightforwardly using the estimated world model
and Bayes� rule�

Now we are left with the problem of �nding a policy mapping belief states into action�
This problem can be formulated as an MDP� but it is di�cult to solve using the techniques
described earlier� because the input space is continuous� Chrisman�s approach �	���� does
not take into account future uncertainty� but yields a policy after a small amount of com�
putation� A standard approach from the operations�research literature is to solve for the

��

Kaelbling� Littman� � Moore

optimal policy �or a close approximation thereof� based on its representation as a piecewise�
linear and convex function over the belief space� This method is computationally intractable�
but may serve as inspiration for methods that make further approximations �Cassandra
et al�� 	���� Littman� Cassandra� � Kaelbling� 	���a��

� Reinforcement Learning Applications

One reason that reinforcement learning is popular is that is serves as a theoretical tool for
studying the principles of agents learning to act� But it is unsurprising that it has also
been used by a number of researchers as a practical computational tool for constructing
autonomous systems that improve themselves with experience� These applications have
ranged from robotics� to industrial manufacturing� to combinatorial search problems such
as computer game playing�

Practical applications provide a test of the e�cacy and usefulness of learning algorithms�
They are also an inspiration for deciding which components of the reinforcement learning
framework are of practical importance� For example� a researcher with a real robotic task
can provide a data point to questions such as

� How important is optimal exploration� Can we break the learning period into explo�
ration phases and exploitation phases�

� What is the most useful model of long�term reward
 Finite horizon� Discounted�
In�nite horizon�

� How much computation is available between agent decisions and how should it be
used�

� What prior knowledge can we build into the system� and which algorithms are capable
of using that knowledge�

Let us examine a set of practical applications of reinforcement learning� while bearing these
questions in mind�

��� Game Playing

Game playing has dominated the Arti�cial Intelligence world as a problem domain ever since
the �eld was born� Two�player games do not �t into the established reinforcement�learning
framework since the optimality criterion for games is not one of maximizing reward in the
face of a �xed environment� but one of maximizing reward against an optimal adversary
�minimax�� Nonetheless� reinforcement�learning algorithms can be adapted to work for a
very general class of games �Littman� 	���a� and many researchers have used reinforcement
learning in these environments� One application� spectacularly far ahead of its time� was
Samuel�s checkers playing system �Samuel� 	����� This learned a value function represented
by a linear function approximator� and employed a training scheme similar to the updates
used in value iteration� temporal di�erences and Q�learning�

More recently� Tesauro �	���� 	���� 	���� applied the temporal di�erence algorithm
to backgammon� Backgammon has approximately 	��� states� making table�based rein�
forcement learning impossible� Instead� Tesauro used a backpropagation�based three�layer

���

Reinforcement Learning� A Survey

Training

Games

Hidden

Units

Results

Basic Poor
TD 	�� ������� �� Lost by 	� points in �	

games
TD ��� ������� �� Lost by � points in ��

games
TD ��	 	�������� �� Lost by 	 point in ��

games

Table �
 TD�Gammon�s performance in games against the top human professional players�
A backgammon tournament involves playing a series of games for points until one
player reaches a set target� TD�Gammon won none of these tournaments but came
su�ciently close that it is now considered one of the best few players in the world�

neural network as a function approximator for the value function

Board Position� Probability of victory for current player�

Two versions of the learning algorithm were used� The �rst� which we will call Basic TD�
Gammon� used very little prede�ned knowledge of the game� and the representation of a
board position was virtually a raw encoding� su�ciently powerful only to permit the neural
network to distinguish between conceptually di�erent positions� The second� TD�Gammon�
was provided with the same raw state information supplemented by a number of hand�
crafted features of backgammon board positions� Providing hand�crafted features in this
manner is a good example of how inductive biases from human knowledge of the task can
be supplied to a learning algorithm�

The training of both learning algorithms required several months of computer time� and
was achieved by constant self�play� No exploration strategy was used�the system always
greedily chose the move with the largest expected probability of victory� This naive explo�
ration strategy proved entirely adequate for this environment� which is perhaps surprising
given the considerable work in the reinforcement�learning literature which has produced
numerous counter�examples to show that greedy exploration can lead to poor learning per�
formance� Backgammon� however� has two important properties� Firstly� whatever policy
is followed� every game is guaranteed to end in �nite time� meaning that useful reward
information is obtained fairly frequently� Secondly� the state transitions are su�ciently
stochastic that independent of the policy� all states will occasionally be visited�a wrong
initial value function has little danger of starving us from visiting a critical part of state
space from which important information could be obtained�

The results �Table �� of TD�Gammon are impressive� It has competed at the very top
level of international human play� Basic TD�Gammon played respectably� but not at a
professional standard�

��

Figure 		
 Schaal and Atkeson�s devil�sticking robot� The tapered stick is hit alternately
by each of the two hand sticks� The task is to keep the devil stick from falling
for as many hits as possible� The robot has three motors indicated by torque
vectors ��� ��� ���

Although experiments with other games have in some cases produced interesting learning
behavior� no success close to that of TD�Gammon has been repeated� Other games that
have been studied include Go �Schraudolph� Dayan� � Sejnowski� 	���� and Chess �Thrun�
	����� It is still an open question as to if and how the success of TD�Gammon can be
repeated in other domains�

��� Robotics and Control

In recent years there have been many robotics and control applications that have used
reinforcement learning� Here we will concentrate on the following four examples� although
many other interesting ongoing robotics investigations are underway�

	� Schaal and Atkeson �	���� constructed a two�armed robot� shown in Figure 		� that
learns to juggle a device known as a devil�stick� This is a complex non�linear control
task involving a six�dimensional state space and less than ��� msecs per control deci�
sion� After about �� initial attempts the robot learns to keep juggling for hundreds of
hits� A typical human learning the task requires an order of magnitude more practice
to achieve pro�ciency at mere tens of hits�

The juggling robot learned a world model from experience� which was generalized
to unvisited states by a function approximation scheme known as locally weighted
regression �Cleveland � Delvin� 	���� Moore � Atkeson� 	����� Between each trial�
a form of dynamic programming speci�c to linear control policies and locally linear
transitions was used to improve the policy� The form of dynamic programming is
known as linear�quadratic�regulator design �Sage � White� 	�����

���

Reinforcement Learning� A Survey

�� Mahadevan and Connell �	��	a� discuss a task in which a mobile robot pushes large
boxes for extended periods of time� Box�pushing is a well�known di�cult robotics
problem� characterized by immense uncertainty in the results of actions� Q�learning
was used in conjunction with some novel clustering techniques designed to enable a
higher�dimensional input than a tabular approach would have permitted� The robot
learned to perform competitively with the performance of a human�programmed so�
lution� Another aspect of this work� mentioned in Section ��� was a pre�programmed
breakdown of the monolithic task description into a set of lower level tasks to be
learned�

�� Mataric �	���� describes a robotics experiment with� from the viewpoint of theoret�
ical reinforcement learning� an unthinkably high dimensional state space� containing
many dozens of degrees of freedom� Four mobile robots traveled within an enclo�
sure collecting small disks and transporting them to a destination region� There were
three enhancements to the basic Q�learning algorithm� Firstly� pre�programmed sig�
nals called progress estimators were used to break the monolithic task into subtasks�
This was achieved in a robust manner in which the robots were not forced to use
the estimators� but had the freedom to pro�t from the inductive bias they provided�
Secondly� control was decentralized� Each robot learned its own policy independently
without explicit communication with the others� Thirdly� state space was brutally
quantized into a small number of discrete states according to values of a small num�
ber of pre�programmed boolean features of the underlying sensors� The performance
of the Q�learned policies were almost as good as a simple hand�crafted controller for
the job�

�� Q�learning has been used in an elevator dispatching task �Crites � Barto� 	���� The
problem� which has been implemented in simulation only at this stage� involved four
elevators servicing ten �oors� The objective was to minimize the average squared
wait time for passengers� discounted into future time� The problem can be posed as a
discrete Markov system� but there are 	��� states even in the most simpli�ed version of
the problem� Crites and Barto used neural networks for function approximation and
provided an excellent comparison study of their Q�learning approach against the most
popular and the most sophisticated elevator dispatching algorithms� The squared wait
time of their controller was approximately �� less than the best alternative algorithm
��Empty the System� heuristic with a receding horizon controller� and less than half
the squared wait time of the controller most frequently used in real elevator systems�

�� The �nal example concerns an application of reinforcement learning by one of the
authors of this survey to a packaging task from a food processing industry� The
problem involves �lling containers with variable numbers of non�identical products�
The product characteristics also vary with time� but can be sensed� Depending on
the task� various constraints are placed on the container��lling procedure� Here are
three examples

� The mean weight of all containers produced by a shift must not be below the
manufacturer�s declared weight W �

���

Kaelbling� Littman� � Moore

� The number of containers below the declared weight must be less than P��

� No containers may be produced below weight W ��

Such tasks are controlled by machinery which operates according to various setpoints�
Conventional practice is that setpoints are chosen by human operators� but this choice
is not easy as it is dependent on the current product characteristics and the current
task constraints� The dependency is often di�cult to model and highly non�linear�
The task was posed as a �nite�horizon Markov decision task in which the state of the
system is a function of the product characteristics� the amount of time remaining in
the production shift and the mean wastage and percent below declared in the shift
so far� The system was discretized into ������� discrete states and local weighted
regression was used to learn and generalize a transition model� Prioritized sweep�
ing was used to maintain an optimal value function as each new piece of transition
information was obtained� In simulated experiments the savings were considerable�
typically with wastage reduced by a factor of ten� Since then the system has been
deployed successfully in several factories within the United States�

Some interesting aspects of practical reinforcement learning come to light from these
examples� The most striking is that in all cases� to make a real system work it proved
necessary to supplement the fundamental algorithm with extra pre�programmed knowledge�
Supplying extra knowledge comes at a price
 more human e�ort and insight is required and
the system is subsequently less autonomous� But it is also clear that for tasks such as
these� a knowledge�free approach would not have achieved worthwhile performance within
the �nite lifetime of the robots�

What forms did this pre�programmed knowledge take� It included an assumption of
linearity for the juggling robot�s policy� a manual breaking up of the task into subtasks for
the two mobile�robot examples� while the box�pusher also used a clustering technique for
the Q values which assumed locally consistent Q values� The four disk�collecting robots
additionally used a manually discretized state space� The packaging example had far fewer
dimensions and so required correspondingly weaker assumptions� but there� too� the as�
sumption of local piecewise continuity in the transition model enabled massive reductions
in the amount of learning data required�

The exploration strategies are interesting too� The juggler used careful statistical anal�
ysis to judge where to pro�tably experiment� However� both mobile robot applications
were able to learn well with greedy exploration�always exploiting without deliberate ex�
ploration� The packaging task used optimism in the face of uncertainty� None of these
strategies mirrors theoretically optimal �but computationally intractable� exploration� and
yet all proved adequate�

Finally� it is also worth considering the computational regimes of these experiments�
They were all very di�erent� which indicates that the di�ering computational demands of
various reinforcement learning algorithms do indeed have an array of di�ering applications�
The juggler needed to make very fast decisions with low latency between each hit� but
had long periods ��� seconds and more� between each trial to consolidate the experiences
collected on the previous trial and to perform the more aggressive computation necessary
to produce a new reactive controller on the next trial� The box�pushing robot was meant to

���

Reinforcement Learning� A Survey

operate autonomously for hours and so had to make decisions with a uniform length control
cycle� The cycle was su�ciently long for quite substantial computations beyond simple Q�
learning backups� The four disk�collecting robots were particularly interesting� Each robot
had a short life of less than �� minutes �due to battery constraints� meaning that substantial
number crunching was impractical� and any signi�cant combinatorial search would have
used a signi�cant fraction of the robot�s learning lifetime� The packaging task had easy
constraints� One decision was needed every few minutes� This provided opportunities for
fully computing the optimal value function for the ��������state system between every
control cycle� in addition to performing massive cross�validation�based optimization of the
transition model being learned�

A great deal of further work is currently in progress on practical implementations of
reinforcement learning� The insights and task constraints that they produce will have an
important e�ect on shaping the kind of algorithms that are developed in future�

�� Conclusions

There are a variety of reinforcement�learning techniques that work e�ectively on a variety
of small problems� But very few of these techniques scale well to larger problems� This is
not because researchers have done a bad job of inventing learning techniques� but because
it is very di�cult to solve arbitrary problems in the general case� In order to solve highly
complex problems� we must give up tabula rasa learning techniques and begin to incorporate
bias that will give leverage to the learning process�

The necessary bias can come in a variety of forms� including the following

shaping� The technique of shaping is used in training animals �Hilgard � Bower� 	����� a
teacher presents very simple problems to solve �rst� then gradually exposes the learner
to more complex problems� Shaping has been used in supervised�learning systems�
and can be used to train hierarchical reinforcement�learning systems from the bottom
up �Lin� 	��	�� and to alleviate problems of delayed reinforcement by decreasing the
delay until the problem is well understood �Dorigo � Colombetti� 	���� Dorigo� 	�����

local reinforcement signals� Whenever possible� agents should be given reinforcement
signals that are local� In applications in which it is possible to compute a gradient�
rewarding the agent for taking steps up the gradient� rather than just for achieving
the �nal goal� can speed learning signi�cantly �Mataric� 	�����

imitation� An agent can learn by �watching� another agent perform the task �Lin� 	��	��
For real robots� this requires perceptual abilities that are not yet available� But
another strategy is to have a human supply appropriate motor commands to a robot
through a joystick or steering wheel �Pomerleau� 	�����

problem decomposition� Decomposing a huge learning problem into a collection of smaller
ones� and providing useful reinforcement signals for the subproblems is a very power�
ful technique for biasing learning� Most interesting examples of robotic reinforcement
learning employ this technique to some extent �Connell � Mahadevan� 	�����

re�exes� One thing that keeps agents that know nothing from learning anything is that
they have a hard time even �nding the interesting parts of the space� they wander

���

Kaelbling� Littman� � Moore

around at random never getting near the goal� or they are always �killed� immediately�
These problems can be ameliorated by programming a set of �re�exes� that cause the
agent to act initially in some way that is reasonable �Mataric� 	���� Singh� Barto�
Grupen� � Connolly� 	����� These re�exes can eventually be overridden by more
detailed and accurate learned knowledge� but they at least keep the agent alive and
pointed in the right direction while it is trying to learn� Recent work by Millan �	���
explores the use of re�exes to make robot learning safer and more e�cient�

With appropriate biases� supplied by human programmers or teachers� complex reinforcement�
learning problems will eventually be solvable� There is still much work to be done and many
interesting questions remaining for learning techniques and especially regarding methods for
approximating� decomposing� and incorporating bias into problems�

Acknowledgements

Thanks to Marco Dorigo and three anonymous reviewers for comments that have helped
to improve this paper� Also thanks to our many colleagues in the reinforcement�learning
community who have done this work and explained it to us�

Leslie Pack Kaelbling was supported in part by NSF grants IRI�������� and IRI�
��	����� Michael Littman was supported in part by Bellcore� Andrew Moore was supported
in part by an NSF Research Initiation Award and by �M Corporation�

References

Ackley� D� H�� � Littman� M� L� �	����� Generalization and scaling in reinforcement learn�
ing� In Touretzky� D� S� �Ed��� Advances in Neural Information Processing Systems
�� pp� ���'��� San Mateo� CA� Morgan Kaufmann�

Albus� J� S� �	����� A new approach to manipulator control
 Cerebellar model articulation
controller �cmac�� Journal of Dynamic Systems� Measurement and Control� ��� ���'
����

Albus� J� S� �	��	�� Brains� Behavior� and Robotics� BYTE Books� Subsidiary of McGraw�
Hill� Peterborough� New Hampshire�

Anderson� C� W� �	���� Learning and Problem Solving with Multilayer Connectionist
Systems� Ph�D� thesis� University of Massachusetts� Amherst� MA�

Ashar� R� R� �	����� Hierarchical learning in stochastic domains� Master�s thesis� Brown
University� Providence� Rhode Island�

Baird� L� �	����� Residual algorithms
 Reinforcement learning with function approxima�
tion� In Prieditis� A�� � Russell� S� �Eds��� Proceedings of the Twelfth International
Conference on Machine Learning� pp� ��'�� San Francisco� CA� Morgan Kaufmann�

Baird� L� C�� � Klopf� A� H� �	����� Reinforcement learning with high�dimensional� con�
tinuous actions� Tech� rep� WL�TR����		��� Wright�Patterson Air Force Base Ohio

Wright Laboratory�

���

Reinforcement Learning� A Survey

Barto� A� G�� Bradtke� S� J�� � Singh� S� P� �	����� Learning to act using real�time dynamic
programming� Arti�cial Intelligence� �� �	�� �	'	���

Barto� A� G�� Sutton� R� S�� � Anderson� C� W� �	����� Neuronlike adaptive elements that
can solve di�cult learning control problems� IEEE Transactions on Systems� Man�
and Cybernetics� SMC��� ���� ���'���

Bellman� R� �	����� Dynamic Programming� Princeton University Press� Princeton� NJ�

Berenji� H� R� �	��	�� Arti�cial neural networks and approximate reasoning for intelligent
control in space� In American Control Conference� pp� 	���'	����

Berry� D� A�� � Fristedt� B� �	����� Bandit Problems	 Sequential Allocation of Experiments�
Chapman and Hall� London� UK�

Bertsekas� D� P� �	����� Dynamic Programming	 Deterministic and Stochastic Models�
Prentice�Hall� Englewood Cli�s� NJ�

Bertsekas� D� P� �	����� Dynamic Programming and Optimal Control� Athena Scienti�c�
Belmont� Massachusetts� Volumes 	 and ��

Bertsekas� D� P�� � Casta!non� D� A� �	����� Adaptive aggregation for in�nite horizon
dynamic programming� IEEE Transactions on Automatic Control� �
 ��� ���'����

Bertsekas� D� P�� � Tsitsiklis� J� N� �	����� Parallel and Distributed Computation	 Numer�
ical Methods� Prentice�Hall� Englewood Cli�s� NJ�

Box� G� E� P�� � Draper� N� R� �	����� Empirical Model�Building and Response Surfaces�
Wiley�

Boyan� J� A�� � Moore� A� W� �	����� Generalization in reinforcement learning
 Safely
approximating the value function� In Tesauro� G�� Touretzky� D� S�� � Leen� T� K�
�Eds��� Advances in Neural Information Processing Systems � Cambridge� MA� The
MIT Press�

Burghes� D�� � Graham� A� �	����� Introduction to Control Theory including Optimal
Control� Ellis Horwood�

Cassandra� A� R�� Kaelbling� L� P�� � Littman� M� L� �	����� Acting optimally in partially
observable stochastic domains� In Proceedings of the Twelfth National Conference on
Arti�cial Intelligence Seattle� WA�

Chapman� D�� � Kaelbling� L� P� �	��	�� Input generalization in delayed reinforcement
learning
 An algorithm and performance comparisons� In Proceedings of the Interna�
tional Joint Conference on Arti�cial Intelligence Sydney� Australia�

Chrisman� L� �	����� Reinforcement learning with perceptual aliasing
 The perceptual
distinctions approach� In Proceedings of the Tenth National Conference on Arti�cial
Intelligence� pp� 	��'	�� San Jose� CA� AAAI Press�

���

Kaelbling� Littman� � Moore

Chrisman� L�� � Littman� M� �	����� Hidden state and short�term memory�� Presentation
at Reinforcement Learning Workshop� Machine Learning Conference�

Cichosz� P�� � Mulawka� J� J� �	����� Fast and e�cient reinforcement learning with trun�
cated temporal di�erences� In Prieditis� A�� � Russell� S� �Eds��� Proceedings of the
Twelfth International Conference on Machine Learning� pp� ��'	�� San Francisco�
CA� Morgan Kaufmann�

Cleveland� W� S�� � Delvin� S� J� �	����� Locally weighted regression
 An approach to
regression analysis by local �tting� Journal of the American Statistical Association�
�� ������ ��'	��

Cli�� D�� � Ross� S� �	����� Adding temporary memory to ZCS� Adaptive Behavior� � ����
	�	'	���

Condon� A� �	����� The complexity of stochastic games� Information and Computation�
�� ���� ���'����

Connell� J�� � Mahadevan� S� �	����� Rapid task learning for real robots� In Robot Learning�
Kluwer Academic Publishers�

Crites� R� H�� � Barto� A� G� �	���� Improving elevator performance using reinforcement
learning� In Touretzky� D�� Mozer� M�� � Hasselmo� M� �Eds��� Neural Information
Processing Systems ��

Dayan� P� �	����� The convergence of TD��� for general �� Machine Learning� � ���� ��	'
���

Dayan� P�� � Hinton� G� E� �	����� Feudal reinforcement learning� In Hanson� S� J�� Cowan�
J� D�� � Giles� C� L� �Eds��� Advances in Neural Information Processing Systems
San Mateo� CA� Morgan Kaufmann�

Dayan� P�� � Sejnowski� T� J� �	����� TD��� converges with probability 	� Machine Learn�
ing� �
 ����

Dean� T�� Kaelbling� L� P�� Kirman� J�� � Nicholson� A� �	����� Planning with deadlines in
stochastic domains� In Proceedings of the Eleventh National Conference on Arti�cial
IntelligenceWashington� DC�

D�Epenoux� F� �	���� A probabilistic production and inventory problem� Management
Science� ��� ��'	���

Derman� C� �	����� Finite State Markovian Decision Processes� Academic Press� New York�

Dorigo� M�� � Bersini� H� �	����� A comparison of q�learning and classi�er systems� In
From Animals to Animats	 Proceedings of the Third International Conference on the
Simulation of Adaptive Behavior Brighton� UK�

Dorigo� M�� � Colombetti� M� �	����� Robot shaping
 Developing autonomous agents
through learning� Arti�cial Intelligence� �� ���� ��	'����

��	

Reinforcement Learning� A Survey

Dorigo� M� �	����� Alecsys and the AutonoMouse
 Learning to control a real robot by
distributed classi�er systems� Machine Learning� ���

Fiechter� C��N� �	����� E�cient reinforcement learning� In Proceedings of the Seventh
Annual ACM Conference on Computational Learning Theory� pp� ��'��� Association
of Computing Machinery�

Gittins� J� C� �	����� Multi�armed Bandit Allocation Indices� Wiley�Interscience series in
systems and optimization� Wiley� Chichester� NY�

Goldberg� D� �	����� Genetic algorithms in search� optimization� and machine learning�
Addison�Wesley� MA�

Gordon� G� J� �	����� Stable function approximation in dynamic programming� In Priedi�
tis� A�� � Russell� S� �Eds��� Proceedings of the Twelfth International Conference on
Machine Learning� pp� �	'�� San Francisco� CA� Morgan Kaufmann�

Gullapalli� V� �	����� A stochastic reinforcement learning algorithm for learning real�valued
functions� Neural Networks� �� �	'���

Gullapalli� V� �	����� Reinforcement learning and its application to control� Ph�D� thesis�
University of Massachusetts� Amherst� MA�

Hilgard� E� R�� � Bower� G� H� �	����� Theories of Learning �fourth edition�� Prentice�Hall�
Englewood Cli�s� NJ�

Ho�man� A� J�� � Karp� R� M� �	��� On nonterminating stochastic games� Management
Science� ��� ���'����

Holland� J� H� �	����� Adaptation in Natural and Arti�cial Systems� University of Michigan
Press� Ann Arbor� MI�

Howard� R� A� �	���� Dynamic Programming and Markov Processes� The MIT Press�
Cambridge� MA�

Jaakkola� T�� Jordan� M� I�� � Singh� S� P� �	����� On the convergence of stochastic iterative
dynamic programming algorithms� Neural Computation� � ���

Jaakkola� T�� Singh� S� P�� � Jordan� M� I� �	����� Monte�carlo reinforcement learning in
non�Markovian decision problems� In Tesauro� G�� Touretzky� D� S�� � Leen� T� K�
�Eds��� Advances in Neural Information Processing Systems � Cambridge� MA� The
MIT Press�

Kaelbling� L� P� �	���a�� Hierarchical learning in stochastic domains
 Preliminary results�
In Proceedings of the Tenth International Conference on Machine Learning Amherst�
MA� Morgan Kaufmann�

Kaelbling� L� P� �	���b�� Learning in Embedded Systems� The MIT Press� Cambridge� MA�

Kaelbling� L� P� �	���a�� Associative reinforcement learning
 A generate and test algorithm�
Machine Learning� � ����

��

Kaelbling� Littman� � Moore

Kaelbling� L� P� �	���b�� Associative reinforcement learning
 Functions in k�DNF� Machine
Learning� � ����

Kirman� J� �	����� Predicting Real�Time Planner Performance by Domain Characterization�
Ph�D� thesis� Department of Computer Science� Brown University�

Koenig� S�� � Simmons� R� G� �	����� Complexity analysis of real�time reinforcement
learning� In Proceedings of the Eleventh National Conference on Arti�cial Intelligence�
pp� ��'	�� Menlo Park� California� AAAI Press�MIT Press�

Kumar� P� R�� � Varaiya� P� P� �	���� Stochastic Systems	 Estimation� Identi�cation� and
Adaptive Control� Prentice Hall� Englewood Cli�s� New Jersey�

Lee� C� C� �	��	�� A self learning rule�based controller employing approximate reasoning
and neural net concepts� International Journal of Intelligent Systems� � �	�� �	'���

Lin� L��J� �	��	�� Programming robots using reinforcement learning and teaching� In
Proceedings of the Ninth National Conference on Arti�cial Intelligence�

Lin� L��J� �	���a�� Hierachical learning of robot skills by reinforcement� In Proceedings of
the International Conference on Neural Networks�

Lin� L��J� �	���b�� Reinforcement Learning for Robots Using Neural Networks� Ph�D� thesis�
Carnegie Mellon University� Pittsburgh� PA�

Lin� L��J�� � Mitchell� T� M� �	����� Memory approaches to reinforcement learning in non�
Markovian domains� Tech� rep� CMU�CS����	��� Carnegie Mellon University� School
of Computer Science�

Littman� M� L� �	���a�� Markov games as a framework for multi�agent reinforcement learn�
ing� In Proceedings of the Eleventh International Conference on Machine Learning�
pp� 	��'	� San Francisco� CA� Morgan Kaufmann�

Littman� M� L� �	���b�� Memoryless policies
 Theoretical limitations and practical results�
In Cli�� D�� Husbands� P�� Meyer� J��A�� � Wilson� S� W� �Eds��� From Animals
to Animats �	 Proceedings of the Third International Conference on Simulation of
Adaptive Behavior Cambridge� MA� The MIT Press�

Littman� M� L�� Cassandra� A�� � Kaelbling� L� P� �	���a�� Learning policies for partially
observable environments
 Scaling up� In Prieditis� A�� � Russell� S� �Eds��� Proceed�
ings of the Twelfth International Conference on Machine Learning� pp� ��'��� San
Francisco� CA� Morgan Kaufmann�

Littman� M� L�� Dean� T� L�� � Kaelbling� L� P� �	���b�� On the complexity of solving
Markov decision problems� In Proceedings of the Eleventh Annual Conference on
Uncertainty in Arti�cial Intelligence �UAI��� Montreal� Qu(ebec� Canada�

Lovejoy� W� S� �	��	�� A survey of algorithmic methods for partially observable Markov
decision processes� Annals of Operations Research� ��� ��'�

�	�

Reinforcement Learning� A Survey

Maes� P�� � Brooks� R� A� �	����� Learning to coordinate behaviors� In Proceedings Eighth
National Conference on Arti�cial Intelligence� pp� ��'���� Morgan Kaufmann�

Mahadevan� S� �	����� To discount or not to discount in reinforcement learning
 A case
study comparing R learning and Q learning� In Proceedings of the Eleventh Inter�
national Conference on Machine Learning� pp� 	�'	�� San Francisco� CA� Morgan
Kaufmann�

Mahadevan� S� �	���� Average reward reinforcement learning
 Foundations� algorithms�
and empirical results� Machine Learning� �� �	��

Mahadevan� S�� � Connell� J� �	��	a�� Automatic programming of behavior�based robots
using reinforcement learning� In Proceedings of the Ninth National Conference on
Arti�cial Intelligence Anaheim� CA�

Mahadevan� S�� � Connell� J� �	��	b�� Scaling reinforcement learning to robotics by ex�
ploiting the subsumption architecture� In Proceedings of the Eighth International
Workshop on Machine Learning� pp� ���'����

Mataric� M� J� �	����� Reward functions for accelerated learning� In Cohen� W� W�� �
Hirsh� H� �Eds��� Proceedings of the Eleventh International Conference on Machine
Learning� Morgan Kaufmann�

McCallum� A� K� �	����� Reinforcement Learning with Selective Perception and Hidden
State� Ph�D� thesis� Department of Computer Science� University of Rochester�

McCallum� R� A� �	����� Overcoming incomplete perception with utile distinction memory�
In Proceedings of the Tenth International Conference on Machine Learning� pp� 	��'
	� Amherst� Massachusetts� Morgan Kaufmann�

McCallum� R� A� �	����� Instance�based utile distinctions for reinforcement learning with
hidden state� In Proceedings of the Twelfth International Conference Machine Learn�
ing� pp� ���'��� San Francisco� CA� Morgan Kaufmann�

Meeden� L�� McGraw� G�� � Blank� D� �	����� Emergent control and planning in an au�
tonomous vehicle� In Touretsky� D� �Ed��� Proceedings of the Fifteenth Annual Meeting
of the Cognitive Science Society� pp� ���'���� Lawerence Erlbaum Associates� Hills�
dale� NJ�

Millan� J� d� R� �	���� Rapid� safe� and incremental learning of navigation strategies� IEEE
Transactions on Systems� Man� and Cybernetics� �� ����

Monahan� G� E� �	����� A survey of partially observable Markov decision processes
 Theory�
models� and algorithms� Management Science� ��� 	'	�

Moore� A� W� �	��	�� Variable resolution dynamic programming
 E�ciently learning ac�
tion maps in multivariate real�valued spaces� In Proc� Eighth International Machine
Learning Workshop�

�	

Kaelbling� Littman� � Moore

Moore� A� W� �	����� The parti�game algorithm for variable resolution reinforcement learn�
ing in multidimensional state�spaces� In Cowan� J� D�� Tesauro� G�� � Alspector� J�
�Eds���Advances in Neural Information Processing Systems �� pp� �		'�	� San Mateo�
CA� Morgan Kaufmann�

Moore� A� W�� � Atkeson� C� G� �	����� An investigation of memory�based function ap�
proximators for learning control� Tech� rep�� MIT Arti�cal Intelligence Laboratory�
Cambridge� MA�

Moore� A� W�� � Atkeson� C� G� �	����� Prioritized sweeping
 Reinforcement learning with
less data and less real time� Machine Learning� ���

Moore� A� W�� Atkeson� C� G�� � Schaal� S� �	����� Memory�based learning for control�
Tech� rep� CMU�RI�TR����	�� CMU Robotics Institute�

Narendra� K�� � Thathachar� M� A� L� �	����� Learning Automata	 An Introduction�
Prentice�Hall� Englewood Cli�s� NJ�

Narendra� K� S�� � Thathachar� M� A� L� �	����� Learning automata�a survey� IEEE
Transactions on Systems� Man� and Cybernetics�
 ���� ���'����

Peng� J�� � Williams� R� J� �	����� E�cient learning and planning within the Dyna frame�
work� Adaptive Behavior� � ���� ���'����

Peng� J�� � Williams� R� J� �	����� Incremental multi�step Q�learning� In Proceedings of the
Eleventh International Conference on Machine Learning� pp� ��'��� San Francisco�
CA� Morgan Kaufmann�

Pomerleau� D� A� �	����� Neural network perception for mobile robot guidance� Kluwer
Academic Publishing�

Puterman� M� L� �	����� Markov Decision Processes�Discrete Stochastic Dynamic Pro�
gramming� John Wiley � Sons� Inc�� New York� NY�

Puterman� M� L�� � Shin� M� C� �	����� Modi�ed policy iteration algorithms for discounted
Markov decision processes� Management Science� �
� 		��'		���

Ring� M� B� �	����� Continual Learning in Reinforcement Environments� Ph�D� thesis�
University of Texas at Austin� Austin� Texas�

R ude� U� �	����� Mathematical and computational techniques for multilevel adaptive meth�
ods� Society for Industrial and Applied Mathematics� Philadelphia� Pennsylvania�

Rumelhart� D� E�� � McClelland� J� L� �Eds��� �	���� Parallel Distributed Processing	
Explorations in the microstructures of cognition� Volume �	 Foundations� The MIT
Press� Cambridge� MA�

Rummery� G� A�� � Niranjan� M� �	����� On�line Q�learning using connectionist systems�
Tech� rep� CUED�F�INFENG�TR	� Cambridge University�

�	�

Reinforcement Learning� A Survey

Rust� J� �	���� Numerical dynamic programming in economics� In Handbook of Computa�
tional Economics� Elsevier� North Holland�

Sage� A� P�� � White� C� C� �	����� Optimum Systems Control� Prentice Hall�

Salganico�� M�� � Ungar� L� H� �	����� Active exploration and learning in real�valued
spaces using multi�armed bandit allocation indices� In Prieditis� A�� � Russell� S�
�Eds��� Proceedings of the Twelfth International Conference on Machine Learning�
pp� ���'��� San Francisco� CA� Morgan Kaufmann�

Samuel� A� L� �	����� Some studies in machine learning using the game of checkers� IBM
Journal of Research and Development� �� �		'���� Reprinted in E� A� Feigenbaum
and J� Feldman� editors� Computers and Thought� McGraw�Hill� New York 	���

Schaal� S�� � Atkeson� C� �	����� Robot juggling
 An implementation of memory�based
learning� Control Systems Magazine� �
�

Schmidhuber� J� �	���� A general method for multi�agent learning and incremental self�
improvement in unrestricted environments� In Yao� X� �Ed��� Evolutionary Computa�
tion	 Theory and Applications� Scienti�c Publ� Co�� Singapore�

Schmidhuber� J� H� �	��	a�� Curious model�building control systems� In Proc� International
Joint Conference on Neural Networks� Singapore� Vol� �� pp� 	���'	��� IEEE�

Schmidhuber� J� H� �	��	b�� Reinforcement learning in Markovian and non�Markovian
environments� In Lippman� D� S�� Moody� J� E�� � Touretzky� D� S� �Eds��� Advances
in Neural Information Processing Systems �� pp� ���'�� San Mateo� CA� Morgan
Kaufmann�

Schraudolph� N� N�� Dayan� P�� � Sejnowski� T� J� �	����� Temporal di�erence learning of
position evaluation in the game of Go� In Cowan� J� D�� Tesauro� G�� � Alspector�
J� �Eds��� Advances in Neural Information Processing Systems �� pp� �	�'��� San
Mateo� CA� Morgan Kaufmann�

Schrijver� A� �	���� Theory of Linear and Integer Programming� Wiley�Interscience� New
York� NY�

Schwartz� A� �	����� A reinforcement learning method for maximizing undiscounted re�
wards� In Proceedings of the Tenth International Conference on Machine Learning�
pp� ���'��� Amherst� Massachusetts� Morgan Kaufmann�

Singh� S� P�� Barto� A� G�� Grupen� R�� � Connolly� C� �	����� Robust reinforcement
learning in motion planning� In Cowan� J� D�� Tesauro� G�� � Alspector� J� �Eds���
Advances in Neural Information Processing Systems �� pp� ��'� San Mateo� CA�
Morgan Kaufmann�

Singh� S� P�� � Sutton� R� S� �	���� Reinforcement learning with replacing eligibility traces�
Machine Learning� �� �	��

�	�

Kaelbling� Littman� � Moore

Singh� S� P� �	���a�� Reinforcement learning with a hierarchy of abstract models� In
Proceedings of the Tenth National Conference on Arti�cial Intelligence� pp� ���'���
San Jose� CA� AAAI Press�

Singh� S� P� �	���b�� Transfer of learning by composing solutions of elemental sequential
tasks� Machine Learning� � ���� ���'����

Singh� S� P� �	����� Learning to Solve Markovian Decision Processes� Ph�D� thesis� Depart�
ment of Computer Science� University of Massachusetts� Also� CMPSCI Technical
Report ������

Stengel� R� F� �	���� Stochastic Optimal Control� John Wiley and Sons�

Sutton� R� S� �	���� Generalization in Reinforcement Learning
 Successful Examples Using
Sparse Coarse Coding� In Touretzky� D�� Mozer� M�� � Hasselmo� M� �Eds��� Neural
Information Processing Systems ��

Sutton� R� S� �	����� Temporal Credit Assignment in Reinforcement Learning� Ph�D� thesis�
University of Massachusetts� Amherst� MA�

Sutton� R� S� �	����� Learning to predict by the method of temporal di�erences� Machine
Learning� � �	�� �'���

Sutton� R� S� �	����� Integrated architectures for learning� planning� and reacting based
on approximating dynamic programming� In Proceedings of the Seventh International
Conference on Machine Learning Austin� TX� Morgan Kaufmann�

Sutton� R� S� �	��	�� Planning by incremental dynamic programming� In Proceedings
of the Eighth International Workshop on Machine Learning� pp� ���'���� Morgan
Kaufmann�

Tesauro� G� �	����� Practical issues in temporal di�erence learning� Machine Learning� ��
���'����

Tesauro� G� �	����� TD�Gammon� a self�teaching backgammon program� achieves master�
level play� Neural Computation� � ���� �	�'�	��

Tesauro� G� �	����� Temporal di�erence learning and TD�Gammon� Communications of
the ACM� �� ���� ��'��

Tham� C��K�� � Prager� R� W� �	����� A modular q�learning architecture for manipula�
tor task decomposition� In Proceedings of the Eleventh International Conference on
Machine Learning San Francisco� CA� Morgan Kaufmann�

Thrun� S� �	����� Learning to play the game of chess� In Tesauro� G�� Touretzky� D� S�� �
Leen� T� K� �Eds��� Advances in Neural Information Processing Systems � Cambridge�
MA� The MIT Press�

�	�

Reinforcement Learning� A Survey

Thrun� S�� � Schwartz� A� �	����� Issues in using function approximation for reinforcement
learning� In Mozer� M�� Smolensky� P�� Touretzky� D�� Elman� J�� � Weigend� A�
�Eds��� Proceedings of the ���� Connectionist Models Summer School Hillsdale� NJ�
Lawrence Erlbaum�

Thrun� S� B� �	����� The role of exploration in learning control� In White� D� A�� �
Sofge� D� A� �Eds��� Handbook of Intelligent Control	 Neural� Fuzzy� and Adaptive
Approaches� Van Nostrand Reinhold� New York� NY�

Tsitsiklis� J� N� �	����� Asynchronous stochastic approximation and Q�learning� Machine
Learning� �� ����

Tsitsiklis� J� N�� � Van Roy� B� �	���� Feature�based methods for large scale dynamic
programming� Machine Learning� �� �	��

Valiant� L� G� �	����� A theory of the learnable� Communications of the ACM� �� �		��
		��'		���

Watkins� C� J� C� H� �	����� Learning from Delayed Rewards� Ph�D� thesis� King�s College�
Cambridge� UK�

Watkins� C� J� C� H�� � Dayan� P� �	����� Q�learning� Machine Learning� � ���� ���'����

Whitehead� S� D� �	��	�� Complexity and cooperation in Q�learning� In Proceedings of the
Eighth International Workshop on Machine Learning Evanston� IL� Morgan Kauf�
mann�

Williams� R� J� �	����� A class of gradient�estimating algorithms for reinforcement learning
in neural networks� In Proceedings of the IEEE First International Conference on
Neural Networks San Diego� CA�

Williams� R� J� �	����� Simple statistical gradient�following algorithms for connectionist
reinforcement learning� Machine Learning� � ���� ���'���

Williams� R� J�� � Baird� III� L� C� �	���a�� Analysis of some incremental variants of policy
iteration
 First steps toward understanding actor�critic learning systems� Tech� rep�
NU�CCS����		� Northeastern University� College of Computer Science� Boston� MA�

Williams� R� J�� � Baird� III� L� C� �	���b�� Tight performance bounds on greedy policies
based on imperfect value functions� Tech� rep� NU�CCS����	�� Northeastern Univer�
sity� College of Computer Science� Boston� MA�

Wilson� S� �	����� Classi�er �tness based on accuracy� Evolutionary Computation� � ����
	��'	���

Zhang� W�� � Dietterich� T� G� �	����� A reinforcement learning approach to job�shop
scheduling� In Proceedings of the International Joint Conference on Arti�cial Intel�
lience�

�	�

