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Formal Theory of Creativity, Fun, and
Intrinsic Motivation (1990–2010)

Jürgen Schmidhuber

Abstract—The simple, but general formal theory of fun and
intrinsic motivation and creativity (1990–2010) is based on the
concept of maximizing intrinsic reward for the active creation
or discovery of novel, surprising patterns allowing for improved
prediction or data compression. It generalizes the traditional
field of active learning, and is related to old, but less formal ideas
in aesthetics theory and developmental psychology. It has been
argued that the theory explains many essential aspects of intel-
ligence including autonomous development, science, art, music,
and humor. This overview first describes theoretically optimal
(but not necessarily practical) ways of implementing the basic
computational principles on exploratory, intrinsically motivated
agents or robots, encouraging them to provoke event sequences
exhibiting previously unknown, but learnable algorithmic regular-
ities. Emphasis is put on the importance of limited computational
resources for online prediction and compression. Discrete and
continuous time formulations are given. Previous practical, but
nonoptimal implementations (1991, 1995, and 1997–2002) are
reviewed, as well as several recent variants by others (2005–2010).
A simplified typology addresses current confusion concerning the
precise nature of intrinsic motivation.

Index Terms—Active learning, aesthetics theory, art, attention,
developmental psychology, formal theory of creativity, fun, humor,
limited computational resources, music, novel patterns, novelty,
science, surprise, typology of intrinsic motivation.

I. INTRODUCTION

T O SOLVE existential problems such as avoiding hunger
or heat, a baby has to learn how the initially unknown en-

vironment responds to its actions. Therefore, even when there
is no immediate need to satisfy thirst or other built-in primitive
drives, the baby does not run idle. Instead, it actively conducts
experiments: what sensory feedback do I get if I move my eyes
or my fingers or my tongue just like that? Being able to pre-
dict effects of actions will later make it easier to plan control
sequences leading to desirable states, such as those where heat
and hunger sensors are switched off.

The growing infant quickly gets bored by things it already
understands well, but also by those it does not understand at
all, always searching for new effects exhibiting some yet un-
explained but easily learnable regularity. It acquires more and
more complex behaviors building on previously acquired, sim-
pler behaviors. Eventually, it might become a physicist discov-
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ering previously unknown physical laws, or an artist creating
new eye-opening artworks, or a comedian coming up with novel
jokes.

For a long time I have been arguing, using various word-
ings, that all this behavior is driven by a very simple algorithmic
mechanism that uses reinforcement learning (RL) to maximize
the fun or internal joy for the discovery or creation of novel pat-
terns. Both concepts are essential: pattern and novelty. A data
sequence exhibits a pattern or regularity if it is compressible
[45], that is, if there is a relatively short program that encodes it,
for example, by predicting some of its components from others
(irregular noise is unpredictable and boring). Relative to some
subjective observer, a pattern is temporarily novel or interesting
or surprising if the observer initially did not know the regularity,
but is able to learn it. The observer’s learning progress can be
precisely measured and translated into intrinsic reward for a
separate RL controller selecting the actions causing the data.
Hence, the controller is continually motivated to create more
surprising data.

Since 1990, agents were built that implement this idea. They
may be viewed as simple artificial scientists or artists with an
intrinsic desire to build a better model of the world and of what
can be done in it. To improve their models, they acquire skills
to create/discover more data predictable or compressible in hith-
erto unknown ways [67], [69]–[71], [77], [79], [85], [92]–[94],
[96], [97], [99], [111]. They are intrinsically motivated to invent
and conduct experiments, actively exploring their environment,
always trying to learn new behaviors exhibiting previously un-
known algorithmic regularities. They embody approximations
of a simple, but general, formal theory of creativity and cu-
riosity and interestingness and fun, explaining essential aspects
of human or nonhuman intelligence, including selective atten-
tion, science, art, music, and humor [85], [92], [94], [96], [97].
The crucial ingredients are:

1) An adaptive world model, essentially a predictor or
compressor of the continually growing history of ac-
tions/events/sensory inputs, reflecting what is currently
known about how the world works.

2) A learning algorithm that continually improves the model
(detecting novel, initially surprising spatio–temporal pat-
terns that subsequently become known patterns).

3) Intrinsic rewards measuring the model’s improvements
(first derivative of learning progress) due to the learning
algorithm (thus, measuring the degree of subjective sur-
prise or fun).

4) A separate reward optimizer or reinforcement learner,
which translates those rewards into action sequences or
behaviors expected to optimize future reward.
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A simple example may help to see that it is really possible to
learn from intrinsic reward signals à la item 3 that one can learn
even more in places never visited before. In an environment with
red and blue boxes, whenever the learning agent opens a red box,
it will find an easily learnable novel geometric pattern (that is,
its predictor will make progress and thus, generate intrinsic re-
ward), while all blue boxes contain a generator of unpredictable,
incompressible white noise. That is, all the RL controller has to
learn is a simple policy: open the next unopened red box.

Ignoring issues of computation time, it is possible to devise
mathematically optimal, universal RL methods for such systems
[85], [92], [96], [97] (2006–2009). More about this in Section II.
However, the practical implementations so far [69], [70], [77],
[79], [111] were nonuniversal and made approximative assump-
tions. Among the many ways of combining algorithms for 1)–4),
the following variants were implemented.

A) 1990: Nontraditional RL (without restrictive Markovian
assumptions [72]) based on an adaptive recurrent neural
network as a predictive world model [68] is used to max-
imize the controller’s intrinsic reward, which is propor-
tional to the model’s prediction errors [67], [71].

B) 1991: Traditional RL [35], [114] is used to maximize in-
trinsic reward created in proportion to expected improve-
ments (first derivatives) of prediction error [69], [70].

C) 1995: Traditional RL maximizes intrinsic reward created
in proportion to relative entropies between the learning
agent’s priors and posteriors [111].

D) 1997–2002: Nontraditional RL [103] (without restrictive
Markovian assumptions) learns probabilistic, hierarchical
programs and skills through zero-sum intrinsic reward
games of two players (called the right brain and the left
brain), each trying to out-predict or surprise the other,
taking into account the computational costs of learning,
and learning when to learn and what to learn [77], [79].

B)–D) (1991–2002) also showed experimentally how intrinsic
rewards can substantially accelerate goal-directed learning and
external reward intake.

A. Outline

Section II will summarize the formal theory of creativity
in a nutshell, laying out a mathematically rigorous but not
necessarily practical framework. Section III will then discuss
previous concrete implementations of the nonoptimal, but
currently still more practical variants A)–D) mentioned above,
and their limitations. Section IV will discuss relations to work
by others, explain how the theory extends the traditional field
of active learning, and how it formalizes and extends previous
informal ideas of developmental psychology and aesthetics
theory. Section V will offer a natural typology of computational
intrinsic motivation, and Section VI will briefly explain how
the theory is indeed sufficiently general to explain all kinds
of creative behavior, from the discovery of new physical laws
through active design of experiments, to the invention of jokes
and music and works of art.

II. FORMAL DETAILS OF THE THEORY OF CREATIVITY

The theory formulates essential principles behind numerous
intrinsically motivated creative behaviors of biological or
artificial agents embedded in a possibly unknown environment.
The corresponding algorithmic framework uses general RL
(Section II-G, [32], and [98]) to maximize not only external
reward for achieving goals such as the satisfaction of hunger
and thirst, but also intrinsic reward for learning a better world
model, by creating/discovering/learning novel patterns in the
growing history of actions and sensory inputs, where the theory
formally specifies what exactly is a pattern, what exactly is
novel or surprising, and what exactly it means to incrementally
learn novel skills leading to more novel patterns.

A. The Agent and its Improving Model

Let us consider a learning agent whose single life consists of
discrete cycles or time steps . Its complete life-
time may or may not be known in advance. In what follows,
the value of any time-varying variable at time (

) will be denoted by , the ordered sequence of values
by , and the (possibly empty) sequence

by . At any given , the agent receives
a real-valued input from the environment and executes a
real-valued action which may affect future inputs. At times

, its goal is to maximize future success or utility

(1)

where the reward is a special real-valued input (vector) at
time , the ordered triple (hence
is the known history up to ), and denotes the con-
ditional expectation operator with respect to some possibly un-
known distribution from a set of possible distributions.
Here, reflects whatever is known about the possibly proba-
bilistic reactions of the environment. As a very general example,

may contain all computable distributions [32], [45], [110].
This essentially includes all environments one could write sci-
entific papers about. There is just one life, no need for predefined
repeatable trials, no restriction to Markovian interfaces between
sensors and environment [72]. Note that traditional Markovian
RL [114] assumes that the world can be modeled as a Markov
decision process (MDP), and that the perceptual system reveals
the current state. In realistic scenarios, however, robots have to
learn to memorize previous relevant inputs in form of appro-
priate internal representations, which motivates the work on RL
in partially observable MDPs or partially observable Markov
decision processes (POMDPs), e.g., [35] and [72]. The utility
function implicitly takes into account the expected remaining
lifespan and thus, the possibility to extend the
lifespan through appropriate actions [83], [98]. Note that mathe-
matical analysis is not simplified by discounting future rewards
like in traditional RL theory [114]—one should avoid such dis-
tortions of real rewards whenever possible.

To maximize , the agent may profit from an adaptive, pre-
dictive model of the consequences of its possible interactions
with the environment. At any time ( ), the model

will depend on the observed history so far, . It may
be viewed as the current explanation or description of ,
and may help to predict future events, including rewards. Let

denote some given model ’s quality or performance
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evaluated on a given history . Natural quality measures will be
discussed in Section II-B.

To encourage the agent to actively create data leading to
easily learnable improvements of [70], [71], [79], [85],
[92], [94], [96], [97], [99], [111], the reward signal
is simply split into two scalar real-valued components:

, where maps pairs of real values
to real values, e.g., . Here, denotes
traditional external reward provided by the environment, such
as negative reward in response to bumping against a wall, or
positive reward in response to reaching some teacher-given goal
state. The formal theory of creativity, however, is especially
interested in , the intrinsic reward, which is provided
whenever the model’s quality improves—for purely creative
agents for all valid .

The current intrinsic reward, creativity reward, curiosity re-
ward, aesthetic reward, or fun of the action selector is
the current surprise or novelty measured by the improvements
of the world model at time .

Formally, the intrinsic reward in response to the model’s
progress (due to some application-dependent model improve-
ment algorithm) between times and is

(2)

where maps pairs of real values to real values. Various alterna-
tive progress measures are possible; most obvious is

. This corresponds to a discrete time version of maximizing
the first derivative of the model’s quality. Note that both the old
and the new model have to be tested on the same data, namely,
the history so far. So progress between times and is de-
fined based on two models of , where the old one
is trained only on and the new one also gets to see

. This is like predicting data of time , then
observing it, then learning something, then becoming a measur-
ably better model .

The above description of the agent’s motivation conceptually
separates the goal (finding or creating data that can be mod-
eled better or faster than before) from the means of achieving
the goal. Let the controller’s RL mechanism figure out how to
translate such rewards into action sequences that allow the given
world model improvement algorithm to find and exploit previ-
ously unknown types of regularities. It is the task of the RL algo-
rithm to trade off long-term versus short-term intrinsic rewards
of this kind, taking into account all costs of action sequences
[70], [71], [79], [85], [92], [94], [96], [97], [99], [111]. The uni-
versal RL methods of Section II-G, as well as recurrent neural
network (RNN)-based RL (Section III-A) and success-story al-
gorithm (SSA)-based RL (Section III-D) can in principle learn
useful internal states containing memories of relevant previous
events; less powerful RL methods (Sections III-B, III-C) cannot.

B. How to Measure Model Quality Under Time Constraints

In theory, should take the entire history of ac-
tions and perceptions into account [85], like the following per-
formance measure

(3)

where is ’s prediction of event from earlier parts
of the history [85].

ignores the danger of overfitting through a that just
stores the entire history without compactly representing its reg-
ularities, if any. The principle of minimum description length
(MDL) [37], [45], [62], [110], [115], [116], however, also takes
into account the description size of , viewing as a compressor
program of the data . This program should be able to
deal with any prefix of the growing history, computing an output
starting with for any time ( ). (A program
that wants to halt after steps can easily be fixed/augmented
by the trivial method that simply stores any raw additional data
coming in after the halt.)

denotes ’s compression performance on
: the number of bits needed to specify both the predictor and

the deviations of the sensory history from its predictions, in the
sense of loss-free compression. The smaller , the more regu-
larity and lawfulness in the observations so far.

For example, suppose uses a small predictor that correctly
predicts many for . This can be used to en-
code compactly. Given the predictor, only the wrongly
predicted plus information about the corresponding time
steps are necessary to reconstruct input history , e.g.,
[73]. Similarly, a predictor that learns a probability distribution
on the possible next events, given previous events, can be
used to efficiently encode observations with high (respectively
low) predicted probability by few (respectively many) bits
(Section III-C; [31], [101]), thus achieving a compressed his-
tory representation.

Alternatively, could also make use of a 3-D world model
or simulation. The corresponding MDL-based quality measure

is the number of bits needed to specify all
polygons and surface textures in the 3-D simulation, plus the
number of bits needed to encode deviations of from
the predictions of the simulation. Improving the 3-D model by
adding or removing polygons may reduce the total number of
bits required.

The ultimate limit for would be ,
a variant of the Kolmogorov complexity of , namely,
the length of the shortest program (for the given hardware) that
computes an output starting with [37], [45], [80], [110].
Here there is no need not worry about the fact that
in general cannot be computed exactly, only approximated from
above (indeed, for most practical predictors the approximation
will be crude). This just means that some patterns will be hard
to detect by the limited predictor of choice, that is, the reward
maximizer will get discouraged from spending too much effort
on creating those patterns.

does not take into account the time
spent by on computing . A runtime-dependent perfor-
mance measure inspired by concepts of optimal universal search
[43], [81], [82], [85], [96], [99] is

(4)

Here, compression by one bit is worth as much as runtime reduc-
tion by a factor of 1/2. From an asymptotic optimality-oriented
point of view this is one of the best ways of trading off storage
and computation time [43], [81], [82].

In practical applications (Section III), the predictor/com-
pressor of the continually growing data typically will have
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to calculate its output online, that is, it will be able to use
only a constant number of computational instructions per
second to predict/compress new data. The goal of the possibly
much slower learning algorithm must then be to improve the
compressor such that it keeps operating online within those
time limits, while compressing/predicting better than before.
The costs of computing and ,
and similar performance measures are linear in , assuming
consumes equal amounts of computation time for each single
prediction. Therefore, online evaluations of learning progress
on the full history so far generally cannot take place as fre-
quently as the continually ongoing online predictions.

At least some of the learning and its progress evaluations
may take place during occasional “sleep” phases [85], [96].
But practical implementations so far have looked only at parts
of the history for efficiency reasons: The systems described in
Sections III-A–III-D [70], [71], [79], [111] used online settings
(one prediction per time step, and constant computational effort
per prediction), nonuniversal adaptive compressors or predic-
tors, and approximative evaluations of learning progress, each
consuming only constant time despite the continual growth of
the history.

C. Feasibility of Loss-Free Compression With Examples

Any set of raw data, such as the history of some observer’s
previous actions and sensations and rewards including sus-
pected noise, exhibits a pattern or regularity if there exists an
algorithm that is significantly shorter than the raw data, but is
able to encode it without loss of information [37], [45], [109],
[110]. Random noise is irregular and arbitrary and incompress-
ible, but random-dot stereograms (e.g., a single foreground
square against a more distant background) are compressible
since parts of the data are just copied from others. Videos are
regular as most single frames are very similar to the previous
one. By encoding only the deviations, movie compression
algorithms can save lots of storage space. Complex-looking
fractal images are regular, as they usually look a lot like their
details, being computable by very short programs that reuse the
same code over and over again for different image parts. The
entire universe is regular and apparently rather benign [74],
[78], [88], [90]: every photon behaves the same way; gravity is
the same on Jupiter and Mars, mountains usually do not move
overnight, but tend to remain where they are, etc.

Many data analysis techniques are natural by-products of
loss-free compression. For example, data set compression is
possible if the data can be separated into clusters of numerous
close neighbors and few outliers. Abstraction is another typical
by-product. For example, if the predictor/compressor uses a
neural net, the latter will create feature hierarchies, higher
layer units typically corresponding to more abstract features,
fine-grained where necessary. Any good compressor will
identify shared regularities among different already existing
internal data structures, to shrink the storage space needed for
the whole. Consciousness may be viewed as a by-product of
this [96], [97], since there is one thing that is involved in all
actions and sensory inputs of the agent, namely, the agent itself.
To efficiently encode the entire data history, it will profit from
creating some sort of internal symbol or code (e.g., a neural ac-
tivity pattern) representing itself. Whenever this representation
is actively used, say, by activating the corresponding neurons

through new incoming sensory inputs or otherwise, the agent
could be called self-aware or conscious [96], [97].

True, any loss-free compression method will require space
that grows without bound over time. But this is not a funda-
mental practical obstacle. Soon storage for 100 years of high
resolution video of will be cheap. If you can store the data, do
not throw it away. The data are holy as it is the only basis of
all that can be known about the world [96], [97]. Attempts at
predicting/compressing the raw data (by finding regularities/ab-
stractions) should take place in a separate, typically smaller part
of the storage.

Even humans may store much of the incoming sensory data.
A human lifetime rarely lasts much longer than sec-
onds. The human brain has roughly neurons, each with
synapses on average. Assuming that only half of the brain’s ca-
pacity is used for storing raw data, and that each synapse can
store at most 6 bits, there is still enough capacity to encode the
lifelong sensory input stream with a rate of at least bits/s,
comparable to the demands of a movie with reasonable resolu-
tion, but possibly at a much higher rate, assuming that human
compressors are much smarter than those of cameras.

D. Optimal Predictors Versus Optimal Compressors

For the theoretically inclined: There is a deep connection be-
tween optimal prediction and optimal compression. Consider
Solomonoff’s theoretically optimal, universal way of predicting
the future [32], [45], [109], [110]. Given an observation se-
quence , the Bayes formula is used to predict the prob-
ability of the next possible . The only assumption is
that there exists a computer program that can take any as
an input and compute its a priori probability according to the

prior. (This assumption is extremely general, essentially in-
cluding all environments one can write scientific papers about,
as mentioned above.) In general this program is unknown, hence
a mixture prior is used instead to predict

(5)

a weighted sum of all distributions , where
the sum of the constant positive weights satisfies .
This is indeed the best one can possibly do, in a very gen-
eral sense [32], [110]. The drawback of the scheme is its in-
computability, since contains infinitely many distributions.
One may increase the theoretical power of the scheme by aug-
menting by certain nonenumerable but limit-computable dis-
tributions [80], or restrict it such that it becomes computable,
e.g., by assuming the world is computed by some unknown,
but deterministic computer program sampled from the Speed
Prior [81], which assigns low probability to environments that
are hard to compute by any method.

Remarkably, under very general conditions both universal in-
ductive inference [45], [109], [110] and the compression-ori-
ented MDL approach [37], [45], [62], [115], [116] converge to
the correct predictions in the limit [56]. It should be mentioned,
however, that the former converges faster.

As far as discoveries of regularity and compressibility are
concerned, it does not make an essential difference whether we
force the system to predict the entire history of inputs and ac-
tions, or just parts thereof, or whether we allow it to focus on
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internal computable abstractions thereof, like the system dis-
cussed in Section III-D. Partial compressibility of selected data
covered by the system’s limited focus of attention implies com-
pressibility of the whole, even if most of it is random noise.

E. Discrete Asynchronous Framework for Maximizing
Creativity Reward

Let denote the agent’s current compressor program at
time , its current controller, and DO.

Controller: At any time ( ) do
1) Let use (parts of) history to select and execute

.
2) Observe .
3) Check if there is nonzero creativity reward pro-

vided by the asynchronously running improvement algo-
rithm of the compressor/predictor (see below). If not, set

.
4) Let the controller’s RL algorithm use including

(and possibly also the latest available com-
pressed version of the observed data—see below) to ob-
tain a new controller , in line with objective (1).
Note that some actions may actually trigger learning al-
gorithms that compute changes of the compressor and the
controller’s policy, such as in Section III-D [79]. That is,
the computational cost of learning can be taken into ac-
count by the reward optimizer, and the decision when and
what to learn can be learned as well [79].

Compressor/Predictor: Set equal to the initial data
compressor/predictor. Starting at time 1, repeat forever until in-
terrupted by death at time .

1) Set ; get current time step and set
.

2) Evaluate on , to obtain performance measure
. This may take many time steps.

3) Let some (possibly application-dependent) compressor im-
provement algorithm (such as a learning algorithm for an
adaptive neural network predictor, possibly triggered by a
controller action) use to obtain a hopefully better com-
pressor (such as a neural net with the same size and
the same constant computational effort per prediction, but
with improved predictive power and therefore improved
compression performance [101]). Although this may take
many time steps (and could be partially performed offline
during “sleep” [85], [96]), may not be optimal, due
to limitations of the learning algorithm, e.g., local maxima.
(To inform the controller about beginnings of compressor
evaluation processes etc., augment its input by unique rep-
resentations of such events.)

4) Evaluate on , to obtain . This may
take many time steps.

5) Get current time step and generate creativity reward

(6)

for example, . [Here, the replaces the
of (2)].

This asynchronuous scheme [85], [92], [96] may cause long
temporal delays between controller actions and corresponding
creativity rewards, and may impose a heavy burden on the con-
troller’s RL algorithm whose task is to assign credit to past ac-
tions. Nevertheless, Section II-G will discuss RL algorithms for

this purpose which are theoretically optimal in various senses
[85], [92], [96], [97].

F. Continuous Time Formulation

In continuous time, let denote the state of subjective ob-
server at time . The subjective simplicity or compressibility
or regularity or beauty of a sequence of observa-
tions and/or actions is the negative number of bits required
to encode , given ’s current limited prior knowledge and
limited compression/prediction method. The observer-depen-
dent and time-dependent subjective interestingness or surprise
or aesthetic value is

(7)

the first derivative of subjective simplicity: as improves its
compression algorithm, formerly apparently random data parts
become subjectively more regular and beautiful, requiring fewer
and fewer bits for their encoding. Given its limited compression
improver, at time the creativity goal of is to select ac-
tions that will maximize

(8)

where is an expectation operator [compare (1)]; is death;
is the momentary fun or intrinsic

reward for compression progress through discovery of a novel
pattern somewhere in (the history of actions and sen-
sations until ); is the current external reward if there is
any; is the function weighing external versus intrinsic rewards,
e.g., [99].

Note that there are at least two ways of having fun: execute
a learning algorithm that improves the compression of the al-
ready known data (in online settings: without increasing compu-
tational needs of the compressor/predictor), or execute actions
that generate more data, then learn to compress/understand the
new data better.

G. Optimal Creativity, Given the Predictor’s Limitations

The previous sections discussed how to measure compressor/
predictor improvements and how to translate them into intrinsic
reward signals, but did not say much about the RL method used
to maximize expected future reward. The chosen predictor/com-
pressor class typically will have certain computational limita-
tions. In the absence of any external rewards, one may define
optimal pure curiosity behavior relative to these limitations: At
discrete time step this behavior would select the action that
maximizes

(9)

Since the true, world-governing probability distribution is un-
known, the resulting task of the controller’s RL algorithm may
be a formidable one. As the system is revisiting previously in-
compressible parts of the environment, some of those will tend
to become more subjectively compressible, and while the corre-
sponding curiosity rewards may first go up, they will eventually
decrease once the new regularity has been learned. A good RL
algorithm must somehow detect and then predict this decrease,
and act accordingly. Traditional RL algorithms [35], however,
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do not provide any theoretical guarantee of optimality for such
situations.

Is there a best possible, universal RL algorithm that comes
as close as any other computable one to maximizing objective
(9)? Indeed, there is. Its drawback, however, is that it is not
computable in finite time. Nevertheless, it serves as a reference
point for defining what is achievable at best, that is, what is
optimal creativity. Readers who are not interested in the corre-
sponding theory may skip the remainder of this section and jump
immediately to the practical implementations of Section III.
For the others, the next paragraphs will outline how the uni-
versal approaches work. Optimal inductive inference as defined
in Section II-D can be extended by formally including the ef-
fects of executed actions, to define an optimal action selector
maximizing future expected reward. At any time , Hutter’s the-
oretically optimal (yet uncomputable) RL algorithm AIXI [32]
uses such an extended version of Solomonoff’s scheme to select
those action sequences that promise maximal future reward up
to some horizon (e.g., twice the lifetime so far), given the cur-
rent data . That is, in cycle , AIXI selects as its next
action the first action of an action sequence maximizing -pre-
dicted reward up to the given horizon, appropriately general-
izing (5). AIXI uses observations optimally [32]: the Bayes-op-
timal policy based on the mixture is self-optimizing in the
sense that its average utility value converges asymptotically for
all to the optimal value achieved by the Bayes-optimal
policy which knows in advance. The necessary and suffi-
cient condition is that admits self-optimizing policies. The
policy is also Pareto-optimal in the sense that there is no other
policy yielding higher or equal value in all environments
and a strictly higher value in at least one [32].

AIXI as above needs unlimited computation time. Its com-
putable variant AIXI( ) [32] has asymptotically optimal run-
time but may suffer from a huge constant slowdown. To take
the consumed computation time into account in a general, op-
timal way, one may use the recent Gödel machine s [83], [84],
[86], [98] instead. They represent the first class of mathemat-
ically rigorous, fully self-referential, self-improving, general,
optimally efficient problem solvers, and are applicable to the
problem embodied by objective (9). The initial software of
such a Gödel machine contains an initial problem solver, e.g.,
some typically suboptimal RL method [35]. It also contains an
asymptotically optimal initial proof searcher, typically based on
an online variant of Levin’s Universal Search [43], which is
used to run and test proof techniques. Proof techniques are pro-
grams written in a universal language implemented on the Gödel
machine within . They are in principle able to compute proofs
concerning the system’s own future performance, based on an
axiomatic system encoded in . describes the formal utility
function, in the present case (9), the hardware properties, axioms
of arithmetic and probability theory and data manipulation etc,
and itself, which is possible without introducing circularity
[98]. Inspired by Kurt Gödel’s celebrated self-referential for-
mulas (1931), the Gödel machine rewrites any part of its own
code (including the proof searcher) through a self-generated ex-
ecutable program as soon as its Universal Search variant has
found a proof that the rewrite is useful according to objective (9).
According to the Global Optimality Theorem [83], [84], [86],
[98], such a self-rewrite is globally optimal—no local maxima
possible—since the self-referential code first had to prove that it
is not useful to continue the search for alternative self-rewrites.

If there is no provably useful optimal way of rewriting at all,
then humans will not find one either. But if there is one, then
itself can find and exploit it. Unlike the previous nonself-refer-
ential methods based on hardwired proof searchers [32], Gödel
machines not only boast an optimal order of complexity, but can
optimally reduce (through self-changes) any slowdowns hidden
by the -notation, provided the utility of such speed-ups is
provable [87], [89], [91].

1) Limitations of the “Universal” Approaches: The methods
above are optimal in various ways, some of them not only com-
putable, but even optimally time-efficient in the asymptotic
limit. Nevertheless, they leave open an essential remaining
practical question: If the agent can execute only a fixed number
of computational instructions per unit time interval (say, 10
trillion elementary operations per second), what is the best
way of using them to get as close as possible to the theoretical
limits of universal AIs? Especially when external rewards are
very rare, as is the case in many realistic environments? As
long as there is no good answer this question, one has to resort
to approximations and heuristics when it comes to practical
applications. The next section reviews what has been achieved
so far along these lines, discussing our implementations of
IM-based agents from the 1990s; quite a few aspects of these
concrete systems are still of relevance today.

III. PREVIOUS IMPLEMENTATIONS OF INTRINSICALLY

MOTIVATED AGENTS: PROS AND CONS

The above mathematically rigorous framework for optimal
curiosity and creativity (2006–2010) was established after first
approximations thereof were implemented (1991, 1995, and
1997–2002). Sections III-A–III-D will discuss advantages and
limitations of online learning systems described in the original
publications on artificial intrinsic motivation [70], [71], [77],
[111], which already can be viewed as example implementa-
tions of a compression progress drive or prediction progress
drive that encourages the discovery or creation of surprising
patterns. Some elements of this earlier work are believed to
remain essential for creating systems that are both theoretically
sound and practical.

A. Intrinsic Reward for Prediction Error (1990)

Early work [67], [71] describes a predictor based on an
adaptive world model implemented as a RNN (in principle a
rather powerful computational device, even by today’s machine
learning standards), predicting sensory inputs including reward
signals from the entire previous history of actions and inputs. A
second RNN (the controller) uses the world model and gradient
descent to search for a control policy or program maximizing
the sum of future expected rewards according to the model.
Some of the rewards are intrinsic curiosity rewards, which are
proportional to the predictor’s errors. So the same mechanism
that is used for normal goal-directed learning is used for imple-
menting creativity and curiosity and boredom—there is no need
for a separate system aiming at improving the world model.

This first description of a general, curious, world-exploring
RL agent implicitly and optimistically assumes that the pre-
dictor will indeed improve by motivating the controller to go
to places where the prediction error is high. One drawback of
the prediction error-based approach is that it encourages the
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controller to focus its search on those parts of the environment
where there will always be high prediction errors due to noise
or randomness, or due to computational limitations of the pre-
dictor. This may prevent learning progress instead of promoting
it, and motivates the next subsection, whose basic ideas could
be combined with the RL method of [67], [71], but this has not
been done yet.

Another potential drawback is the nature of the particular
RNN-based RL method. Although the latter has the potential to
learn internal memories of previous relevant sensory inputs, and
thus is not limited to Markovian interfaces between agent and
environment [72], like all gradient-based methods it may suffer
from local minima, as well as from potential problems of online
learning, since gradients for the recurrent RL controller are com-
puted with the help of the dynamically changing, online learning
recurrent predictive world model. Apart from this limitation,
the RNN of back then were less powerful than today’s long
short-term memory (LSTM) RNN [28], [100], which yielded
state of the art performance in challenging applications such
as connected handwriting recognition [24], and should be used
instead.

B. Intrinsic Reward for World Model Improvements (1991)

Follow-up work [69], [70] points out that one should not focus
on the errors of the predictor, but on its improvements. The basic
principle can be formulated as follows: Learn a mapping from
actions (or action sequences) to the expectation of future per-
formance improvement of the world model. Encourage action
sequences where this expectation is high. This is essentially the
central principle of Section II-A.

Two implementations were described: The first models the
reliability of the predictions of the adaptive predictor by a sep-
arate, so-called confidence network. At any given time, rein-
forcement for the model-building control system is created in
proportion to the current change or first derivative of the relia-
bility of the adaptive predictor. The “curiosity goal” of the con-
trol system (it might have additional “prewired” external goals)
is to maximize the expectation of the cumulative sum of future
positive or negative changes in prediction reliability.

The second implementation replaces the confidence network
by a network which at every time step is trained to predict the
current change of the model network’s output due to the model’s
learning algorithm. That is, will learn to approximate the ex-
pected first derivative of the model’s prediction error, given the
inputs. The absolute value of ’s output is taken as the intrinsic
reward, thus rewarding learning progress.

While the neural predictor of the implementations is compu-
tationally less powerful than the recurrent one of Section III-A
[71], there is a novelty, namely, an explicit (neural) adaptive
model of the predictor’s improvements, measured in terms of
mean squared error (MSE). This model essentially learns to
predict the predictor’s changes (the prediction derivatives). For
example, although noise is unpredictable and leads to wildly
varying target signals for the predictor, in the long run these sig-
nals do not change the adaptive predictor’s parameters much,
and the predictor of predictor changes is able to learn this. A
variant of the standard RL algorithm Q-learning [114] is fed

with curiosity reward signals proportional to the expected long-
term predictor changes; thus the agent is intrinsically motivated
to make novel patterns within the given limitations. In fact, one
may say that the system tries to maximize an approximation
of the (discounted) sum of the expected first derivatives of the
data’s subjective predictability, thus also maximizing an approx-
imation of the (discounted) sum of the expected changes of the
data’s subjective compressibility (the surprise or novelty).

Both variants avoid the theoretically desirable but impractical
regular evaluations of the predictor on the entire history so far, as
discussed in Section II-B. Instead they monitor the recent effects
of learning on the learning mechanism (a neural network in this
case). Experiments illustrate the advantages of this type of di-
rected, curious exploration over traditional random exploration.

One RL method-specific drawback is given by the limita-
tions of standard Markovian RL [72], which assumes the current
input tells the agent everything it needs to know, and does not
work well in realistic scenarios where it has to learn to memo-
rize previous relevant inputs to select optimal actions. For gen-
eral robots scenarios more powerful RL methods are necessary,
such as those mentioned in Section III-A and other parts of the
present paper.

Any RL algorithm has to deal with the fact that intrinsic re-
wards vanish where the predictor becomes perfect. In the simple
toy world [69], [70] this is not a problem, since the agent con-
tinually updates its Q-values based on recent experience. But
since the learning rate is chosen heuristically (as usual in RL
applications), this approach lacks the theoretical justification of
the general framework of Section II.

For probabilistic worlds there are prediction error measures
that are more principled than MSE. This motivates research de-
scribed next.

C. Intrinsic Reward Depending on the Relative Entropy
Between Agent’s Prior and Posterior (1995)

Follow-up work (1995) describes an information theory-ori-
ented variant of the approach in nondeterministic worlds [111].
Here, the curiosity reward is proportional to the predictor’s sur-
prise/information gain [15], measured as the Kullback–Leibler
distance [39] between the learning predictor’s subjective proba-
bility distributions on possible next events before and after new
observations—the relative entropy between its prior and pos-
terior, essentially another measure of learning progress. Again,
experiments show the advantages of this type of curious explo-
ration over conventional random exploration.

Since this implementation also uses a traditional RL method
[114] instead of a more general one, the discussion of RL
method-specific drawbacks in previous subsections remains
valid here as well.

Note the connection to Section II: the concepts of Huffman
coding [31] and relative entropy between prior and posterior
immediately translate into a measure of learning progress re-
flecting the number of saved bits—a measure of improved data
compression.

Note also, however, a drawback of this naive probabilistic
approach to data compression: it is unable to discover more
general types of algorithmic compressibility [45] as discussed
in Section II. For example, the decimal expansion of looks
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random and incompressible but is not: there is a very short al-
gorithm computing all of , yet any finite sequence of digits
will occur in ’s expansion as frequently as expected if were
truly random, that is, no simple statistical learner will outper-
form random guessing at predicting the next digit from a limited
time window of previous digits. More general program search
techniques are necessary to extract the underlying algorithmic
regularity. This motivates the universal approach discussed in
Section II, but also the research on a more general practical im-
plementation described next.

D. Learning Programs and Skills Through Zero Sum Intrinsic
Reward Games (1997–2002)

The universal variants of the principle of novel pattern
creation of Section II focused on theoretically optimal ways of
measuring learning progress and fun, as well as mathematically
optimal ways of selecting action sequences or experiments
within the framework of artificial creativity [85], [92], [96],
[97]. These variants take the entire lifelong history of actions
and observations into account, and make minimal assumptions
about the nature of the environment, such as: the (unknown)
probabilities of possible event histories are at least enumerable.
The resulting systems exhibit “mathematically optimal cu-
riosity and creativity” and provide a yardstick against which all
less universal intrinsically motivated systems can be measured.
However, most of them ignore important issues of time con-
straints in online settings. For example, in practical applications
one cannot frequently measure predictor improvements by
testing predictor performance on the entire history so far. The
costs of learning and testing have to be taken into account. This
insight drove the research discussed next.

To address the computational costs of learning, and the costs
of measuring learning progress, computationally powerful con-
trollers and predictors [77], [79] were implemented as two very
general, coevolving, symmetric, opposing modules called the
right brain and the left brain, both able to construct self-mod-
ifying probabilistic programs written in a universal program-
ming language (1997–2002). An internal storage for temporary
computational results of the programs is viewed as part of the
changing environment. Each module can suggest experiments
in the form of probabilistic algorithms to be executed, and make
predictions about their effects, betting intrinsic reward on their
outcomes. The opposing module may accept such a bet in a
zero-sum game by making a contrary prediction, or reject it. In
case of acceptance, the winner is determined by executing the
algorithmic experiment and checking its outcome; the intrinsic
reward eventually gets transferred from the surprised loser to the
confirmed winner. Both modules try to maximize their intrinsic
reward using a rather general RL algorithm (the SSA [103])
designed for complex stochastic policies—alternative RL algo-
rithms could be plugged in as well. Thus both modules are mo-
tivated to discover truly novel algorithmic patterns, where the
dynamically changing subjective baseline for novelty is given
by what the opponent already knows about the (external or in-
ternal) world’s repetitive patterns. Since the execution of any
computational or physical action costs something (as it will re-
duce the cumulative reward per time ratio), both modules are
motivated to focus on those parts of the dynamic world that

currently make learning progress easy, to minimize the costs
of identifying promising experiments and executing them. The
system learns a partly hierarchical structure of more and more
complex skills or programs necessary to solve the growing se-
quence of self-generated tasks, reusing previously acquired sim-
pler skills where this is beneficial. Experimental studies [79]
exhibit several sequential stages of emergent developmental se-
quences, with and without external reward.

Many ingredients of this system may be just what one needs
to build practical yet sound curious and creative systems that
never stop expanding their knowledge about what can be done in
a given world, although future reimplementations should prob-
ably use alternative reward optimizers that are more general and
powerful than SSA [103], such as variants of the optimal ordered
problem solver [82].

E. Improving Real Reward Intake (1991–2010)

The references above demonstrated in several experiments
that the presence of intrinsic reward or curiosity reward can ac-
tually speed up the collection of external reward.

However, the previous papers also pointed out that it is always
possible to design environments where the bias towards regu-
larities introduced through artificial curiosity can lead to worse
performance—curiosity can indeed kill the cat.

IV. RELATION TO WORK BY OTHERS

A. Beyond Traditional Information Theory

How does the notion of surprise in the theory of creativity
differ from the notion of surprise in traditional information
theory? Consider two extreme examples of uninteresting, un-
surprising, boring data: A vision-based agent that always stays
in the dark will experience an extremely compressible, soon to-
tally predictable history of unchanging visual inputs. In front of
a screen full of white noise conveying a lot of information and
“novelty” and “surprise” in the traditional sense of Boltzmann
and Shannon [106], however, it will experience highly unpre-
dictable and fundamentally incompressible data. As pointed
out since the early 1990s, according to the theory of creativity,
in both cases the data is not surprising, but boring [79], [92]
as it does not allow for further compression progress—there is
no novel pattern. Therefore the traditional notion of surprise is
rejected. Neither the arbitrary nor the fully predictable is truly
novel or surprising. Only data with still unknown algorithmic
regularities are [70], [71], [79], [85], [92], [96], [97], [111], for
example, a previously unknown song containing a subjectively
novel harmonic pattern. That’s why one really has to measure
the progress of the learning predictor to compute the degree of
surprise. (Compare Section IV-E2 for a related discussion on
what’s aesthetically pleasing.)

B. Beyond Traditional Active Learning

How does the theory generalize the traditional field of active
learning, e.g., [15]? To optimize a function may require expen-
sive data evaluations. Original active learning is limited to su-
pervised classification tasks, e.g., [2], [12], [15], [33], [47], [55],
and [105], asking which data points to evaluate next to maxi-
mize information gain, typically (but not necessarily) using one
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step look-ahead, assuming all data point evaluations are equally
costly. The objective (to improve classification error) is given
externally; there is no explicit intrinsic reward in the sense dis-
cussed in the present paper. The more general framework of cre-
ativity theory also takes the following formally into account.

1) Reinforcement learning agents embedded in an environ-
ment where there may be arbitrary delays between exper-
imental actions and corresponding information gains, e.g.,
[70] and [111].

2) The highly environment-dependent costs of obtaining or
creating, not just individual data points, but data sequences
of a priori unknown size.

3) Arbitrary algorithmic or statistical dependencies in se-
quences of actions and sensory inputs, e.g., [79] and [85].

4) The computational cost of learning new skills, e.g., [79].
While others recently have started to study active RL as well,
e.g., Brafman and Tennenholtz (R-MAX Algorithm [10]),
Li et al.(KWIK-framework [44]), and Strehl et al. [112], our
more general systems measure and maximize algorithmic [37],
[45], [80], [110] novelty (learnable, but previously unknown
compressibility or predictability) of self-generated spatio–tem-
poral patterns in the history of data and actions [85], [92], [96],
[97].

C. Relation to Hand-Crafted Interestingness

Lenat’s discovery system EURISKO [41], [42] has a prepro-
grammed interestingness measure which was observed to be-
come more an more inappropriate (“stagnation” problem) as
EURISKO created new concepts from old ones with the help of
human intervention. Unsupervised systems based on creativity
theory, however, continually redefine what’s interesting based
on what’s currently easy to learn, in addition to what’s already
known.

D. Related Implementations Since 2005

In 2005, Baldi and Itti demonstrated experimentally that
our method of 1995 (Section III-C, [111]) explains certain
patterns of human visual attention better than certain previous
approaches [34]. Their web site http://ilab.usc.edu/surprise/
(retrieved on March 17, 2010) points out that the approaches of
Section III-C [111] and [34] are formally identical.

Klyubin et al.’s seemingly related approach to intrinsic mo-
tivation [36] of 2005 tries to maximize empowerment by maxi-
mizing the information an agent could potentially “inject” into
its future sensory inputs via a sequence of actions. Unlike our
1995 method (Section III-C, [111]), this approach does not max-
imize information gain; in fact, the authors assume a good world
model is already given, or at least learned before empowerment
is measured (Polani, personal communication, 2010). For ex-
ample, using one step look-ahead in a deterministic and well-
modeled world, their agent will prefer states where the exe-
cution of alternative actions will make a lot of difference in
the immediate sensory inputs, according to the already reliable
world model. Generally speaking, however, it might prefer ac-
tions leading to high-entropy, random inputs over others—com-
pare Section III-A.

In 2005, Singh et al. [107] also used intrinsic rewards propor-
tional to prediction errors as in Section III-A [71], employing a
different type of reward maximizer based on the option frame-
work which can be used to specify subgoals. As pointed out
earlier, it is useful to make the conceptual distinction between
the objective and the means of reaching the objective: The latter
is shared by the approaches of [107] and of Section III-A, the
reward maximizer is different.

In related work, Schembri et al. address the problem of
learning to compose skills, assuming different skills are learned
by different RL modules. They speed up skill learning by
rewarding a top level, module-selecting RL agent in propor-
tion to the TD error of the selected module [63]—compare
Section III-B.

Other researchers in the nascent field of developmental
robotics [9], [20], [26], [27], [38], [51], [52], [57], [64], [113]
and intrinsic reward also took up the basic idea, for example,
Oudeyer et al. [53]. They call their method “intelligent adaptive
curiosity” (IAC), reminiscent of our original 1991 paper on
“adaptive curiosity” (AC) [69] (Section III-B). Like AC, IAC
motivates the agent to go where it can expect learning progress
with a high derivative. Oudeyer et al. write that IAC is “intel-
ligent” because it “keeps, as a side effect, the robot away both
from situations which are too predictable and from situations
which are too unpredictable.” That is what the original AC
does (Section III-B). However, IAC is less general than AC in
the following sense: IAC is restricted to one-step look-ahead,
and does not allow for delayed intrinsic rewards. That is, even a
small short-term intrinsic reward will be more attractive to IAC
than many huge long-term rewards. Nonetheless, an interesting
aspect of IAC’s greedy reward maximizer, is that it splits the
state space into regions, reminiscent of algorithms by Doya
[14] and Moore [49]; this might make learning more robust in
certain situations.

Oudeyer et al.’s Section III-A Group 1 on “Error Max-
imization” [53] covers some of the topics discussed in the
first paper on this subject: [71] (our Section III-A). Their
Section III-B Group 2 on “Progress Maximization” addresses
issues discussed in the first papers on this subject: [69], [70],
[111] (our Section III-B and Section III-C). Referring to [70]
in their Section III-C Group 3 on “Similarity-Based Progress
Maximization,” Oudeyer et al. [53] write:

“Schmidhuber...provided initial implementations of ar-
tificial curiosity, but [was] not concerned with the emer-
gent development sequence and with the increase of the
complexity of their machines...They were only concerned
in how far artificial curiosity can speed up the acquisition
of knowledge.”

However, emergent development sequences with and without
external rewards (and several sequential stages) were studied in
follow-up papers (1997–2002) [77], [79] (Section III-D) con-
taining action frequency plots similar to those of Oudeyer et al.
(2007). These papers also address many other issues such as
continuous states (within the limits of floating point precision),
whose importance is emphasized by Oudeyer et al., who also
write:
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“Another limit of this work resides within the particular
formula that is used to evaluate the learning progress asso-
ciated with a candidate situation, which consists of making
the difference between the error in the anticipation of this
situation before it has been experienced and the error in
the anticipation of exactly the same situation after it has
been experienced. On the one hand, this can only work for
a learning machine with a low learning rate, as pointed out
by the author, and will not work with, for example, one-shot
learning of memory-based methods. On the other hand,
considering the state of the learning machine just before
and just after one single experience can possibly be sensi-
tive to stochastic fluctuations.”

However, the 1991 AC system of Section III-B is in fact pre-
cisely designed to deal with stochastic fluctuations: in states
where the next input is random and unpredictable, the learning
predictor’s targets will fluctuate stochastically, and the system
will notice this, as there is no measurable learning progress (just
small predictor changes that cancel each other). And the general
2006 systems [85] (Section II) do not have any problems of the
criticized type as long as the predictor’s performance is always
measured on the entire history so far. Oudeyer et al. [53] also
write:

”The question of whether hierarchical structures can
simply self-organize without being explicitly programmed
remains open,”

apparently being unaware of previous work on hierarchical RL
systems that can discover their own subgoals [1], [60], [61],
[79], [102], [118].

Friston et al. [19] (2010) also propose an approach which, in
many ways, seems similar to ours, based on free energy mini-
mization and predictive coding. Predictive coding is a special
case of compression, e.g., [101], and free energy is another
approximative measure of algorithmic compressibility/algo-
rithmic information [45]; the latter concept is more general
though. As Friston et al. write: “Under simplifying assumptions
free energy is just the amount of prediction error”, like in the
1991 paper [71] discussed in Section III-A. Under slightly less
simplifying assumptions it is the Kullback–Leibler divergence
between probabilistic world model and probabilistic world,
like in the 1995 paper [111] (which looks at the learning model
before and after new observations; see Section III-C). Despite
these similarities, however, what Friston et al. do is to select
actions that minimize free energy. In other words, their agents
like to visit highly predictable states. As the authors write:

“Perception tries to suppress prediction error by ad-
justing expectations to furnish better predictions of signals,
while action tries to fulfil these predictions by changing
those signals...In summary, under active inference, percep-
tion tries to explain away prediction errors by changing
predictions, while action tries to explain them away by
changing the signals being predicted.”

Hence, although Friston et al.’s approach shares buzzwords with
the methods of Sections III-A–III-C, (active data selection, re-
inforcement learning, relative entropy, Kullback–Leibler diver-
gence), they do not describe a system intrinsically motivated to
learn new, previously unknown things; instead their agents re-
ally want to stabilize and make everything predictable. Friston
et al. are well aware of potential objections: “At this point, most
(astute) people say: but that means I should retire to a dark room
and cover my ears.” This pretty much sums up the expected crit-
icism. In contrast, the theory of creativity has no problem what-
soever with dark rooms—the latter get boring as soon as they are
predictable; then there is no learning progress no more, that is,
the first derivative of predictability/compressibility is zero, that
is, the intrinsic reward is zero, that is, the reward-maximizing
agent is motivated to leave the room to find or make additional
rewarding, nonrandom, learnable, novel patterns.

Recent related work in the field of evolutionary computation
aims at increasing diversity within populations of individuals
[21], [23], [40]. This can be done by measuring the “novelty”
of their behaviors [21], [23] using compression distance [11],
based on the idea that compressing the concatenation of similar
behaviors is cheaper than compressing them separately.

E. Previous, Less Formal Work in Aesthetics Theory and
Psychology

Two millennia ago, Cicero already called curiosity a “pas-
sion for learning.” In the recent millennium’s final century, art
theorists and developmental psychologists extended this view.
In its final decade, the concept eventually became sufficiently
formal to permit the computer implementations discussed in
Section III.

1) Developmental Psychology: In the 1950s Berlyne and
other psychologists revisited the idea of curiosity as the moti-
vation for exploratory behavior [5], [6], emphasizing the im-
portance of novelty [5] and nonhomeostatic drives [25]. Piaget
[54] explained explorative learning behavior of children through
his concepts of assimilation (new inputs are embedded in old
schemas—this may be viewed as a type of compression) and
accommodation (adapting an old schema to a new input—this
may be viewed as a type of compression improvement). All
those ideas were informal, without providing details necessary
to permit the construction of artificially curious agents.

2) Aesthetics Theory: The closely related field of aesthetics
theory [4], [7], [16], [18], [48], [50] emerged even earlier in the
1930s. Why are some objects, such as works of art, more inter-
esting or aesthetically rewarding than others? Why are humans
somehow intrinsically motivated to observe them, even when
they seem totally unrelated to solving typical problems such as
hunger, and even when the action of observation requires a se-
rious effort, such as spending hours to get to the museum? Some
of the previous attempts at explaining aesthetic experience in
the context of information theory [4], [7], [16], [18], [48], [50]
tried to quantify the intrinsic aesthetic reward through the idea
of an “ideal” ratio between expected and unexpected informa-
tion conveyed by some aesthetic object (its “order” versus its
“complexity”). For example, using certain measures based on
information theory [106], Bense [4] argued for an ideal ratio
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of . Generally speaking, however, these approaches
also were not detailed and formal enough to construct artificial,
intrinsically motivated, creative agents.

The theory of fun and creativity does not have to postulate
an objective ideal ratio of this kind. Instead, and unlike some
of the previous works that already emphasized the significance
of the subjective observer [16]–[18], its dynamic formal mea-
sure of interestingness reflects the change in the number of bits
required to encode an object, and explicitly takes into account
the subjective observer’s prior knowledge, as well as its lim-
ited compression improvement algorithm. Hence, the value of
an aesthetic experience is not defined by the observed object per
se, but by the algorithmic compression progress (or prediction
progress) of the subjective, learning observer.

Why did not early pioneers of aesthetic information theory
put forward similar views? Perhaps because back then the fields
of algorithmic information theory and adaptive compression
through machine learning were still in their infancy?

V. SIMPLE TYPOLOGY OF INTRINSIC MOTIVATION

After pointing out problems of a previous typology [52], this
section will provide a natural one without those problems, ad-
dressing current confusion as to what exactly should be called
intrinsic reward, clarifying that this concept is orthogonal to:
1) secondary reward in RL economies; 2); internal reward for
speeding up RL; 3) internal rewards for subgoals in hierarchical
RL; and 4) evolution of reward functions, since all of the above
are driven by external reward.

A. Problems With a Previous Typology

A recently published classification of computational intrinsic
motivation [52] mentions a fraction of the relevant literature
since 1990, and classifies it in a way that may introduce unnec-
essary complexity, hiding the fact that the basic principles of in-
trinsic motivation are general and simple. The proposed classes
of [52] are: 1) knowledge-based models of intrinsic motivation;
1a) information theoretic and distributional models; 1b) predic-
tive models; 1c) learning progress; 2) competence-based models
of intrinsic motivation; 2a) maximizing incompetence; 2b) max-
imizing competence; 3) morphological models of intrinsic moti-
vation; 3a) synchronicity motivation; and 3b) stability and vari-
ance motivation.

Closer inspection reveals that 1a) is a special case of 1b) (the
probabilistic predictors/models of information theory are spe-
cial types of predictors), and many instances of 1a) (such as
maximizing information gain) are simultaneously special cases
of 1c) (learning progress). So it does not seem to make sense to
have 1a), 1b), and 1c) on the same level. It should be mentioned,
however, that the authors originally intended to present at least
1c) as a special case of 1b)—misleading section labels were er-
roneously inserted by the editors (Oudeyer, personal communi-
cation, 2010).

In their section on “morphological models,” the authors seem
to make again a conceptual distinction between statistical/in-
formation-theoretic predictors and other predictors of the ear-
lier section “knowledge-based models.” Statistical knowledge,
however, predicts probability distributions on possible events,
instead of single, deterministic events, which are a special case.

Likewise, synchronicity and stability [3a), 3b)] are special cases
of predictability (and therefore compressibility). For example,
given two synchronous event streams, one can trivially predict
the timing of the first from the timing of the second.

The authors of [52] originally intended to present 2a) and 2b)
as examples of 2), not as subcategories (Oudeyer, personal com-
munication, 2010). Nevertheless, there is no obvious essential
difference between 2) and 1), as most instances of 2) and 1) are
again special cases of models that try to improve prediction mis-
matches (or, more generally, compressibility). To see this, note
that a general predictor or compressor will try to predict/com-
press all accessible data including sensory inputs, reinforcement
signals, executed action sequences, e.g., Section II [85]. To test
behavioral competence, one must somehow compare predicted
and actual outcome of some action sequence (e.g., execute robot
behavior – does the final state match a predicted subgoal rep-
resentation?). To test knowledge, one must do the same (e.g.,
move eyes here – do the properties of the resulting sensory input
match the prediction?). Here is a quote from [52]: “A second
major computational approach to intrinsic motivation is based
on measures of competence that an agent has for achieving
self-determined results or goals. Interestingly, this approach has
not yet been studied in the computational literature.” However,
this is precisely what was done in several implementations of the
1990s discussed in Sections III-B–III-D [70], [77], [79], [111].
These systems had goals that included self-determined goals,
namely, to execute action sequences yielding data that allowed
their predictive models to improve; their RL methods simply
measured competence by the amount of intrinsic reward they
obtained. In particular, the system of Section III-D ([77], [79])
could design general algorithmic experiments (programs) in-
cluding all kinds of computable predictions. This encompasses
all kinds of computable competence tests and knowledge tests.

B. Alternative Natural Typology

Here, a conceptually simpler typology is proposed. It essen-
tially just reflects the scheme from the introduction, and does
not suffer from the problems above.

By definition, intrinsic reward is something that is indepen-
dent of external reward, although it may sometimes help to
accelerate the latter as discussed in Section III-E ([70], [79],
[111]). So far, most if not all intrinsically motivated computa-
tional systems had the following:

1) a more or less limited adaptive predictor/compressor/
model of the history of sensory inputs, internal states,
reinforcement signals, and actions;

2) some sort of real-valued intrinsic reward indicative of
the learning progress of 1);

3) a more or less limited reinforcement learner able to max-
imize future expected reward.

Hence, the typology just needs to classify previous systems with
respect to properties and limitations of their specific instances
of (1–3). In the spirit of MDL, we describe a compact model
(in this case: a typology) of the data (in this case: various ap-
proaches to IM) by identifying what the majority of the previous
IM approaches have in common.

1) Includes many subtypes characterized by the answers to
the following questions.

sebastien
Texte surligné 



SCHMIDHUBER: FORMAL THEORY OF CREATIVITY, FUN, AND INTRINSIC MOTIVATION (1990–2010) 241

a) What exactly can the predictor predict (or the com-
pressor compress)?

i) All sensory inputs as in Section III-A [71]?
A preprocessed subset of the sensory in-
puts? For example, features indicating syn-
chronicity of certain processes [52]? The
latter may be of interest for certain limited
types of IM-based learning.

ii) Reinforcement signals as in Section III-A
[71]? (Even traditional RL agents without IM
do this.)

iii) Controller actions as in Section II [79], [85],
[92], [96], [97]? Then even in absence of sen-
sory feedback, curious and creative agents
will be motivated to learn new motor pat-
terns, such as previously unknown dances.

iv) Results of internal computations through
sequences of internal actions as in
Section III-D [79]? This will motivate a
curious agent to create novel patterns not
only in the space of sensory inputs but also
in the space of abstract input transforma-
tions, such as earlier learned mappings from
images of cars to an internal symbol “car”.
The agent will also be motivated to create
purely “mental” novel patterns independent
of external inputs, such as number sequences
obeying previously unknown mathemat-
ical laws (corresponding to mathematical
discoveries).

v) Some combination of the above? All of the
above as in Section III-D [79]? The latter
should be the default for artificial general
intelligences (AGIs).

b) Is the predictor deterministic as in Section III-A
[71], or does it predict probability distributions on
possible events as in Section III-C [111]?

c) How are the predictor and its learning algorithm
implemented?

i) Is the predictor actually a continually
changing, growing 3-D model or simula-
tion of the agent in the environment, used to
predict future visual or tactile inputs, given
agent actions (Section II-B)?

ii) Is it a traditional machine learning model?
A feedforward neural network mapping pairs
of actions and observations to predictions
of the next observation as in Section III-B
[70]? A recurrent neural network that is in
principle able to deal with event histories
of arbitrary size as in Section III-A [71]?
A Gaussian Process? A Support Vector Ma-
chine? A Hidden Markov Model? Etc.

2) includes many subtypes characterized by the answers to
the following questions.

a) Is the entire history used to evaluate the predictor’s
performance as in Section II [85], [92], [96], [97]

(in theory the correct thing to do, but sometimes
impractical)? Or only recent data, e.g., the one ac-
quired at the present time step as in Section III-B
[70], or in a limited time window of recent inputs?
(If so, a performance decline on earlier parts of the
history may go unnoticed.)

b) Which measure is used to indicate learning
progress and create intrinsic reward?

i) Mean squared prediction error or similar
measures as in Section III-A [3], [36], [71],
[107]? This may fail whenever high predic-
tion errors do not imply expected prediction
progress, e.g., in noisy environments, but
also when the limitations of the predictor’s
learning algorithm prevent learning progress
even in deterministic worlds.

ii) Improvements (first derivatives) of predic-
tion error as in Section III-B [52], [70]?
This properly deals with both noisy/non-de-
terministic worlds and the computational
limitations of the predictor/compressor.

iii) The information-theoretic Kullback–Leibler
divergence (a.k.a. relative entropy) [39] be-
tween belief distributions before and after
learning steps, as in Section III-C [34],
[111]? A well-founded approach, at least
under the assumption that all potential sta-
tistical dependencies between inputs can
indeed be modeled by the given probabilistic
model, which in previous implementations
(Section III-C) was limited to singular events
[34], [111] as opposed to arbitrary event se-
quences, for efficiency reasons.

iv) MDL-based measures [62], [109], [110],
[115], [116] comparing the number of bits
required to encode the observation his-
tory before and after learning steps, as in
Section II [85], [92], [96], [97]? Unlike the
methods above, this approach automatically
punishes unnecessarily complex predic-
tors/compressors that overfit the data, and
can easily deal with long event sequences
instead of simple 1 step events. For example,
if the predictor uses a 3-D world model
or simulation, the MDL approach will ask
(Section II-B): how many bits are currently
needed to specify all polygons in the sim-
ulation, and how many bits are needed to
encode deviations of the sensory history
from the predictions of the 3-D simulation?
Adding or removing polygons may reduce
the total number of bits (and decrease future
prediction errors).

c) Is the computational effort of the predictor and
its learning algorithm taken into account when
measuring its performance, as in Section II-B
[77], [79], [85]? The only implementation of this
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(Section III-C; [77], [79]) still lacks theoretical
optimality guarantees.

d) Which are the relative weights of external and in-
trinsic reward? This is of importance as long as the
latter does not vanish in environments where after
some time nothing new can be learned any more.

3) includes many subtypes characterized by the answers to
the following questions.

a) Which is the action repertoire of the controller?
i) Can it produce only external motor actions,

as in Section III-B [70], [111]?
ii) Can it also manipulate an internal mental

state through internal actions as in
Section III-D ([77], [79]), thus being able
to deal not only with raw sensory inputs
but also with internal abstractions thereof,
and to create/discover novel purely mathe-
matical patterns, like certain theoreticians
who sometimes do not care much about the
external world?

iii) Can it trigger learning processes by it-
self, by executing appropriate actions as in
Section III-D ([77], [79])? This is important
for learning when to learn and what to learn,
trading off the costs of learning versus the
expected benefits in terms of intrinsic and
extrinsic rewards.

b) Which are the perceptive abilities of the controller?
i) Can it choose at any time to see any element

of the entire history [85] of all sensory inputs,
rewards, executed actions, internal states? Or
only a subset thereof, possibly a recent one,
as in Section III-B [70]? The former should
be the default for AGIs.

ii) Does it have access to the parameters
and internal state of the predictor, like in
Section III-D [79]? Or just a subset thereof?
Such introspective abilities are important
to predict future intrinsic rewards which
depend on the already existing knowledge
encoded in the predictor.

c) Which optimizer of expected intrinsic and extrinsic
reward is used?

i) A traditional Q-learner [117] able to deal
with delayed rewards as long as the en-
vironment is fully observable, like in
Section III-B? A more limited 1-step
look-ahead learner [52] that will break down
in presence of delayed intrinsic rewards? A
more sophisticated RL algorithm for delayed
rewards in partially observable environments
[35], [72], like in Section III-A? A hierar-
chical, subgoal-learning RL algorithm [1],
[60], [61], [102], [118] or perhaps other hi-
erarchical methods that do not learn to create
subgoals by themselves [3], [13], [107]?

ii) An action planner using a 3-D sim-
ulation of the world to generate re-
ward-promising trajectories (see MDL ex-
ample in Section II-B)?

iii) An evolutionary algorithm [22], [29], [59],
[104] applied to recurrent neural networks
[22] or other devices that compute action
sequences?

iv) One of the recent universal, mathematically
optimal RL algorithms [32], [98], like in
Section II-G? Variants of universal search
[43] or its incremental extension, the Op-
timal Ordered Problem Solver [82]?

v) Something else? Obviously lots of alterna-
tive search methods can be plugged in here.

d) How does the system deal with problems of online
learning?

i) Action sequences producing patterns that
used to be novel do not get rewarded any
more once the patterns are known. Can
the practical reward optimizer reliably deal
with this problem of vanishing rewards,
like the theoretically optimal systems of
Section II-G?

ii) Can the reward optimizer actually use the
continually improving predictive world
model to improve or speed up the search for
a better policy? This is automatically done
by the above-mentioned action planner using
a continually improving 3-D world simula-
tion, and also by the RNN-based world
model of the system in Section III-A [71].
Does the changing model cause problems of
online learning? Are those problems dealt
with in a heuristic way (e.g., small learning
rates), or in a theoretically sound way as in
Section II-G?

Each node or leaf of the typology above can be further ex-
panded, thus becoming the root of additional straightforward
refinements. But let us now address some of the recent confu-
sion surrounding the concept of intrinsic motivation, and clarify
what it is not.

C. Secondary Reward as an Orthogonal Issue

Reward propagation procedures of traditional RL such as
Q-learning [117] or RL economies and bucket brigade systems
[30], [65], [66], [120] may be viewed as translating rare ex-
ternal rewards for achieving some goal into frequent internal
rewards for earlier actions setting the stage. Should one call
these internal “secondary” rewards intrinsic rewards? Of course
not. They are just internal by-products of the method used to
maximize external reward, which remains the only measure of
overall success.
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D. Speeding Up RL as an Orthogonal Issue

Many methods have been proposed to speed up traditional
RL. Some Q-learning accelerators simply update pairs of ac-
tions and states with currently quickly changing Q-values more
frequently than others (that is, Q-values with high first deriva-
tives are favored). Others postpone updates until needed [119].
Again, one should resist the temptation to confuse such types
of secondary reward modulation with intrinsic reward, because
the only thing important to such methods is the external reward.
(Otherwise one would also have to call intrinsic reward many
of the things that could be invented by any (possibly universal
[32], [98]) RL method whose only goal is to maximize expected
external reward.)

E. Subgoal Learning as an Orthogonal Issue

Some goal-seeking RL systems search a space of possible
subgoal combinations, internally rewarding subsystems whose
policies learn to achieve those subgoals [1], [61], [102], [118].
Essentially, they seek useful reward functions for the subsys-
tems. External reward (for reaching a final goal) is used to mea-
sure the quality of subgoal combinations: good subgoals sur-
vive, others are discarded. Again the internal reward for the
subsystems should not be called intrinsic reward, as it is totally
driven and justified by external reward.

F. Evolution of Reward Functions as an Orthogonal Issue

Essentially, the same argument holds for very similar
methods that search a space of reward functions until they find
one that helps a given RL method to achieve more reward more
quickly, e.g., [46] and [108]. Such methods are like the subgoal
evolvers [118] of Section V-E which also evolve or search for
useful reward functions. The results of this search should not
be called intrinsic reward functions, since once more the only
thing that counts here is the external reward; the rest is just
implementation details of the external reward maximizer.

But did not humans evolve to have such an intrinsic reward
function? Sure, they did, but now it is there, and now it is in-
dependent of external reward, otherwise it would not be in-
trinsic reward, by definition. Scientific papers on intrinsic re-
ward should start from there. It is a different issue to analyze
how and why evolution or another search process invented in-
trinsic rewards to facilitate satisfaction of external goals (such
as survival).

VI. HOW THE THEORY EXPLAINS ART, SCIENCE, AND HUMOR

How does the prediction progress drive/compression progress
drive explain humor? Consider the following statement: Bio-
logical organisms are driven by the “Four Big F’s”: Feeding,
Fighting, Fleeing, Mating. Some subjective observers who read
this for the first time think it is funny. Why? As the eyes are
sequentially scanning the text the brain receives a complex vi-
sual input stream. The latter is subjectively partially compress-
ible as it relates to the observer’s previous knowledge about let-
ters and words and their semantics. That is, given the reader’s
current knowledge and current compressor, the raw data can be
encoded by fewer bits than required to store random data of the
same size. But the punch line after the last comma is unexpected
for those who expected another “F.” Initially, this failed expec-

tation results in suboptimal data compression—storage of ex-
pected events does not cost anything, but deviations from pre-
dictions require extra bits to encode them. The compressor, how-
ever, does not stay the same forever: within a short time interval
its learning algorithm kicks in and improves the performance
on the data seen so far, by discovering the nonrandom, nonarbi-
trary and therefore, compressible pattern relating the punch line
to previous text and to the observer’s previous elaborate, predic-
tive knowledge about the “Four Big F’s.” This prior knowledge
helps to compress the whole history including the punch line
a bit better than before, which momentarily saves a few bits of
storage, that is, there is quick learning progress, that is, fun. The
number of saved bits (or a similar measure of learning progress)
becomes the observer’s intrinsic reward, possibly strong enough
to motivate him to read on in search for more reward through ad-
ditional yet unknown patterns.

While most previous attempts at explaining humor (e.g., [58])
also focus on the element of surprise, they lack the essential
concept of novel pattern detection measured by compression
progress due to learning. This progress is zero whenever the un-
expected is just random noise, and thus no fun at all. Applica-
tions of the new theory of humor can be found in recent videos
[95].

How does the theory informally explain the motivation to
create or perceive art and music [75], [76], [85], [92], [94],
[96], [97]? For example, why are some melodies more inter-
esting or aesthetically rewarding than others? Not the one the
listener (composer) just heard (played) twenty times in a row.
It became too subjectively predictable in the process. Nor the
weird one with completely unfamiliar rhythm and tonality. It
seems too irregular and contains too much arbitrariness and sub-
jective noise. The observer (creator) of the data is interested in
melodies that are unfamiliar enough to contain somewhat unex-
pected harmonies or beats etc., but familiar enough to allow for
quickly recognizing the presence of a new learnable regularity
or compressibility in the sound stream: a novel pattern. Sure, it
will get boring over time, but not yet. All of this perfectly fits the
principle: The current compressor of the observer or data creator
tries to compress his history of acoustic and other inputs where
possible. The action selector tries to find history-influencing
actions such that the continually growing historic data allows
for improving the compressor’s performance. The interesting or
aesthetically rewarding musical and other subsequences are pre-
cisely those with previously unknown yet learnable types of reg-
ularities, because they lead to compressor improvements. The
boring patterns are those that are either already perfectly known
or arbitrary or random, or whose structure seems too hard to
understand.

Similar statements not only hold for other dynamic art in-
cluding film and dance (take into account the compressibility
of action sequences), but also for “static” art such as painting
and sculpture, created through action sequences of the artist,
and perceived as dynamic spatio–temporal patterns through ac-
tive attention shifts of the observer. When not occupied with
optimizing external reward, artists and observers of art are just
following their compression progress drive.

The previous computer programs discussed in Section III al-
ready incorporated (approximations of) the basic creativity prin-
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ciple, but do they really deserve to be viewed as rudimentary
artists and scientists? The patterns they create are novel with re-
spect to their own limited predictors and prior knowledge, but
not necessarily relative to the knowledge of sophisticated adults.
The main difference to human artists/scientists, however, may
be only quantitative by nature, not qualitative.

• The unknown learning algorithms of human predic-
tors/compressors are presumably still better suited to
real world data. Recall, however, that there already
exist universal, mathematically optimal (but not neces-
sarily practically feasible) prediction and compression
algorithms (Section II-D; [32], [98]), and that ongoing
research is continually producing better and better prac-
tical prediction and compression methods, waiting to be
plugged into the creativity framework.

• Humans may have superior reinforcement learning algo-
rithms for maximizing rewards generated through com-
pression improvements achieved by their predictors. Re-
call, however, that there already exist universal, mathe-
matically optimal (but not necessarily practically feasible)
reward optimizing algorithms (Section II-G; [32], [98]),
and that ongoing research is continually producing better
and better practical reinforcement learning methods, also
waiting to be plugged into the creativity principle.

• Renowned human artists and scientists have had decades of
training experiences involving a multitude of high-dimen-
sional sensory inputs and motoric outputs, while our sys-
tems so far only had a few hours with very low-dimensional
experiences in limited artificial worlds. This quantitative
gap, however, will narrow as IM researchers are scaling up
their systems.

• Human brains still have vastly more raw computational
power and storage capacity than the best artificial com-
puters. Note, however, that this statement is unlikely to
remain true for more than a few decades – currently each
decade brings a hardware speed-up factor of roughly
100–1000.

Current computational limitations of artificial artists do not
prevent us from already using the basic principle in human-com-
puter interaction to create art appreciable by humans—see ex-
ample applications in references [76], [85], [92], [94], [96], and
[97].

How does the theory explain the nature of inductive sciences
such as physics? If the history of the entire universe were com-
putable, and there is no evidence against this possibility [88],
then its simplest explanation would be the shortest program that
computes it. Unfortunately, there is no general way of finding
the shortest program computing any given data [45]. Therefore,
physicists have traditionally proceeded incrementally, analyzing
just a small aspect of the world at any given time, trying to find
simple laws that allow for describing their limited observations
better than the best previously known law, essentially trying to
find a program that compresses the observed data better than the
best previously known program. An unusually large compres-
sion breakthrough deserves the name discovery. For example,
Newton’s law of gravity can be formulated as a short piece of
code which allows for substantially compressing many obser-
vation sequences involving falling apples and other objects. Al-

though its predictive power is limited—for example, it does not
explain quantum fluctuations of apple atoms—it still allows for
greatly reducing the number of bits required to encode the data
stream, by assigning short codes to events that are predictable
with high probability [31] under the assumption that the law
holds. Einstein’s general relativity theory yields additional com-
pression progress as it compactly explains many previously un-
explained deviations from Newton’s predictions. Most physi-
cists believe there is still room for further advances, and this is
what is driving them to invent new experiments unveiling novel,
previously unpublished patterns [94], [96], [97]. When not oc-
cupied with optimizing external reward, physicists are also just
following their compression progress drive!

VII. CONCLUDING REMARKS AND OUTLOOK

To build a creative agent that never stops generating nontrivial
and novel and surprising data, we need two learning modules:
1) an adaptive predictor or compressor or model of the growing
data history as the agent is interacting with its environment; and
2) a general reinforcement learner. The learning progress of 1)
is the fun or intrinsic reward of 2). That is, 2) is motivated to
invent things that 1) does not yet know, but can easily learn.

While purely curious and creative behaviors aim at maxi-
mizing expected fun or surprise through the creation of novel
patterns, the relevance of all behaviors with respect to prewired
or external goals is measured by (delayed) external reward. Re-
cent work has led to the first RL machines that are universal
and optimal in various very general senses [32], [81], [98]—see
Section II-G. Such machines can in theory find out by them-
selves whether curiosity and creativity are useful or useless in
a given environment, and learn to behave accordingly. In real-
istic settings, however, external rewards are extremely rare, and
one cannot expect quick progress of this type, not even by op-
timal machines. But typically one can learn lots of useful be-
haviors even in absence of external rewards: unsupervised be-
haviors that just lead to predictable or compressible results and
thus reflect the regularities in the environment, e.g., repeatable
patterns in the world’s reactions to certain action sequences. In
this paper the assumption is that a bias towards exploring previ-
ously unknown environmental regularities is a priori good in the
real world as we know it, and should be inserted into practical
AGIs, whose goal-directed learning will profit from this bias,
in the sense that behaviors leading to external reward can often
be quickly composed/derived from previously learned, purely
curiosity-driven behaviors. We did not worry about the unde-
niable possibility that curiosity and creativity can actually be
harmful and “kill the cat,” assuming the environment is “benign
enough.” Based on experience with the real world it may be ar-
gued that this assumption is realistic. The resulting explorative
bias greatly facilitates the search for goal-directed behaviors in
environments where the acquisition of external reward has in-
deed a lot to do with easily learnable environmental regularities.

It may be possible to formally quantify this bias towards
novel patterns in form of a mixture-based prior [32], [45], [81],
[110], a weighted sum of probability distributions on sequences
of actions and resulting inputs, and derive precise conditions
for improved expected external reward intake. Intrinsic reward
may be viewed as analogous to a regularizer in supervised
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learning, where the prior distribution on possible hypotheses
greatly influences the most probable interpretation of the data
in a Bayesian framework [8] (for example, the well-known
synapse decay term of neural networks is a consequence of
a Gaussian prior with zero mean for each synapse). Note,
however, that there is a difference to traditional regularizers
with a priori fixed relative weights (also known as hyper-pa-
rameters): intrinsic reward for learning progress eventually
vanishes in environments where after some time nothing new
can be learned any more; that is, the intrinsic reward eventually
becomes negligible where the sources of external reward do
not run dry as well (e.g., no daily food no more). Following
Section VI, some of the AGIs based on the creativity principle
will become scientists, artists, or comedians.
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