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Abstract This article deals with the links between the enaction paradigm and artificial 
intelligence. Enaction is considered a metaphor for artificial intelligence, as a number of the 
notions which it deals with are deemed incompatible with the phenomenal field of the virtual. 
After explaining this stance, we shall review previous works regarding this issue in terms of 
artifical life and robotics. We shall focus on the lack of recognition of co-evolution at the heart of 
these approaches. We propose to explicitly integrate the evolution of the environment into our 
approach in order to refine the ontogenesis of the artificial system, and to compare it with the 
enaction paradigm. The growing complexity of the ontogenetic mechanisms to be activated can 
therefore be compensated by an interactive guidance system emanating from the environment. 
This proposition does not however resolve that of the relevance of the meaning created by the 
machine (sense-making). Such reflections lead us to integrate human interaction into this 
environment in order to construct relevant meaning in terms of participative artificial intelligence. 
This raises a number of questions with regards to setting up an enactive interaction. The article 
concludes by exploring a number of issues, thereby enabling us to associate current approaches 
with the principles of morphogenesis, guidance, the phenomenology of interactions and the use of 
minimal enactive interfaces in setting up experiments which will deal with the problem of artificial 
intelligence in a variety of enaction-based ways. 
 

Keywords enaction, embodied-embedded AI, sense-making, co-evolution, 
guidance, phylogenesis/ontogenesis ratio, Human in the Loop, Virtual Reality 

Introduction 

Over the past few years, the cognitive sciences have been undergoing 
considerable evolution having taken into account the natural and committed 
nature of organisms when describing their cognitive capacities (Sharkey & 
Ziemke, 1998; Lakoff & Johnson, 1999). Enaction is one of the theoretical 
propositions involved in this evolution (Varela, Thompson, & Rosch, 1993; Noë, 
2004; Stewart, Gapenne, & E. Di Paolo, 2008). Even though debate about the 
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relevance of the different areas of the cognitive sciences seems to be quieting 
(Gershenson, 2004), enaction offers an alternative to cognitivism (Pylyshyn,1984) 
and connectionist approaches (Rosenblatt, 1958) by following and furthering the 
sensorimotor theories initiated by (Gibson, 1966). It is based on research in the 
fields of biology (Maturana, Uribe, & Frenk, 1968; Maturana & Varela, 1980) and 
neuroscience (Freeman & Sharkda, 1990; Freeman, 2001). It supports 
constructivism (Piaget, 1970; Foerster, 1984; Shanon, 1993; Glasersfeld,1995; 
Rosch, 1999) and anthropological argumentation (Hutchins, 2005, 2006). Finally, 
its philosophical extension is also reiterated in phenomenology (Husserl, 1960; 
Merleau-Ponty, 1945; Varela et al., 1993; Lenay, 1996; Bickhard, 2003) and is at 
the centre of the research program into neurophenomenology (Thompson & 
Varela, 2001; Lutz, Lachaux, Martinerie, & Varela, 2001). Enaction supports the 
construction of cognition on the basis of interactions between organisms and their 
physical and social environments (De Jaegher & Di Paolo, 2007). It is thus rooted 
in radical constructivism. The issue which we will be analyzing here is that of the 
links woven between enaction and artificial intelligence, first dealt with a few 
years ago.  
 

Even if an auto-constructing artificial system is not in itself new to artificial 
intelligence (Turing, 1950; Von Neumann, 1966; Drescher, 1991; Hall, 2007), the 
Computational Theory of Mind faces a number of difficulties linked to the 
representational nature which it proposes (Dreyfus, 1979; Fodor, 2000)2: the 
frame problem (McCarthy, 1969; Korb, 2004), the symbol grounding problem 
(Harnad, 1990, 1993), modeling of common sense (McCarthy, 1969), the 
importance of context (Minsky, 1982; McCarthy & Buva, 1998), creativity or 
indeed social cognition, or cognition in an open environment. In order to 
overcome these difficulties, new AI rejects the idea of representations and is at the 
source of embodied-embedded AI (Brooks, 1991; Pfeifer & Gomez, 2005).This 
approach integrates the role of the body and the sensorimotor loop in recognizing 
a robot’s cognitive capacities. Nevertheless, it encounters difficulties regarding 
questions of agentivity, teleology and construction of meaning. (Ziemke, 2001; Di 
Paolo, 2005; Di Paolo, Rohde, & De Jaegher, 2007) differentiate between 
automatic systems, which rely on fixed exterior values, and systems which create 
their own identity. The biological origins of these notions, predicted by I. Kant 
(Kant, 1790), J. von Uexküll (Uexküll, 1957) or H. Jonas (Jonas, 1968) seem to be 
one possible key element in resolving these issues. As such, one would need to 
meticulously copy natural mechanisms artificially (Dreyfus, 2007). A task of such 
complexity seems unfathomable, however (Di Paolo & Iizuka, 2008) insist that it 
is not the details of these mechanisms that count, but rather the underlying 
principles which much be identified. It is these principles which aim to clarify 
enaction via a radical point of view according to which, due to the viability 
constraints of organisms and on their capacity to react, their interactions 
”crystalize” the sensorimotor invariants which are thus the source of enacted 
”embodied representations” from agentivity and from sense-making (Di Paolo, 
2005). The paradigm demands an absence of representations of a pre-given world 

                                                 
2 These difficulties also relate to the connectionist approaches which, in this context, 
constitute a cognitive background, maintaining cognition at the status of a entrance/exit 
processing system. 
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and also of the biological origins of autonomy: the autopoiesis principle. This 
principle is extended further by the integration of the sensorimotor loop, the co-
evolution of the organism and its environment, and finally the enaction of its own-
world. The notion of own-world (or phenomenal world) (Uexküll, 1957), 
expresses the way in which a subject’s representation of the world is unique to 
that person and cannot be detached from his personal experience and sensorimotor 
capacities. 
 
In terms of the virtual, enaction and its revolutionary vision enable us to lay down 
new foundations. These new foundations led (Froese & Ziemke, 2009) to lay 
down the guidelines for “Enactive Artificial Intelligence” which clears the 
existing ambiguities surrounding the notion of embodied cognition highlighted by 
(Clark, 1999; Nunez, 1999; Ziemke, 2004). We will remain prudent about the 
terms we use, considering enaction as a metaphor for artificial intelligence. We 
shall therefore refer instead to “Enaction-Based Artifical Intelligence (EBAI)”. 
Indeed, the direct transfer of a paradigm from the cognitive sciences might lead to 
shortcuts, misunderstanding and confusion regarding the initial notions of the 
paradigm. For example, enaction borrows the specificity of first-hand experience 
from phenomenology, and it is necessary to use phenomenology in order to 
understand the mind. However, in the case of machines, the notions of first-hand 
experience, consciousness and own-world are without a doubt inaccessible, if not 
absurd. This article does not aim to enter into the debate surrounding the 
functionalism of the intentionality of autonomy or of consciousness (Searle, 1997; 
Chalmer, 1995; Pylyshyn, 2003; Kosslyn, Thomson, & Ganis, 2006; Thompson, 
2007). We shall simply embark on analyses of (Rohde & Stewart, 2008) who 
propose to replace the traditional distinction between ascriptionnal and genuine 
autonomy by presenting the hypothesis that “an attributional judgement based on 
knowledge of an underlying behavior-inducing mechanism will be more stable 
than a naïve judgment based only on observation of behavior”. This concept 
enables us to use the ideas and advances of cognitive science in order to 
contribute to the artificial sciences (Simon, 1969) and vice versa. In particular, the 
problem of sense-making, crucial in artificial intelligence, can be established in an 
enactive inspiration. 
 
This article will be structured in the following manner: section 2 outlines the 
notions relating to enaction and the characteristics expected of an artificial system 
claiming to adhere to the model. In section 3 we shall summarize the main 
elements of the approaches in artificial life and robotics which fall into the 
category of enaction. For each of these approaches, we will demonstrate how little 
importance is given to the evolution of the environment and the difficulties 
involved in obtaining ontogenetic mechanisms. The notion of a sense-making for 
a machine can also be a problem for a human user if it is designed to be 
autonomous in a purely virtual world. Having studied these issues, we make a 
number of suggestions in section 4: a more explicit recognition of the irreversible 
evolution of the environment and of coupling; guiding the artificial entity in order 
to tackle more complex ontogenesis as is the case in the co-evolving nature and 
integration of the ”man-in-the-loop” with the co-creation of meaning, compatible 
with the social construction of meaning and the initial precepts of AI, illustrated 
by the Turing test. The section then goes on to present the areas which we shall 
explore in future research in order to meet these goals, before going on to the 
conclusion (section 5). 
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From enaction to artificial intelligence 

Enaction proposes to address cognition as the history of structural coupling 
between an organism and its environment. Here follows a brief summary of the 
concepts closely linked to it. For a more detailed account, we recommend the 
review articles by (McGee, 2005, 2006). Enaction originates from the notion of 
autopoietic systems put forward by Maturana and Varela as model of the living 
centred on the capacity of organisms to preserve their viability (Varela, Maturana, 
& Uribe, 1974). For these authors, this preservation defines the organism’s 
autonomy and constitutes the biological origin of its cognitive capacities. An 
autopoietic system is a structure which produces itself as a result of its 
environment. The environment may disrupt the system, whose functioning will 
evolve as a consequence of that effect. If the functioning of the organism evolves 
in such a way as to preserve it despite disruption from exterior factors, the 
organism can be considered viable. This new way of functioning will, in return, 
influence the environment and the organism-environment system will co-evolve. 
The fact that the environment is but a disruption implies that it does not seem to 
be represented within the organism as a pre-given world. Furthermore, constraints 
on viability and the necessity to remain alive endow the organism with an identity 
by means of its metabolism and its capacity to act. This identity emerges relative 
to viability constraints, and the environment gradually takes on meaning. 
 
Breaking away from biology, we talk about operationally closed systems. 
Operationally closed systems form a system of recursively interdependent 
processes in order to regenerate themselves, and can be identified as a 
recognizable unit in the domain of processes. Nothing prevents the notion of 
operationally closed systems being applied to the phenomenal domain of the 
artificial. The scientific approach would then be to generalize this mechanism to 
multicellular organisms (Varela, 1979), and thus to human beings, the mind, and 
social cognition (De Jaegher & Di Paolo, 2007). At each level, there is a 
difference linked to the aspects associated with the notions of viability and unity 
(Stewart, 1996; Di Paolo, 2005). Without entering into further detail and the 
arguments behind the theoretical approach, we shall retain three important 
characteristics involved in the development of artificial systems based on this 
paradigm: 
 

1- The absence of a priori representations: In the domain of AI, this 
characteristic shares similarities with Rodney Brooks considerations 
(Brooks, 1991) but which, to be more precise, translates to an absence of 
representations of a pre-given world. The organism does not possess an 
explicit and definitive representation which it could manipulate in the 
manner of an imperative program, for example to plan or define an 
intention as a rule-based calculus. It is these interactions which enable it 
simply to ”survive” by preserving sensorimotor invariants. 
 

2- Plasticity: The organism is viable as it is capable of ”absorbing” the 
disruptions caused by its environment and to adapt to them. This plasticity 
can be observed not only in the body for physical interactions but also at 
nerve level for higher-level interactions (cerebral plasticity). 
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3- Co-evolution: requires the distinction between physically grounded 
cognition and cognition that is rooted in their own world (Sharkey & 
Ziemke, 1998). A modification of the world by the organism in return 
imposes a modification of that organism. This co-evolution can just as 
well be considered a phylogenetic scale as an ontogenetic scale and gives 
rise to structural coupling characterized by its irreversibility. The example 
is often giving of tracing a path by trampling the ground with our feet. 
 

In this way, we can see that the artificial system is taking the form of a complex 
system i.e. it is heterogeneous, with an open and multi-scaled dynamic (Laughlin, 
2005). The emergent properties of these systems are testimony to the openness 
and the multiplicity of the possibilities of evolution. The notion of ”natural 
derivation”, highly important in enaction (Varela et al., 1993) is thus converted to 
”artificial derivation”. It underlies complex systems and can initiate creativity and 
commitment in ”bringing forth a new world”. Creativity is here defined as the 
possibility to determine the functions of an undefined element of the environment. 
 
These systems are able to apprehend and to enact properties relating to the world 
with which they interact. These properties, which are often dynamic, are difficult 
to represent using symbols and also resist abstraction. These characteristics are 
fundamental to enaction, which considers that know-how precedes knowledge and 
highlights the uniqueness of each experience. 
 
Co-evolution involves a recursive transformation of the system and of its 
environment. The environment is thus an actor in the same way as the entity that 
occupies it. However, generally, the theories of embodied AI neglect the evolution 
of the environment, preferring to focus on perfecting the autonomous system. This 
priority is illustrated by the first ”Enactive AI design principles” drawn up by 
(Froese & Ziemke, 2009): 
 

- principle EAI-1a: an artificial agent must be capable of generating its 
own systemic identity at some level of description. 

- principle EAI-1b: an artificial agent must be capable of changing its own 
systemic identity at some level of description. 

 
Systemic identity works from the notion of auto-maintenance of a system as it is 
understood in the theory of autopoiesis. Principle 1b is a compromise made due to 
the complexity of implementing principle 1a. The second set of principles 
introduces the concept of interaction between the organism and the environment 
by means of the sensorimotor loop: 
 
 

- principle EAI-2a: an artificial agent must be capable of generating its 
own sensorimotor identity at some level of description. 

- principle EAI-2b: an artificial agent must be capable of changing its own 
sensorimotor identity at some level of description. 

 
The active behavior of the agent is here dealt with explicitly. It enables us to 
address the construction of meaning in terms of a preservation of sensorimotor 
loops, but ignores the co-evolution of the environment and the agent. In 
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conclusion, the role of the environment and its relative capacity to endanger the 
viability of the agent, is introduced by the third principle: 
 
 

- principle EAI-3: an artificial agent must have the capacity to actively 
regulate its structural coupling in relation to a viability constraint. 

 
However, to us, the irreversible nature of the conjoined evolution of the entity and 
its environment does not seem to have been made clear. For now the challenge is 
to introduce regulatory mechanisms in order to maintain the existence of the 
entity, knowing that the impositions exerted on it will evolve. The system must be 
able to regulate its regulation, to be able to access a meta-regulation (Morin, 
1980). The implementation of such a system stems from (Froese & Ziemke, 2009) 
and particularly the hard problem of enactive artificial intelligence. This consists 
of concretizing the set of rules governing the system so as to define the 
modifications enabling it to be preserved. To do so would imply an understanding 
between the domain of explicit design and that of evolutionary approaches. This is 
the only method currently available when attempting to set up auto-adaptive 
artificial systems which rely on a dynamic rather than a representational approach. 
Before putting forward our suggestions for overcoming this problem, we shall 
identify the ways in which current approaches adhering to the artificial enaction 
paradigm fail to consider the role of the environment and of co-evolution in 
sufficient detail. 

Co-evolution and environnement in (enactive) 

artificial intelligence ? 

Research corresponding to an enactive approach to artificial intelligence logically 
developed in the domain of artificial life alongside the study of the principles of 
autopoiesis (McMullin, 2004; Beer, 2004; Bourgine & Stewart, 2004; Beurier, 
Michel, & Ferber, 2006; Ruiz-Mirazo & Mavelli, 2008). These studies concern 
principles EAI-1a and EAI-1b. Other research in robotics has followed a similar 
trend with the development of artificial dynamic cognition which can be 
associated with the study of principles EAI-2b and EAI-3 (Beer, 2000; Di Paolo, 
2000; Nolfi & Floreano, 2000; Harvey, Di Paolo, Wood, Quinn, & Tuci, 2005; 
Wood & Di Paolo, 2007; Iizuka & Di Paolo, 2007). We shall summarize these 
findings focusing particularly on the assimilation of environment and co-
evolution. 
 

Simulating autopoiesis: The biological origins of autonomy 

Principles 

The theory of enaction is rooted in the biological mechanism of autopoiesis. The 
autonomy of an autopoietic system constitutes its minimal cognition. We must 
remember that an autopoietic system is a composite unit, much like an element-
producing network in which the elements 1) via their interactions, recursively 
regenerate the network of production which produced them and 2) construct a 
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network in which they exist by building up a frontier with their external 
surroundings via their preferential interactions within the network (Dempster, 
2000). Autopoietic systems possess the properties of emergent systems as they are 
able to create natural phenomena independent of those from which they were 
generated (Laughlin, 2005). Figure 1 summarizes the principles of minimum 
autopoietic systems models. 
 

 
 

Fig. 1 Illustration of the autopoiesis principle: A cellular membrane encloses a catalyst which 

cannot cross that membrane. A substrate can cross the membrane. In the presence of the catalyst, 

the substrate evolves into elements which will repair the membrane, should holes appear in it. 

Thus the cell is able to regenerate because the catalyst is enclosed within it, and because the cell 

regenerates, the catalyst remains captive within it. 

 
Since the pioneering research by (Von Neumann, 1966; Gardner, 1970; Langton, 
1984), researchers have gone on to study richer patterns, introducing biochemical 
mechanisms, physical mechanisms and genomic elements (Dittrich, Ziegler, & 
Banzhaf, 2001; Madina, Ono, & Ikegami, 2003; Watanabe, Koizumi, Kishi, 
Nakamura, Kobayashi, Kazuno, Suzuki, Asada, & Tominaga, 2007; Hutton, 
2007). Both fields of research and reported results have thus become much more 
diverse. Consequently, in this section, we shall deal only with the research which 
explicitly mentions autopoiesis. 
 
Following on from the analysis put forward by Barry McMullin in (Mc Mullin, 
2004), we have organized the different approaches into three categories: 
 

1- The study of the dynamics of basic principles in minimalist models aiming 
at a mathematical analysis of the system’s viability (Bourgine & Stewart, 
2004; Ruiz-Mirazo & Mavelli, 2008). This analysis is conducted using 
stochastic differential equations. These equations imitate the way in which 
concentrations of the elements forming the system evolve and establish 
stability criteria for these elements. For these approaches, the viability of 
the system represents its ability to keep its concentration stable when 
under strain from external forces. The topology of the system cannot be 
manipulated via these systems. For example, the position of the membrane 
of the tessellation automaton is predefined in (Bourgine & Stewart, 2004). 
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It follows that the notions of interior and exterior are themselves implicit. 
However, this topological distribution plays an important role in the 
principle of autopoesis and in evolving phenomena such as distortion, 
which cannot be replicated.  
 

2- The study of the plasticity of configurations which can be preserved during 
disruptions or which enable the minimal action of an artificial entity (Beer, 
2004; Moreno, Etxeberria, & Umerez, 2008). These studies involve the 
configurations of different cellular automata. This time, the topological 
elements can be simulated using this type of automaton. The viability of 
this approach depends on the preservation or evolution of a shape 
inscribed on the grid. Whereas (Beer, 2004) addresses the configurations 
of the game of life, (Moreno et al., 2008) develops (Varela et al., 1974)’s 
initial automaton, giving it the ability to move around under the influence 
of a flow of substrate on the grid. They also demonstrate the influence of 
the automaton’s specifications on the ability of the cell to move around. 
 

3- The study of the emergence of autopoietic behavior (Beurier, Simonin, & 
Ferber, 2002). The authors base their research on the notion of multiple 
emergences using a situated multi-agent system. Viability is summarized 
as the maintenance of the emergent process. Different agents positioned on 
a grid mutually attract or repel one another according to pre-defined rules 
and the virtual pheromones that they diffuse onto that grid. They can also 
change their ”nature” (this nature being represented by a variable), 
depending on the state of their surroundings. This model exhibits 
properties of autopoietic systems: membraneionic auto-organization of the 
system, preferential interaction between the elements of this auto-
organization, and finally the ability to withstand disruptions and to 
regenerate the system should it become damaged. 
 

The problem of co-evolution 

The possibility of co-evolution for each of these approaches is linked to the 
difference of opinion surrounding the notion of viability. This clearly illustrates 
the variety of different ways in which the autopoiesis principle can be interpreted. 
It also raises the issue of status in the ”topological and physical nature” of 
autopoietic principles. For example, the notion of the frontier is intuitively 
topological but can become completely abstract in a digital phenomenal domain. 
Nevertheless, the first category of approaches does not follow the causality of the 
entity’s internal mechanisms. These models therefore do not convey the 
granularity necessary to be able introduce the equivalent of a membraneionic 
distortion or an interaction with an environment whose characteristics would 
evolve. To do so would involve using a simulation, integrating the physical 
constraints of collision and movement. In (Manac’h & De Loor,2007), we 
presented the simulation of one such model based on agents situated in a 
continuous three-dimensional universe (see figure 2). These simulations show the 
extent to which it is difficult to recreate the theoretical results of stabilization 
demonstrated in simplified mathematical analyses. Similar work introducing 
physical parameters such as pressure or hydrophobia have been put forward by 
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(Madina et al., 2003). This is a first step towards integrating the distortion and 
thus the evolution of the cell. 
 

       
 

Fig. 2 A flexible three-dimensional model of a tessellation automaton (and on the right, of its 

breakdown). The membrane cells (in green) are connected by springs (in gray) which disintegrate 

over time. However, the substrate crossing the cell (in blue), can regenerate those links when in the 

presence of a catalyst enclosed within the cell. After a certain amount of time, the impacts cased 

by the collisions deform the cell which, in the end, disintegrates (Manac’h & De Loor, 2007). 

 

The second category explicitly introduces the evolution of the form. However, the 
discrete nature of cellular automata as described by (Beer, 2004) means that 
change of form are abrupt. The system is therefore fragile as it is sensitive to an 
evolving environment. Furthermore, it is the preservation of form over time that is 
considered proof of viability. In a context such as this, it is impossible to achieve 
irreversibility. It must be noted that the problem does not exist for (Moreno et al., 
2008)’s approach, which could more easily tend towards co-evolution. The third 
category explicitly concerns emergence supported by internal rules and variables. 
Research is still required in order to enable these rules to evolve according to their 
environment. 
 
In more general terms, to achieve co-evolution these approaches must address the 
possibility of acting towards and modifying the environment which, in turn, could 
modify the autopoietic entity. In order to do so, the roles of the environment and 
of the modification must be explicitly incorporated. Nevertheless, the main issue 
in terms of enaction based artificial intelligence, which remains in the background 
of this approach, is still the relevance of this detail and of the phenomenal nature 
of the autopoiesis principle itself. Precise biological considerations are not, by 
definition, necessary if the principles put forward by (Froese & Ziemke, 2009) can 
exist at the heart of an artificial model. Artificial dynamic cognition was 
developed based on considerations much like these. 
 

Autonomy through action: Artificial dynamic cognition 

Being linked to evolutionary robotics (Pfeifer & Scheier, 1999; Nolfi & Floreano, 
2000), artificial dynamic cognition explicitly addresses the capacity of 
sensorimotor loops with regards to the preservation of an agent’s viability (Beer, 
2000; Daucé, 2002; Harvey et al., 2005). It is often claimed that it is associated 
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with enaction even if, erring on the side of caution, the term ”Enactive Artificial 
Intelligence” is not explicitly mentioned. For example, (Rohde & Di Paolo, 2006) 
suggest, that at least for now, evolutionary robotics might simply serve to study 
the hypotheses of cognitive science. In order to do so, they propose to concentrate 
on specific aspects of natural behavior so as to reduce the complexity of the 
problem as a whole. However, this would mean that it would be necessary to take 
precautions in the conception of such a reduced operation as complexity, 
dynamicity and plasticity must all prevail. This is one of the main challenges of 
this approach.  
 

 
 

Fig. 3 The network of neurons is recurrent and generates oscillations which are disrupted by the 

environment. Plasticity consists of altering the specifications of the differential equations using 

different criteria (ultra-stability, Hebb’s laws, etc.). 

 

The physiochemical phenomenal domain addressed by the approaches simulating 
autopoiesis is not discussed here, so that we might concentrate on the dynamic 
neuronal domain of a complete agent. The notion of viability will therefore 
undergo a change of perspective. The model of reference here is the Continuous 
Time Recurrent Neural Network (CTRNN) (Beer & Gallagher, 1992), which 
originates from the theory of dynamical systems (Strogatz, 1994). (Funahashi & 
Nakamura, 1993) highlights the advantage of being able to estimate the majority 
of families of dynamical systems. A network like this has chaotic dynamic 
behavior endowed with attractors (Bersini & Sener, 2002). In concrete terms, all 
of the nodes are interconnected and the output value of each one is defined by a 
differential equation. The parameters for these equations are defined using genetic 
algorithms which select and improve the right solutions according to Darwinian 
metaphor. In the rest of the article we shall address phylogenetic approaches. The 
outflows of the nodes have an oscillatory pattern. A very small proportion of arcs 
are linked to the agent’s sensors or actuators. The difficulty is to develop networks 
which will enable these sensorimotor loops to auto-adapt as they gain experience. 
Research by (Beer & Gallagher, 1992) demonstrates an adaptation like this by 
giving the example of a network whose dynamic compensates for a modification 
of the robot’s body. To do so, the genetic algorithm preselected individuals 
functioning with and without the modification. The network was also pre-
structured and not completely recurrent. There is no approximator so universal as 
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11 

the unstructured CTRNN model. In order to overcome these limitations, E. Di 
Paolo proposes to render the network of neurons plastic so as to allow a 
modification of the connections’ characteristics as the robot gains experience. 
Different plasticities may be used. Homeostatic plasticity, that which is closest to 
enaction, is based on the notion of ultra-stability by Ashby (Ashby, 1960). It 
consists of setting up a stabilization loop which will modify the network arcs 
involved in the over- or under-activity of neurons. In comparison with the 
biological conditions of the organism, maintaining these values within an interval 
represents a condition of the viability of the network such as maintaining a certain 
temperature or blood-sugar level. Hebbian plasticity consists of adjusting the 
weight of network arcs according to the correlation or non-correlation of the 
activities of the nodes which they link together. In both cases, the rules of 
plasticity are defined by genetic algorithms. (Wood & Di Paolo, 2007) compare 
these techniques, complicating homeostatic behavior by defining the zones of 
stable homeostatic functioning designed for precise activities (Iizuka & Di Paolo, 
2007). 
 
The general pertinence of these approaches has been demonstrated by reproducing 
numerous experiments, often inspired by psychology. For example, (Di Paolo, 
2000) explains the architecture used to give a robot the ability to make up for a 
visual inversion when following a target (inversion of the robot’s sensors). What 
is remarkable is that, when the sensors are inverted, the rules of plasticity are 
activated and the robot is able to behave as it should, even though these rules have 
never been phylogenetically learnt in such conditions. Here, phylogenesis has 
allowed the preservation of adequate internal dynamic behavior for the viability of 
the system, even if the sensorimotor loops must be modified accordingly. Another 
remarkable factor is that the longer the functioning period in a particular mode, 
the longer the re-adaptation will be, thus supporting Ashby’s theory and the 
psychological approach. Using other experiments, (Harvey et al., 2005) 
demonstrated that these networks possess the ability to remember, and (Wood & 
Di Paolo, 2007) highlight behaviors also observed during psychological 
experiments with children. 
 

Problems for co-evolution 

Other researches involving the plastic evolution of neuronal networks are 
presented in evolutionary robotics (Floreano & Urzelai, 2000). However, we have 
presented the findings of E.A. Di Paolo’s team, as they are particularly 
representative of enactive inspiration and insist upon the system’s agentivity. 
Plasticity also enables the system to auto-adapt to its environment using the 
principle of ultra-stability, which is fundamental to this domain (Ikegami & 
Suzuki, 2008). However, even if the action of the robot is followed, the 
environment is not altered in the irreversible sense of the word mentioned in 
section2. The robot moves, but does not undergo an irreversible modification in 
its environment. For example, if the sensors of the phototaxic robot are inverted, 
the plasticity of the neuronal network will enable it to behave correctly. In theory, 
if we return the sensors to their initial position, the configuration of the neuronal 
network should return to its initial state and the experiment could be repeated as 
many times as we like, without any major changes occurring between them 
except, perhaps, readaptation time. In other terms, the visual inversion experiment 
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does not irreversibly alter the phototaxic robot. Its experience will not have taught 
it anything, nor changed it in any way. Therefore, the saying ”one never forgets”, 
is not supported by a model such as this. Knowledge is stored in the network’s 
dynamics, but the following stage, in which the entity retains and remembers that 
knowledge so that the system might use it in the future, is missing. The difficulty 
is in finding the “essential variables” associated with rules which could enable a 
more radical evolution than this. The principle of ultra-stability alone does not 
give access to that of irreversibility, at least in simplified models. As (Ikegami & 
Suzuki, 2008) suggest, the entity must also be subject to evolution. In fact, the 
evolutionary approaches are also faced with the problem of 
phylogenetic/ontogenetic articulation, which seems to be extremely difficult to 
resolve. 
 

Propositions: Toward co-evolution with humans in 

the loop 

Positioning 

We shall now go on to present a proposition that aims to push back the limits 
previously identified here so as to enable an EBAI to refine its agentivity by 
means of more complex co-evolution. This proposal is based on the following 
arguments involving irreversibility, ontogenesis and sense-making. 

The problem of irreversibility 

The irreversibility of co-evolution is often overlooked as the evolution of the 
environment, which follows the actions of the agent, is neglected in favor of 
initiating an adaptivity to external changes, i.e. those which do not follow the 
actions of the agent itself. We suggest that the agent should actively modify an 
environment which, in turn, should also evolve. This principle is based on 
research suggesting that an entity’s environment is made up of other similar 
entities (Nolfi & Floreano, 1998; Floreano, Mitri, Magnenat, & Keller, 2007). It is 
a mechanism such as this which must be set up for the preceding entities. In the 
following section we shall present our arguments to support the hypothesis that 
this is not sufficient to control this co-evolution nor to enable it to access sense-
making which might be relevant to humans. First, we shall try to complete the 
principles suggested by (Froese & Ziemke, 2009) for the constitution of an agent 
from an enactive perspective, by a ”principe of irreversibility”. 
 

- EBAI irreversibility design principle: an artificial agent must have the 
ability to actively regulate its structural coupling, depending on its 
viability constraints, with an environment which it modifies and for which 
certain modifications are irreversible. 

 
This implies that it is possible that, as a result of an action, the agent’s perception 
of its environment may be altered in such a way that it will never again perceive 
that environment in the same way. The fact that this only involves certain 
modifications and not all of them thus enables the agent to stabilize its coupling, 
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which cannot be done in an environment which is too flexible. One difficulty is 
thus to find the balance between sufficient resistance for it to be able to remember 
the interactions, an ”en habitus deposition” (Husserl, 1938), and sufficient 
plasticity for it to be able to evolve. 
 

The problem of ontogenesis 

Even if the modeled agents are complex in the sense that we call upon the notion 
of emergence in order to characterize their general behavior, their ontogenesis can 
be considered relatively simple. Either the principles of autopoiesis and viability 
are the sole focus of attention, to the detriment of the evolution of these principles 
or, the ontogenesis of the agent is defined using an evolutionary approach. 
However, the Darwinian inspiration behind the evolutionary approach is not 
compatible with an explanation of ontogenesis as it evaluated a whole agent. The 
agent is ready to function and fulfill the task that it has been selected for. That 
being said, if we want to progress in terms of capacity, and to broaden the 
cognitive domain of artificial agents, we must take into account the fact that the 
more complex agents are, the greater the ontogenetic component of their behavior 
compared to the phylogenetic component. Furthermore, as they develop, the 
influence of the environment becomes superior to the influence of genetic 
predetermination (Piaget, 1975; Vaario, 1994). From an enactive perspective, 
evolution is considered more as a process of auto-organization than a process of 
adaptation. It is therefore important to distinguish between an auto-adaptive 
system and a system which learns (Floreano & Urzelai, 2000). For example, in 
robotics, it is necessary to express evolutionary research differently so that it does 
not rely on the selection of agents capable of fulfilling a task or of adapting to a 
changing environment, but rather on a selection of agents capable of ”adapting 
their adaptation” to that of the other and thus cope with new environments. This is 
debatable, as we could argue that the behavioral creativity of natural organisms is 
inherited from the adaptation characteristics selected throughout their 
phylogenesis. It remains nonetheless true that every organism’s past conditions 
both its identity and what it will become, and especially so in the case of 
organisms with highly developed cognitive abilities (Piaget, 1975). Even if the 
aforementioned research shows that the principle of ultra-stability supports this 
argument, one important issue still needs to be addressed: that of the 
generalization of ontogenetic development principles. This problem is so tricky 
that we suggest associating evolutionary approaches with guided online learning, 
during ontogenesis. Here, we fall under a Vygotskian perspective according to 
which training constitutes a systematic enterprise which fundamentally 
restructures all of the behavioral functions; it can be defined as the artificial 
control of the natural development process (Vygotsky, 1986). Now is a good 
moment to refer back to the biological world from which, generally speaking, we 
can deduce that the greater an organism’s cognitive capacities, the greater the 
need for guidance in the early stages of its life. This may require the use of a 
different kind of model of plasticity, for example morphological plasticity of the 
configuration of the system itself so that it might increase and specialize selected 
components as it gains experience. The problem of explaining these principles and 
proposing models, techniques and processes capable of recognizing them is thus 
raised. 
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The problem of sense-making 

Let us imagine that the previous step has been achieved and that we know how to 
obtain an artificial system capable of co-evolution. Let us also imagine that we 
could imitate the environment of such a system in the same way as the system 
itself. There would be a co-evolution of these two entities. Both systems could 
engage themselves along ”uncontrollable natural derivations”. Enaction considers 
that a subject’s world is simply the result of its actions on its senses. Thus, the 
presence of sensorimotor invariants evolving at the heart of an artificial system is 
the machine’s equivalent of ”virtual sense-making” in the virtual own-world. 
What would this sense-making represent for an artificial system co-evolving with 
another artificial system? We must be wary of anthropomorphism, which is 
inappropriate here as the construction of meaning and sense for such machines 
cannot be compared to those of humans. We argue that meaning; coherent within 
the perspective of Man using the machine, and evolving from the cooperation 
between Man and machine, can only emerge through interactions with a human 
observer. Otherwise we will find ourselves faced with machines resembling 
patterns created by fractal evolutionary algorithms. They would be extremely 
complex and seem well organized, but would be incapable of forming social and 
shared meaning. This by no means leads us to question the value of experiments 
in evolutionary robotics for the understanding of fundamental cognitive 
principles, but rather to attempt to address the problem of sense-making. We must 
nevertheless take precautions, keeping in mind the potential impossibility of 
attaining such knowledge, just as (Rohde & Stewart, 2008) argue for the notion of 
autonomy. We simply wish to explore the leads which might enable us to come 
closer to one of the aims of artificial intelligence: the confrontation of a human 
user and a machine (Turing,1950). We hypothesize that, from an enactive 
perspective, one relevant approach would be to explore the sensorimotor 
confrontation between Man and machine. In this context, we believe that Man 
must feel the ”presence” of the machine which expresses itself by a sensorimotor 
resistance in order to construct meaning about itself. This idea of a presence, 
much like the Turing test, evaluates itself subjectively. This has notably been 
studied in the domain of virtual reality (Auvray, Hanneton, Lenay, & O Regan, 
2005; Sanchez & Slater, 2005; Brogni, Vinayagamoorthy, Steed, & Slater, 2007) 
and enables us to link phenomenology and Enaction-Based Artificial Intelligence. 
We therefore make the hypothesis that a presence test could be to Enaction-Based 
Artificial Intelligence what the Turing test is to the computational approach to AI. 
An EBAI compatible with this presence test must be in sensorimotor interaction 
with Man in order to coordinate its actions with those of the machine, which in 
turn could guide and learn from it so that together they might construct 
”interaction meanings”. 
 
(De Jaegher & Di Paolo, 2007) comment on the participatory aspect and on 
coordination as a basis for the construction of meaning in an enactive perspective. 
The actions of the other are as important as the actions of a subject in contributing 
to the enaction of its knowledge. Thus, we argue that the human’s participation in 
this co-evolution will enable both he and the machine to create meaning. If Man is 
not part of this loop, from his point of view there is no intelligent system. 
Inversely, with his participation, the coupling causes an own-world to emerge for 
the user. This raises the issue of the mode of interaction between Man and 
machine, which we shall address in section 4.2. 
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Summary of our proposals 

To clarify our remarks, our proposals are summarized in the following paragraph: 
 

- Proposal 1: To overcome the problem of irreversibility, we propose to add 
a principle obliging the agent to actively modify an environment which 
would also be evolving. 
 

- Proposal 2: In order to overcome the issue of the complexity of 
ontogenesis, we propose the introduction of interactive guidance for the 
agent throughout its ontogenesis so as to leave it a memory of its 
interactions, as in the case of complex cognition in the animal kingdom. 

 
- Proposal 3: To overcome the problem of the creation of relevant meaning 

in terms of the presence test, we suggest integrating humans into the loop 
so that a co-creation of meaning relevant to Man might also occur in the 
artificial system. 

 
These three proposals should not be addressed head-on. To us, it would seem 
appropriate to address the evolution of the environment without considering 
Man’s presence in the loop or even to set up interactive guidance without 
addressing the environment. However, for each of these stages, we must not lose 
sight of the ultimate necessity for these two elements in order to guide the 
theoretical or technical choices that must be made when designing them. The final 
objective is to design ontogenetic mechanisms for complex dynamical systems 
which will be guided by people. This objective is illustrated in figure 4. Artificial 
entities are complex systems enriched with ontogenetic mechanisms which guide 
their evolution via an ”en habitus deposition” of their interactions. This guidance 
can be conducted via a simulated environment, but must include human 
interaction. We shall see that it must be done using enactive interfaces. The 
complexity of online guidance such as this leads us to imagine progressive 
exercises linking the evolutionary and ontogenetic approaches. We shall thus 
present the elements which seem relevant to the instigation of our research 
program. Section 4.2 addresses the issue of the interface between Man and 
machine, and section 4.3 addresses that of guidance and ontogenesis. 
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Fig. 4 Artificial entity based on enaction metaphor. 

Interface requirements 

The interface between the system and its environment is one of the more delicate 
points of our proposal. Indeed, in enaction, the notion of the body as an entity able 
to feel and to act, originating from Merleau-Ponty, is essential and should be 
referred back to for an artificial system. The own-body conditions the creation of 
an own-world. What do own-world and body mean to an artificial entity? We 
must admit that, with our technique in its current state, there is a substantial 
difference between a machine and a living organism in terms of both body and 
cognition. Due to the technical implications, we are obliged to restore the 
separation between the cognitive element and its form which, together make up 
the equivalent of an own-body. The entity’s”form” is actually a keyboard, a 
mouse, a screen, a speaker or any other device which represents the behavioral 
interfaces of virtual reality. It thus transforms mechanical and energetic signals 
into electronic signals and vice versa. The form conditions the combinations of 
physical and thus electronic signals. These electronic signals represent the 
entrances/exits of the cognitive system (for which we reiterate the temporary 
status). The form simply limits the possible combinations between the entrances 
and exits of the cognitive system. In this context, these entrances and exits are not 
to be considered as representations of a pre-given world, but as a means of 
coupling for the cognitive system and the environment. That which is technically 
referred to as a system’s entrance or an exit point has no bearing on the notion of 
information but rather on dynamics. These entrances and exits are elements of the 
sensorimotor loops. The artificial system’s ability to act thus correlates with its 
ability to modify the links between the entrances and exits of the cognitive system 
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already bound within its cover. The complexity of the artificial self-world is 
relative to the richness of the possible advents of successive entrances/exits of the 
cognitive system. The more possible successive entrances and exits, the more 
variable, and thus more creative, the system will become. Of course, the 
complexity of the cover can make up for the simplicity of the cognitive system 
(McGeer,1990), but the opposite is also true. The nature of a sensorimotor’s 
system, complex as it may be, is still not comparable to that of a human. The 
claim that the machine must have a physical body similar to ours is thus 
problematic (Brooks, 1991). Whatever the physical interface enabling the machine 
and its environment to interact, this interaction is nothing but a disturbance of the 
digital sensorimotor system. This is not the case for wholly embodied biological 
human beings who must be endowed with enactive interfaces (Luciani & Cadoz, 
2007). These interfaces consist of replacing the symbolic communications (words, 
icons, etc.) between Man and machine with an interaction, using gestures and 
forces which then form ”phycons”. We believe that numerous types of enactive 
interfaces between the system and its user are possible as perception is a 
morphogenetic process (Gapenne, 2008). Once perception and virtual or digital 
action become dynamically interwoven within the machine, the technical interface 
can be both simple and varied. The important elements here are the presence of an 
uninterruptable dynamic, the absence of given symbols and the presence of 
evolving processes on both sides of the interface. A simple example of an 
interface like this is that used in minimalist experiments of the recognition and 
awareness of space in blind subjects (Auvray et al., 2005). For the blind subject to 
be able to perceive, she must be able to act and to find sensorimotor invariants. 
This experiment is even more interesting as (Stewart & Gapenne, 2004) has 
shown that these interactions can be recreated by a machine using qualitative 
descriptions of the experiment. Experiments such as these have led to the 
rethinking of the notion of virtual reality in order to bring it closer to the notion of 
resistance (Tisseau, 2001) and presence (Sanchez & Slater, 2005; Brogni et al., 
2007; Rohde & Stewart, 2008) which we referred to earlier: whatever the chosen 
means of interaction, the essence of virtual reality can be identified as its ability to 
resist actions, to enable the user to construct meaning. Similarly, ”real virtuality” 
could be created by an artificial system if it could negotiate its own resistance 
with that of its user and establish its own sensorimotor invariants. In this case, we 
would be confronted with an artificial sense-making comparable to that of 
humans. 
 

Guiding and explaining ontogenesis 

We have argued for the need to use models whose characteristics are irreversibly 
transformed through ontogenesis during the interaction, which also acts as 
guidance. To do so, we would need to associate learning techniques such as 
reinforcement (Sutton & Barto, 1998) or imitation (Mataric, 2001) with the 
principles of transformation and evolution. Different approaches could be used 
and combined. 
 
Learning by reinforcement, which allows an entity to use its past experience to 
modify its behavior is used as much for symbolic connotation models (Holland & 
Reitman, 1978; Wilson, 1987; Butz, Goldberg, & Stolzmann, 2000; Gerard, 
Stolzmann, & Sigaud, 2002) as for neurocomputational approaches (Daucé, Quoy, 
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Cessac, Doyon, & Samuelides, 1998; Henry, Daucé, & Soula, 2007). We discuss 
”symbolic connotation” approaches first as they are based on discrete variables 
and a selection of atomic actions. However, they are not confined to using a given 
representation of an environment but rather to create a model of possible coupling 
with this environment. They are thus viable for consideration in our context. 
Recently, (Chandrasekharan & Stewart, 2007) have shown that it is possible to 
associate a network of neurons which loop back to themselves with a Q-learning 
type of algorithm. The functioning of this network serves as a proto-
representation. The idea is that these protorepresentations act as internal epistemic 
structures which reflect the sensorimotor invariants learnt by experience. 
However, the learning process requires hundreds of simulated steps for a simple 
example (i.e. virtual ants foraging). This is a serious drawback for an online 
application of these approaches. In terms of neurocomputation, (Henry et al., 
2007) proposes reinforcement learning for a network of recurrent neurons. The 
network’s Hebbian plasticity is only activated in the presence of reward or 
punishment stimuli. This approach is also well adapted to our context. However, 
there is a difference between this approach and artificial dynamic cognition, as the 
experiments are not based on sensorimotor learning and the networks of neurons 
used are not CTRNN. 
 
To fully address the notion of transformation, the introduction of morphogenetic 
principles gives the advantage of being able to access irreversibility. With the 
work on modeling the growth of a mutlicellular organism, we therefore return to 
the biological origins of cognition (Federici & Downing, 2006; Stockholm, 
Benchaouir, Picot, Rameau, Neildeiz, & Paldi, 2007; Neildeiz, Parisot, Vignal, 
Rameau, Stockholm, Picot, Allo, Le Bec, Laplace, & Paldi, 2008). Certain authors 
even introduce the role of the environment into this transformation (Eggenberger, 
2004; Beurier et al., 2006). In robotics, it is the evolution of the body of the 
machine that is of interest (Dellaert & Beer, 1994; Hara & Pfeifer, 2003). 
Eventually, these approaches might access co-evolution in the fullest sense of the 
term. In the case of an EBAI, the connection which should be made is to integrate 
the principles of autopoiesis with those of morphogenesis so as to preserve the 
biological essence of an identity built up within the constraints of viability 
(Miller, 2003). The research pertaining to neurocomputing can be found in 
(Gruau, 1994; Nolfi & Parisi, 1995; G.vHornby & J.Pollack, 2002). Finally, in 
order to study these principles, we must rely on the formal tools adapted to the 
models which present the properties of multiple behavioral drifts. However, these 
tools are uncommon and in (Aubin, 1991)’s theory of viability, which aims to 
define all of the parameters of models capable maintaining their own behavior in a 
given area, we can observe an interesting perspective for associating the 
simulation’s bottom-up approach with the analysis of global properties. We 
believe this theory to be under-used, whilst it suggests a turnaround in terms of 
the most common point of view in studying complex systems. 
 
It remains that, in terms of an interaction between Man and machine, an 
association of the principles of reinforcement and transformation must be 
developed. 
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Conclusion 

The aim of this paper was to analyze and define new approaches for addressing 
the difficulties in constructing independent artificial systems which rely on 
enactive metaphor. First, we brought together the notions of Enactive Artificial 
Intelligence and Enaction-Based Artificial Intelligence. We particularly wanted to 
avoid addressing certain phenomenological aspects such as the notion of first-
hand experience in order to avoid any confusion with the human perspective of 
the paradigm. We then went on to demonstrate that the three current main 
approaches were confronted with the following three problems: 
 

1. The absence of the implementation of a real co-evolution characterized by 
its irreversibility. To overcome this problem, we suggest that the agent 
should more actively modify its environment and that in turn that 
environment should evolve and present a certain degree of irreversibility. 
 

2. The difficulty establishing a complex ontogenetic process ”which 
determines its own outcome”. This necessitates the modification of the 
phylogenesis/ontogenesis ratio that follows it so that auto-organization 
might prevail over auto-adaptation. As an answer to this problem, we 
suggest the use of interactive guidance throughout its ontogenesis, as is the 
case during the complication of cognition in the animal kingdom. 
 

3. The immeasurable difference between the creation of meaning for 
machines and for humans. Due to this difference, the use of machines 
capable of exchange or social partnership with humans is rendered 
extremely hypothetical. To answer this problem, we propose to integrate 
humans into the loop so that the creation of a meaning relevant to humans 
might also develop within the artificial system. We also suggest that a 
presence test, the enactive equivalent of the Turing test from a 
computational angle, should be taken by the machine. 

 
There follows the proposal to assimilate interaction between Man and machine 
during the ontogenetic process of an artificial entity via an enactive interface. One 
difficulty is thus to set up irreversible evolving mechanisms which are carried out 
in real time at the heart of the system. This is why we have listed the approaches 
that would enable us to clarify the ontogenetic transformation and to adapt them. 
Our perspectives tend towards the assimilation of these approaches via minimalist 
experiments associating evolutionary robotics with interactive guidance (Manac’h 
& De Loor 2009). Despite the complexity of the task to be accomplished, it seems 
to us that the inclusion of humans in the loop, as well as being essential in-fine, 
might help us to establish the strategies of evolution and guidance and to push 
back the limits of the obstacles highlighted by (Froese & Ziemke, 2009). 
Considerating the phenomenology of interactions between Man and machine in 
the constitution of sensorimotor skills for humans could in fact prove an important 
basis for establishing analogical principles for machines. Attempts made to model 
and simulate such interactions by (Stewart & Gapenne, 2004) seem to us to be an 
important starting point. They might help us to imagine minimal experiments 
combining phylogenesis and ontogenesis in establishing mechanisms of ”learning 
how to learn” via principles inspired from morphogenesis. These minimal 
interactions pass through simple but enactive interfaces, i.e. based on a 
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sensorimotor dynamic. The important thing is to establish sensorimotor coupling 
between Man and machine and to keep in mind the praxeological, rather than the 
ontological, aspect of the system. The intricacies could be provided later. 
 
These reflexions lead us to sketch some interesting perspectives in the context of 
interaction and virtual reality: Virtual environment constitute a good base to 
develop guided models capable of co-evolution. However, we must remain 
prudent because of the incommensurable distance between the continuous nature 
of the physical world which lead to the biological metabolism and the discrete 
nature of numerical systems. Numerical and natural worlds are based on two 
different phenomenal domains and the later is tremendously more complex that 
the former. Nevertheless, it doesn’t prevent the possibility to bring forth a world 
into a dynamical simulation, even if this world will be incommensurable with 
such of the human. The only interest for this artificial world would be in the fact 
that it would be constituted by the way of human-machine interaction and 
consequently that human might find a sense in these interactions. If it is the case, 
a man-machine common sense might be co-constituted. To do that, we must 
imagine experimentations easy enough to be supported by actual artificial models 
but also representative for a human in term of co-constitutive interaction. Artistic 
creation seems to be favorable to following this way.  
 
This by no means aims to disqualify the interest of approaches which do not 
include humans in the loop, which progress more quickly in terms of 
understanding internal mechanisms using artificial life and evolutionary or 
coevolutionary robotics. However, we here limit our research, having presented 
what seems to us to be the most important approaches. These thoughts are a result 
of our work on the necessary coupling between Man and machine for the co-
construction of knowledge (Parenthon & Tisseau, 2005; Desmeulles,Querrec, 
Redou, Kerdlo, Misery, Rodin, & Tisseau, 2006; Favier & De Loor, 2006; De 
Loor, Bénard, & Bossard, 2008). This is thus a challenge for software engineering 
which must consider the ”experience of the machine” and of its interactions, as 
well as those of the user. It is also a challenge for theoretical artificial intelligence 
which must integrate interaction at the heart of its models as suggested by (Goldin 
& Wegner, 2008). 
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