PhD In Information and Communication Technologies

Curriculum: Information and Communication Engineering

Department of Information Engineering, Electronic and Telecommunications (DIET)

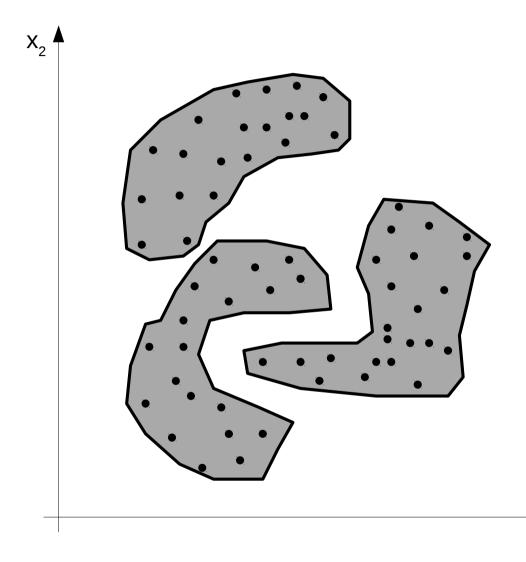
Distributed Algorithms for Data Mining and Knowledge Discovery

Supervisor: Prof. Antonello Rizzi Hosting professor: Prof. Salima Hassas Candidate: Mauro Giampieri

Clustering and Classification background

Mauro Giampieri 12/04/2019

Clustering

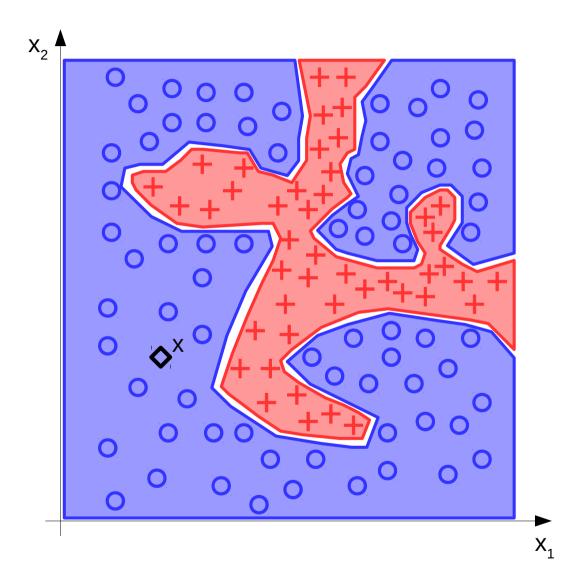


Discover space areas where patterns are more dense and group them in subsets called clusters

Mauro Giampieri 12/04/2019 A Supervised Classification System based on Evolutive Multi-Agent Clustering

X₁

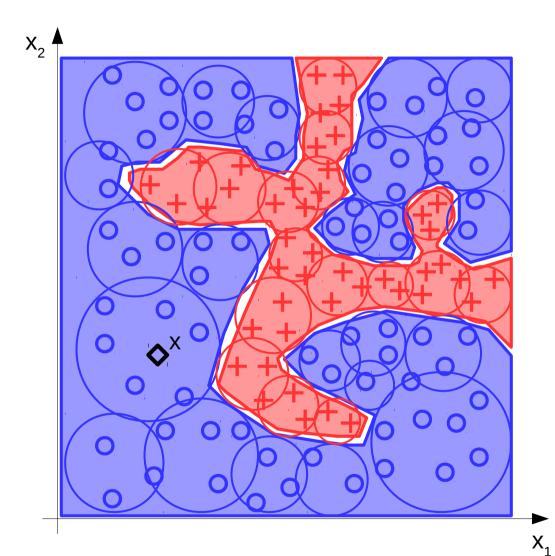
Classification



Segment space and associate a class label to each area. The built model is used to predict the class of unknown patterns

Mauro Giampieri 12/04/2019

Clustering based Classification



Classification may take advantage of clustering to extract information granules used for building a classification model

Mauro Giampieri 12/04/2019

A Supervised Classification System based on Evolutive Multi-Agent Clustering

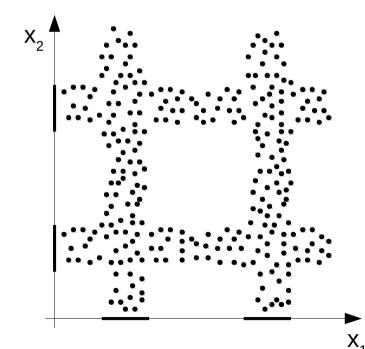
Mauro Giampieri 12/04/2019

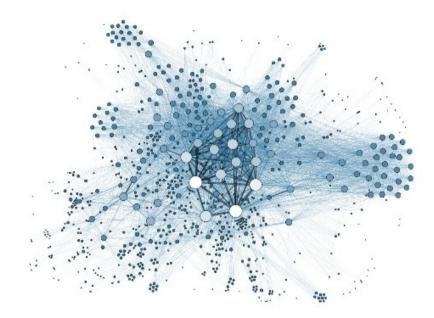
E-ABC: Evolutive Agent Based Clustering

Need: huge

datasets analysis

tools





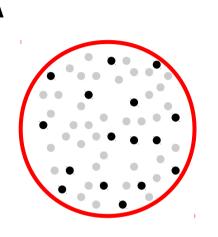
Observation: clusters may lie in different subspaces

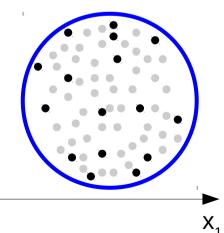
Mauro Giampieri 12/04/2019

E-ABC: Evolutive Agent Based Clustering

X₂

Assumption: clusters are still visible in a subsampled dataset





Mauro Giampieri 12/04/2019

State of the art

Main approaches:

- Multi-agent random walks grouping patterns in clusters
- Concurrent agents employing different algorithms
- Cooperating agents for clusters generation and validation

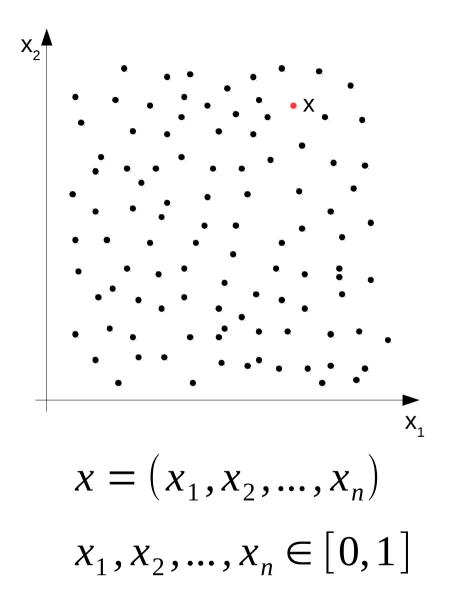
Missing:

• Simultaneous clustering and local metric learning (Acea requirements)

E-ABC: main features

- Structure suitable for big data analysis: each agent analyses a subsampling of the dataset
- Local metric learning: each agent acts in a different subspace
- Coping with non trivial (and possibly non metric) spaces: sequences, graphs, structured data

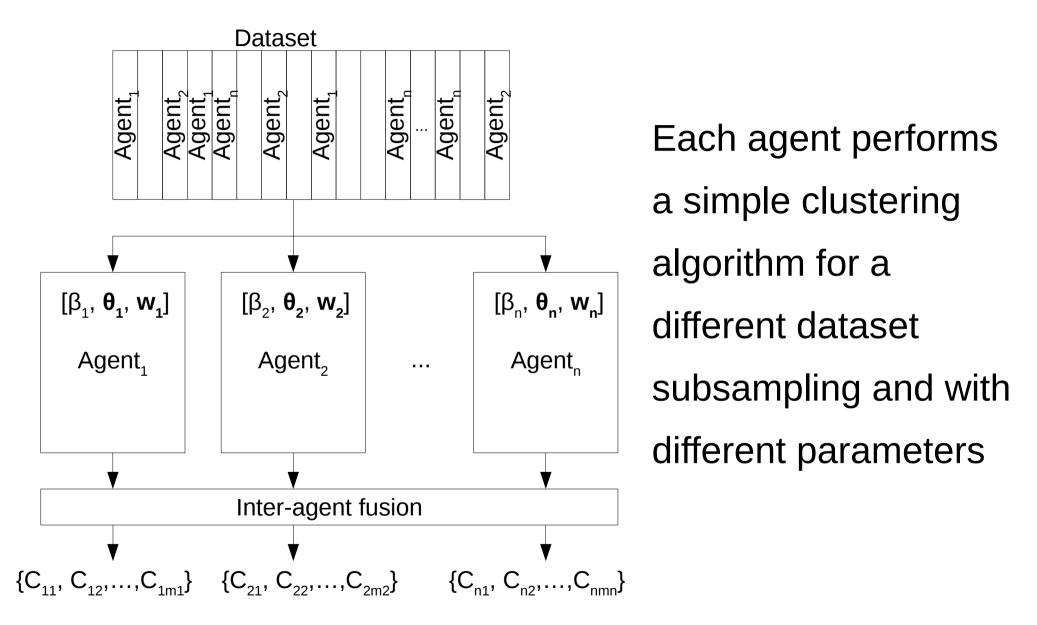
Pattern representation



For easier graphical representations, in the following we assume patterns can be described by cartesian coordinates in the unitary hypercube

Mauro Giampieri 12/04/2019

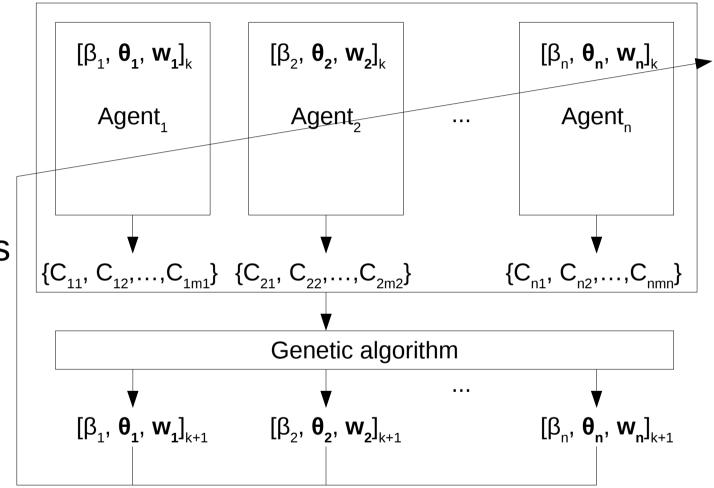
The algorithm: multi-agent structure



Mauro Giampieri 12/04/2019

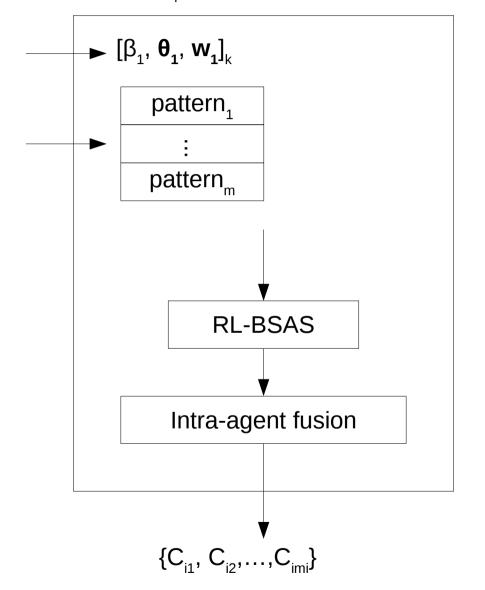
The algorithm: genetic optimization

The genetic algorithm updates [β_i, **θ**_i, **w**_i] by ranking the agents with respect to a suitable fitness function



The algorithm: agent structure

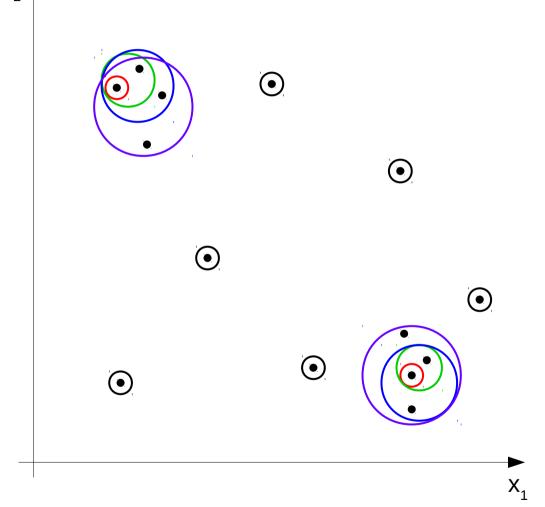
Agent_i



Each agent performs **RL-BSAS** initialized with its own parameters on the input dataset subsample. Close clusters are merged before the output is returned

Mauro Giampieri 12/04/2019

RL-BSAS (Basic Sequential Algorithmic Scheme)

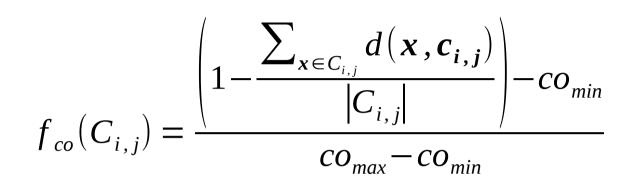


BSAS extracts a pattern and puts it in an existing cluster if close enough (below a treshold θ) or creates a new one otherwise. RL-BSAS deletes outlier made clusters which do not receive new patterns for a while (β deletion rate)

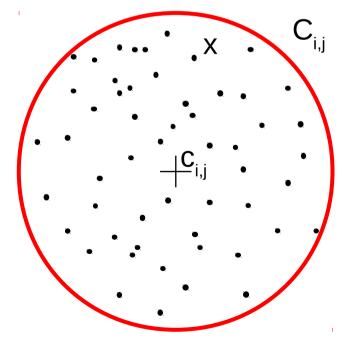
Mauro Giampieri 12/04/2019

 X_2

The algorithm: genetic optimization



The considered fitness function is a convex linear combination of compactness and cardinality



$$f_{ca}(C_{i,j}) = \frac{|C_{i,j}| - ca_{min}}{ca_{max} - ca_{min}}$$

$$F_{cc}(C_{i,j}) = \lambda \cdot f_{co}(C_{i,j}) + (1 - \lambda) \cdot f_{ca}(C_{i,j})$$

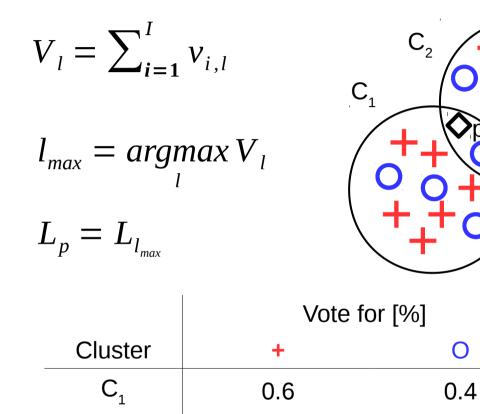
Mauro Giampieri 12/04/2019

E-ABC Classifier (E-ABC²): classification model

Ο

0.8

1.2



0.2

0.8

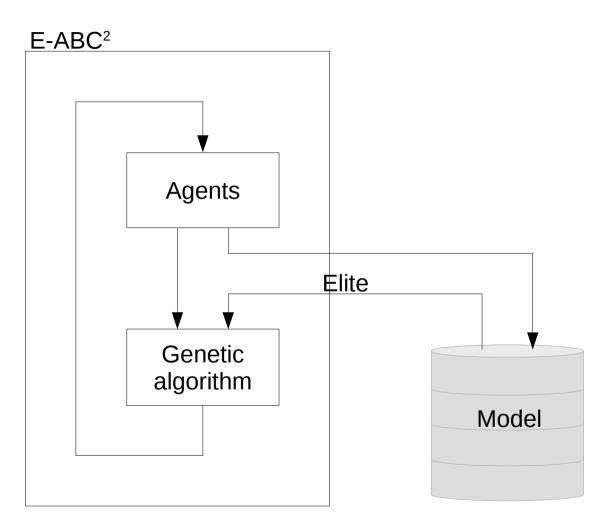
Each cluster votes for each class proportionally to its classes distribution. Votes are summed and the most voted label is associated to the pattern p to be classified

Mauro Giampieri 12/04/2019

 C_{2}

tot

E-ABC²: classification model building



At each generation the best clusters in terms of accuracy are collected in the classification model. The clusters collected in the model are used to build the elite for the next generation

Mauro Giampieri 12/04/2019

E-ABC²: genetic optimization

$$Acc(C_{i,j}) = \begin{cases} \frac{Cl_{C_{i,j}}^{r}}{Cl_{C_{i,j}}^{t}}, & Cl_{C_{i,j}}^{t} > 0\\ 0, & Cl_{C_{i,j}}^{t} = 0 \end{cases}$$

$$Acc_{gl} = \frac{Cl_{gl}^{r}}{|S_{v}|}, \quad M_{C} = \{C_{1}, C_{2}, \dots, C_{m}\}$$

The clusters fitness is updated by taking into accout their classification accuracy and global model accuracy. Accuracy can be replaced with a more robust performances measure

$$F(C_{i,j}) = Acc_{gl} \cdot Acc_{C_{i,j}} + (1 - Acc_{gl}) \cdot F_{cc}(C_{i,j}) \quad \text{(e.g. } F_1\text{-score)}$$

Mauro Giampieri 12/04/2019

Experimental setup

Dataset provided by ACEA (Italian electric distribution network in Rome), related to faults of Rome power grid:

- 2080 patterns
- 17 features (quantitative, temporal, categorical, sequences)

Patterns equally distributed over two classes:

- Standard functioning state
- Localized fault

Evaluation over 10 dataset split in:

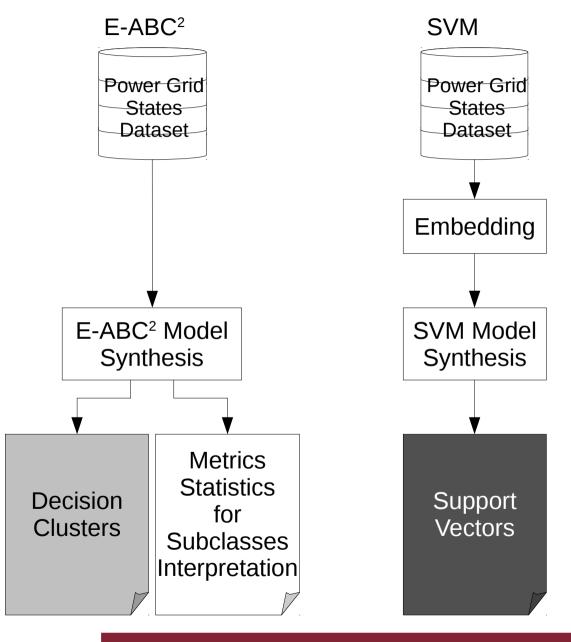
- Training set (50%)
- Validation set (25%)
- Test set (25%)

Pattern

Each pattern is composed of 17 unevenly typed features grouped in:

- Temporal timestamp about local fault (LF)
- Physical power grid equipments type, material, line voltage, current values
- Geographical LF position, primary station position
- Weather temperature max-min, humidity, mm of rain
- Event data (Time Series) short outages

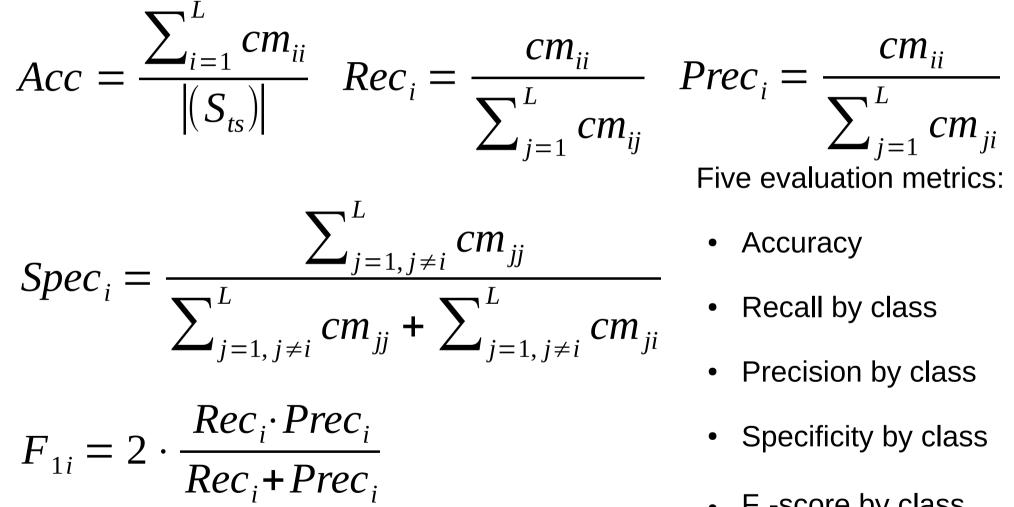
Workflow comparison



E-ABC² does not require embedding; it directly works in the features space: the result is a "grey box" model which is easily interpreted by Acea experts

Mauro Giampieri 12/04/2019

Experimental results: evaluation metrics



- Five evaluation metrics:

 - Precision by class
 - Specificity by class
 - F₁-score by class

Mauro Giampieri 12/04/2019

Experimental results: performances

Analysis of 10		Accuracy	Recall	Precision	Specificity	F ₁ -score
Analysis of 10	T ₁	0.906	0.790	0.991	0.995	0.879
executions, with	T ₂	0.842	0.707	0.907	0.945	0.795
different random	T ₃	0.918	0.810	1.000	1.000	0.895
	T_4	0.890	0.745	1.000	1.000	0.854
dataset splits, in	$T_{_{5}}$	0.984	0.962	1.000	1.000	0.981
terms of	T_6	0.909	0.790	1.000	1.000	0.882
accuracy, recall,	T ₇	0.952	0.893	0.996	0.997	0.942
accuracy, recail,	T ₈	0.936	0.855	0.996	0.997	0.920
precision,	T ₉	0.970	0.945	1.000	0.990	0.965
specificity and	$T_{_{10}}$	0.976	0.945	0.810	1.000	0.972
_	Mean	0.928	0.844	0.988	0.992	0.909
F ₁ -score	Variance	0.002	0.008	0.001	0.000	0.003

Mauro Giampieri 12/04/2019

Experimental results: comparative test

Results are

comparable with

those obtained

through well-

known

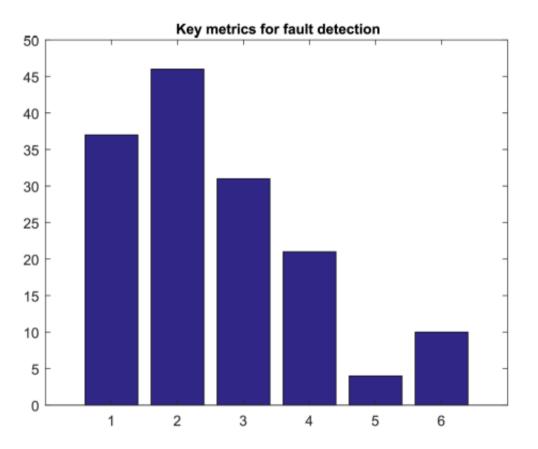
algorithms

		Accuracy	Recall	Precision	Specificity	F ₁ -score
-	SVM	0.925	0.862	0.962	0.973	0.909
	E-ABC ²	0.928	0.844	0.988	0.992	0.909

E-ABC² pros:

- Embedding not required
- "Grey box" model allowing results interpretation

Experimental results: statistics



Statistics with the most common selected metrics:

- Temperatures
- Rain

- 1 ['Location', '#SS', 'Max Temp', 'Min Temp', 'Rain', 'Int Breaker ']
- 2 ['#SS', 'Max Temp', 'Min Temp', 'Delta Temp', 'BEC', 'Int Breaker ', 'Petersen Alarms']
- 3 ['PS-LF dist', 'Max Temp', 'Min Temp', 'Delta Temp', 'Rain', 'BEC']
- 4 ['Location', 'Material', 'Max Temp', 'Rain']
- 5 ['Location', 'Material', 'Current OFB', 'Max Temp', 'Rain']
- 6 ['PS-LF dist', '#SS', 'Max Temp', 'Min Temp', 'BEC', 'Petersen Alarms']

Mauro Giampieri 12/04/2019

Conclusions

- Good performances in terms of accuracy, recall, precision, specificity and F_1 -score
- Scalable with respect to the dataset size
- Suitable approach for big data analysis
- Remarkable generalization capability in classification model synthesis
- Interpretable results provided by local metric learning

Work in progress

- Tests on datasets with higher complexity (number of patterns and number of features)
- Parallelize and distribute the agents
- Introduce a merging mechanism to reduce the number of clusters in the final model

Future works

- Improve speed and performance distributing agents and taking advantage of gossip protocol
- Synthesize the final model as a probability distribution function by means of kernel density estimation
- Tests with sequences and graphs datasets
- Compare performance when adopting different core clustering algorithms

Publications

- [1] Martino A., Giampieri M., Luzi M., Rizzi A. (2019) Data Mining by Evolving Agents for Clusters Discovery and Metric Learning. In: Esposito A., Faundez-Zanuy M., Morabito F., Pasero E. (eds) Neural Advances in Processing Nonlinear Dynamic Signals. WIRN 2017 2017. Smart Innovation, Systems and Technologies, vol 102. Springer, Cham
- [2] M. Giampieri, A. Rizzi. "An Evolutionary Agents Based System for Data Mining and Local Metric Learning". Proceedings of the 19th International Conference on Industrial Technology February 20-22, Lyon, France. 2018.
- [3] M. Giampieri, E. De Santis, A. Rizzi, F. M. Frattale Mascioli "A Supervised Classification System based on Evolutive Multi-Agent Clustering for Smart Grids Faults Prediction". Proceedings of International Joint Conference on Neural Networks (IJCNN) 2018, Rio De Janeiro, Brazil, July 8-13, 2018, pp. 4359-4366.