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a b s t r a c t

A Dynamic Rich Vehicle Routing Problem with Time Windows has been tackled as a real-world applica-
tion, in which customers requests can be either known at the beginning of the planning horizon or
dynamically revealed over the day. Several real constraints, such as heterogeneous fleet of vehicles, mul-
tiple and soft time windows and customers priorities, are taken into consideration. Using exact methods
is not a suitable solution for this kind of problems, given the fact that the arrival of a new request has to
be followed by a quick re-optimization phase to include it into the solution at hand. Therefore, we have
proposed a metaheuristic procedure based on Variable Neighborhood Search to solve this particular prob-
lem. The computational experiments reported in this work indicate that the proposed method is feasible
to solve this real-world problem and competitive with the best results from the literature. Finally, it is
worth mentioning that the software developed in this work has been inserted into the fleet management
system of a company in Spain.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Many practical applications related to logistics in intelligent
freight transportation systems lead to vehicle routing problems
with varying degrees of difficulty regarding the problem con-
straints. The basic Vehicle Routing Problem (VRP) is composed of
a set of customers that have to be served. A fleet of homogeneous
vehicles dispatched from a single depot is used to serve them,
returning to the same depot once the routes have been completed.
The constraints associated to the problem are that vehicles can
carry a maximum capacity and each customer has to be visited
once by a single vehicle. Contrary to these classical static vehicle
routing problems, real-world applications often include evolution,
as introduced by Psaraftis (1980), which takes into consideration
the fact that the problem data might change over the planning
horizon. Latest developments in fleet management systems and
communication technology have enabled people to quickly access
and process real-time data. Therefore, Dynamic Vehicle Routing
Problems (DVRPs) have been lately given more attention. The
aim of DVRPs is to dynamically route customers taking into
account not only the requests known at the beginning of the
planning horizon, but also new customer requests that arrive over
it. Last decade has been characterized by an increasing interest for
DVRPs, with solution methods ranging from mathematical pro-
gramming to metaheuristics. For a survey on DVRPs, we refer the
interested reader to the reviews, books, and special issues by
Gendreau and Potvin (2004), Ghiani, Guerriero, Laporte, and
Musmanno (2003), Ichoua, Gendreau, and Potvin (2007), Larsen,
Madsen, and Solomon (2008), and Pillac, Gendreau, Gueret, and
Medaglia (2013).

The aim of this work is to solve a real-world DVRP that has been
posed to the authors by some companies in the Canary Islands,
Spain. The resulting software will be embedded into a fleet man-
agement system. The requirements provided by the companies
lead to the consideration of several constraints, which have to be
integrated into the standard DVRP. In the literature, there is a
tremendous number of research papers related to VRP with addi-
tional constraints. With the purpose of collecting all these possible
constraints, Vidal, Crainic, Gendreau, and Prins (2013) have given
the notion of attributes of VRPs. Attributes refer to additional con-
straints that aim to better take into account the specificities of real-
world applications. These attributes complement the traditional
VRP formulations and lead to a variety of Multi-Attribute Vehicle
Routing Problems (MAVRPs), which are supported by a well devel-
oped literature that includes a wide range of heuristics and meta-
heuristics (Glover, 1986). Furthermore, some MAVRPs combine
multiple attributes together, yielding the so-called Rich VRPs
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(RVRPs) (Schmid, Doerner, & Laporte, 2013). The problem tackled in
this work corresponds to this last class of RVRPs. The attributes
that are taken into consideration in this work are summarized in
the following items.

� Heterogeneous fleet. When the number of available vehicles is
not limited, the problem is usually referred to as Vehicle Fleet
Mix Problem (VFMP). In the case in which the fleet of vehicles
is limited, a more difficult version of the problem, called
Heterogeneous Fleet VRP (HFVRP), is revealed. This work han-
dles a fixed set of heterogeneous vehicles. We refer to the so
obtained problem as Fixed HFDVRP (FHFDVRP). Most literature
papers assume an unlimited number of available vehicles, so
that the objective is generally to obtain a solution that either
minimizes the number of vehicles and/or total travel cost.
However, the real-world problems arising in companies face
several resource constraints such as a fixed fleet. Therefore, if
there is not any feasible solution for the instance at hand
regarding the number of available vehicles, it is required to
determine what a good solution would then be for the company
(adding more vehicles, letting the drivers work after their work-
ing shift, postponing services and maximizing the number of
customers served, etc.).
� Soft and Multiple time windows. Additional constraints arise if

time windows are associated to the depot and customers,
obtaining the FHFDVRP with Time Windows (FHFDVRPTW). In
the implementation carried out in this paper, multiple time
windows for customers, which can differ among them, are
taken into consideration (Ibaraki et al., 2005, 2008). In any case,
each customer is served at maximum once during the planning
horizon. Furthermore, the working shifts of the vehicles can be
divided into time intervals, which may differ among vehicles.
Finally, soft time windows and working shifts are considered,
since some of them can be violated. Particularly, if the working
shifts corresponding to the vehicles can be extended, extra
hours are allowed for the drivers. This leads to additional salary
costs; the extra time is more expensive.
� Customer priority. The companies under consideration in this

work assign priorities to some customers. Depending on these
priorities, some services can be postponed until the next day.
Together with extending the working shifts of the vehicles,
postponing customers services allows the system obtaining
valid solutions for the companies. Therefore, in the case in
which the fixed fleet of vehicles is not sufficient for serving all
customers, allowing extra time and/or postponing customers
service are possible alternatives if they are permitted by the
companies.
� Vehicle-Customer restrictions. There are also vehicle-customer

limitations, which indicate that some customers cannot be
served by some vehicles. Therefore, there will be a set consist-
ing of vehicle-customer constraints that can be due to several
reasons such as road restrictions.

In the rest of the paper, we will refer to the problem considered
in this work as Dynamic Rich Vehicle Routing Problem with Time
Windows (DRVRPTW).

Additionally to these attributes, different objective functions
can be required by the companies to solve the problem at hand.
While the optimality criterion of minimizing the total traveled dis-
tance is the most commonly used in the VRP literature, more
recent approaches use other objective functions. Jozefowiez,
Semet, and Talbi (2008) provide an overview of the research into
routing problems with several objectives. In addition to the mini-
mization of the total traveled distance, important objectives are
the minimization of the number of vehicles in use, the minimiza-
tion of the total required time and some other objectives related
to reach a balance between the routes. In this work, the main
objective is to minimize the total traveled distance. Although the
problem under consideration in not a multi-objective one, a set
of other objective functions are considered together with the main
one, as it will be explained below; particularly, minimizing the
number of vehicles, extra hours, postponed services and cost. All
these functions will be used following a lexicographical order.

Due to the difficulty for solving DRVRPTWs to optimality, heuris-
tics and metaheuristics constitute an increasingly active research
area in the literature. In our work, a General Variable
Neighborhood Search algorithm (GVNS) (Hansen, Mladenovic, &
Moreno Perez, 2010) is proposed. The main differences between
the problem tackled in this paper and the ones proposed in the
literature are related to the fact that we consider a fixed heteroge-
neous fleet of vehicles and several real-world constraints/attributes.

The main contributions of this paper rely upon the fact that
theDVRPTW including several real-world constraints required by
some companies has been tackled. A fixed heterogeneous fleet of
vehicles is considered. Moreover, taking into account that the fleet
is fixed, there might be customers which cannot be served during
the planning horizon and the so obtained infeasibility has to be
managed. Two alternative solutions are given in this work; extend-
ing the working shifts of the drivers or maximizing the number of
customers served postponing the remainder. As far as we know,
this is the first work in the literature that uses all the previously
explained attributes together in DVRPTWs. Computational experi-
ments over the most common instances in the literature are car-
ried out in this paper. The obtained results are competitive if we
compare them with the results in related works. Moreover, some
preliminary experiments performed with the fleet management
system are quite promising. It is worth mentioning that the static
part of the solution method proposed in this work, implemented
by means of metaheuristics, has already been integrated into the
optimization tool used by the fleet management system of the
company (De Armas, Melián-Batista, Moreno-Pérez, & Brito,
2015). Finally, it is important to notice that the algorithm proposed
in this work can be run by deactivating any or all the attributes
mentioned above. Therefore, it is a general purpose algorithm for
solving DVRPTWs.

The rest of the paper is organized as follows. Section 2 reports the
related works. Section 3 is devoted to describe the real-world
Dynamic Rich Vehicle Routing Problem with Time Windows
(DRVRPTW) tackled in this work. Section 4 summarizes the meta-
heuristic procedure developed to solve the problem at hand.
Section 5 reports the computational experiments performed in this
work. Finally, the conclusions and future works are given in Section 6.
2. Related work

In general, solution approaches for DVRPTWs can be divided
into two main classes: those applied to dynamic and deterministic
routing problems without any stochastic information, and those
applied to dynamic and stochastic routing problems, in which
additional stochastic information regarding the new requests is
known. Given the fact that in the real-world application tackled
in this paper, the information is dynamically given by a company
fleet management system, we will focus on the first class of
dynamic problems. In this case, solution methods can be based
on either periodic or continuous re-optimization. Periodic
optimization approaches firstly generate an initial solution consist-
ing of a set of routes that contain all the static customers. Then, a
re-optimization method periodically solves a static routing
problem, either when new requests arrive or at fixed time slots
(Chen & Xu, 2006). On the other hand, continuous re-optimization
approaches carry out the optimization over the day by keeping
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high quality solutions in an adaptive memory. In this case, vehicles
do not know the next customer to be visited until they finish the
service of a request. The following literature references regarding
periodic optimization approaches to solve the DVRPTW are worth
mentioning. Chen and Xu (2006) proposed a dynamic column
generation algorithm for solving the DVRPTW based on their
notion of decision epochs over the planning horizon, which indi-
cate the moments of the day when the re-optimization process is
executed. Some other papers that make also use of time slices
and solve static VRPs are due to Montemanni, Gambardella,
Rizzoli, and Donati (2005), Rizzoli, Montemanni, Lucibello, and
Gambardella (2007) and Khouadjia, Sarasola, Alba, Jourdan, and
Talbi (2012). In these last papers, requests are never urgent and
can be postponed since time windows are not handled. On the
other hand, the work by Hong (2012) does consider time windows
and therefore, some requests can be urgent. Hong proposes a Large
Neighborhood Search (LNS) algorithm for real-time vehicle routing
problem with time windows, in which each time a new request
arrives, it is immediately considered to be included in the current
solution. Xu, Wang, and Yang (2013) also takes into account the
same problem with urgent requests, but uses a VNS as solving
algorithm. Finally, Ghannadpour, Noori, Tavakkoli-Moghaddam,
and Ghoseiri (2014) tackle a DVRPTW, in which the time windows
are considered as fuzzy. Moreover, they use a homogeneous fleet of
vehicles and multiple objective functions.

A tremendous amount of work in the field of vehicle routing
problem using Variable Neighborhood Search (VNS) has been pub-
lished. Bräysy (2003) gives the internal design of the Variable
Neighborhood Descent (VND) and Reduced Variable
Neighborhood Search (RVNS) algorithms in detail, analyzes the
VRPTW problem, and indicates the VND algorithm as one of the
most effective ways to solve VRPTW problems. Polacek, Hartl,
Doerner, and Reimann (2004) design a VNS to solve the multidepot
vehicle routing problem with time windows MDVRPTW. Kytöjoki,
Nuortio, Brysy, and Gendreau (2007) design a guided VNS algo-
rithm to handle the 32 existing large-scale VRP problems and com-
pare it with a tabu search algorithm (TS). The result showed that
the VNS algorithm was more effective than the TS algorithm in
solving time. Goel and Gruhn (2008) introduce the RVNS to solve
the general VRP problem including time windows, vehicle con-
straints, path constraints, travel departure time constraints, capac-
ity constraints, the order models compatibility constraints,
multisupplier point of the orders, and transport and service posi-
tion constraints. Hemmelmayr, Doerner, and Hartl (2009) propose
the VNS algorithm for periodical VRP problem. Fleszar, Osman, and
Hindi (2008) adopt a VNS algorithm to solve the open-loop VRP
problem and test 16 benchmark problems. In summary, several
literature papers have proved the effectiveness of developing
VNS algorithms to solve a wide variety of VRPs, but none of them
has tackled a Dynamic Rich Vehicle Routing Problem with Time
Windows.
3. Problem definition

The real-world DRVRPTW solved in this paper is defined by
means of a network G ¼ ðV;AÞ, where V is the set of nodes, and
A is the set of arcs. It contains the depot, D, and a set of n customer
nodes, C ¼ ðCs; CdÞ, which represent the requests characterized by
their demand, location and time windows. Cs is the set of static cus-
tomers, that is, those known at the beginning of the planning hori-
zon. On the other hand, Cd is the set of dynamic customers, which
appear over the planning horizon. Customer i can have several time
windows during the day, although it is visited at maximum once.
The depot has also an associated time window, that is unique,
and a set of m heterogeneous vehicles with different capacities.
Moreover, associated with each vehicle, k, there are also one or
more time intervals of availability during the planning horizon,
that represent its working shift and that can be different from
one vehicle to another.

Designing a real-time routing algorithm depends to a large
extent on how much the problem is dynamic. In order to measure
the dynamism of a given problem instance, Lund, Madsen, and
Rygaard (1996) defined the degree of dynamism of the system as
follows:

d ¼ jCdj
jCj � 100; ð1Þ

where jCdj indicates the number of dynamic customers and jCj the
total number of customers. Moreover, since the disclosure time of
requests is also important, Larsen (2001) defined the reaction time
of customer i, that measures the difference between the arrival
time, ati, and the end of the corresponding time window, biwi

.
Notice that longer reaction times indicate that there is more flexi-
bility to insert any new request into the existing routes.
Therefore, the effective degree of dynamism provided by Larsen is
stated as follows:

de
TW ¼

1
N

X
i2C

1� biwi
� ati

T

� �
; ð2Þ

where T is the length of the planning horizon.
In order to solve the DRVRPTW, firstly, we need to obtain the

initial routes containing the static customers Cs. This means that
we must start from a solution to RVRPTW, which consists in deter-
mining a set of routes of minimal total traveled distance, starting
and ending at a depot, such that every customer in Cs should be vis-
ited exactly once by one vehicle. The sum of the demands associ-
ated with the nodes contained in a route never exceeds the
corresponding vehicle capacity. Moreover, each node must be vis-
ited within its time window and it should be done within the
corresponding working shift of the used vehicle. Notice that, given
the fact that the fleet of vehicles of the company is fixed, it might
not be possible to obtain a feasible initial solution. However, in
order to obtain an initial solution valid for the company, it is pos-
sible to allow exceeding the working shifts of the vehicles, using
extra time, which incurs additional cost. Furthermore, we might
allow postponing customer services, what means that some cus-
tomers might not be served during the current planning horizon.
If these two conditions were not permitted, every node that cannot
be inserted in a plan satisfying the problem constraints, has to be
rejected. Nevertheless, in order to provide the company with a
solution that includes all customer requests, the constraints can
be relaxed so that the time windows of the customers can be
exceeded. It means that infeasibilities appear.

Therefore, although minimizing the total traveled distance is
the main objective when determining the set of routes, additional
objective functions that have to be minimized using a hierarchical
approach, have been taken into account. Hierarchical evaluation
means that the objective functions are considered in a certain lex-
icographical order, so that if two selected solutions have equal val-
ues for an objective function, then the next one in the order is
considered to break ties. The lexicographical order considered in
the solution of the problem is the following.

� Total infeasibility (Sum of the times that the customers time
windows are exceeded).
� Number of postponed services.
� Number of extra hours (Sum of the times that the vehicles

working shifts are exceeded).
� Total traveled distance.
� Total number of routes.
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� Time balance (difference between the largest and shortest
routes made by one vehicle regarding time) (Melian-Batista,
De Santiago, AngelBello, & Alvarez, 2014).
� Salary costs for each driver of each vehicle (extra hours are

more expensive).

Note that this order for evaluating the objective functions
intends to firstly eliminate infeasibility, number of postponed ser-
vices and number of extra hours required by the vehicles. If we are
Fig. 2. Insertion of a dynamic customer.

Table 1
Computational results of type 1 problems for various degrees of dynamism.

Type Dod (%) Avg. vehicle number Avg. total distance

GVNS Ref. ARE (%) GVNS Ref. AR

R1 90 14.67 14.25 2.95 1250.38 1335.94 �6
70 14.75 14.33 2.93 1267.78 1331.34 �5
50 14.58 14.08 3.55 1267.47 1295.81 �2
30 14.25 13.92 2.37 1256.04 1286.63 �2
10 14.17 13.50 4.96 1250.16 1257.08 �0

C1 90 10.67 10.78 �1.03 963.33 1039.77 �7
70 11.33 10.78 5.10 1009.47 1031.68 �2
50 11.00 10.89 1.01 992.97 1001.18 �0
30 11.56 10.56 9.47 949.95 962.08 �1
10 10.56 10.56 0.00 898.30 895.77 0

RC1 90 14.63 14.00 4.50 1470.45 1513.94 �2
70 14.88 13.88 7.20 1489.28 1511.29 �1
50 14.50 13.63 6.38 1484.01 1514.72 �2
30 14.38 13.88 3.60 1471.00 1492.22 �1
10 13.50 13.38 0.90 1417.07 1436.23 �1

Avg 13.30 12.83 3.59 1229.18 1260.38 �2
able to reduce to zero these three objective function values, solu-
tions that adjust to the company resources are obtained.
Therefore, in order to obtain the best possible solution, it is given
higher priority to those solutions that do not have infeasibilities,
include all the services and accomplish the working shifts of the
drivers.

Once the initial static RVRPTW is solved, we have an initial plan
composed of a number of routes, so that the routes can be started
and the dynamic customers can appear within the planning hori-
zon. The DRVRPTW is strongly related to the static RVRPTW, as it
can be described as a routing problem in which information about
the problem can change during the optimization process. As con-
ventional static RVRPTWs are NP-hard, DRVRPTW also belongs to
the class of NP-hard problems. It is a discrete-time dynamic prob-
lem, and can be viewed as a series of instances; each instance is a
static problem, which starts at a certain time and must be solved
within a specific deadline. Fig. 1 shows a solution example, in
which the static and dynamic nodes can be distinguished. The solid
lines are already traversed by the vehicles, whereas dashed lines
can be modified in order to insert a new dynamic customer, as
Avg. insertion time Ratio post. customers

E (%) GVNS Ref. ARE (%) GVNS (%) Ref. (%) ARE (%)

.84 14.50 17.43 �20.21 3.83 2.33 64.38

.01 10.95 21.73 �98.45 3.08 1.75 76.00

.08 11.84 28.27 �138.77 1.92 0.67 186.57

.44 15.70 46.99 �199.30 1.58 0.58 172.41

.55 15.29 67.99 �344.67 0.50 0.17 194.12

.93 7.81 6.60 18.33 0.00 0.22 �100.00

.20 7.67 10.79 �40.68 0.00 0.22 �100.00

.83 6.22 19.01 �205.63 0.00 0.22 �100.00

.28 9.13 28.02 �206.90 0.00 0.33 �100.00

.29 13.74 45.40 �230.42 0.00 0.22 �100.00

.45 15.39 17.31 �12.48 1.88 2.00 �6.00

.48 13.43 25.32 �88.53 2.13 1.88 13.30

.07 13.72 48.78 �255.54 1.75 1.38 26.81

.29 16.51 45.26 �174.14 1.00 1.13 �11.50

.04 23.01 83.52 �262.97 0.50 1.13 �55.75

.56 12.99 34.16 �150.69 1.21 0.95 10.69



Table 2
Computational results of type 2 problems for various degrees of dynamism.

Type Dod (%) Avg. vehicle number Avg. total distance Avg. insertion time Ratio post. customers

GVNS Ref. ARE (%) GVNS Ref. ARE (%) GVNS Ref. ARE (%) GVNS (%) Ref. (%) ARE (%)

R2 90 4.00 3.55 12.68 1086.78 1047.82 3.72 16.47 13.20 24.77 0.00 0.09 �100.00
70 4.36 3.64 19.78 1078.03 1032.04 4.46 12.74 20.15 �36.77 0.00 0.09 �100.00
50 4.55 3.82 19.11 1071.83 1016.52 5.44 11.96 30.03 �60.17 0.00 0.00 0.00
30 4.73 4.91 �3.67 1035.60 985.49 5.08 10.18 57.07 �82.16 0.00 0.00 0.00
10 5.27 6.36 �17.14 1000.90 950.00 5.36 9.48 68.58 �86.18 0.00 0.09 �100.00

C2 90 3.38 3.25 4.00 668.99 636.79 5.06 16.67 6.12 172.39 0.00 0.00 0.00
70 3.38 3.13 7.99 672.95 636.47 5.73 14.03 10.01 40.16 0.00 0.00 0.00
50 3.13 3.13 0.00 623.10 604.98 3.00 20.25 16.80 20.54 0.00 0.00 0.00
30 3.25 3.63 �10.47 624.81 651.42 �4.08 34.82 29.87 16.57 0.00 0.00 0.00
10 3.25 3.00 8.33 615.93 594.67 3.58 80.78 59.70 35.31 0.00 0.00 0.00

RC2 90 4.63 4.00 15.75 1275.93 1257.19 1.49 28.05 11.34 147.35 0.00 0.13 �100.00
70 5.13 3.88 32.22 1234.36 1239.46 �0.41 16.07 19.26 �16.56 0.00 0.00 0.00
50 5.88 4.25 38.35 1200.26 1190.54 0.82 11.46 27.84 �58.84 0.00 0.13 �100.00
30 5.88 5.38 9.29 1172.33 1166.04 0.54 11.68 41.51 �71.86 0.00 0.25 �100.00
10 6.13 6.75 �9.19 1153.43 1103.30 4.54 13.27 55.55 �76.11 0.00 0.00 0.00

Avg 4.46 4.18 8.47 967.68 940.85 2.95 20.53 31.14 �2.10 0.00 0.05 �40.00
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shown in Fig. 2. Note that a customer can have more than one time
window, although it has to be visited at maximum once during the
day.

The fundamentals kept to solve the DRVRPTW are the
following:

� Vehicles assigned to routes must serve the planned static cus-
tomers, and vehicles in the depot are dispatched according to
the actual needs. If a dynamic customer cannot be inserted into
the current routes and there are unused vehicles, a new route
can be created to serve the customer and the departure time
of the vehicle will be the sum of the arrival time of the customer
and the processing time of the insertion. This processing time
corresponds to the computational time needed to decide where
to insert the new customer in the plan of routes.
� Dynamic customer requests are received in real time, and ser-

viceability of requesting customer is immediately verified. The
corresponding customer is acceded to the planning routes as
quickly as possible.
� A customer is called target customer of a vehicle if the vehicle is

moving towards it or is serving its predecessor customer, and
must be carefully adjusted. Adjusting a target customer, i.e.,
inserting a new customer before it, will change the line in which
a vehicle is moving, and can cause confusion in the traveling
line. For this reason, adjusting target customers should be
avoided as much as possible, and, in this work, it will be only
permitted in the two following cases:
– The time window of the new customer would be violated

otherwise.
– Adjusting the target customer avoids some constraints

violations.
� The time spent on doing the insertion of a new customer is

taken into account, because meanwhile vehicles continue
moving.

4. Solution approach

Our interest is focused on metaheuristic methodologies for solv-
ing the DRVRPTW that are capable of producing applicable high
quality solutions within reasonable computing times. The solution
method proposed in this work to solve the DRVRPTW is summar-
ized in Algorithm 1. First of all, an initial solution consisting of all
the static customers is generated by using an adapted Solomon
Heuristic (Solomon, 1987). The obtained solution is then improved
running the General Variable Neighborhood Search (GVNS)
(Hansen et al., 2010) described in Algorithm 2, developed in De
Armas et al. (2015) to solve the static problem with all the con-
straints required by the companies for which this dynamic problem
has also to be solved. This process (lines 3–4) is iterated for a certain
number of iterations and the best reached solution is selected to be
implemented by the company. In this step, all the requests known
at the beginning of the planning horizon are already inserted in a
route. Then, the dynamic heuristic is applied for each new customer
that appears while the vehicles are working.

In the next sections, each of these steps are described in detail,
from the creation of the initial solution to obtaining dynamic
solutions.

Algorithm 1. General algorithm
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4.1. Creation of the initial solution with static customers Cs

In order to generate an initial solution, an ordering of the
available vehicles is obtained according to which the vehicles
are selected to create the routes. This ordering is given taking
into account the capacity of each vehicle, in such a way that
vehicles with greater capacity are selected before. If there are
multiple vehicles with the same capacity, then they will be
sorted according to the number of consecutive hours that the
vehicle is available, so that vehicles having larger working shifts
are selected first. Once having the selection order of the
vehicles, the routes are created one after the other. To create
a route, a vehicle and a seed customer, which will be selected
among the customers that are the farthest from the depot, have
to be chosen. Each customer is then attempted to be inserted,
but if it is not compatible with the vehicle due to restrictions,
the next vehicle in the sorted list is chosen. After inserting
the seed customer, the proposed procedure follows the
Solomon algorithm (Solomon, 1987), establishing the route loca-
tions where to insert each unplanned customer and selecting
the best customer to be inserted. When no more customers
can be inserted into the current route, the next one is started
to be created.

4.2. General Variable Neighborhood Search

General Variable Neighborhood Search (GVNS) is a meta-
heuristic for solving combinatorial and global optimization
problems based on a simple principle; systematic changes of
neighborhoods within the search. Many extensions have been
made, mainly to be able to solve large problem instances
(Hoeller, Melian, & Voss, 2008; Melian, 2006; Moreno-Vega &
Melian, 2008).

GVNS metaheuristic starts from an initial solution. Then, a
so-called shaking step is performed by randomly selecting a
solution from the first neighborhood. This is followed by
applying an iterative improvement algorithm. This procedure
is repeated as long as a new incumbent solution is found.
If not, one switches to the next neighborhood (which is typi-
cally larger) and performs a shaking step followed by the
iterative improvement. If a new incumbent solution is found,
one starts with the first neighborhood; otherwise one pro-
ceeds with the next neighborhood, and so forth. Starting from
an initial solution, this metaheuristic consists of the shaking,
the local search, and the move decision phases, which are
explained below.

Algorithm 2 shows this process, where N kðk ¼ 1; . . . ; kmaxÞ is a
finite set of neighborhood structures, and N kðsÞ the set of solutions
in the kth neighborhood of a solution s. Usually, a series of nested
neighborhoods is obtained from a single neighborhood by taking
N 1ðsÞ ¼ N ðsÞ and N kþ1ðsÞ ¼ N ðN kðsÞÞ, for every solution s. This
means that a move to the k-th neighborhood is performed by
repeating k times a move into the original neighborhood. A solu-
tion s0 2 S is a local minimum with respect to N k if there is no solu-
tion s 2 N kðs0Þ# S better than s0 (i.e., such that f ðsÞ < f ðs0Þwhere f is
the objective function of the problem). Moreover, N l,
(l ¼ 1; . . . ; lmax) is the finite set of neighborhood structures that will
be used in the local search.

Therefore, in this algorithm we can see that the loop
corresponding to lines 2–11 is performed for a number of itera-
tions, M, set by the computational experience. The processes of
shaking, local search and move decision in lines 5, 6 and 11, respec-
tively, are iteratively performed until k ¼ kmax. In

Algorithm 2. General Variable Neighborhood Search (GVNS)
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the first place, the shaking step generates a solution s0 at random
from the kth neighborhood of s (s0 2 N kðsÞ). Then, a local search
based on VND is performed from s0 to obtain a solution s00. The
VND procedure uses the N l neighborhoods.

4.2.1. Shaking
Shaking is a key process in the GVNS algorithm design. The

main purpose of the shaking process is to extend the current solu-
tion search space, to reduce the possibility that the algorithm falls
into the local optimal solution in the follow-solving process, and to
get the better solution. The set of neighborhood structures used for
shaking is the core of the GVNS.

The set of neighborhoods selected for the shaking process of the
GVNS are not nested, and different kinds of movements are imple-
mented following the ideas described by Repoussis,
Paraskevopoulos, Tarantilis, and Ioannou (2006). The proposed
sequence of movements is defined as follows: GENI;Or-
opt; CROSS;2-opt; relocate and swapInter. This sequential selection
is applied based on cardinality, which implies moving from rela-
tively poor to richer neighborhood structures. The GENI operator
(Gendreau, Hertz, & Laporte, 1992) chooses a customer from a
route and inserts it into other route between the two closest cus-
tomers to the previous one. The Or-opt operator (Or, 1976) relo-
cates a chain of two consecutive customers of a route. The CROSS
operator (Taillard, Badeau, Gendreau, Guertin, & Potvin, 1997)
selects a subsequence of two customers from a route, other subse-
quence of two customers from other route, and interchange both
subsequences. The 2-opt operator (Croes, 1958) chooses two cus-
tomers of a route and invert the sequence of customer visited
between them. The relocate operator (Cassani & Righini, 2004)
deletes a customer from a route and insert it into another route.
The swapInter operator selects a customer from a route, other cus-
tomer from other route, and swaps them. Note that these move-
ments are performed in the case in which no more infeasibility,
postponed services or extra hours are incurred.

4.2.2. Local search
In a GVNS algorithm, local search procedures will search the

neighborhood of a new solution space obtained through shaking
in order to achieve a locally optimal solution. Local search is the
most time-consuming part in the entire GVNS algorithm frame-
work and decides the final solution quality, so that computational
efficiency must be considered in the design process of local search
algorithm.

As explained before, N l; ðl ¼ 1; . . . ; lmaxÞ is the finite set of
neighborhood structures that will be used in the local search,
conducted by a Variable Neighborhood Descent (VND). The
Variable Neighborhood Descent (VND) method is obtained if the
change of neighborhoods is performed in a deterministic way.
Its steps are presented in Algorithm 3. The sequence of
movements considered in this work is the following: relocate,
swapIntra and swapInter. The two first ones work as explained
above, and the swapIntra operator chooses two customers from
a route and swaps them.

Algorithm 3. Variable Neighborhood Descent (VND)
4.2.3. Move decision
The last part of the heuristic concerns the acceptance criterion.

Here we have to decide whether the solution produced by GVNS
will be accepted as a starting solution for the next iteration. The
hierarchical evaluation of objectives explained in Section 3 has
been used for this purpose.
4.3. Insertion of dynamic customers

Once the selected initial solution is being implemented, new
dynamic customers might be revealed over the planning horizon,
which have to be inserted in any route. As explained above, a cus-
tomer is called target customer of a vehicle if the vehicle is moving
towards it or is serving its predecessor customer. In this work,
adjusting a target node, i.e., inserting a dynamic customer before
the target node, will be only permitted in two cases: when the time
window of the dynamic customer would be violated otherwise,
and when adjusting a target node avoids some constraints
violations.

Therefore, let us suppose that the dynamic customer i arrives at
time ati. As reported in line 8, Algorithm 1 first tries to adjust cus-
tomer i if its time window will be violated otherwise. In this case,
the customer is inserted before a target customer and the GVNS
algorithm is applied in order to improve the solution. It is neces-
sary to clarify that every time the GVNS algorithm is used hence-
forth, its operators are applied only after the target customer in
each route, since the other customers have been already visited
and their order cannot be changed.

If the customer does not need to be adjusted, then a feasible
existing route where to insert the new customer is searched (lines
13 and 14). For each of these routes, from the last visited customer
to the last customer in the route, it is searched the feasible inser-
tion point with the best result for the evaluation of the objectives.
If it is found, the customer is inserted and the GVNS algorithm is
applied in order to improve the resulting solution.

If inserting the customer has not been possible, then we will try
to adjust the customer to avoid constraints violations (line 19). In
this case, the customer is inserted before a target customer and the
GVNS algorithm is applied in order to improve the solution. In
other case, the new customer is inserted in a new route and the
GVNS algorithm is applied, if there is an available vehicle which
can serve it.

At this point, if the new customer has not been inserted yet,
then we try to use extra time if permitted (lines 27–37). If the cus-
tomer cannot still be inserted, we try to postpone its service if the
minimum priority permits to do this (line 38). Otherwise, we try to
postpone the services of other customers that have not been vis-
ited yet and allow to insert the new one in the route, if the mini-
mum priority permits to do this (line 42).

Finally, if the new customer has not been inserted or its service
postponed yet, it will be inserted into the route that involves less
infeasibility (line 47), also taking into account the evaluation of
the objectives.

This way, we can manage two possibilities. The first one is
rejecting the customers that cannot be feasibly inserted, as it is
done in related works from the literature (Hong, 2012; Xu et al.,
2013). This can be made by setting the minimum priority to a high
value. The second possibility is permitting time windows
infeasibilities in the customers in order to provide a solution with
all the customers. To the best of our knowledge, it has not been
proposed in the related literature.

At this point, it is worth mentioning that this process of decid-
ing where to introduce a new dynamic customer in the plani-
fication of routes, takes a certain time that must be taken into
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account in real applications. Otherwise, vehicles can have changed
their position when the planification is modified.
5. Experimental results

This section is devoted to thoroughly describe the computa-
tional experiments carried out in this work to assess the quality
of the solutions provided by the algorithm developed to solve a
real-world DRVRPTW. The test work has been done using a com-
puter with Intel(R) Core(TM) i5-2320 CPU, 3.00 GHz, 6 Gb RAM
and a Linux operating system. The algorithm has been coded in
C++.

As mentioned before, the requirements provided by the real
companies lead to the consideration of several constraints, which
have to be integrated into the standard problem. For example,
the use of a fixed set of heterogeneous vehicles, customers with
priorities and several time windows, or vehicle–customer restric-
tions. Solving this problem with optimality is really important for
companies, which obtain a cost saving through it.

Even though our algorithm has been developed to solve a real-
world DRVRPTW, which has many different attributes and con-
straints, it would be advisable to know if the results obtained using
the standard instances in the literature, which do not take into
account these attributes, are competitive with the best ones in
related works. Therefore, in order to compare our results with
the results in the literature, we have used the standard VRPTW
Solomon benchmark instances.1 In these benchmark problems,
100 nodes are distributed in an Euclidean plane of 100 � 100 square,
and the travel times between nodes are equal to the corresponding
Euclidean distances. There are six types of problems, named
R1;R2;C1;C2;RC1 and RC2, each with 8–12 problems. Specifically,
the data set designed by Lackner (2004) is adopted for dynamic
tests.2 Each problem has five groups of dynamic data which are used
to depict five different degrees of dynamism of 90%;70%;50%;30%

and 10%, respectively. Furthermore, our algorithm has been tested
with real instances, which present the whole set of real constraints.
Starting from four real instances of a company in Canary Islands,
n1;n2;n3, and n4, dynamic instances have been generated3 for the
five different degrades of dynamism, 90;70;50;30 and 10. Random
reaction times have been used for this purpose.

Three kinds of experiments have been carried out. For the first
one, we have solved the test problem instances avoiding extra
hours for vehicles and time window infeasibilities for customers,
and allowing postponed customer services. This experiment has
been performed in order to obtain the most comparable results
with the results in the literature. For the second experiment, we
have solved the test problem instances avoiding extra hours for
vehicles and postponed customer services, and allowing time win-
dow infeasibilities for customers. In this case, we have provided
solutions which include all customer requests relaxing time win-
dows for customers. Third experiment analyzes the results
obtained over real instances.

The recent works in the related literature (Hong, 2012; Xu et al.,
2013), take into account similar considerations to those of our
work regarding the basic dynamic problem. The main differences
of the problem tackled in this paper and the ones proposed by
Hong (2012) and Xu et al. (2013) are on one hand, the fact that
we consider a heterogeneous fleet of vehicles, and on the other
hand, the fact that we consider many real constraints. For these
reasons, we have taken the results in these works as reference to
assess the quality of our method.
1 http://web.cba.neu.edu/msolomon/problems.htm.
2 http://www.fernuniversitaet-hagen.de/WINF/inhalte/benchmark_data.htm.
3 https://sites.google.com/site/gciports/vrptw/dynamic-vrptw.
In both articles from the literature, the average time spent in
doing the insertion of a new dynamic customer is about 30 s.
This delay may lead to significant changes in the routes state, so
that we take it into account. The Solomon’s test instances use an
unspecified unit of time to define the service times and time win-
dows. However, it does not make sense considering that the units
are seconds, overall in relation to the time spent doing customer
insertions. The next significative time unit is the minute. For this
reason, we have considered the minute as the smallest possible
time unit, and therefore we have fixed the delay to 0.5 units
(30 s = 0.5 min). None of the works taken as reference make a real
discussion about this question.

The parameters M and N used in the GVNS algorithm have been
statistically set to 20 and 10, respectively.

5.1. Comparison with the literature for the DVRPTW

For the first experiment carried out in this work, we have run 15
executions for each single Solomon’s test instance under different
degrees of dynamism, and we have chosen the best results among
them to calculate the average values of each group of instances
(R1;R2;C1;C2;RC1 and RC2). Then, we have selected the best
results for each group of instances between the ones given in
Hong (2012) and Xu et al. (2013). In order to make a valid compar-
ison, the extra time has not been permitted in the executions, but
postponing customers has been enabled. In this way, Tables 1 and
2 give the comparison results. For both tables, first column shows
the set of test problem instances and the second column shows
degrees of dynamism. The next columns show the average number
of vehicles, the average total distance, and the average insertion
time (in seconds) obtained using our method based on General
Variable Neighborhood Search (GVNS) and the one in work Hong
(2012) (Ref.). We also calculate the relative error (ARE(%)).
Finally, the last two columns present the ratio of postponed cus-
tomers using our method and the one in Hong (2012).

As can be seen in the average row of Table 1, although we
improve the number of vehicles only a few times, in most cases,
our distance results improve the literature ones. It is remarkable
that in Table 1, for the group of instances C1, the distances
obtained by GVNS are lower than the ones obtained in Hong
(2012) despite that GVNS does not postpone any customer.
Moreover, for the degrees of dynamism 90, 30 and 10 of instances
RC1, we also obtain lower distances with a shorter number of post-
poned services. In general, there are many cases in which our ratio
of postponed customers is lower. This means that we are including
more customers into the solution and even in those cases our total
distances are lower.

For test problem instances in Table 2, we never postpone any
customers. In addition, our insertion times are substantially lower
than the best ones, and this is really important because companies
need a customer insertion process as quick as possible in order to
obtain an efficient system.

If instead of selecting the best results among the 15 executions
to calculate the average values of each group of instances, we cal-
culate the average of the 15 executions, we obtain Tables 3 and 4.
Although in this case the ratio of postposed customers is better,
obviously, in general results have less quality than before. Notice
that the works taken as references Hong (2012) and Xu et al.
(2013) do not calculate these averages.

5.2. Computational results for the DRVRPTW

In order to provide a solution which includes all customer
requests, the constraints can be relaxed so that time windows of
customers are permitted to be exceeded, such as indicated by the
companies. As mentioned above, it means that infeasibilities

http://www.fernuniversitaet-hagen.de/WINF/inhalte/benchmark_data.htm
http://https://sites.google.com/site/gciports/vrptw/dynamic-vrptw


Table 3
Computational results of type 1 problems for various degrees of dynamism using averages.

Type Dod (%) Avg. vehicle number Avg. total distance Avg. insertion time Ratio post. customers

GVNS Ref. ARE (%) GVNS Ref. ARE (%) GVNS Ref. ARE (%) GVNS (%) Ref. (%) ARE (%)

R1 90 15.34 14.25 7.68 1328.74 1335.94 �0.54 15.89 17.43 �8.84 3.33 2.33 43.06
70 15.31 14.33 6.85 1340.38 1331.34 0.68 12.45 21.73 �42.71 2.42 1.75 38.10
50 15.33 14.08 8.86 1340.17 1295.81 3.42 12.32 28.27 �56.42 1.67 0.67 148.76
30 14.96 13.92 7.44 1312.73 1286.63 2.03 17.21 46.99 �63.38 1.17 0.58 101.15
10 14.73 13.5 9.14 1296.59 1257.08 3.14 16.69 67.99 �75.45 0.33 0.17 96.08

C1 90 11.37 10.78 5.48 1092.18 1039.77 5.04 8.94 6.60 35.45 0.00 0.22 �100.00
70 11.92 10.78 10.56 1150.27 1031.68 11.49 8.51 10.79 �21.13 0.00 0.22 �100.00
50 11.81 10.89 8.49 1129.58 1001.18 12.83 7.32 19.01 �61.49 0.00 0.22 �100.00
30 11.81 10.56 11.88 1081.52 962.08 12.41 10.17 28.02 �63.70 0.00 0.33 �100.00
10 11.36 10.56 7.53 986.99 895.77 10.18 14.87 45.40 �67.25 0.00 0.22 �100.00

RC1 90 15.62 14.00 11.55 1587.89 1513.94 4.88 15.89 17.31 �8.20 1.50 2.00 �25.00
70 15.88 13.88 14.43 1614.43 1511.29 6.82 14.72 25.32 �41.86 1.25 1.88 �33.51
50 15.51 13.63 13.78 1579.34 1514.72 4.27 14.05 48.78 �71.20 0.88 1.38 �36.59
30 15.22 13.88 9.63 1551.93 1492.22 4.00 16.89 45.26 �62.68 0.63 1.13 �44.69
10 14.25 13.38 6.50 1474.09 1436.23 2.64 24.52 83.52 �70.64 0.25 1.13 �77.88

Avg 14.03 12.83 9.32 1324.46 1260.38 5.55 14.03 34.16 �45.30 0.89 0.95 �19.37

Table 4
Computational results of type 2 problems for various degrees of dynamism using averages.

Type Dod (%) Avg. vehicle number Avg. total distance Avg. insertion time Ratio post. customers

GVNS Ref. ARE (%) GVNS Ref. ARE (%) GVNS Ref. ARE (%) GVNS (%) Ref. (%) ARE (%)

R2 90 3.88 3.55 9.26 1181.31 1047.82 12.74 17.05 13.20 29.17 0.00 0.09 �100.00
70 4.22 3.64 16.05 1161.98 1032.04 12.59 13.41 20.15 �33.45 0.00 0.09 �100.00
50 4.49 3.82 17.56 1153.79 1016.52 13.50 12.58 30.03 �58.11 0.00 0.00 0.00
30 4.77 4.91 �2.86 1112.92 985.49 12.93 10.86 57.07 �80.97 0.00 0.00 0.00
10 5.49 6.36 �13.66 1054.82 950.00 11.03 10.75 68.58 �84.32 0.00 0.09 �100.00

C2 90 3.66 3.25 12.56 749.33 636.79 17.67 17.85 6.12 191.67 0.00 0.00 0.00
70 3.71 3.13 18.48 722.45 636.47 13.51 14.91 10.01 48.95 0.00 0.00 0.00
50 3.53 3.13 12.62 670.23 604.98 10.79 22.34 16.80 32.98 0.00 0.00 0.00
30 3.36 3.63 �7.48 670.88 651.42 2.99 35.92 29.87 20.25 0.00 0.00 0.00
10 3.53 3.00 17.78 660.93 594.67 11.14 85.73 59.70 43.60 0.00 0.00 0.00

RC2 90 8.02 4.00 100.42 2032.46 1257.19 61.67 29.51 11.34 160.23 0.00 0.13 �100.00
70 4.94 3.88 27.36 1359.18 1239.46 9.66 17.18 19.26 �10.80 0.00 0.00 0.00
50 5.39 4.25 26.86 1311.97 1190.54 10.20 12.86 27.84 �53.81 0.00 0.13 �100.00
30 5.83 5.38 8.43 1278.62 1166.04 9.65 13.54 41.51 �67.38 0.00 0.25 �100.00
10 6.01 6.75 �10.99 1240.55 1103.30 12.44 13.98 55.55 �74.83 0.00 0.00 0.00

Avg 4.72 4.18 15.49 1090.76 940.85 14.83 21.90 31.14 4.21 0.00 0.05 �40.00

Table 5
Computational results of type 1 problems for various degrees of dynamism and infeasibilities.

Type Dod (%) TI Avg. vehicle number Avg. total distance Avg. insertion time

GVNS Ref. ARE (%) GVNS Ref. ARE (%) GVNS Ref. ARE (%)

R1 90 111.8 16.67 14.25 16.98 1409.06 1335.94 5.47 11.97 17.43 �31.33
70 73.36 15.33 14.33 6.98 1379.52 1331.34 3.62 10.22 21.73 �52.97
50 56.84 14.92 14.08 5.97 1333.75 1295.81 2.93 8.14 28.27 �71.21
30 35.65 14.50 13.92 4.17 1292.46 1286.63 0.45 12.83 46.99 �266.25
10 17.93 14.00 13.50 3.70 1252.82 1257.08 �0.34 14.20 67.99 �378.80

C1 90 0.00 10.67 10.78 �1.03 963.33 1039.77 �7.93 7.81 6.60 18.33
70 0.00 11.33 10.78 5.10 1009.47 1031.68 �2.20 7.67 10.79 �28.92
50 0.00 11.00 10.89 1.01 992.97 1001.18 �0.83 6.22 19.01 �67.28
30 0.00 11.56 10.56 9.47 949.95 962.08 �1.28 9.13 28.02 �67.42
10 0.00 10.56 10.56 0.00 898.3 895.77 0.28 13.74 45.40 �230.42

RC1 90 24.12 15.13 13.88 8.07 1559.47 1513.94 3.01 15.11 17.31 �12.71
70 23.21 15.13 13.88 9.01 1560.91 1511.29 3.28 14.43 25.32 �43.01
50 14.00 14.75 13.63 8.22 1526.21 1514.72 0.76 9.07 48.78 �81.41
30 10.11 14.50 13.88 4.47 1489.33 1492.22 �0.19 13.17 45.26 �70.90
10 9.25 14.00 13.38 4.63 1418.89 1436.23 �1.22 17.85 83.52 �367.90

Avg 25.08 13.60 12.83 5.78 1269.10 1260.38 0.39 11.44 34.16 �116.81
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Table 6
Computational results of type 2 problems for various degrees of dynamism and infeasibilities.

Type Dod (%) TI Avg. vehicle number Avg. total distance Avg. insertion time

GVNS Ref. ARE (%) GVNS Ref. ARE (%) GVNS Ref. ARE (%)

R2 90 0.00 4.00 3.55 12.68 1086.78 1047.82 3.72 16.47 13.20 24.77
70 0.00 4.36 3.64 19.78 1078.03 1032.04 4.46 12.74 20.15 �36.77
50 0.00 4.55 3.82 19.11 1071.83 1016.52 5.44 11.96 30.03 �60.17
30 0.00 4.73 4.91 �3.67 1035.60 985.49 5.08 10.18 57.07 �82.16
10 0.00 5.27 6.36 �17.14 1000.90 950.00 5.36 9.48 68.58 �86.18

C2 90 0.00 3.38 3.25 4.00 668.99 636.79 5.06 16.67 6.12 172.39
70 0.00 3.38 3.13 7.99 672.95 636.47 5.73 14.03 10.01 40.16
50 0.00 3.13 3.13 0.00 623.10 604.98 3.00 20.25 16.80 20.54
30 0.00 3.25 3.63 �10.47 624.81 651.42 �4.08 34.82 29.87 16.57
10 0.00 3.25 3.00 8.33 615.93 594.67 3.58 80.78 59.70 35.31

RC2 90 0.00 4.63 4.00 15.75 1275.93 1257.19 1.49 28.05 11.34 147.35
70 0.00 5.13 3.88 32.22 1234.36 1239.46 �0.41 16.07 19.26 �16.56
50 0.00 5.88 4.25 38.35 1200.26 1190.54 0.82 11.46 27.84 �58.84
30 0.00 5.88 5.38 9.29 1172.33 1166.04 0.54 11.68 41.51 �71.86
10 0.00 6.13 6.75 �9.19 1153.43 1103.30 4.54 13.27 55.55 �76.11

Avg 0.00 4.46 4.18 8.47 967.68 940.85 2.95 20.53 31.14 �2.10

Table 7
Computational results of type 1 problems for various degrees of dynamism and infeasibilities using averages.

Type Dod (%) TI Avg. vehicle number Avg. total distance Avg. insertion time

GVNS Ref. ARE(%) GVNS Ref. ARE(%) GVNS Ref. ARE(%)

R1 90 123.11 16.65 14.25 16.84 1492.76 1335.94 11.74 13.72 17.43 �21.29
70 86.69 16.32 14.33 13.86 1466.63 1331.34 10.16 11.54 21.73 �46.89
50 60.69 15.94 14.08 13.24 1411.86 1295.81 8.96 9.82 28.27 �65.26
30 40.18 14.99 13.92 7.72 1350.82 1286.63 4.99 13.75 46.99 �70.74
10 10.50 14.66 13.5 8.60 1305.46 1257.08 3.85 14.56 67.99 �78.59

C1 90 0.00 11.37 10.78 5.48 1092.18 1039.77 5.04 9.73 6.60 47.42
70 0.00 11.92 10.78 10.56 1150.27 1031.68 11.49 9.64 10.79 �10.66
50 0.00 11.81 10.89 8.49 1129.58 1001.18 12.83 7.52 19.01 �60.44
30 0.00 11.81 10.56 11.88 1081.52 962.08 12.41 11.29 28.02 �59.71
10 0.00 11.36 10.56 7.53 986.99 895.77 10.18 15.77 45.40 �65.26

RC1 90 42.17 15.20 13.88 9.51 2776.89 1513.94 83.42 16.31 17.31 �5.78
70 30.14 16.33 13.88 17.68 1687.54 1511.29 11.66 15.99 25.32 �36.85
50 24.90 15.78 13.63 15.74 1629.64 1514.72 7.59 10.46 48.78 �78.56
30 15.29 15.16 13.88 9.21 1571.12 1492.22 5.29 14.29 45.26 �68.43
10 13.52 14.07 13.38 5.13 1459.85 1436.23 1.64 19.38 83.52 �76.80

Avg 29.81 14.22 12.82 10.77 1439.54 1260.38 13.42 12.92 34.16 �46.52

Table 8
Computational results of type 2 problems for various degrees of dynamism and infeasibilities using averages.

Type Dod (%) TI Avg. vehicle number Avg. total distance Avg. insertion time

GVNS Ref. ARE (%) GVNS Ref. ARE (%) GVNS Ref. ARE (%)

R2 90 0 3.88 3.55 9.26 1181.31 1047.82 12.74 18.62 13.20 41.06
70 0 4.22 3.64 16.05 1161.98 1032.04 12.59 13.87 20.15 �31.17
50 0 4.49 3.82 17.56 1153.79 1016.52 13.50 12.81 30.03 �57.34
30 0 4.77 4.91 �2.86 1112.92 985.49 12.93 12.34 57.07 �78.38
10 0 5.49 6.36 �13.66 1054.82 950.00 11.03 10.99 68.58 �83.97

C2 90 0 3.66 3.25 12.56 749.33 636.79 17.67 17.44 6.12 184.97
70 0 3.71 3.13 18.48 722.45 636.47 13.51 15.28 10.01 52.65
50 0 3.53 3.13 12.62 670.23 604.98 10.79 20.32 16.80 20.95
30 0 3.36 3.63 �7.48 670.88 651.42 2.99 35.76 29.87 19.72
10 0 3.53 3.00 17.78 660.93 594.67 11.14 76.23 59.70 27.69

RC2 90 0 8.02 4.00 100.42 2032.46 1257.19 61.67 28.94 11.34 155.20
70 0 4.94 3.88 27.36 1359.18 1239.46 9.66 17.27 19.26 �10.33
50 0 5.39 4.25 26.86 1311.97 1190.54 10.20 12.36 27.84 �55.60
30 0 5.83 5.38 8.43 1278.62 1166.04 9.65 12.71 41.51 �69.38
10 0 6.01 6.75 �10.99 1240.55 1103.30 12.44 13.79 55.55 �75.18

Avg 0 4.72 4.18 15.49 1090.76 940.85 14.83 21.25 31.14 2.73

J. de Armas, B. Melián-Batista / Computers & Industrial Engineering 85 (2015) 120–131 129



130 J. de Armas, B. Melián-Batista / Computers & Industrial Engineering 85 (2015) 120–131
appear, and in this case we will try to minimize the total infeasibil-
ity in the plan of routes. Tables 5 and 6 give the comparison results
in this case. Again, first column shows the set of test problem
instances and the second column shows degrees of dynamism.
The third column reports the average of the total infeasibility (in
seconds) for each group of instances. The next columns show the
average number of vehicles, the average total distances, and the
average insertion times (in seconds) obtained using our method
(GVNS) and the ones in Hong (2012) (Ref.). We also calculate the
relative error (ARE(%)).

Note that this comparison in not really fair, since if we include
all customers in the solutions, it will be reasonable that the num-
ber of vehicles and the total distance are higher than if we post-
pone some customers, which is what reference work Hong
(2012) does.

As shown in the tables, the majority of times the reported total
infeasibility is very small (a few seconds). Regarding total distance,
we obtain results very close to the best ones (1% and 3% of average
difference), but the number of times that we improve the results is
less than in the previous experiments. However, as explained
before, it has to be taken into account that it is logical that the
routes containing all customers would involve longer distances.
The same fact is observed with the number of routes.
Nevertheless, our insertion times are again substantially lower
than the best ones in the literature. It is noticeable that the total
infeasibility for instances in Table 6 is always 0, because, as seen
before, we did not postpone any customer service.

Once again, if instead of selecting the best results among the 15
executions to calculate the average values of each group of
Table 9
Real instances with customer service postponing.

Dod
(%)

NV TD First
time

Total
time

Post Infeasibility

90 11.50 1180972.50 27.25 870.26 10.75 0.00
70 11.50 1073427.50 1360.99 1964.10 10.00 0.00
50 9.00 1066800.50 287.85 689.91 6.75 0.00
30 6.75 1021237.25 350.10 581.75 2.75 0.00
10 6.25 894760.25 670.85 745.18 2.00 0.00

Ave. 9.00 1047439.60 539.41 970.24 6.45 0.00

Table 10
Allowing infeasibility, but no customer service postponing.

Dod (%) NV TD First
time

Total
time

Post Infeasibility

90 12.50 1473052.50 34.79 924.97 0.00 18289.13
70 11.75 1446777.50 1710.79 1393.63 0.00 16013.00
50 9.75 1284227.50 271.30 730.83 0.00 10931.00
30 7.75 1094064.25 349.45 739.11 0.00 6533.88
10 6.25 958972.50 551.53 689.60 0.00 3388.38

Ave. 9.60 1251418.85 583.57 1095.63 0.00 11031.08

Table 11
Allowing infeasibility and customer service postponing.

Dod
(%)

NV TD First
time

Total
time

Post Infeasibility

90 11.25 1304612.50 31.98 1281.72 5.25 8802.63
70 10.50 1209942.50 1414.56 2021.65 4.50 6658.63
50 10.00 1149097.75 585.15 1047.78 4.50 4154.63
30 7.50 1091210.50 357.87 666.55 3.25 0.00
10 6.50 899648.75 580.63 677.87 1.25 812.75

Ave. 9.15 1130902.40 594.04 1139.11 3.75 4085.73
instances, we calculate the average of the 15 executions, we obtain
Tables 7 and 8. In general, results have less quality than before, but
notice that the works taken as references Hong (2012) and Xu et al.
(2013) do not calculate these averages.
5.3. Computational results for real instances

Once we have verified that the algorithm is competitive using
instances of the literature, it has been tested with the real
instances of a company in the Canary Islands, n1;n2;n3, and n4.
As for Solomon instances, 15 executions have been done for each
instance and degree of dynamism, and the average of the best
result for each instance has been calculated.

Three different experiments have been done using these real
instances in order to see how customers priorities influence the
results. In the first case, priorities allow to postpone any customer
service if its insertion into routes involves some infeasibility. In the
second case, customers priorities do not allow to postpone their
service, so that infeasibilities are allowed if this is the only possibil-
ity when trying to insert them into a route. Finally, in the third
case, priorities have been generated randomly, so that some cus-
tomers can be postponed due to their low priorities, and other cus-
tomers cannot. Thus, both postponed customers and infeasibilities
appear.

Results in Tables 9–11 have been obtained, corresponding to
the first, second and third experiment. The average over the four
real instances is reported. First column reports the degree of dyna-
mism. The next columns indicate the average number of vehicles,
traveled distance, time for obtaining the initial static solution
and insertion time. The last two columns show the average of post-
poned services and the average infeasibility (violations of cus-
tomers time windows). As can be seen, the lowest number of
vehicles and total traveled distance are obtained in the first experi-
ment, because each customer which cannot be inserted without
infeasibilities is postponed. An average of about 6 customers are
postponed. However, in the second experiment it is exactly the
opposite; the number of vehicles and the total distance increase
because every customer is inserted, but the total infeasibility is
really high. The results of the third experiment are in the middle
situation, as some customers are postponed and other customers
produce infeasibility when are inserted into routes. The number
of postponed customers is about 3 and the total infeasibility is
quite low. Finally, note that in these instances it was not required
exceeding the working shifts of the vehicles.

In summary, we can conclude that the priorities of the cus-
tomers significantly influence on the final plan of routes for the
dynamic problem. Thereby, companies should carefully assign
priorities to their customers in order to obtain the best balance
between number of postponed services for the next day and the
total infeasibility obtained.
6. Conclusions

A metaheuristic solution approach based on Variable
Neighborhood Search (VNS) is proposed for solving a Dynamic
Rich Vehicle Routing Problem with Time Windows (DRVRPTW).
It combines a set of real-world constraints proposed by some com-
panies in the Canary Islands, Spain. The designed algorithm man-
ages two possibilities: rejecting the customers that cannot be
feasibly inserted taking into account priorities, or permitting time
windows infeasibilities in customers in order to provide a solution
with all customers.

In order to assess the behavior of our approach, we have com-
pared the obtained results with the best results in the literature
using the standard test problem instances. In some cases, our
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results are not only competitive with the related literature, but also
even better. Moreover, our insertion times are substantially lower
than the best ones.

Taking into account that the method proposed in this work has
been developed to solve a real problem with a real set of con-
straints, it is not supposed to be the most competitive with the
standard Solomon instances, which have other features.
However, in that case, we have obtained results very close to the
best ones in the literature.

Additionally, we propose solutions with infeasibilities in order
to include all customers in the final solutions. In this case, logically,
the total distance increases, but our results are still very close to
the best ones in the literature. It is important to note that we are
considering the time needed to insert any new dynamic customer
in the plan, which can influence in the final results.

Finally, we have also analyzed the effect of the different restric-
tions in the final solutions using instances based on the real ones
provided by a company. In this case, the importance of customers
priorities on the final plan has become clear.
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