
European Journal of Operational Research 244 (2015) 379–391

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

The discrete time window assignment vehicle routing problem

Remy Spliet a,∗, Guy Desaulniers b

a Econometric Institute, Erasmus University, Burgemeester Oudlaan 50, 3000 DR Rotterdam, Netherlands
b Department of Mathematics and Industrial Engineering and GERAD, Polytechnique Montréal, Montréal, H3T 1J4, Québec, Canada

a r t i c l e i n f o

Article history:

Received 27 November 2013

Accepted 11 January 2015

Available online 28 January 2015

Keywords:

Vehicle routing

Time window assignment

Column generation

Uncertain demand

a b s t r a c t

In this paper we introduce the discrete time window assignment vehicle routing problem (DTWAVRP) that can

be viewed as a two-stage stochastic optimization problem. Given a set of customers that must be visited on the

same day regularly within some period of time, the first-stage decisions are to assign to each customer a time

window from a set of candidate time windows before demand is known. In the second stage, when demand

is revealed for each day of the time period, vehicle routes satisfying vehicle capacity and the assigned time

windows are constructed. The objective of the DTWAVRP is to minimize the expected total transportation

cost. To solve this problem, we develop an exact branch-price-and-cut algorithm and derive from it five

column generation heuristics that allow to solve larger instances than those solved by the exact algorithm.

We illustrate the performance of these algorithms by means of computational experiments performed on

randomly generated instances.

© 2015 Elsevier B.V. All rights reserved.

1

t

T

t

t

i

t

c

c

w

c

B

s

T

c

w

r

a

a

d

(

t

t

d

s

F

c

a

s

r

r

fi

r

t

o

o

p

p

m

t

m

t

h

0

. Introduction

In distribution networks, it is common for a supplier and a cus-

omer to agree on a time window in which a delivery will be made.

his time window is often used repeatedly within some period of

ime in which multiple deliveries are made at regular intervals. At

he moment of choosing a time window for a customer, its demand

s usually unknown and may fluctuate for different deliveries. When

he demands of all customers become known for a given day, a vehi-

le routing problem with time windows (VRPTW) must be solved to

onstruct a delivery schedule within the agreed time windows.

The time window assignment vehicle routing problem (TWAVRP)

as recently introduced by Spliet and Gabor (2014). This problem

an be viewed as a two-stage stochastic optimization problem (see

irge & Louveaux, 1997). Given a set of customers to be visited on the

ame day regularly during some period of time (e.g., a season), the

WAVRP consists of assigning in the first stage a time window to each

ustomer before customer demand is known. In the second stage,

hen demand is revealed for each day of the time period, vehicle

outes that respect the assigned time windows are constructed. The

ssigned time windows have a predetermined width and can start at

ny time within an exogenous time window that can be customer-

ependent. The objective of the TWAVRP is to minimize the expected
∗ Corresponding author. Tel.: +31 104081342.

E-mail addresses: spliet@ese.eur.nl (R. Spliet), guy.desaulniers@gerad.ca

G. Desaulniers).

s

d

I

o

t

ttp://dx.doi.org/10.1016/j.ejor.2015.01.020

377-2217/© 2015 Elsevier B.V. All rights reserved.
otal transportation cost over the whole time period that is equivalent

o minimizing the expected cost for a single day.

In this paper, we study the discrete TWAVRP (DTWAVRP) that

iffers from the TWAVRP by considering for each customer a finite

et of candidate time windows from which one has to be selected.

or example, a customer might divide the day in blocks of 2 hours

ommencing on the hour and require one of these blocks to be the

ssigned time window. We have encountered such time window as-

ignment problems (discrete or not) while collaborating with Dutch

etail chains, and believe they are common in this industry. Here, the

etailers (customers) are heavily dependent on the time window to be

xed in advance and kept for some time. For instance, a retailer might

eceive all its deliveries on the same day of the week and more or less

he same hour of the day for an entire year. This is crucial for many

perational purposes like inventory management and the scheduling

f personnel. Considering a discrete set of time windows is often more

ractical for the retailers, especially to ease the personnel scheduling

rocess which must take into account various regulations. Further-

ore, it can give them the opportunity to express preferences for

he time windows. Maximizing the satisfaction of these preferences

ight be taken into account as a secondary objective during the op-

imization process, an option that is not considered in this paper.

As is common for two-stage stochastic optimization problems, we

uggest to approximate the probability distributions of the customer

emands by a finite set of possible scenarios of demand realizations.

n this framework, the DTWAVRP is clearly NP-hard as, in the case of

ne scenario and one candidate time window per customer, it reduces

o the VRPTW. When it involves several scenarios, the DTWAVRP

http://dx.doi.org/10.1016/j.ejor.2015.01.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2015.01.020&domain=pdf
mailto:spliet@ese.eur.nl
mailto:guy.desaulniers@gerad.ca
http://dx.doi.org/10.1016/j.ejor.2015.01.020

380 R. Spliet, G. Desaulniers / European Journal of Operational Research 244 (2015) 379–391

n

i

a

h

i

2

a

s

c

t

B

F

a

d

t

s

t

t

w

a

d

i

b

t

fi

r

t

i

a

d

w

i

m

t

t

a

f

c

W

b

n

s

s

i

v

i

a

r

c

s

v

r

u

corresponds to solving several VRPTWs (one per scenario) that are

linked together by the choice of the time windows. The VRPTW is a

well-studied problem for which many exact and heuristic algorithms

have been developed (see, e.g., the surveys of Baldacci, Mingozzi, &

Roberti, 2012; Bräysy & Gendreau, 2005a, 2005b; Kallehauge, Larsen,

Madsen, & Solomon, 2005).

We believe that in the scientific literature, the problem of assigning

time windows before knowing demand has been largely overlooked

so far. It was only tackled recently by Spliet and Gabor (2014) who

designed an exact branch-price-and-cut algorithm for the TWAVRP

that can solve instances with up to 25 customers and three sce-

narios. In their solution approach, the pricing problem is modeled

as an elementary shortest path problem with linear node costs (in-

duced because the set of time windows is not discrete) and capacity

and time window constraints. Due to the complexity of this prob-

lem route relaxation is required, but only basic route relaxation can

be utilized efficiently: allowing all cyclic routes and eliminating 2-

cycles. For the DTWAVRP we also develop a branch-price-and-cut al-

gorithm, but in this case we are able to employ the more sophisticated

ng-route relaxation introduced by Baldacci, Mingozzi, and Roberti

(2011). The complexity of the pricing problem of Spliet and Gabor

(2014) also prohibits the use of certain types of valid inequalities as

these add to the complexity. For instance subset row inequalities,

introduced by Jepsen, Petersen, Spoorendonk, and Pisinger (2008),

are not used in the algorithm for the TWAVRP, whereas they are

used in our algorithm for the DTWAVRP. Furthermore, as opposed to

the algorithm for the TWAVRP, we add a heuristic pricing algorithm

to speed up computations and develop several column generation

heuristics.

Introduced by Groër, Golden, and Wasil (2009), the consistent ve-

hicle routing problem (ConVRP) shares some similarities with the

DTWAVRP when considering demand scenarios. In this determinis-

tic problem, each customer must be visited on different days of a

given horizon (not all customers must be serviced each day) follow-

ing a consistent schedule, that is, the arrival times at a customer

from one day to another cannot differ by more than a limited amount

of time. Moreover, it is required that each customer is always vis-

ited by the same driver. Groër et al. (2009) found optimal solutions

to ConVRP instances involving up to 12 customers and three sce-

narios using a commercial mixed integer programming solver. They

reported computation times of up to several days. Furthermore, they

developed a local search heuristic to solve instances with over 3700

customers.

Jabali, Leus, van Woensel, and de Kok (2013) considered another

related problem that involves the assignment of time windows in a

vehicle routing problem with stochastic travel times and determin-

istic demands. They developed a tabu search algorithm for solving it.

Also, Agatz, Campbell, Fleischmann, and Savelsbergh (2011) studied

a stochastic problem faced by e-tailers providing home delivery that

consists of selecting which time slots to offer per zip code for making

deliveries. They developed a local search heuristic.

The main contributions of this paper are as follows. First, we pro-

pose a new problem, the DTWAVRP. Second, we develop a state-of-

the-art exact branch-price-and-cut algorithm to solve it and report

computational results obtained on randomly generated instances to

evaluate the effectiveness of some of its components. Third, from

this exact algorithm, we derive several column generation heuristics

that can find good solutions to the DTWAVRP in limited computation

times. This allows to find solutions to instances that are larger than

those solved by the exact algorithm. We report computational results

to compare the performance of five such algorithms. Finally, we also

provide additional results to assess the benefits of using several de-

mand scenarios to assign time windows to the customers instead of

using a single one defined by the average demands as it is usually

done in practice.
In the next section, we define the DTWAVRP using demand sce-

arios and we present an integer programming formulation for

t. In Section 3, we introduce the proposed branch-price-and-cut

lgorithm. In Section 4, we describe the five column generation

euristics. The results of our computational experiments are reported

n Section 5. Finally, conclusions are drawn in Section 6.

. Problem definition

Consider a complete graph G = (N, A), where N = {0, . . . , n + 1} is

set of locations such that 0 and n + 1 represent the depot at the

tart and the end of a day, respectively, and N′ = {1, . . . , n} the set of

ustomers. Let cij ≥ 0 be the cost to travel along arc (i, j) and tij ≥ 0

he corresponding travel time (including, if any, the service time at i).

oth the travel costs and travel times satisfy the triangle inequality.

urthermore, an unlimited number of vehicles of equal capacity Q is

vailable.

Let the random variable di with known distribution represent the

emand of customer i ∈ N′. We distinguish between two stages, in

he first stage the demand realization is not yet known, but in the

econd stage it is. Furthermore, the realization di of demand is such

hat 0 < di ≤ Q .

Associate with each customer i a set Wi of candidate time windows

hat may or may not overlap. In the first stage, one time window

= [w, w] ∈ Wi must be selected for each customer such that service

t customer i starts between w and w. For the starting and ending

epot only one time window exists. Note that waiting at a location

s allowed, i.e., a vehicle can arrive prior to the time window lower

ound and start service later.

The DTWAVRP is a two-stage stochastic programming problem

hat consists of assigning one time window to each customer in the

rst stage and determining in the second stage an optimal vehicle

outing schedule satisfying the assigned time windows. The expected

otal travel cost must be minimized.

We can express the DTWAVRP more formally as follows. Let yiw, for

∈ N′ and w ∈ Wi, be the time window assignment variables. These

re the first-stage decision variables indicating whether time win-

ow w is selected for customer i. Note that we do not associate costs

ith the first-stage decisions. We denote by VRPTW(y, d) the min-

mal transportation costs as a function of a time window assign-

ent described by y and demand d. This is the recourse function

hat provides the second stage costs which are obtained by solving

he corresponding VRPTW to optimality. Below we first introduce

dditional notation to express VRPTW(y, d) using a set-partitioning

ormulation.

Using the set of candidate time windows for each customer, we can

onstruct an auxiliary graph Ĝ = (N̂, Â), where N̂ = {(i, w)| i ∈ N, w ∈
i} contains a copy of each customer node i for each of its possi-

le time windows w ∈ Wi. Moreover, Â contains an arc between two

odes (i, w) and (i′, w′), i �= i′, if and only if w + tii′ ≤ w′.
We use the term route to refer to a pair (P̂, t)where P̂ is a path in Ĝ

tarting at 0 and ending at n + 1 and t is a vector containing the service

tart time at each location on the path. Associated with each route r

s the parameter eiwr indicating the number of times customer i is

isited within time window w ∈ Wi on route r (note that eiwr ∈ {0, 1}
f P is an elementary path). To each route r whose path contains the

rcs {a1, . . . , ak} we assign the cost cr = ∑k
i=1 cai

.

Let R(d) be the set of all feasible routes corresponding to demand

ealization d. A route (P̂, t) is considered feasible if (i) it satisfies the

apacity constraint, (ii) t is such that, for each customer i on the route,

ervice begins within a time window in Wi, and (iii) if location j is

isited directly after i on route r then ti + tij ≤ tj.

Let the variables xr , r ∈ R(d), be route variables indicating whether

oute r is selected. We formulate the recourse function VRPTW(y, d)
sing the following set-partitioning formulation.

R. Spliet, G. Desaulniers / European Journal of Operational Research 244 (2015) 379–391 381

V

s

t

s

i

t

e

l

m

c

w

v

2

b

o

m

o

m

s

t

c

o

w

n

d

n

i

o

i

D

m

s

e

C

w

m

2

m

l

v

i

a

n

i

w

a

a

i

t

l

i

a

a

u

r

P

(

n

v

p

i

t

i

m

p

o

o

3

o

t

p

a

N

w

3

p

t

e

m

f

s

R

a

v

T

t

r

t

r

f

RPTW(y, d) = min
∑

r∈R(d)

crxr (1)

s.t.
∑

r∈R(d)

eiwrxr = yiw ∀i ∈ N′, ∀w ∈ Wi, (2)

xr ∈ {0, 1} ∀r ∈ R(d) (3)

The objective function (1) represents total traveling costs. Con-

traints (2) impose that each customer is visited exactly once within

he selected time window as indicated by y. Note that all con-

traints (2) for which yiw takes value 0 can be removed if the set R(d)
s filtered accordingly. Finally, (3) are the integrality requirements on

he x variables.

Using the recourse function VRPTW(y, d) and denoting by E the

xpected value function, the DTWAVRP can be formulated as the fol-

owing minimization problem:

in E(VRPTW(y, d)) (4)

s.t.
∑

w∈Wi

yiw = 1 ∀i ∈ N′ (5)

yiw ∈ {0, 1} ∀i ∈ N′, ∀w ∈ Wi (6)

Here, the objective function (4) aims at minimizing the expected

osts. Constraints (5) ensure that for every customer exactly one time

indow is selected and (6) are the integrality requirements on the y

ariables.

.1. Deterministic equivalent problem

We assume in this paper that the demand follows a discrete distri-

ution and present next the deterministic equivalent problem (DEP)

f the DTWAVRP. We do this for the following two reasons. First, in

any applications goods are delivered in integer amounts, on pallets

r in roll cages. Hence only a finite (but possibly large) number of de-

and realizations are possible. Second, the DEP can also be used for a

ample average approximation strategy when the number of realiza-

ions is too large or demand follows a continuous distribution. In this

ase exact optimization can likely not be done in a limited amount

f computation time due to the complexity of the recourse function,

hich entails solving a VRPTW.

To present the DEP we introduce S which is a set of demand sce-

arios, where each scenario is characterized by a realization of the

emand at every customer. Let ds
i

be the demand of customer i in sce-

ario s ∈ S such that 0 < ds
i
≤ Q . The probability that scenario s occurs

s ps. For ease of notation, we replace R(ds) by R(s) to denote the set

f feasible routes corresponding to realization ds.

Introducing the variables xs
r , s ∈ S, r ∈ R(s), as the route variables

ndicating whether route r is selected in scenario s, the DEP of the

TWAVRP can be formulated as the following integer linear program.

in
∑
s∈S

ps
∑

r∈R(s)

crxs
r (7)

s.t.
∑

w∈Wi

yiw = 1 ∀i ∈ N′ (8)

∑
r∈R(s)

eiwrx
s
r = yiw ∀i ∈ N′, ∀w ∈ Wi, ∀s ∈ S (9)

xs
r ∈ {0, 1} ∀s ∈ S, ∀r ∈ R(s) (10)

yiw ∈ {0, 1} ∀i ∈ N′, ∀w ∈ Wi (11)

The objective function (7) minimizes the expected costs over all

cenarios resulting from a time window assignment. Constraints (8)

nsure that exactly one time window is selected for each customer.

onstraints (9) enforce that each customer is visited exactly once

ithin its selected time window in each scenario. Integrality require-

ents on the x and y variables are provided by (10) and (11).
.2. Integrality requirements

Next, let us discuss how to reformulate the integrality require-

ents. Consider the linear programming (LP) relaxation of formu-

ation (7)–(11) where the integrality requirements on the x and y

ariables are relaxed continuously. For each scenario, let the arc flow

n Ĝ be the cumulative value by which each arc a ∈ Â is selected in

solution to this LP relaxation. More precisely, if er
a represents the

umber of times route r traverses arc a, the arc flow in Ĝ on arc a

n scenario s is given by F̂s
a = ∑

r∈R(s) er
axs

r . It is straightforward that

hen the arc flow in Ĝ is integer for every scenario, it also provides

n integer solution to the DTWAVRP.

Moreover, a solution to the LP relaxation also corresponds to an

rc flow in G for each scenario. Observe that when the arc flow in Ĝ

s integer for every scenario, so is the arc flow in G. However, when

he arc flow in G is integer, the arc flow in Ĝ might not be. Neverthe-

ess, in this case an integer solution can always be derived by select-

ng for each customer the time window with the earliest start time

mong the time windows that are fractionally selected in the LP relax-

tion. The corresponding routes can now straightforwardly be found

sing the integer arc flow in G and the selected time windows. This

esult is stated more formally in Proposition 1.

roposition 1. Let (x, y)be a solution to the LP relaxation of formulation

7)–(11). When the corresponding arc flow in G is integer for every sce-

ario, there exists an integer solution (x∗, y∗) to the DTWAVRP of equal

alue.

The proof of Proposition 1 can be found in Appendix A. In this

roof, it is verified that the integer solution found as described above

s indeed feasible. We would like to emphasize that integrality of

he time window assignment variables is not required at all. Also,

ntegrality of the arc flow in the auxiliary graph Ĝ is not required, but

erely integer arc flow in the aggregate graph G. In the rest of this

aper, we relax the integrality conditions (10) and (11), and instead

nly impose integrality on the arc flow in G. As a result, the amount

f branching necessary in our algorithm is reduced.

. Exact algorithm

In this section, we provide an exact algorithm to solve the DEP

f the DTWAVRP. We first describe the column generation algorithm

hat we use to solve the LP relaxation of (7)–(11). In particular, we

resent the ng-route relaxation introduced by Baldacci et al. (2011)

nd discuss acceleration strategies to speed up the pricing algorithm.

ext, we suggest valid inequalities to strengthen the LP bound. Finally,

e describe the branch-price-and-cut algorithm.

.1. Column generation algorithm

In practice, the LP relaxation of (7)–(11), also called the master

roblem, contains a very large number of variables. To overcome

his difficulty, we solve the master problem using a column gen-

ration algorithm as introduced by Ford and Fulkerson (1958) for

ulti-commodity flow problems and by Dantzig and Wolfe (1960)

or general linear programming problems. This algorithm iteratively

olves a restricted master problem (RMP) and a pricing problem. The

MP is the master problem where only a subset of the route variables

re included. It is solved to find a feasible primal solution and the

alues of the dual multipliers associated with constraints (8) and (9).

he pricing problem is solved to identify route variables with nega-

ive reduced costs that have not yet been added to the RMP. When a

oute with a negative reduced cost is identified, its variable is added

o the RMP and the procedure is repeated. If no route with a negative

educed cost exists, the current solution to the RMP is also optimal

or the master problem.

382 R. Spliet, G. Desaulniers / European Journal of Operational Research 244 (2015) 379–391

a

r

3

c

m

t

c

w

w

e

i

b

a

r

a

F

t

c

c

(

n

t

i

e

l

a

l

w

t

(
e

f

I

t

i

c

n

t

U

a

a

w

t

n

�

3

n

A

l

p

a

s

t

times.
For the DTWAVRP, the pricing problem can be decoupled into

several problems, one for each scenario. The pricing problem for sce-

nario s aims at finding a feasible route for that scenario with the least

reduced cost. Let λ be the vector of unrestricted dual multipliers as-

sociated with constraints (9). The reduced cost of a route r ∈ R(s) is

given by

pscr −
∑
i∈N′

∑
w∈Wi

λs
iweiwr. (12)

This pricing problem can be modeled as an elementary shortest

path problem with resource constraints defined on network Ĝ. To

do so, associate with each node (i, w) ∈ N̂ the demand ds
i

and with

each arc ((i, w), (i′, w′)) ∈ Â the (reduced) cost pscii′ − λs
i′w′ and the

travel time tii′ . The pricing problem consists of finding a shortest ele-

mentary (0, n + 1)-path in Ĝ that respects time windows and vehicle

capacity (the resource constraints). Note, however, that elementarity

is required for the customers. This means that for each customer i ∈ N′

at most one node (i, w) ∈ N̂ can be included in an elementary path.

To solve the pricing problem, we use the labeling algorithm pro-

posed by Desrochers (1988) and enhanced by Feillet, Dejax, Gendreau,

and Gueguen (2004) which we modify to consider elementarity of

the customers instead of the nodes in network Ĝ. In this algorithm,

constructed partial paths are represented by labels. Let l be a label

representing a partial path from the starting depot to a specific node

(i, w) ∈ N̂. Let c(l) be the total reduced cost of the partial path rep-

resented by label l, t(l) its earliest start of service time at customer

i in time window w, and q(l) its total load. Finally, let fj(l), j ∈ N′, be

a binary parameter equal to 1 if customer j has already been vis-

ited on the partial path associated with label l or if this path cannot

be feasibly extended to reach any node representing customer j as

this would violate capacity or time window constraints. In this re-

spect, we define the function Us
j
(l) that takes value 1 if q(l)+ ds

j
> Q

or t(l)+ tij > w for all w ∈ Wj, indicating whether l can be extended

to j.

The labeling algorithm starts with a single label associated with

depot node 0. Next, labels are extended along the arcs in Ĝ. A label l

associated with a node (i, w) can be extended to a node (i′, w′) only if

((i, w), (i′, w′)) ∈ Â and fi′(l) = 0. To perform this extension and create

a label l′, we use the following extension functions:

c(l′) = c(l)+ pscii′ − λs
i′w′ (13)

s(l′) = max{t(l)+ tii′ , w′} (14)

q(l′) = q(l)+ ds
i′ (15)

fj(l
′) =

{
1 if j = i′

max {fj(l), Us
j
(l′)} otherwise

∀j ∈ N′. (16)

Label l′ is deemed feasible if s(l′) ≤ w′. Otherwise, it is discarded. Note

that it is not necessary to check if q(l′) ≤ Q because fi′(l) = 0.

In order to avoid the enumeration of all partial paths, a domi-

nance procedure is applied. The aim of this procedure is to remove

all non-Pareto optimal labels. A label that is not Pareto optimal is

said to be dominated. Label l′ is dominated if there exists a la-

bel l associated with the same customer and c(l) ≤ c(l′), t(l) ≤ t(l′),
q(l) ≤ q(l′) and fj(l) ≤ fj(l

′) for all j ∈ N′. We want to emphasize the

fact that we check dominance for labels at the same customer in-

stead of at the same node as we require elementarity for the cus-

tomers and not for the nodes. This increases the number of dominated

labels.

This labeling algorithm might provide multiple routes with nega-

tive reduced costs. In our implementation of the column generation
lgorithm, we add to the RMP all route variables with a negative

educed cost identified by the labeling algorithm.

.2. Route relaxations

As solving the elementary shortest path problem with resource

onstraints is computationally expensive, it is common to relax ele-

entarity. Generating routes containing cycles and adding them to

he formulation does not alter the optimal integer solution as each

ustomer is visited exactly once. However, the LP bound becomes

eaker. For the VRPTW, Desrochers, Desrosiers, and Solomon (1992)

ere the first to suggest a branch-and-price algorithm using a non-

lementary shortest path problem as the pricing problem. They elim-

nate 2-cycles, i.e., cycles of the form i − j − i, to strengthen the LP

ound at the expense of limited additional computation time. Irnich

nd Villeneuve (2006) extended this approach by providing an algo-

ithm to solve the shortest path problem with resource constraints

nd k-cycle elimination, for arbitrary values of k.

Recently, Baldacci et al. (2011) proposed the ng-route relaxation.

or each customer i ∈ N′ a neighborhood Ni ⊆ N′ with i ∈ Ni is in-

roduced. An ng-path is not necessarily an elementary path. Indeed,

ycles starting and ending at a customer i are allowed if this cycle

ontains a customer i′ such that i �∈ Ni′ . Similar to, e.g., Baldacci et al.

2011) and Ribeiro, Desaulniers, and Desrosiers (2012), we construct

eighborhoods of a fixed size �ng for each customer i ∈ N′. They con-

ain the closest customers with respect to travel costs, including i

tself. This way, any cycle in an ng-path will be relatively long or

xpensive.

In our branch-price-and-cut algorithm we use the ng-route re-

axation which means that not all routes might be elementary. We

djust the labeling algorithm for the elementary shortest path prob-

em with resource constraints to solve a shortest ng-path problem

ith resource constraints by modifying the extension functions for

he customer resources. When extending label l from a node (i, w) to

i′, w′) to create label l′, customer resource fj(l
′) is set to zero if j �∈ Ni′

ven when fj(l) = 1. Hence, expression (16) is replaced by:

j(l
′) =

⎧⎪⎨
⎪⎩

1 if j = i′

max {fj(l), Us
j
(l′)} if j ∈ Ni′ \ {i′}

0 otherwise

∀j ∈ N′. (17)

n this case, label l′ is declared feasible if t(l′) ≤ w′ and q(l′) ≤ Q . Here

he latter condition must be checked because it can be violated even

f fi′(l) = 0.

During the label dominance check at a node (i, w) ∈ N̂′, only the

ustomer resources for j ∈ Ni need to be considered, that is, the domi-

ance rule involves only the conditions fj(l) ≤ fj(l
′),∀j ∈ Ni, for the cus-

omer resources. This is sufficient because fj(l) = fj(l
′) = 0, ∀j ∈ N′ \ Ni.

sing ng-paths typically increases the number of dominated labels

nd, thus, speeds up the labeling algorithm. Low values of �ng yield

fast labeling algorithm at the expense of a decreased LP bound,

hereas high values slow down the labeling algorithm but increase

he value of the LP bound. Observe that all cycles are allowed in an

g-path when �ng = 1, and only elementary paths are allowed when

ng = n.

.3. Acceleration strategies

It is well known that, in a column generation algorithm, there is

o need to solve the pricing problems to optimality at each iteration.

s long as negative reduced cost columns are found, the pricing prob-

ems can be solved heuristically and it is even possible to skip some

ricing problems. The algorithm remains exact if the pricing problems

re solved to optimality in the last column generation iteration when

olving a linear relaxation. Below, we discuss two strategies to po-

entially generate negative reduced cost columns in fast computation

R. Spliet, G. Desaulniers / European Journal of Operational Research 244 (2015) 379–391 383

Algorithm 1 Column generation algorithm, reusing routes.

1: Initialize R(s) for all s ∈ S

2: repeat

3: Solve the RMP using the routes in R(s) for scenario s ∈ S

4: Set S̃ := S

5: while S̃ �= ∅ do

6: Choose s ∈ S̃ and remove it from S̃

7: Solve the pricing problem for scenario s to find a set R of

routes with negative reduced costs

8: Add all routes in R to R(s)
9: for all s̃ ∈ S̃ do

10: Let R̃ ⊆ R be the subset of routes that are feasible and have

a negative reduced cost for scenario s̃

11: if R̃ �= ∅ then

12: Add the routes in R̃ to R(s̃)
13: Remove s̃ from S̃

14: until No new routes are added to the RMP

3

p

a

m

p

t

g

r

r

a

l

g

r

t

t

S

i

3

u

a

t

a

e

w

v

a

b

f

m

p

s

l

s

i

n

i

r

s

a

t

t

w

n

3

s

i

D

e

t

a

c

e

d

t

v

i

r

A

s

N

t

i

p

r

c

p

a

G

L

s

r

b

o

b

o

m

c

a

s

σ

t

p

b

i

a

r

s

n

t

.3.1. Reusing routes

At each iteration of the column generation algorithm, a pricing

roblem is solved for each scenario. Because these pricing problems

re very similar, solutions to the pricing problem of one scenario

ight also be feasible for another. Reusing a solution in this way

otentially decreases the number of pricing problems that have

o be solved at each iteration. Therefore, we propose the column

eneration algorithm described in Algorithm 1, in which routes are

eused for other scenarios when they are feasible and have a negative

educed cost.

Note that the order in which the scenarios are solved at each iter-

tion might affect the performance of the algorithm. However, in pre-

iminary experiments, we tested different scenario selection strate-

ies and none seems to outperform the others. The computational

esults presented in Section 5 were obtained by using a fixed order of

he scenarios over all iterations. In our experiments this corresponds

o the order in which the scenarios are generated as described in

ection 5.1. This effectively means that the lowest demand scenario

s selected first, followed by the second lowest, etc.

.3.2. Tabu search column generator

The column generation algorithm can be further accelerated by

sing a heuristic to solve the pricing problem. A heuristic might be

ble to identify feasible routes with negative reduced costs in less

ime than it takes to solve the pricing problem exactly. When using

heuristic at each iteration of the column generation algorithm, the

xact algorithm is only used to find new routes or prove optimality

hen the heuristic fails.

As done by, e.g., Desaulniers, Lessard, and Hadjar (2008), we de-

eloped a tabu search algorithm to solve the pricing problem. In this

lgorithm an initial route is considered, which is iteratively replaced

y a neighboring route. The neighborhood of each route contains all

easible elementary routes that can be obtained by performing one

ove. We consider two types of moves: adding a single node at any

osition in the route and removing a single node from the route.

At each iteration, the best neighbor in terms of reduced cost is

elected as the new route. Note that this might yield a route with a

arger reduced cost than that of the previous route. To avoid cycling,

electing the inverse of the move used to obtain the current route

s tabu for TStabu iterations. If the reduced cost of the new route is

egative, it is added to the RMP. To diversify the search, at every TSIt

terations, it is restarted using a completely new route. The initial

oute and those used to restart the search correspond to the routes

elected in the current solution of the RMP for the scenario associ-

ted with the pricing problem. When such a route is not elementary,
he first visit to each customer is maintained and all other visits to i
he same customer are removed from the route. The algorithm stops

hen all selected routes have been used to restart, or a total of TSmax

ew routes have been added to the RMP during the current search.

.4. Valid inequalities

For the vehicle routing problem, many valid inequalities have been

tudied: for example, capacity, comb, hypotour and multistar inequal-

ties (Lysgaard, Letchford, & Eglese, 2004), k-path inequalities (Kohl,

esrosiers, Madsen, Solomon, & Soumis, 1999) and subset row in-

qualities (Jepsen et al., 2008). These inequalities are also applicable

o each scenario in the DTWAVRP.

We have tested all the above mentioned valid inequalities in our

lgorithm. However, preliminary experiments showed that adding

apacity inequalities and subset row inequalities provide the low-

st computation time. Below, we describe these inequalities in more

etail.

Let δVr be the number of times route r traverses an arc (i, j) such

hat i ∈ V and j /∈ V for V ⊆ N′. Let b(V) be the minimum number of

ehicles needed to visit all customers in V ⊆ N′. The capacity inequal-

ties are as follows:∑
∈R(s)

δVrxs
r ≥ b(V) ∀V ⊆ N′, ∀s ∈ S (18)

s it is common, we replace b(V) by the lower bound �
∑

i∈V ds
i

Q �. The

eparation problem of these rounded capacity inequalities is strongly

P-hard. We use the heuristic of Lysgaard et al. (2004) to separate

hem, more precisely, we use the implementation that can be found

n the package by Lysgaard (2003).

When capacity inequalities are added to the master problem, the

ricing problems remain the same. However, the reduced cost of a

oute may be altered. Let μs
V be the dual variable associated with the

apacity inequality for subset V in scenario s. We modify the pricing

roblem for scenario s by subtracting μs
V from the reduced cost of the

rcs ((i, w), (i′, w′)) ∈ Â such that i ∈ V and i′ �∈ V .

The subset row inequalities are a special case of the Chvátal-

omory rank 1 cuts. They were introduced by Jepsen et al. (2008).

et eir = ∑
w∈Wi

eiwr be the number of times i is visited on route r. The

ubset row inequalities can be expressed as follows:

∑
∈R(s)

⌊
1

k

∑
i∈V

eir

⌋
xs

r ≤
⌊ |V|

k

⌋
∀V ⊆ N′, 2 ≤ k ≤ |V|, ∀s ∈ S. (19)

The subset row separation problem is NP-complete. As suggested

y e.g. Jepsen et al. (2008) and Desaulniers et al. (2008), we separate

nly subset row inequalities for subsets V of size three, using k = 2,

y enumeration. In this case, the inequalities ensure that for any set

f three customers, at most one route can be selected that includes

ore than one of these customers.

Adding subset row inequalities to the formulation for scenario s

hanges the corresponding pricing problem. Let σ s
V be the dual vari-

ble associated with the subset row inequality for subset V in scenario

. For every k customers in V visited by a path in the pricing problem,
s
V is subtracted from the reduced cost of that path.

The labeling algorithm is adjusted to include the dual values of

he subset row inequalities in the reduced cost of each path. For the

ricing problem associated with scenario s, the labels are modified

y incorporating a new resource hs
V for every generated subset row

nequality associated with a subset V and scenario s. When extending

label to a customer in V , hs
V is increased by one. When this resource

eaches k, then σ s
V is subtracted from the reduced cost and the re-

ource is reset to 0. Hence, hs
V(l) gives the number of visits to the

odes in V by the partial path corresponding to label l since the last

ime σ s
V was subtracted from the reduced cost.

As proposed by Jepsen et al. (2008), the dominance check is mod-

fied as follows. When trying to establish whether a label l dominates

384 R. Spliet, G. Desaulniers / European Journal of Operational Research 244 (2015) 379–391

s

f

c

c

4

a

r

a

a

t

n

c

a

s

w

t

4

r

e

i

s

v

e

a

r

a

W

t

v

g

t

e

u

c

t

q

d

t

T

4

r

l

u

t

w

t

t

T

u

T

5

i

a label l′, instead of checking whether c(l) ≤ c(l′), we check whether

c(l)− ∑
V:hs

V
(l)>hs

V
(l′) σ

s
V ≤ c(l′). Note that the subset row resources hs

V(l)

and hs
V(l′) are not compared during the dominance check. This way,

more labels might be dominated.

As adding subset row inequalities slows down the labeling algo-

rithm, we limit the number of inequalities added simultaneously as

proposed by Desaulniers et al. (2008). In each iteration only a max-

imum number of SRmax
i

subset row inequalities might be added for

subsets that include customer i. Furthermore, we limit the number of

subset row inequalities added at once by SRmax
It . Finally, we limit the

total number of added subset row inequalities to SRmax. To ensure

that the limited number of subset row inequalities are likely to make

an impact on the LP bound, we only add subset row inequalities that

are violated by at least SRmin
Vio

.

3.5. Branch-price-and-cut

We propose the following branch-price-and-cut algorithm to solve

the DTWAVRP to optimality. Lower bounds are found by solving the

LP relaxation using column generation (see Algorithm 1) and adding

valid inequalities. Capacity inequalities are separated in each itera-

tion of the column generation algorithm where no new routes with

negative reduced costs are identified. Because of their negative im-

pact on the computation time of the algorithm that solves the pricing

problem, subset row inequalities are only generated when no violated

capacity constraint can be found. Branching is performed on the arcs

in G, as by Proposition 1, integer arc flow in G is sufficient to identify

an integer optimal solution.

We perform special ordered subset branching on the arcs (SOS

branching). More specifically, for scenario s and customer i, let δ−
s (i)

and δ+
s (i)be the sets of in and out arcs of a node representing customer

i, respectively. Next, a customer i′, a scenario s′ and an arc type o′ ∈
{−, +} is selected such that the number of arcs a in δo′

s′ (i
′) for which

the arc flow is greater than zero, Fs′
a > 0, is the largest set. Let δo′

s′ (i
′) =

{a1, . . . , ak} be ordered with respect to the arc flow in G, such that

Fs′
au

≥ Fs′
av

if u < v. The arcs are divided into two groups, V and its

complement V̄ , where V = {a1, . . . , au} is such that
∑

a∈V Fs′
a ≥ 0.5 and∑

a∈V\{au} Fs′
a < 0.5. In one branch we disallow the use of the arcs in

V and in the other we disallow the use of the arcs in V̄ . This does not

alter the nature of the pricing problem, in fact the number of arcs in

the network decreases.

In our branch-price-and-cut algorithm, upper bounds are obtained

when computing an integer RMP solution. The search tree is explored

using a best-first strategy, that is, the node with the lowest lower

bound is selected to process next.

4. Column generation heuristics

In this section, we introduce five column generation heuristics for

the DTWAVRP that are derived from the above branch-price-and-cut

algorithm and that can be used to find good solutions in less compu-

tation time than the exact algorithm. According to the terminology

used in the survey of Joncour, Michel, Sadykov, Sverdlov, and Vander-

beck (2010), we propose one restricted master heuristic, two diving

heuristics, and two rounding heuristics. Our goal here is to show how

the branch-price-and-cut algorithm can be adapted to tackle larger

instances. Other types of heuristics could be devised but such an en-

deavor does not fall within the scope of this paper.

The proposed heuristics rely on the formulation (7)–(11). These

heuristics focus on the first-stage decisions, which means that they

do not consider integrality requirements on the route variables but

only on the time window assignment variables. This speeds up the

solution process, while the fractional route variables may still guide

the search well enough to find good time window assignments for

the DTWAVRP. Given a time window assignment, the corresponding
olution value of the DTWAVRP can be evaluated by solving a VRPTW

or each scenario using these time windows. Note that because we

onsider an unlimited amount of vehicles, a feasible routing schedule

an be found for any time window assignment.

.1. Restricted master heuristic

The restricted master heuristic is based on a MIP solver used as

black-box after generating routes at the root node. First, the LP

elaxation of the DTWAVRP is solved using the column generation

lgorithm described in Section 3. Valid inequalities are then separated

nd, if violated ones are found, they are added to the RMP which is

hen reoptimized by column generation. This process is iterated until

o violated inequalities are found. Next, the resulting RMP (in the last

olumn generation iteration) is used to find an integer time window

ssignment. Hence, no new routes are generated beyond this stage. To

olve the RMP, a MIP solver is invoked but only integrality of the time

indow assignment variables is required, that is, we do not require

he selection of integer routes.

.2. Diving heuristics

In the first diving heuristic, called the TWDiving heuristic, the LP

elaxation of the DTWAVRP is solved using the exact column gen-

ration algorithm, alternating as before with the generation of valid

nequalities. Next, we fix the assignment of the highest fractionally

elected time window among all customers, i.e., the time window

ariable that has a fractional value closest to 1 is fixed to 1. We it-

rate these two steps of column generation and variable fixing until

n integer time window assignment is found. Here again, we do not

equire the route selection to be integer.

At each iteration of the TWDiving heuristic, the column generation

lgorithm is used to solve to optimality the LP relaxation of the DT-

AVRP with a partially fixed time window assignment. Even though

he optimal solution to the LP relaxation at each iteration might pro-

ide a good indication of the time windows to assign, there is no

uarantee that this gives a better indication than a suboptimal solu-

ion. Therefore, we also consider a second diving heuristic in which, at

ach column generation iteration, the pricing problem is only solved

sing the tabu search algorithm described in Section 3.3.2. In this

ase, the exact pricing algorithm is never invoked during the execu-

ion of the heuristic. This speeds up the heuristic, while the solution

uality may not suffer too much as most routes that are important for

etermining a good time window assignment might be generated by

he tabu search algorithm anyway. We refer to this heuristic as the

WDiving-Tabu heuristic.

.3. Rounding heuristics

The TWRounding heuristic is a rounding heuristic in which we

ound time window assignment variables that are fractionally se-

ected. First, the LP relaxation of the DTWAVRP is solved using the col-

mn generation algorithm (possibly adding valid inequalities). Next,

o each customer we assign the highest fractionally selected time

indow, i.e., for each customer separately, the time window variable

hat has a fractional value closest to 1 is set to 1. This way an integer

ime window assignment is obtained, but no integer route selection.

As for the TWDiving heuristic, we also consider a variant of the

WRounding heuristic in which the pricing problem is only solved

sing the tabu search algorithm. We refer to this heuristic as the

WRounding-Tabu heuristic.

. Computational results

In this section we present the results of our computational exper-

ments. First, we elaborate on the instances that were used. Next, we

R. Spliet, G. Desaulniers / European Journal of Operational Research 244 (2015) 379–391 385

r

r

(

s

c

C

t

R

s

t

5

a

f

p

a

r

w

d

e

q

o

t

[

c

t

d

b

n

e

[

t

b

b

i

d

v

t

T

r

i

s

t

5

c

f

r

5

g

i

r

f

e

t

e

s

w

a

p

b

s

o

i

g

s

g

t

t

u

p

t

(

l

t

t

H

o

a

w

a

s

h

n

l

W

a

t

t

a

r

w

t

a

s

5

b

w

s

a

U

t

w

T

v

p

a

s

eport the results obtained with the exact branch-price-and-cut algo-

ithm (Subsection 5.2) and with the five column generation heuristics

Subsection 5.3). Finally, we provide results to compare a multiple-

cenario approach with the approach currently used in practice that

onsiders a single scenario (Subsection 5.4).

All our tests were performed on an Intel(R) Core(TM) i5-2450M

PU 2.5 gigahertz processor. The algorithms were coded in C++ and

he IBM ILOG Cplex optimizer, version 12.4, was used to solve the

MP in the column generation algorithm and also to derive an integer

olution in the restricted master heuristic. Unless stated otherwise, a

ime limit of one hour was enforced to solve each instance.

.1. Test instances

The instances used for our experiments were randomly gener-

ted.1 For each instance, n customers are generated using a uni-

orm distribution over a square with sides of length 5. The de-

ot is located in the center of the square. Travel costs and times

re computed as the Euclidean distance between two locations

ounded to two digits. Vehicle capacity is 30. The depot has time

indow [6,22]. We construct three sets of candidate time win-

ows which we randomly assign to each customer, such that

ach set of candidate time windows is assigned with fixed fre-

uency. We assign the set {[10, 12], [12, 14], [14, 16]} to 10 percent

f the customers, the set {[8, 10], [10, 12], [12, 14], [14, 16], [16, 18]}
o 60 percent of the customers, and {[7, 9], [9, 11], [11, 13],

13, 15], [15, 17], [17, 19], [19, 21]} to 30 percent of the customers.

For each instance, we generate three demand scenarios, each oc-

urring with equal probability. The scenarios are generated such that

he first scenario has low demand, the second scenario has medium

emand, and the final scenario has high demand. We accomplish this

y randomly generating a basic demand di for all i ∈ N′ according to a

ormal distribution with expectation 5 and variance 1.5. Next we gen-

rate multipliers u1
i
, u2

v and u3
v for all i ∈ N′ uniformly distributed on

0.7, 0.8], [0.95, 1.05] and [1.2, 1.3], respectively. Finally, we generate

he demand for each customer i ∈ N′ and each scenario s ∈ {1, 2, 3}
y computing ds

i
= �us

i
di�. Generating scenarios in this way resem-

les demand behavior that is encountered in the case, for instance, of

ce cream vendors. When the weather is exceptionally good or bad,

emand for ice cream goes up or down respectively. Moreover, all

endors in the network are affected similarly by the weather, leading

o an increase or decrease of demand for all vendors simultaneously.

These settings are inspired by experience with a Dutch retail chain.

he time window and capacity constraints ensure that no more than

oughly seven or eight customers can be visited by a single vehicle

n any scenario. We have generated 10 instances for eight different

izes, namely, 10, 15, 20, 25, 30, 40, 50 and 60 customers, making a

otal of 80 instances.

.2. Results with the exact algorithm

This section is divided in two parts. We present results for the

olumn generation algorithm first, before reporting results for the

ull branch-price-and-cut algorithm. For this section, our tests were

estricted to instances involving 25 customers or less.

.2.1. Column generation experiment results

In this section we present the results obtained by the column

eneration algorithm when solving the LP relaxation of (7)–(11). As

nitial routes in the RMP, we use routes visiting a single node, i.e.,

outes of the form (0, w0)− (i, w)− (n + 1, wn+1) for all (i, w) ∈ N̂ and

or all scenarios s ∈ S. We will distinguish between using only the

xact algorithm to generate routes, and using the tabu search heuristic
1 All instances can be found online at http://people.few.eur.nl/spliet.

t

2

1

o generate routes as well. No valid inequalities are added during these

xperiments.

Table 1 shows the results of using Algorithm 1, without the tabu

earch column generator, for the cases when all cycles are allowed,

hen only ng-paths are allowed for a neighborhood size of �ng = 5,

nd when only elementary paths are allowed. Recall that the same im-

lementation of this algorithm can be used for these route relaxations

y setting �ng = 1, �ng = 5, and �ng = n, respectively. The first and

econd columns of Table 1 show the instance number and the number

f customers in this instance. For each instance and each type of pric-

ng problem, we report the total time in seconds needed by the column

eneration algorithm to solve the LP relaxation (T.Time), the time

pent on solving pricing problems (P.Time), the number of column

eneration iterations needed (Iter.), and the LP optimal value (LP).

Observe that almost all of the computation time is spent on solving

he pricing problems. For four of the instances with 25 customers,

he time limit is exceeded before solving the LP relaxation, when

sing only elementary paths. When comparing the use of elementary

aths versus allowing all cycles, we observe that the computation

imes are in general significantly faster when all cycles are allowed

instance 1 is an obvious exception) but the LP values are significantly

ower. When using ng-paths with �ng = 5, the LP values are very close

o those obtained when using only elementary paths. Moreover, for

he largest instances, the computation times are significantly lower.

ence, using ng-paths provides bounds that are comparable to those

btained when using only elementary paths, in much less time.

Table 2 shows the results of using the column generation

lgorithm in which the tabu search algorithm is used to find routes

ith negative reduced costs. We use the settings TStabu = 5, TSIt = 15

nd TSmax = 150.

When comparing the results in Tables 1 and 2, one can observe a

ignificant decrease in computation time when using the tabu search

euristic in the elementary route case. In this case, all instances are

ow solved within the time limit of one hour. When the ng-route re-

axation is used, a smaller decrease in computation time is observed.

hen all cycles are allowed, using the tabu search algorithm leads to

n increase in computation time in many instances. Recall that the

abu search heuristic generates only elementary routes. Therefore

he routes produced by this heuristic may be less useful when cycles

re allowed. Note that we also developed a similar tabu search algo-

ithm for generating ng-routes. It was not successful because checking

hether a route is an ng-route is computationally expensive.

All results presented in the next section were obtained using

he tabu search column generator as well as the ng-route relax-

tion. Moreover, preliminary experiments with various values of �ng

howed that the algorithm yields its best results with �ng = 5.

.2.2. Branch-price-and-cut experiment results

Next, we present the results of our experiments using the exact

ranch-price-and-cut algorithm. Table 3 reports the results obtained

hen only capacity inequalities are considered. The column Opt.Gap

hows the percentage difference between the best obtained upper

nd lower bounds after termination of the algorithm. The column

B gives the best upper bound found. The column LP Gap shows

he percentage difference between the value of the LP relaxation,

ithout adding valid inequalities, and the best upper bound found.

he column Root Gap specifies the same difference but after adding

alid inequalities. The column Nodes indicates the number of nodes

rocessed in the search tree and the column CI gives the number of

dded capacity inequalities. Note that a dash indicates that no integer

olution was obtained within the time limit.

Observe that the total computation time increases rapidly with

he number of customers in the instances. Three of the instances with

0 customers and eight with 25 customers could not be solved within

hour. For four 10-customer instances, the LP bound is already tight.

http://people.few.eur.nl/spliet

386 R. Spliet, G. Desaulniers / European Journal of Operational Research 244 (2015) 379–391

Table 1

Column generation experiment results, without tabu search.

Inst. |N′| All cycles allowed ng-paths with �ng = 5 Only elementary paths

T.Time P.Time Iter. LP T.Time P.Time Iter. LP T.Time P.Time Iter. LP

1 10 25.43 25.29 18 9.80 6.86 6.57 28 12.78 7.99 7.71 28 12.79

2 10 3.39 3.28 17 15.19 3.04 2.73 32 16.67 3.67 3.26 30 16.67

3 10 1.06 1.03 16 12.02 1.40 1.23 33 16.53 1.76 1.59 32 16.53

4 10 1.73 1.67 21 14.87 4.31 3.93 37 15.70 6.66 6.30 36 15.83

5 10 1.81 1.64 32 17.61 1.97 1.63 48 19.65 2.31 1.98 45 19.65

6 10 0.86 0.81 21 16.09 1.59 1.33 32 18.06 1.83 1.61 33 18.06

7 10 2.01 1.81 28 11.36 2.15 1.81 30 12.17 4.38 4.20 31 12.17

8 10 1.50 1.31 28 15.16 2.29 1.82 38 17.09 2.32 2.04 43 17.09

9 10 1.92 1.79 31 16.91 1.98 1.54 47 19.78 1.83 1.53 39 19.78

10 10 0.89 0.81 20 14.92 1.40 1.09 26 17.17 1.47 1.19 33 17.17

11 15 8.27 7.92 29 20.77 12.61 12.03 33 22.22 44.99 44.45 33 22.23

12 15 4.54 4.35 27 22.12 8.86 8.37 33 24.86 14.27 13.82 34 24.86

13 15 9.24 9.00 22 18.41 12.67 12.03 26 21.36 28.39 27.86 28 21.41

14 15 38.55 38.08 26 15.31 42.85 41.43 40 18.08 134.41 132.99 39 18.08

15 15 8.72 8.44 24 21.34 16.46 15.84 40 24.15 33.68 33.06 32 24.26

16 15 22.93 22.37 29 16.65 29.53 28.37 38 19.11 103.72 102.27 43 19.11

17 15 16.72 16.04 30 20.49 30.65 28.92 52 21.45 141.79 140.29 49 21.53

18 15 16.44 16.18 21 19.56 21.42 20.25 38 22.49 38.74 37.81 44 22.55

19 15 6.77 6.58 28 20.51 8.94 8.38 33 22.58 19.91 19.25 33 22.65

20 15 10.28 10.01 22 17.00 15.44 14.70 35 18.29 69.42 68.50 30 18.30

21 20 15.66 15.21 29 24.78 36.11 34.63 42 27.46 176.25 174.95 32 27.54

22 20 73.96 72.20 37 23.30 223.78 221.14 35 25.23 2061.23 2058.81 39 25.27

23 20 45.19 44.29 35 22.49 153.04 150.59 42 25.90 1162.78 1160.08 47 25.91

24 20 22.42 21.59 27 29.50 38.41 37.25 35 31.13 166.98 165.80 31 31.16

25 20 32.95 32.14 27 25.54 56.43 54.43 44 27.56 145.28 143.21 40 27.70

26 20 17.49 16.79 34 24.07 51.48 48.92 43 26.95 402.75 399.91 43 26.97

27 20 58.47 57.60 25 24.98 156.16 154.70 29 26.76 1334.75 1333.41 34 26.82

28 20 45.41 44.24 34 25.15 63.34 61.01 42 26.22 1029.01 1026.10 46 26.23

29 20 64.93 63.87 26 26.30 94.58 93.30 28 28.61 367.40 366.21 30 28.74

30 20 35.35 34.41 27 21.71 73.54 71.36 39 23.24 1626.60 1624.22 43 23.25

31 25 73.94 71.87 34 33.65 178.12 175.02 40 35.02 2108.34 2105.72 34 35.14

32 25 90.18 87.86 30 29.48 150.37 145.88 47 31.37 1170.66 1165.34 51 31.56

33 25 169.32 166.78 34 27.97 276.76 273.67 31 30.45 3600.00 3600.00 1 −
34 25 39.55 38.91 28 30.56 94.21 92.20 36 33.18 1584.22 1582.39 35 33.27

35 25 93.62 92.38 33 27.86 193.52 189.53 45 30.03 3600.00 3600.00 1 −
36 25 129.92 127.83 30 29.76 236.79 232.68 48 31.62 2823.07 2819.57 40 31.69

37 25 110.81 108.98 30 24.62 250.16 245.17 51 27.17 3600.00 3600.00 1 −
38 25 60.72 58.81 35 32.16 151.21 146.47 49 34.07 942.12 938.66 43 34.14

39 25 124.61 122.74 32 31.69 239.12 235.84 39 33.46 2476.24 2473.37 37 33.51

40 25 121.01 119.37 30 28.09 269.54 266.53 36 29.66 3600.00 3600.00 1 −

c

c

o

t

b

e

i

r

o

e

c

t

w

(

o

n

s

i

F

v

o

d

a

t

c

For 14 more instances the gap is completely closed by adding capacity

cuts, including the instance with the largest (observed) LP gap.

Table 4 shows the results of using the branch-price-and-cut algo-

rithm while adding both the capacity inequalities and the subset row

inequalities. Recall that subset row inequalities are only separated

when no violated capacity inequalities are identified. We limit the

subset row inequalities that we add as described in Section 3.4. We

use the settings SRmax
i

= 5, SRmax
It = 10, SRmax = 30 and SRmin

Vio
= 0.1.

In this table, the column SRI indicates the number of generated subset

row inequalities.

Three instances (28, 30 and 40) that were previously unsolved are

now solved by adding subset row inequalities. Out of the twenty other

instances in which subset row inequalities were added, seven in-

stances were solved faster than without adding them, eight remained

unsolved, while the others required more computation time. The LP

gap of one additional instance, instance 26, is closed after adding

subset row inequalities. Adding subset row inequalities improves the

lower bounds that are obtained and yields less nodes in the branch-

ing tree. However, the additional time spent on solving the pricing

problems as a result of adding these inequalities often outweighs the

gains of these improved bounds, especially for the smaller instances.

5.3. Results with the heuristics

Next, we present the results of our computational experiments

using the five column generation heuristics. In these heuristics, the
olumn generation algorithm is set as specified in Section 5.2 ex-

ept for the TWDiving-Tabu and TWRounding-Tabu heuristics that

nly used the tabu search algorithm to generate columns. As men-

ioned in Section 4, valid inequalities are separated in each heuristic

ut preliminary experiments (with no inequalities, only capacity in-

qualities, only subset row inequalities or both types) showed that it

s better to not use the same strategy for all heuristics. Indeed, for the

estricted master heuristic, the quality of the solutions is dependent

n the number and quality of the generated routes. Adding valid in-

qualities increases the number of routes that are generated by the

olumn generation algorithm and potentially has a positive effect on

he quality of the routes. Therefore, for the restricted master heuristic

e separate both capacity inequalities and subset row inequalities

using the same parameter setting described in Section 5.2). For the

ther four heuristics, the results of the preliminary tests showed that

o single setting produced the best results over all instances with re-

pect to solution quality and computation time. Adding more inequal-

ties typically yields better solutions but increases computation time.

urthermore, it was not clear which type of valid inequalities pro-

ides the best results. Nevertheless, we chose to only present results

f experiments in which we separate only the subset row inequalities

uring the execution of the TWDiving, TWDiving-Tabu, TWRounding

nd TWRounding-Tabu heuristics.

Table 5 presents the results of solving DTWAVRP instances using

he five proposed column generation heuristics. The column Opt. indi-

ates the optimal solution value for the instances that were solved to

R. Spliet, G. Desaulniers / European Journal of Operational Research 244 (2015) 379–391 387

Table 2

Column generation experiment results, with tabu search.

Inst. |N′| All cycles allowed ng-paths with �ng = 5 Only elementary paths

T.Time P.Time Iter. LP T.Time P.Time Iter. LP T.Time P.Time Iter. LP

1 10 21.01 19.92 103 9.80 2.87 2.53 47 12.78 1.90 1.62 34 12.79

2 10 8.42 7.41 97 15.19 1.31 0.99 46 16.67 1.59 1.26 50 16.67

3 10 4.34 3.67 86 12.02 1.25 0.81 63 16.53 1.23 0.86 50 16.53

4 10 5.40 4.51 94 14.87 2.75 2.12 79 15.70 2.34 1.84 73 15.83

5 10 4.59 3.58 105 17.61 1.61 1.08 71 19.65 1.53 0.98 68 19.65

6 10 4.57 3.84 90 16.09 0.98 0.70 46 18.06 1.00 0.67 46 18.06

7 10 7.00 6.15 124 11.36 1.23 0.95 67 12.17 1.31 1.05 70 12.17

8 10 7.66 6.53 119 15.16 1.83 1.53 79 17.09 1.48 1.11 75 17.09

9 10 6.12 4.93 120 16.91 1.79 1.42 63 19.78 2.18 1.67 73 19.78

10 10 4.29 3.38 99 14.92 0.95 0.47 53 17.17 1.11 0.53 62 17.17

11 15 20.00 17.55 110 20.77 3.35 2.53 29 22.22 4.07 3.17 31 22.23

12 15 13.21 11.24 86 22.12 3.39 2.56 33 24.86 3.46 2.71 33 24.86

13 15 18.49 16.72 103 18.41 3.39 2.69 37 21.36 3.17 2.59 34 21.41

14 15 45.01 40.18 164 15.31 8.39 5.87 79 18.08 8.02 5.64 77 18.08

15 15 26.60 23.46 116 21.34 7.10 5.53 57 24.15 6.32 4.99 50 24.26

16 15 37.03 32.53 143 16.65 9.94 8.32 67 19.11 9.31 7.38 58 19.11

17 15 30.03 26.42 119 20.49 7.16 5.43 52 21.45 7.69 6.42 44 21.53

18 15 24.37 21.83 103 19.56 8.08 6.49 69 22.49 6.96 6.21 49 22.55

19 15 18.44 16.61 106 20.51 3.92 3.15 41 22.58 3.37 2.75 35 22.65

20 15 21.36 18.28 122 17.00 5.87 4.57 51 18.29 6.79 5.48 54 18.30

21 20 35.90 30.64 124 24.78 8.56 6.49 42 27.46 6.27 4.57 33 27.54

22 20 72.59 65.06 133 23.30 46.22 41.32 100 25.23 104.72 101.42 66 25.27

23 20 84.13 74.98 196 22.49 12.45 9.64 50 25.9 16.23 13.56 47 25.91

24 20 35.55 30.53 116 29.50 12.06 9.48 54 31.13 11.36 9.05 47 31.16

25 20 52.34 45.87 134 25.54 9.75 7.49 46 27.56 10.28 8.25 45 27.70

26 20 48.31 41.46 128 24.07 14.71 11.68 55 26.95 29.75 26.68 64 26.97

27 20 56.07 50.81 113 24.98 29.86 27.34 56 26.76 44.48 42.46 43 26.82

28 20 46.50 41.39 117 25.15 14.62 11.58 61 26.22 10.67 8.10 46 26.23

29 20 60.34 53.14 153 26.30 12.86 10.64 45 28.61 8.36 6.77 31 28.74

30 20 67.89 61.36 142 21.71 14.99 12.28 56 23.24 16.10 13.68 47 23.25

31 25 80.04 71.14 143 33.65 42.71 37.88 78 35.02 47.55 44.38 44 35.14

32 25 133.01 116.34 225 29.48 39.72 32.69 91 31.37 64.93 59.54 69 31.56

33 25 135.53 124.32 155 27.97 47.00 41.11 79 30.45 344.21 339.67 67 30.60

34 25 73.83 66.83 154 30.56 15.55 12.67 44 33.18 20.44 18.07 38 33.27

35 25 129.25 120.55 143 27.86 34.23 29.90 62 30.03 41.50 38.37 41 30.04

36 25 110.64 100.48 162 29.76 26.38 21.71 63 31.62 44.77 41.11 50 31.69

37 25 192.65 176.89 194 24.62 62.90 55.74 91 27.17 163.25 157.09 72 27.22

38 25 81.14 71.37 151 32.16 24.82 20.04 70 34.07 21.90 18.46 50 34.14

39 25 136.41 124.78 164 31.69 56.36 50.76 80 33.46 91.06 87.11 56 33.51

40 25 129.25 119.31 186 28.09 28.77 25.09 61 29.66 121.38 118.08 55 29.71

o

c

i

h

t

p

f

b

f

t

c

r

w

w

t

s

a

h

o

T

T

d

w

r

o

i

t

p

t

i

p

C

t

t

g

p

t

o

a

t

t

q

5

c

c

ptimality with the exact algorithm. Furthermore, the ten rightmost

olumns show the solution value and computation time of solving the

nstances with each heuristic. Note that the computation time for the

euristics does not include the time to evaluate the solution, that is,

he time to solve a VRPTW for each scenario using the time windows

rovided by the heuristics.

First, observe that the restricted master heuristic terminates be-

ore reaching the time limit for the instances with up to 25 customers,

ut for the larger instances, it only terminates within the time limit

or one instance. Moreover, note that there are instances in which the

ime limit is exceeded, but still a solution value is reported. In these

ases, the best integer solution found by the branch-and-bound algo-

ithm after one hour of computation time is used. In the other cases

here the time limit is exceeded, no integer time window assignment

as found.

Furthermore, the TWDiving heuristic terminates before reaching

he time limit for all instances with up to 25 customers. It fails to do

o for 2 of the 30 customer instances, 8 of the 40 customer instances,

nd all of the instances with 50 and 60 customers. The TWRounding

euristic terminates within the time limit for all instances except for 4

f the 60 customer instances. The TWDiving-Tabu and TWRounding-

abu heuristic terminate well within the time limit for all instances.

he TWRounding-Tabu heuristic yields the lowest computation times.

To compare the heuristics with respect to solution quality, we

istinguish between small and large instances, that is, the instances

ith up to 25 customers and the instances with 30 or more customers,
espectively. For the 40 small instances, the five heuristics (in order

f their presentation) provide the best solution for 27, 20, 19, 8 and 8

nstances, respectively. Thus, the restricted master heuristic provides

he best solution most often. The cost of its solutions is on average 0.29

ercent above the optimal value for all instances that have been solved

o optimality. For the other four heuristics, the average optimality gap

s 0.51 percent for TWDiving, 0.39 percent for TWDiving-Tabu, 4.30

ercent for TWRounding, and 3.17 percent for TWRounding-Tabu.

learly, the diving heuristics produce solutions of much better quality

han the counterpart rounding heuristics. However, they are more

ime-consuming. It seems that using only the tabu search column

enerator does not affect solution quality.

For the 40 large instances, the five heuristics (in the same order)

rovide the best solution for 3, 4, 32, 1 and 0 instances, respectively. In

his case, the TWDiving-Tabu heuristic yields the best solution most

ften. The restricted master heuristic and TWDiving heuristic are un-

ble to produce solutions in many of these instances due to exceeding

he time limit. In consequence, the TWDiving-Tabu heuristic seems

o be the heuristic offering the best compromise between solution

uality and computation time.

.4. Comparison with current practice

In practice, time windows are typically assigned based on histori-

al average demand. In this case, a VRP with multiple time windows

an be solved (by branch-price-and-cut), where the time windows

388 R. Spliet, G. Desaulniers / European Journal of Operational Research 244 (2015) 379–391

Table 3

Branch-price-and-cut experiment results, with capacity inequalities only.

Inst. |N′| UB Tot.Time Opt. LP gap Root Nodes CI

Gap gap

1 10 12.83 4.85 0 0.4 0 2 1

2 10 16.84 2.18 0 1.04 0 1 6

3 10 16.60 1.29 0 0.47 0 1 3

4 10 15.96 20.48 0 1.61 0.58 23 24

5 10 19.65 1.59 0 0 0 1 0

6 10 18.13 1.54 0 0.38 0 1 6

7 10 12.17 1.23 0 0 0 1 0

8 10 17.09 1.84 0 0 0 1 0

9 10 20.14 3.41 0 1.78 0 4 7

10 10 17.17 0.95 0 0 0 1 0

11 15 23.04 726.36 0 3.56 0.47 345 59

12 15 25.27 6.00 0 1.6 0 1 31

13 15 22.12 16.10 0 3.44 0 2 27

14 15 18.46 78.40 0 2.06 0 10 4

15 15 24.87 701.79 0 2.93 1.01 329 29

16 15 19.82 82.74 0 3.59 0.09 7 16

17 15 21.96 344.62 0 2.36 0.52 69 55

18 15 22.93 66.48 0 1.9 0 19 12

19 15 23.14 33.64 0 2.39 0 8 44

20 15 18.84 35.44 0 2.9 0 7 26

21 20 27.99 32.94 0 1.87 0 2 29

22 20 25.63 1438.67 0 1.59 0.34 125 56

23 20 26.53 3080.33 0 2.39 0.13 216 87

24 20 32.36 894.09 0 3.8 0.36 223 106

25 20 28.84 105.59 0 4.44 0 3 54

26 20 26.99 150.07 0 0.12 0.11 21 4

27 20 27.55 3600.00 0.06 2.87 0.33 233 81

28 20 26.53 3600.00 0.02 1.16 0.41 346 114

29 20 29.49 654.39 0 2.97 0.29 46 112

30 20 23.64 3600.00 0.57 1.69 0.93 307 118

31 25 35.47 1460.91 0 1.26 0.1 44 184

32 25 − 3600.00 − − − 346 110

33 25 − 3600.00 − − − 163 138

34 25 − 3600.00 − − − 504 118

35 25 − 3600.00 − − − 97 132

36 25 − 3600.00 − − − 140 648

37 25 − 3600.00 − − − 98 135

38 25 34.83 204.20 0 2.16 0 5 88

39 25 − 3600.00 − − − 110 178

40 25 − 3600.00 − − − 152 166

Table 4

Branch-price-and-cut experiment results, with capacity and subset row inequalities.

Inst. |N′| UB Tot.Time Opt. LP gap Root Nodes CI SRI

Gap gap

1 10 12.83 4.88 0 0.4 0 2 1 0

2 10 16.84 2.02 0 1.04 0 1 6 0

3 10 16.60 1.32 0 0.47 0 1 3 0

4 10 15.96 26.31 0 1.61 0.58 16 24 17

5 10 19.65 1.59 0 0 0 1 0 0

6 10 18.13 1.56 0 0.38 0 1 6 0

7 10 12.17 1.23 0 0 0 1 0 0

8 10 17.09 1.82 0 0 0 1 0 0

9 10 20.14 3.44 0 1.78 0 4 7 0

10 10 17.17 0.96 0 0 0 1 0 0

11 15 23.04 507.00 0 3.56 0.27 119 41 30

12 15 25.27 5.91 0 1.6 0 1 31 0

13 15 22.12 15.92 0 3.44 0 2 27 0

14 15 18.46 78.51 0 2.06 0 10 4 0

15 15 24.87 1364.49 0 2.93 1.01 221 28 30

16 15 19.82 70.60 0 3.59 0.08 3 16 10

17 15 21.96 501.76 0 2.36 0.27 17 31 30

18 15 22.93 66.83 0 1.9 0 21 12 5

19 15 23.14 32.93 0 2.39 0 8 44 0

20 15 18.84 35.03 0 2.9 0 7 26 0

21 20 27.99 32.94 0 1.87 0 2 29 0

22 20 25.63 1225.18 0 1.59 0.12 19 43 26

23 20 26.53 3079.46 0 2.39 0.13 216 87 0

24 20 32.36 594.39 0 3.8 0.21 86 105 25

25 20 28.84 105.65 0 4.44 0 3 54 0

26 20 26.99 138.12 0 0.12 0 3 1 10

27 20 − 3600.00 − − − 7 75 27

28 20 26.53 3284.31 0 1.16 0.2 91 61 30

29 20 29.49 343.38 0 2.97 0.07 11 84 20

30 20 23.55 2425.43 0 1.33 0.33 147 96 30

31 25 35.47 820.01 0 1.26 0.01 7 162 17

32 25 − 3600.00 − − − 157 98 30

33 25 − 3600.00 − − − 30 118 30

34 25 − 3600.00 − − − 174 78 30

35 25 − 3600.00 − − − 46 113 24

36 25 − 3600.00 − − − 68 110 30

37 25 − 3600.00 − − − 25 101 30

38 25 34.83 214.90 0 2.16 0 5 88 2

39 25 − 3600.00 − − − 81 172 27

40 25 30.73 489.06 0 3.49 0 4 101 10

t

i

d

e

w

s

m

c

p

y

w

o

p

T

t

s

i

E

s

b

s

b

f

are the candidate time windows of each customer. The time window

in which a customer is visited in the computed solution is then de-

clared as the assigned time window. We refer to this approach as the

average demand based time window assignment, ADTWA.

In this section, we present the results of computational experi-

ments in which we compare the 1-scenario ADTWA approach with

several sample average approximation approaches. To perform this

comparison, we generated 30 new instances involving 20, 25, and 30

customers (10 instances for each size). We considered 25 different

demand scenarios that were created using the following procedure.

Basic demand di, for all i ∈ N′, is generated as described in Section 5.1.

For every customer i ∈ N′ and scenario s ∈ S, a perturbation factor

εs
i

to the basic demand is generated using a uniform distribution on

[−1.5, 1.5]. Next, for each scenario s ∈ S, we generate a multiplier us

uniformly distributed on [0.625, 1.375]. Finally, demand for each cus-

tomer i ∈ N′ and each scenario s ∈ S is computed as ds
i
=

⌈
us(di + εs

i
)
⌉

.

As sample average approximation approaches, the TWDiving-

Tabu heuristic is used, first considering a sample of three scenar-

ios and secondly a sample of five scenarios. Furthermore, the exact

branch-price-and-cut algorithm is used considering a sample of three

scenarios, for the 20-customer instances only. The sample of three

scenarios is generated as described in Section 5.1. The sample of five

scenarios is generated in the same way except that five multipliers

us
i

per customer i ∈ N′ are generated using uniform distributions on

[0.65, 0.75], [0.8, 0.9], [0.95, 1.05], [1.1, 1.2] and [1.25, 1.35], respec-
ively. Note that, for a given instance, the same basic demand di, i ∈ N′,
s used in each scenario. In particular, it is considered as the average

emand in the ADTWA approach.

No time limit was imposed for these experiments. To compute the

xpected total transportation cost resulting from the assigned time

indows obtained with each method, we solved for each of the 25

cenarios the corresponding VRPTW to optimality. The average opti-

al value over these scenarios gives the expected total transportation

ost. We would like to emphasize that this means that the exact ap-

roach for the approximate 3-scenario DTWAVRP instance might not

ield the lowest expected costs when evaluated over 25 scenarios.

Table 6 shows the results of these experiments. For each instance,

e report in the column BPC the expected transportation cost (ETC)

f the time window assignment obtained by applying the branch-

rice-and-cut algorithm considering three scenarios. In the first two

WDiving-Tabu columns, we provide the ETC yielded by the solu-

ions produced by the TWDiving-Tabu heuristic with three and five

cenarios, respectively. The difference between these ETCs is given

n the third TWDiving-Tabu column. In the column ADTWA, the

TC of the ADTWA approach solution is reported. The last column

hows the difference between the ETCs of the solutions computed

y the ADTWA approach and the TWDiving-Tabu heuristic with five

cenarios. For each instance, the best ETC value is highlighted in

oldface.

First, observe that the ADTWA approach provides the worst results

or all instances. Moreover, the TWDiving-Tabu heuristic with five

R. Spliet, G. Desaulniers / European Journal of Operational Research 244 (2015) 379–391 389

Table 5

Heuristic experiment results.

Inst. |N′| Opt. Restricted master TWDiving TWDiving-Tabu TWRounding TWRounding-Tabu

Value Time Value Time Value Time Value Time Value Time

1 10 12.83 12.83 4.92 12.83 8.83 12.83 0.96 12.87 4.13 12.83 1.03

2 10 16.84 16.84 2.34 16.84 8.75 16.98 2.27 16.85 3.49 16.85 1.20

3 10 16.60 16.60 1.40 16.60 4.25 16.60 0.81 16.60 1.37 16.60 0.81

4 10 15.96 15.96 5.07 15.96 11.10 15.96 0.57 15.99 6.38 15.96 0.56

5 10 19.65 19.65 1.73 19.65 1.63 19.70 0.67 19.65 1.75 19.71 0.61

6 10 18.13 18.13 1.77 18.13 1.51 18.13 0.62 18.13 1.50 18.13 0.61

7 10 12.17 12.17 1.35 12.17 1.29 12.17 0.56 12.17 1.28 12.17 0.55

8 10 17.09 17.09 1.98 17.09 2.05 17.09 0.51 17.09 1.86 17.09 0.50

9 10 20.14 20.14 3.49 20.14 4.36 20.14 0.59 20.14 2.47 20.14 0.56

10 10 17.17 17.17 1.04 17.17 1.04 17.17 0.48 17.17 0.97 17.17 0.45

11 15 23.04 23.06 20.42 23.21 99.56 23.04 13.30 25.28 26.49 24.09 6.97

12 15 25.27 25.27 6.45 25.27 71.19 25.27 8.04 27.06 17.60 26.28 5.15

13 15 22.12 22.23 26.96 22.34 63.36 22.22 11.52 24.70 16.91 22.51 5.54

14 15 18.46 18.46 17.55 18.46 141.38 18.46 7.69 19.85 36.83 18.51 5.87

15 15 24.87 25.24 21.31 25.33 67.31 24.99 13.69 26.16 23.84 25.17 7.30

16 15 19.82 20.09 46.42 19.82 491.29 19.82 17.62 22.38 209.38 20.16 11.26

17 15 21.96 22.05 50.82 22.10 206.31 22.10 13.18 22.05 81.67 24.74 6.46

18 15 22.93 22.93 16.20 23.07 109.91 22.93 8.95 23.16 28.49 23.57 4.37

19 15 23.14 23.17 15.56 23.26 65.62 23.34 12.09 23.83 19.91 23.34 6.61

20 15 18.84 18.95 16.09 19.11 130.55 19.11 17.53 19.86 50.59 19.59 8.18

21 20 27.99 27.99 27.95 28.14 211.34 28.01 22.24 29.84 35.66 29.95 10.73

22 20 25.63 25.63 200.91 25.87 1875.65 25.65 26.41 29.20 349.99 26.07 13.45

23 20 26.53 26.53 59.89 26.68 1770.08 26.64 29.64 28.62 139.21 28.48 13.99

24 20 32.36 32.53 936.09 32.60 301.94 32.99 32.26 32.87 41.64 33.87 12.68

25 20 28.84 28.84 60.65 29.06 216.76 29.08 29.25 33.64 62.15 29.09 9.91

26 20 26.99 27.08 49.79 27.23 533.77 27.23 29.92 28.08 16.58 27.53 9.63

27 20 − 28.02 552.23 27.65 2989.60 27.93 32.66 28.84 496.24 30.06 12.59

28 20 26.53 26.65 108.63 26.58 542.25 26.53 27.88 26.83 79.20 29.41 12.67

29 20 29.49 29.79 315.37 29.85 549.26 29.75 28.72 31.67 100.89 30.81 9.77

30 20 23.55 23.98 184.84 23.59 232.30 23.65 39.32 24.61 35.29 27.60 17.19

31 25 35.47 35.60 849.26 35.47 601.19 35.84 44.99 36.88 93.98 36.76 18.30

32 25 − 32.66 362.23 32.80 530.27 33.17 54.78 36.17 133.68 34.75 25.94

33 25 − 31.91 3071.41 31.74 3279.53 31.82 65.17 32.86 431.08 32.19 26.35

34 25 − 34.20 255.60 34.14 534.75 34.19 45.59 35.02 92.28 34.79 14.21

35 25 − 30.29 266.38 30.29 1138.92 30.29 51.93 31.08 221.22 32.12 26.43

36 25 − 32.68 2062.42 33.00 1368.55 32.55 36.50 34.36 127.69 34.50 19.11

37 25 − 27.49 635.48 27.81 767.11 27.75 68.48 28.89 207.45 27.66 28.60

38 25 34.83 34.84 210.75 35.39 746.02 34.93 50.67 37.45 99.64 36.85 18.33

39 25 − 34.41 1108.48 34.39 807.19 34.67 56.16 35.87 156.53 36.32 23.34

40 25 30.73 30.76 231.39 31.30 656.45 30.98 69.26 33.19 133.76 31.27 24.32

41 30 − 36.57 3600.00 36.57 641.78 36.54 85.75 37.72 167.14 37.47 29.69

42 30 − 41.05 3600.00 41.13 869.45 41.11 88.22 43.77 145.94 42.26 33.92

43 30 − 37.59 3600.00 37.54 2013.42 37.48 100.49 39.86 176.64 37.82 26.21

44 30 − 38.02 572.11 38.09 647.73 38.40 96.47 39.68 101.68 38.33 31.68

45 30 − 37.58 3600.00 36.96 1003.62 37.08 96.00 38.69 127.13 38.48 25.37

46 30 − 35.25 3600.00 − 3600.00 35.01 105.84 35.82 587.70 35.62 37.46

47 30 − 42.49 3600.00 42.68 425.35 42.59 61.90 43.69 92.93 44.54 25.93

48 30 − 37.31 3600.00 − 3600.00 37.09 95.03 39.70 484.51 37.65 35.19

49 30 − 41.15 3600.00 40.99 1820.52 40.86 75.30 42.48 221.60 43.52 22.12

50 30 − 40.32 3600.00 39.90 1285.75 40.05 98.92 42.44 180.35 41.88 28.07

51 40 − 41.95 3600.00 41.54 3078.58 41.82 249.52 43.26 592.77 42.93 69.23

52 40 − 54.82 3600.00 − 3600.00 47.99 234.57 50.02 943.37 49.67 65.26

53 40 − 46.51 3600.00 − 3600.00 41.80 273.46 42.95 422.37 43.61 70.70

54 40 − 46.33 3600.00 − 3600.00 45.96 247.84 47.79 752.28 47.18 64.43

55 40 − − 3600.00 − 3600.00 48.39 207.66 49.01 531.84 51.19 57.68

56 40 − − 3600.00 − 3600.00 44.65 295.71 46.12 2706.25 45.55 88.90

57 40 − − 3600.00 − 3600.00 44.28 230.39 45.69 896.51 46.00 57.80

58 40 − 43.28 3600.00 43.21 3234.82 43.25 193.02 43.77 584.46 43.64 59.48

59 40 − 49.18 3600.00 − 3600.00 48.76 195.76 49.69 634.14 51.77 67.10

60 40 − 47.76 3600.00 − 3600.00 47.62 200.10 47.58 395.48 50.34 46.93

61 50 − − 3600.00 − 3600.00 52.18 439.03 53.28 1210.39 53.61 87.25

62 50 − − 3600.00 − 3600.00 55.84 402.90 58.01 1026.38 58.07 96.25

63 50 − − 3600.00 − 3600.00 50.38 517.14 51.79 1065.61 51.50 127.64

64 50 − − 3600.00 − 3600.00 51.25 534.22 55.62 1823.49 53.72 121.79

65 50 − − 3600.00 − 3600.00 54.40 446.72 56.37 1062.77 55.55 108.89

66 50 − − 3600.00 − 3600.00 56.95 514.13 60.03 2003.95 59.05 99.68

67 50 − 58.29 3600.00 − 3600.00 57.67 404.41 59.27 679.43 58.55 99.97

68 50 − − 3600.00 − 3600.00 55.79 510.41 58.89 1302.23 56.74 147.42

69 50 − − 3600.00 − 3600.00 53.64 374.07 55.40 1478.90 56.65 104.94

70 50 − − 3600.00 − 3600.00 56.80 432.60 57.71 1110.55 58.04 95.30

(continued on next page)

390 R. Spliet, G. Desaulniers / European Journal of Operational Research 244 (2015) 379–391

Table 5

(continued)

Inst. |N′| Opt. Restricted master TWDiving TWDiving-Tabu TWRounding TWRounding-Tabu

Value Time Value Time Value Time Value Time Value Time

71 60 − − 3600.00 − 3600.00 63.85 834.21 − 3600.00 65.93 168.69

72 60 − − 3600.00 − 3600.00 62.18 765.56 − 3600.00 64.48 194.36

73 60 − − 3600.00 − 3600.00 64.79 714.06 − 3600.00 66.12 161.60

74 60 − − 3600.00 − 3600.00 68.84 703.17 70.91 3115.44 70.78 131.63

75 60 − − 3600.00 − 3600.00 63.65 707.01 64.49 2115.73 65.25 138.44

76 60 − − 3600.00 − 3600.00 64.45 854.16 − 3600.00 66.34 256.01

77 60 − − 3600.00 − 3600.00 61.35 814.93 63.91 2765.95 63.37 223.91

78 60 − − 3600.00 − 3600.00 64.02 772.99 66.03 2531.43 66.09 134.10

79 60 − − 3600.00 − 3600.00 65.40 628.39 69.10 2460.19 66.94 164.99

80 60 − − 3600.00 − 3600.00 64.20 700.72 66.23 1827.12 66.14 156.30

Table 6

Time window assignments evaluated using 25 scenarios.

Inst. |N′| BPC TWDiving-Tabu ADTWA

Three Three Five Three vs. One One vs.

scenarios scenarios scenarios five scenarios scenario five scenarios

ETC ETC ETC Diff. percent) ETC Diff. percent)

81 20 30.12 30.12 30.17 −0.17 30.86 2.24

82 20 26.59 26.57 26.58 −0.04 27.94 4.87

83 20 26.40 26.48 26.27 0.79 27.84 5.64

84 20 28.44 28.58 28.30 0.98 28.98 2.35

85 20 28.07 27.74 27.57 0.61 29.17 5.49

86 20 33.07 33.27 32.91 1.08 34.21 3.80

87 20 31.38 31.38 31.30 0.25 32.43 3.48

88 20 27.06 26.93 26.97 −0.15 27.34 1.35

89 20 28.95 29.06 28.99 0.24 29.68 2.32

90 20 26.78 26.75 26.57 0.67 27.12 2.03

91 25 32.64 32.21 1.32 34.48 6.58

92 25 33.89 33.91 −0.06 35.79 5.25

93 25 37.40 37.34 0.16 37.62 0.74

94 25 32.05 31.99 0.19 33.23 3.73

95 25 30.88 30.83 0.16 31.78 2.99

96 25 34.11 34.10 0.03 35.03 2.65

97 25 33.13 33.19 −0.18 34.50 3.80

98 25 30.02 29.88 0.47 30.96 3.49

99 25 34.58 34.57 0.03 35.90 3.70

100 25 30.30 30.51 −0.69 32.58 6.35

101 30 37.02 37.04 −0.05 39.11 5.29

102 30 32.71 32.53 0.55 33.41 2.63

103 30 35.93 35.93 0.00 37.29 3.65

104 30 36.48 36.48 0.00 37.98 3.95

105 30 39.77 39.67 0.25 41.09 3.46

106 30 40.00 39.86 0.35 41.68 4.37

107 30 36.78 36.30 1.31 38.31 5.25

108 30 37.82 37.62 0.53 38.83 3.12

109 30 32.79 32.78 0.03 33.52 2.21

110 30 36.74 36.53 0.57 37.48 2.53

p

3

h

e

a

t

b

6

W

i

o

a

t

a

i

n

o

o

e

e

a

t

m

o

w

u

m

s

u

s

a

c

e

a

m

s

o

A

P

t

scenarios yields the best solution for most instances. In fact, the ETC

of the ADTWA solutions are on average 3.64 percent higher than those

of the solutions produced by the TWDiving-Tabu heuristic with five

scenarios. For all instances except one, this difference is greater than

1.35 percent. Hence, these results suggest that the quality of the time

window assignment benefits from considering multiple scenarios.

Secondly, the difference in the ETCs of the solutions computed by

the TWDiving-Tabu heuristic with three scenarios and with five sce-

narios is on average only 0.31 percent in favor of the 5-scenario vari-

ant and never exceeds 1.32 percent. From these statistics, we deduce

that the benefits of considering additional scenarios when assigning

time windows diminish when the number of scenarios increase. This

phenomenon is due to the high correlation between the demand sce-

narios, that is, all demands either increase or decrease at the same

time. When no such correlation exists, one would expect that a large

number of scenarios would be required to reach the best solutions.
Finally, the quality of the solutions obtained by the exact branch-

rice-and-cut algorithm and by the TWDiving-Tabu heuristic with

scenarios are similar for the 20-customer instances. Indeed, the

euristic yields the best solution for 4 of the 10 instances and an

quivalent solution for two instances. The ETC produced by the exact

lgorithm is on average only 0.01 percent better. These results show

hat a “good” heuristic solution to an approximate model might be

etter than an optimal solution to this approximate model.

. Conclusions

In this paper, we have introduced a new problem, the DTWAVRP.

e have developed an exact branch-price-and-cut algorithm to solve

t. The column generation algorithm exploits the fact that columns for

ne scenario can be reused in another scenario. Furthermore, we use

n ng-route relaxation to speed up the pricing problem while limiting

he decrease of the LP value and we also generate columns using

tabu search heuristic. Finally, the branch-price-and-cut algorithm

ncorporates valid inequalities that are known from vehicle routing,

amely, capacity and subset row inequalities. We are able to solve to

ptimality instances of up to 25 customers and three scenarios within

ne hour of computation time.

Furthermore, we implemented five column generation heuristics,

ach incorporating our column generation algorithm and valid in-

qualities. They are a restricted master heuristic, two diving heuristics

nd two rounding heuristics. For the small instances (up to 25 cus-

omers), the restricted master heuristic produces the best solutions

ost often. The solution values are on average 0.29 percent above the

ptimal value for the instances solved to optimality. For the instances

ith more than 30 customers, the TWDiving-Tabu heuristic (that only

ses the tabu search column generator) produces the best solutions

ost often and offers the best quality/time compromise.

Finally, we performed experiments to compare a multiple-

cenario approach with a single-scenario approach that is typically

sed in practice. Our results show that considering five scenarios in-

tead of one produces significantly better quality solutions, with an

verage reduction of 3.64 percent on the expected transportation cost.

In the future, various research directions ensuing from this work

an be explored. One of them would be to consider customer prefer-

nces on the candidate time windows that can be assigned to them

nd to include in the DTWAVRP a secondary objective consisting of

aximizing the customer preference satisfaction. Another line of re-

earch would be to enhance the proposed method or develop a new

ne to tackle instances involving a large number of scenarios.

ppendix A

Below we provide a proof of Proposition 1 that we restate here.

roposition 1. Let (x, y) be a solution to the LP relaxation of formula-

ion (7)–(11). When the corresponding arc flow in G is integer for every

R. Spliet, G. Desaulniers / European Journal of Operational Research 244 (2015) 379–391 391

s

v

P

W

t

t

1

o

p

t

t

t

i

t

t

t

i

r

{
t

(

0

c

c

b

t

a

(

t

t

t

s

t

v

s

R

A

B

B

B

B

B

D

D

D

D

F

F

G

I

J

J

J

K

K

L

L

R

S

cenario, there exists an integer solution (x∗, y∗)to the DTWAVRP of equal

alue.

roof. For each customer i ∈ N′, let w(i, y) ∈ arg min{w | w ∈
i, yiw > 0} be the candidate time window with the earliest start

ime among the ones selected in solution (x, y).
Let Fs be the integer arc flow in G for scenario s, corresponding

o solution (x, y). This arc flow can be represented as a set of (0, n +
)−paths in G, Fs = {P1, . . . , Pk(s)}. Furthermore, denote by Fs

a the flow

n arc a ∈ A in scenario s.

For any path P ∈ Fs visiting the customers {i1, . . . , il}, consider the

ath P̂ in Ĝ visiting the nodes {(i1, w(i1, y)), . . . , (il, w(il, y))}, that is,

he path using for each customer the selected time window with

he earliest start time. Using path P̂ for all P ∈ Fs, s ∈ S, and the

ime windows w(i, y) for each i ∈ N′, yields a solution whose value

s equal to that of (x, y). To complete the proof, we need to show

hat this solution is feasible. Because a path P̂ visits the same cus-

omers as its parent path P, the capacity constraints are satisfied by

he routes in the new solution. Hence, all that remains to be shown

s that the time window constraints are also satisfied along those

outes.

Consider the graph Ĝ(Fs, y) = (N̂(y), Â(Fs, y)), where N̂(y) =
(i, w) ∈ N̂ | yiw > 0} ⋃ {(0, w0), (n + 1, wn+1)} contains the combina-

ions of locations and time windows that are selected in solution

x, y), and Â(Fs, y) = {((i, w), (i′, w′)) ∈ Â | (i, w), (i′, w′) ∈ N̂(y), Fs
(i,i′) >

}. Observe that all paths from (0, w0) to (n + 1, wn+1) in Ĝ(Fs, y)
an be represented in Ĝ. Moreover, any such path visits the same

ustomers as some path P ∈ Fs and in the same order.

Let ts
iw

be the earliest possible start of service time in node (i, w)

y any path in Ĝ(Fs, y) starting at node (0, w0). Let ts
0w0

= w0. Observe

hat as yiw > 0 for (i, w) ∈ N̂(y), constraints (9) ensure that there is

route r ∈ R(s) such that xr > 0 for all s ∈ S. Hence, ts
iw

exists for all

i, w) ∈ N̂(y) and all s ∈ S.

Let Wi(y) = {w|w ∈ Wi, yiw > 0}. Next, let ts
i
= minw∈Wi(y){ts

iw
} be

he earliest start of service time at customer i in Ĝ(Fs, y). Observe that
s
0 = ts

0w0
. For every pair (i, i′) such that Fs

(i,i′) > 0, it holds that

s
i′w(i′,y) = max {w(i′, y), ts

i + tii′ } ≤ max {w, ts
i + tii′ }

= ts
i′w ∀w ∈ Wi′(y).

Therefore, ts
i
= ts

iw(i,y) and it follows that ts
i′w(i′,y) ≥ ts

iw(i,y) + tii′ . This

hows that using path P̂ and the earliest start of service time in the

ime window with the earliest start time ts
iw(i,y) for each node (i, w(i, y))

isited on this path provides a feasible route for each P ∈ Fs and each

cenario s ∈ S.
eferences

gatz, N., Campbell, A., Fleischmann, M., & Savelsbergh, M. (2011). Time slot manage-

ment in attended home delivery. Transportation Science, 45(3), 435–449.

aldacci, R., Mingozzi, A., & Roberti, R. (2011). New route relaxation and pricing strate-
gies for the vehicle routing problem. Operations Research, 59(5), 1269–1283.

aldacci, R., Mingozzi, A., & Roberti, R. (2012). Recent exact algorithms for solving the
vehicle routing problem under capacity and time window constraints. European

Journal of Operational Research, 218(1), 1–6.
irge, J. R., & Louveaux, F. (1997). Introduction to stochastic programming. New York,

NY: Springer-Verlag.

räysy, O., & Gendreau, M. (2005a). Vehicle routing problem with time windows. Part I.
Route construction and local search algorithms. Transportation Science, 39(1), 104–

118.
räysy, O., & Gendreau, M. (2005b). Vehicle routing problem with time windows. Part

II. Metaheuristics. Transportation Science, 39(1), 119–139.
antzig, G. B., & Wolfe, P. (1960). Decomposition principle for linear programs. Opera-

tions Research, 8, 101–111.
esaulniers, G., Lessard, F., & Hadjar, A. (2008). Tabu search, partial elementarity, and

generalized k-path inequalities for the vehicle routing problem with time windows.

Transportation Science, 42(3), 387–404.
esrochers, M. (1988). An algorithm for the shortest path problem with resource con-

straints, (Technical report G-88-27, GERAD).
esrochers, M., Desrosiers, J., & Solomon, M. (1992). A new optimization algorithm

for the vehicle routing problem with time windows. Operations Research, 40(2),
342–354.

eillet, D., Dejax, P., Gendreau, M., & Gueguen, C. (2004). An exact algorithm for the

elementary shortest path problem with resource constraints: Application to some
vehicle routing problems. Networks, 44(3), 216–229.

ord, L. R., Jr., & Fulkerson, D. R. (1958). A suggested computation for maximal multi-
commodity network flows. Management Science, 5(1), 97–101.

roër, C., Golden, B., & Wasil, E. (2009). The consistent vehicle routing problem. Man-
ufacturing & Service Operations Management, 11(4), 630–643.

rnich, S., & Villeneuve, D. (2006). The shortest path problem with resource constraints

and k-cycle elimination for k ≥ 3. INFORMS Journal on Computing, 18(3), 391–406.
abali, O., Leus, R., van Woensel, T., & de Kok, A. G. (2013). Self-imposed time windows

in vehicle routing, OR Spectrum (Published online), 10.1007/s00291-013-0348-1.
epsen, M., Petersen, B., Spoorendonk, S., & Pisinger, D. (2008). Subset-row inequalities

applied to the vehicle-routing problem with time windows. Operations Research,
56(2), 497–511.

oncour, C., Michel, S., Sadykov, R., Sverdlov, D., & Vanderbeck, F. (2010). Column gener-

ation based primal heuristics. Electronic Notes in Discrete Mathematics, 36(1), 695–
702.

allehauge, B., Larsen, J., Madsen, O. B. G., & Solomon, M. M. (2005). Vehicle routing
problem with time windows. In G. Desaulniers, J. Desrosiers, & M. M. Solomon (Eds.),

Column generation (pp. 67–98). New York: Springer.
ohl, N., Desrosiers, J., Madsen, O. B. G., Solomon, M. M., & Soumis, F. (1999). 2-path cuts

for the vehicle routing problem with time windows. Transportation Science, 33(1),

101–116.
ysgaard, J. (2003). Cvrpsep: A package of separation routines for the capacitated vehicle

routing problem. Working paper 03-04. Aarhus, Denmark: Department of Manage-
ment Science and Logistics, Aarhus School of Business.

ysgaard, J., Letchford, A. N., & Eglese, R. W. (2004). A new branch-and-cut algorithm
for the capacitated vehicle routing problem. Mathematical Programming, 100(2),

423–445.

ibeiro, G. M., Desaulniers, G., & Desrosiers, J. (2012). A branch-price-and-cut algorithm
for the workover rig routing problem. Computers & Operations Research, 39(12),

3305–3315.
pliet, R., & Gabor, A. F. (2014). The time window assignment vehicle routing problem,

Transportation Science (Published online). 10.1287/trsc.2013.0510.

http://refhub.elsevier.com/S0377-2217(15)00040-5/bib001
http://refhub.elsevier.com/S0377-2217(15)00040-5/bib002
http://refhub.elsevier.com/S0377-2217(15)00040-5/bib003
http://refhub.elsevier.com/S0377-2217(15)00040-5/bib004
http://refhub.elsevier.com/S0377-2217(15)00040-5/bib005
http://refhub.elsevier.com/S0377-2217(15)00040-5/bib006
http://refhub.elsevier.com/S0377-2217(15)00040-5/bib007
http://refhub.elsevier.com/S0377-2217(15)00040-5/bib008
http://refhub.elsevier.com/S0377-2217(15)00040-5/bib009
http://refhub.elsevier.com/S0377-2217(15)00040-5/bib010
http://refhub.elsevier.com/S0377-2217(15)00040-5/bib011
http://refhub.elsevier.com/S0377-2217(15)00040-5/bib012
http://refhub.elsevier.com/S0377-2217(15)00040-5/bib013
http://refhub.elsevier.com/S0377-2217(15)00040-5/bib014
http://dx.doi.org/10.1007/s00291-013-0348-1
http://refhub.elsevier.com/S0377-2217(15)00040-5/bib016
http://refhub.elsevier.com/S0377-2217(15)00040-5/bib017
http://refhub.elsevier.com/S0377-2217(15)00040-5/bib018
http://refhub.elsevier.com/S0377-2217(15)00040-5/bib019
http://refhub.elsevier.com/S0377-2217(15)00040-5/bib020
http://refhub.elsevier.com/S0377-2217(15)00040-5/bib021
http://refhub.elsevier.com/S0377-2217(15)00040-5/bib022
http://dx.doi.org/10.1287/trsc.2013.0510

	The Discrete Time Window Assignment Vehicle Routing Problem
	1 Introduction
	2 Problem definition
	2.1 Deterministic equivalent problem
	2.2 Integrality requirements

	3 Exact algorithm
	3.1 Column generation algorithm
	3.2 Route relaxations
	3.3 Acceleration strategies
	3.3.1 Reusing routes
	3.3.2 Tabu search column generator

	3.4 Valid inequalities
	3.5 Branch-price-and-cut

	4 Column generation heuristics
	4.1 Restricted master heuristic
	4.2 Diving heuristics
	4.3 Rounding heuristics

	5 Computational results
	5.1 Test instances
	5.2 Results with the exact algorithm
	5.2.1 Column generation experiment results
	5.2.2 Branch-price-and-cut experiment results

	5.3 Results with the heuristics
	5.4 Comparison with current practice

	6 Conclusions

	Appendix A
	References

