Expert Systems with Applications 42 (2015) 3551-3561

journal homepage: www.elsevier.com/locate/eswa

Contents lists available at ScienceDirect

Expert Systems with Applications

=

Expert
Systems

wi
Applications
An International
Journal

Iterated local search embedded adaptive neighborhood selection
approach for the multi-depot vehicle routing problem with

simultaneous deliveries and pickups

@ CrossMark

Jian Li**, Panos M. Pardalos®, Hao Sun®, Jun Pei, Yong Zhang ®

2 College of Engineering, Nanjing Agricultural University, P.O. Box 64, 40 Dianjiangtai Road, Pukou District, Nanjing 210031, China
b Department of Industrial and Systems Engineering, Center for Applied Optimization, University of Florida, 303 Weil Hall, Gainesville, FL 32611, USA
€School of Management Science and Engineering, Qingdao University, Qingdao 266071, China

dSchool of Management, Hefei University of Technology, Hefei 230009, China
€School of Transportation, Southeast University, Nanjing 210096, China

ARTICLE INFO ABSTRACT

Article history:
Available online 10 December 2014

Keywords:

Vehicle routing problem
Simultaneous deliveries and pickups
Multi-depot

Iterated local search

Adaptive neighborhood selection

Although the multi-depot vehicle routing problem with simultaneous deliveries and pickups
(MDVRPSDP) is often encountered in real-life scenarios of transportation logistics, it has received little
attention so far. Particularly, no papers have ever used metaheuristics to solve it. In this paper a metaheu-
ristic based on iterated local search is developed for MDVRPSDP. In order to strengthen the search, an
adaptive neighborhood selection mechanism is embedded into the improvement steps and the perturba-
tion steps of iterated local search, respectively. To diversify the search, new perturbation operators are
proposed. Computational results indicate that the proposed approach outperforms the previous methods
for MDVRPSDP. Moreover, when applied to VRPSDP benchmarks, the results are better than those
obtained by large neighborhood search, particle swarm optimization, and ant colony optimization

approach, respectively.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The vehicle routing problem with simultaneous deliveries and
pickups (VRPSDP) is one of the variants of the vehicle routing prob-
lem (VRP). In VRPSPD, customers may simultaneously receive and
send goods. In addition, all delivered goods must originate from
the depot and all pickup goods must be transported back to the
same depot. Since it was introduced by Min (1989), VRPSDP has
received increasing attention owing to its commercial importance
and the high computational complexity. In practice, there are
numerous applications. The grocery stores often have both delivery
(e.g., fresh food or soft drink) and pickup (e.g., outdated items or
empty bottles) demands (Chen & Wu, 2006). Furthermore, pro-
environmental practices like recycling of empty packaging and
other reusable materials or equipment lead to the necessity of
reverse product flows (Dethloff, 2001; Montane & Galvao, 2006;
Zachariadis et al., 2010). Additionally, express customers may have
both delivery and pick-up demands. In theory, VRPSDP is a NP-Hard

* Corresponding author.

E-mail addresses: telorance61@gmail.com (J. Li), pardalos@ise.ufl.edu (P.M.
Pardalos), rivaldoking@gmail.com (H. Sun), feiyijun.ufl@gmail.com (J. Pei),
zhang7678@126.com (Y. Zhang).

http://dx.doi.org/10.1016/j.eswa.2014.12.004
0957-4174/© 2014 Elsevier Ltd. All rights reserved.

problem and the fluctuating carrying load of vehicles increases the
difficulty in checking the feasibility (Zachariadis, Tarantilis, &
Kiranoudis, 2009).

In this paper, we deal with the extension of VRPSDP called the
multi-depot vehicle routing problem with simultaneous deliveries
and pickups (MDVRPSDP). Due to the development of communica-
tion and information technology, and the increasing pressure of
transportation cost, many enterprises select the joint distribution
of multiple depots instead of traditional fixed zone service of single
depot since the joint distribution of multiple depots can obtain
more savings of cost. For example, as is shown in Figs. 1 and 2, cus-
tomer C is far away from major customers of its zone but close to
the major customers of depot B. Obviously, assigning customer C to
depot B can save many travel distances. Meanwhile, the response
time to customers will be reduced and service level correspond-
ingly be enhanced. MDVRPSDP can be applied to the distribution
of chain supermarkets, soft drink and food companies in large cit-
ies. For Example, to timely meet the demands of their customers
under the heavy traffic conditions, some chain supermarkets usu-
ally construct or rent several supply warehouses in the skirts of
large cities in China.

From the theoretical point of view, MDVRPSDP is an extension
of VRPSDP, therefore, like VRPSDP, MDVRPSDP is also an NP-Hard

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2014.12.004&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2014.12.004
mailto:telorance61@gmail.com
mailto:pardalos@ise.ufl.edu
mailto:rivaldoking@gmail.com
mailto:feiyijun.ufl@gmail.com
mailto:zhang7678@126.com
http://dx.doi.org/10.1016/j.eswa.2014.12.004
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

3552 J. Li et al./ Expert Systems with Applications 42 (2015) 3551-3561

(o] Customer

Depot

Route

Fig. 1. Vehicle routing under separate distribution of each depot.

Depot

Customer

|°*

Route
Deleted route

e New route

Fig. 2. Vehicle routing under joint distribution of multiple depots.

problem. Furthermore, the MDVRPSDP is more complicated than
the VRPSDP considering that it needs to tackle customers’ assign-
ment and the VRPSDP problem simultaneously. Because the prac-
tical large-scale MDVRPSPD instances are difficult to be tackled
efficiently by exact solution approaches, the purpose of the paper
is to propose an effective metaheuristic for MDVRPSDP. To the best
of our knowledge, this is the first metaheuristic developed for it. To
make the implementation simpler, we employ the iterated local
search (ILS) as the algorithm framework. Different structural
neighborhood methods are used in the improving and perturbation
steps of ILS to broaden the exploration of the search space. Mean-
while, an adaptive neighborhood selection mechanism (ANS) is
incorporated into the framework of ILS, denoted by ILS_ANS, to
manage the neighborhood methods effectively in improvement
and perturbation steps of ILS, respectively. The main idea of ANS
is that a neighborhood method is selected according to a probabil-
ity depending on its success (Ropke & Pisinger, 2006a). In addition
to integrating ANS into the framework of ILS, the second contribu-
tion of our work is the development of new perturbation neighbor-
hood methods. The effectiveness of the algorithm is tested through
50 benchmarks instances for MDVRPSDP and its variant, VRPSDP.

The remainder of this paper is structured as follows: Section 2 is
problem description and formulation. Section 3 is a review of the
related literature. The overall structure and the details of the pro-
posed approach are shown in Section 4. Computational results are
provided in Section 5. Section 6 is conclusions and some sugges-
tions for future work.

2. Problem description and formulation

MDVRPSDP is defined as follows: Let G = (V, E) be a graph where
Vis the vertex set and E is the edge set. The vertex set V is partitioned
into two subsets V. = {v1,..., v,} and Vg = {¥n11, ..., Unip}, which
represent the set of customers and the set of depots, respectively.

Among other things, n is the number of customers and p is the num-
ber of depots. Each vertex »; € V. has several nonnegative weights
associated to it, namely, a non-negative pickup demand p; and deliv-
ery demand d; and a service time s;. Furthermore, in the depot vertex
y; € V4, there are no demands and service times, i.e. p;=d;=s;=0.
Associated with E are a distance matrix (d;) and a travel time matrix
(tj), and d;j = t; foralli,j € V. The distance matrix is symmetric and
satisfies the triangle inequality, that is, d; = dj;, and t; = t;;. A fleet of
my identical vehicles of capacity Q is available at each depot
Unya € V4. The sum of vehicles of all the depots is m. In MDVRPSDP,
the following constraints must be met:

(1) Each route starts and ends at the same depot.

(2) Each customer is only visited once by a vehicle or a route.

(3) The maximum load of each route does not exceed the vehi-
cle capacity at each point of the route.

(4) The total duration of each route (including travel and service
time) does not exceed a preset limit.

(5) All the vehicles are homogeneous.

2.1. Notations
Sets:

V4: the depot set.

V.: the customer set.

V: the vertex set, V =V .U V,.
K: the vehicle set.

Parameters:

d;: the delivery demand of customer i.

p;: the pick-up demand of customer i.

s;: the service time of customer i.

dy: the distance between customer i and j.
Qy: the capacity of vehicle k.

Ti: the maximum duration of vehicle k.
my : the number of vehicles at depot d.

Decision variables:

Xiij is the 0-1 decision variable. If vehicle k travels directly from
node i to node j, then x,; = 1, otherwise, x; = 0.
ty; denotes the load on arc (i) of route k.

2.2. Mixed-integer linear programming formulation

The objective of MDVRPSDP is to determine the optimal routes
by minimizing the weighted sum of the fixed cost related to the
number of vehicles and the total travel cost of all the vehicles,
where o and f are coefficients. The formulation for MDVRPSDP is
given as follows:

min) > X+ > YD diXig (1

keK deVy jeVc keK i€V jev

subject to

Z Zxkdj < my,

keK jeVe

Z Zxkij = Z Zxkji =1, VieV, (3)

keK jeV keK jeV

vd eV, 2)

D X =Y Xia<1, VkeK, deVq (4)

JjeVe ieVe

J. Li et al./ Expert Systems with Applications 42 (2015) 3551-3561 3553

szkij <R-1, VRCV. keK (5)
ieR jeR

Z Zxkij =0, Vk e K (6)
ieVy jeVy

Z Ztkij - Z Ztkji =di-p;, VieV. (7)
keK jeV keK jeV

ik < Qi, VkeK (8)
Sy +sxp <Ti, Vkek)
eV jev

injE{O,]L Vl,]'GV7 keK (]0)
tijk > 0, Vl,] (S V7 kekK (-11)

Constraints (2) require that the number of vehicles departing from
each depot is not more than the number of available vehicles. Con-
straints (3) ensure that each customer must be visited exactly once
by exactly one vehicle. Constraints (4) represent that each vehicle
starts from a depot, and ends at the same depot. Constraints (5)
are the subtour elimination constraints that ensure the solution is
connected. Constraints (6) impose that the vehicle cannot travel
directly from depot i to depot j. Constraints (7) are flow conserva-
tion equations. The next two inequalities (8) and (9) represent
capacity, and maximum duration of vehicles constraints, respec-
tively. Constraints (10) and (11) denote the range of decision
variables.

3. Related literature review

MDVRPSDP has received very limited attention, although it is
often encountered in real-life scenarios of transportation logistics.
For MDVRPSDP can be viewed as an extension of the VRPSDP, we
briefly discuss the methodological contributions that have been
reported for MDVRPSDP and VRPSDP in the following.

3.1. Multi-depot vehicle routing problem with simultaneous deliveries
and pickups

To the best of our knowledge, there are no papers that use
metaheuristics to solve MDVRPSDP and only two papers that
attempted to treat MDVRPSDP by heuristics. The first one is that
of Salhi and Nagy (1999) who suggested an extension to the clas-
sical insertion-based heuristic for MDVRPSDP. It permitted insert-
ing more than one backhaul a time. The second one is that of Nagy
and Salhi (2005) which proposed a method that firstly found a
solution to the corresponding VRP problem and then modified
the solution to make it feasible for VRPSDP. They both adopted
the idea of borderline customers, that is, customers were divided
into two subsets, namely borderline and non-borderline custom-
ers. The non-borderline customers were assigned to their nearest
depots, then the borderline customers were inserted into the single
depot vehicle routing one at a time.

3.2. Vehicle routing problem with simultaneous deliveries and pickups

With the development of reverse logistics, VRPSDP has received
more and more attention. Exact algorithms only solve small size
instances, for example, Dell’Amico et al. (2006) only found the
optimum solution for instances up to 40 customers by a proposed
exact algorithm based on branch-and-price approach. Therefore,
many researches focus on using heuristics or metaheuristics to
tackle this problem.

Min (1989) is the first to introduce VRPSDP, tackling an instance
of 22 customers and 2 vehicles. He proposed a three-phase method
which contained clustering customer nodes, assigning vehicles to
clusters, and creating the route of each vehicle. Afterwards, several
heuristics were presented for VRPSDP by Salhi and Nagy (1999),
Dethloff (2001), Nagy and Salhi (2005) and Gajpal and Abad
(2010). Salhi and Nagy (1999) and Dethloff (2001) proposed differ-
ent insertion-based heuristics according to different criterions.
Nagy and Salhi (2005) developed a composite heuristic approach
which combines different routines. These routines were modified
versions of VRP routines such as 2-opt, 3-opt, shift, exchange, per-
turb but also some specially developed for VRPSPD, such as Reverse
and Neck. Gajpal and Abad (2010) presented the saving heuristic
and the parallel saving heuristic for VRPSPD. They used a cumula-
tive net-pickup approach for checking the feasibility when two
existing routes were merged.

Recently, many metaheuristics have been successfully applied to
VRPSDP. Crispim and Branddo (2005) proposed a hybrid metaheu-
ristic which comprised of tabu search and variable neighborhood
descent. Infeasible solutions are allowed by penalizing them
according to the level of overload. Chen and Wu (2006) designed
an insertion-based procedure for the initial solution, and a meta-
heuristic based on the record-to-record travel, tabu lists, and route
improvement procedures for the improvement of the initial solu-
tion. Tang and Galvdo (2006) presented a tabu search algorithm
for VRPSDP, which used three types of inter-route movements
and one type of intra-route improvement. Ropke and Pisinger
(2006b) developed a large neighborhood search (LNS) heuristic to
solve several variants of VRP including VRPSPD. Bianchessi and
Righini (2007) presented constructive and local search heuristics
and also a TS algorithm using a variable neighborhood structure,
in which the node-exchange-based and arc-exchange-based move-
ments are combined. Zachariadis et al. (2009) developed a TS-based
algorithm which explored the solution space by hybridizing the TS
and guided local search (GLS) strategies. Ai and Kachitvichyanukul
(2009) proposed a particle swarm optimization, whereas Gajpal
and Abad (2009) presented an ant colony optimization approach
for VRPSDP. Subramanian, Drummond, Bentes, Ochi, and Farias
(2010) presented a parallel algorithm embedded with a multi-start
heuristic consisting of a variable neighborhood descent procedure
integrated in an iterated local search (ILS) framework. Zachariadis
et al. (2010) proposed an adaptive memory (AM) algorithmic
framework which collected and combined promising solution fea-
tures to generate high-quality solutions. Catay (2010) proposed
an ant colony algorithm, employing a new saving-based visibility
function and a pheromone updating procedure.

The most recent articles for VRPSPD are from Zachariadis and
Kiranoudos (2011), Tasan and Gen (2012), Goksal, Karaoglan, and
Altiparmak (2013) and Subramanian, Uchoa, and Ochi (2013).
Zachariadis and Kiranoudos (2011) proposed a local search
approach which efficiently explored rich solution neighborhoods
by statically encoding tentative moves into special data structures.
Tasan and Gen (2012) developed a genetic algorithm for VRPSDP.
Goksal et al. (2013) presented a heuristic solution approach based
on particle swarm optimization (PSO) in which a local search was
performed by a variable neighborhood descent algorithm (VND).
Moreover, it implemented an annealing-like strategy to preserve
the swarm diversity. Subramanian et al. (2013) proposed a hybrid
algorithm for a class of vehicle routing problems with homogeneous
fleet, including VRPSDP. The hybrid algorithm hybridized an iter-
ated local search based heuristic approach and a set partitioning
formulation, called ILS-RVND-SP. The ILS-RVND heuristic used
insertion heuristics in the constructive phase, a variable neighbor-
hood descent with random neighborhood ordering (RVND) in the
local search phase and simple moves in perturbation phase. Every
time a local search was performed, the routes associated to the local

3554 J. Li et al./ Expert Systems with Applications 42 (2015) 3551-3561

optimal solution may be added to a pool of routes. Then, to extract
the best combination of routes, a MIP solver was employed to solve
the set partitioning (SP) problem.

4. The proposed solution method

Iterated local search (ILS) was introduced by Lourenco, Martin,
and Stiitzle (2001). It can help the local optimizer escape from
being trapped in a local minimum while keeping many good prop-
erties of the local minimum. As it is simple and effective, it has
been successfully applied to vehicle routing problem by Cordeau
and Maischberger (2012) recently. In this paper we also use the
iterated local search as the algorithm framework.

The basic ILS consists of the improvement and perturbation
steps. To enhance the solution quality, a number of neighborhood
methods are generally used in the improvement and perturbation
steps. As different neighborhood methods obtain different quality
solution and vary with different instances, we need to decide
which neighborhood method to be applied for the next step of
the search. Instead of traditional fixed order search of neighbor-
hood methods and stochastic neighborhood selection (assigning
equal probabilities to each neighborhood method), we embed the
adaptive neighborhood selection mechanism within the ILS frame-
work (ILS_ANS).

ILS_ANS is constructed in algorithm 1. It starts from an initial
solution sy, iteratively, and then the algorithm applies an improve-
ment neighborhood method to this solution to obtain an improved
solution sy,. If s,, satisfies an acceptance criterion, it replaces current
solution s, Otherwise, the search returns to the previous solution s.
If s. cannot be improved after the consecutive preset iterations
iter2, the best solution s, found during the search replaces current
solution s.. Then a perturbation neighborhood method is selected
to apply to this solution s. and obtains a new perturbation solution
sp. The next improvement is applied to this solution s,, where f(s)
denotes the cost of solution s. Note that in the step of perturbation
sp is required to a new solution which has not been accepted since
the procedure begins.

In order to identify whether a solution is new, we implement
long term memory structures to record all the accepted solutions.
Generally speaking, it is difficult to keep track of all previous solu-
tions directly and also it is very time consuming to check all the
solutions. Hence we explore a simple and fast tracing method

Improvement Neighborhood
Structure

based on the objective function. The method for recording solution
is as follows in detail: firstly, we transform the travel distance
objective value f'(s) of solution s into an integer F by magnifying
it. Next, a one-dimensional array Ar is constructed to record the
times that the solution is accepted. Thus we update the record of
the solution, namely Ar(F) = Ar(F) + 1. An example is given to
identify whether a solution s with the travel distance value 816.1
is a new solution: we calculate F, where F = f(s) « 10 = 8161. If
Ar(F) is less than 1, then s is a new solution, otherwise, it is not a
new one.

Algorithm 1. The proposed algorithm (ILS_ANS)

Generating the initial solution sg, s, < ¢ < Sp < So
Do While the termination condition (specified number iter1 of
iterations) is not true
select an improvement neighborhood by adaptive selection
mechanism
sw < improve (sp) by applying the selected improvement
neighborhood
If s, satisfies the acceptance criterion then
Sc <— Sw
End If
If f(s¢c) < f(sp) then
Sp < Sc
End If
Sp < Sc
If sc has not been improved after the consecutive preset
iterations iter2 then
Sc < Sp
select a perturbation neighborhood by adaptive selection
mechanism
sp — perturb (s.) by applying the selected perturbation
neighborhood
End If
Loop
Return s,

Compared with the ILS of Cordeau and Maischberger (2012),
our proposed algorithm is different in three ways: (1) when there
are more neighborhood methodes, it is more difficult to explore and

Inter-route optimization

Intra-route optimization

Inter-route between the
different depots

Inter-route in the same
depot

Segment reverse and or-opt

1-1 swap, 1-0 shift, 2-2
swap, and 2-0 shift

1-1 swap, 1-0 shift, 2-2
swap, 2-0 shift and
2-opt”

Fig. 3. Improvement neighborhood structure.

J. Li et al./ Expert Systems with Applications 42 (2015) 3551-3561 3555

check the tabu list for tabu search algorithm. Therefore, instead of
tabu search algorithm, adaptive neighborhood selection is applied
to improve the current solution in the improvement step; (2) mul-
tiple perturbation neighborhoods with adaptive selection mecha-
nism are applied in the perturbation step to strengthen the
diversity, as opposed to single perturbation neighborhood; (3)
the probability that the worse solution is accepted is related to
the times that the solution is accepted, which is described in Sec-
tion 4.6 in detail, instead of current iteration number.

In the following sections, we describe the construction of an
initial solution, the improvement neighborhood structure, the per-
turbation neighborhood structure, the adaptive neighborhood
selection mechanism, the objective function and diversification
mechanism, and the acceptance and termination criteria. We start
by describing the construction of an initial solution. Note that all
constraints are satisfied except for constraints (2) in the initial solu-
tion, improvement solutions and perturbation solutions.

4.1. Construction of an initial solution
We modify the saving algorithm proposed by Clark and Wright

(1964) to get an initial solution for MDVRPSDP. This method is
described as algorithm 2.

Algorithm 2. Initial solution method

Step 1: Assign the customers to their nearest depot

Step 2: Apply the saving algorithm to each depot v,

Step 2.1: Create a separate route for each customer

Step 2.2: Calculate the savings Ay =d,, i +d,, j—d for
all pairs of customers i and j

Step 2.3: Order the savings in a non-increasing way and
form the saving list

Step 2.4: Start at the arc (i,j) with the maximum Aj; in the
saving list, if the combined route satisfies the con-
straint conditions, then they can be combined into
a new feasible route with the highest savings. The
saving of the arc (i,j) is deleted from the saving list

Step 2.5: Try the next combination in the list and repeat
step 2.4 until no more combinations are feasible

Step 3: Merge all the routes into an initial solution

Unik,

4.2. Improvement neighborhood structure

In MDVRPSDP, there are three types of optimizations which are
inter-route among the different depots, inter-route in the same
depot, and intra-route optimization. The improvement neighbor-
hood structure is shown in Fig. 3. In the improvement step, stan-
dard neighborhoods are selected to improve the current solution:
1-1 swap, 1-0 shift, 2-2 swap, and 2-0 shift are selected to apply
to inter-route improvement among different depots; 1-1 swap, 1-
0 shift, 2-2 swap, 2-0 shift and 2-opt* are selected for inter-route
improvement within the same depot; segment reverse and or-opt
are selected for intra-route improvement.

To improve the solution efficiently, each of inter-route neigh-
borhood methods is bonded with each of intra-route neighborhood
methods, namely, every bond is regarded as a composite neighbor-
hood operator. All the combinations between inter-route neighbor-
hoods methods and intra-route neighborhood methods compose
the new neighborhood set, that is, the new neighborhood set is
composed of 1-1, segment reverse; 1-1, or-opt; 1-0, segment
reverse; 1-0, or-opt; 2-2, segment reverse; 2-2, or-opt; 2-0, seg-
ment reverse; 2-0, or-opt; 2-opt*, segment reverse; 2-opt*, or-
opt. The generation of the composite neighborhood operators in
the improvement step of ILS_ANS is shown in Fig. 4.

1-0 shift
1-1 swap
Or-opt
2-0 shift
Segment
Reverse
2-2 swap
2-opt*

Fig. 4. Composite neighborhood operators in the improvement step of ILS_ANS.

Swap/shift move was introduced by Chen and Wu (2006). It is
based on customer interchange between vehicle routes. Operators
1-0 and 2-0 result in a shift of one or two customers from one
route to another; operators 1-1 and 2-2 result in an exchange
that the sequence of one or two consecutive customers on one
route is exchanged with the sequence of one or two customers
on another route. The computational complexity of these moves
is O(n3).

2-opt* was introduced by Potvin, Kervahut, Garcia, and
Rousseau (1992). In this procedure, two links are removed from
two different routes and two new links are introduced by connect-
ing the first customers on the first route to the last customers on
the second route and connecting the first customers on the second
route to the last customers on the first route. The computational
complexity of 2-opt* is O(n?).

Segment Reverse is an extension of the reverse operator intro-
duced by Nagy and Salhi (2005). It reverses a segment of a route
whereas the reverse operator is to reverse the whole route. The
computational complexity of Segment Reverse is O(n?).

Or-opt was introduced by Or (1976). In this procedure, a
sequence of three consecutive customers, two consecutive custom-
ers, or a single customer on a route is removed and inserted to
another location in the same route. The computational complexity
of or-opt is O(n?).

4.3. Perturbation neighborhood structure

The perturbation neighborhood method in our ILS_ANS is used
to generate the new solution to diversify the search. To explore
the broad space of the solution, different structural neighbor-
hoods (large neighborhood search, LNS) are employed to perturb
the local optima. LNS is composed of two parts: the removal of
customers and the reinsertion of the removed customers. To gen-
erate more new solutions, we improve the traditional LNS. The
main differences between our proposed LNS and traditional LNS
lie in the reinsertion of the removal customers. Two new inser-
tion methods are proposed: (1) insertion method based on the
tournament; (2) probability assignment-first, insertion-second
method.

The difference between the insertion method based on the tour-
nament and the basic insertion method lies in the different number
of their selected objects for comparison. In order to introduce it
conveniently, we compare the greedy insertion based on the tour-
nament (simply denoted by greedy_T) with the basic greedy inser-
tion (simply denoted by greedy_B). The pseudo-code of the basic
greedy insertion is shown in algorithm 3 introduced by Campbell
and Savelsbergh (2004), while the pseudo-code of greedy insertion
based on the tournament is given in algorithm 4. The customers of
M are randomly selected from the set M, namely, M' C M. When
the customers of M’ include all the customers of M, namely,

3556 J. Li et al./ Expert Systems with Applications 42 (2015) 3551-3561

M’ = M, the greedy insertion heuristic based on tournament is
transformed into the basic greedy insertion heuristic. Hence, the
greedy insertion heuristic based on tournament extends the basic
greedy insertion heuristic, as the basic greedy insertion heuristic
can be viewed as a special case of greedy insertion heuristic based
on tournament. The insertion method based on the tournament
supplies the more combinations, therefore, it can produce more
new solutions than the basic insertion method. Additionally, when
only one customer is in the set M’, namely |[M'| =1, the greedy
insertion heuristic based on tournament (simply denoted by gree-
dy_T_1) results in a time complexity of O(n®) under the situation
that checking the feasibility of an insertion can be done in O(n),
whereas the basic greedy insertion heuristic results in a time com-
plexity of O(n*) under the same checking of the feasibility.

In a similar way, we construct the regret insertion method
based on the tournament (simply denoted by regret_T). The
regret-2 insertion method introduced by Ropke and Pisinger
(2006a) is employed. The basic greedy insertion method selects
an unrouted customer with least insertion cost to insert at each
iteration, whereas the regret-2 insertion method selects an unro-
uted customer with largest regret value. The regret value is the
difference in the cost of inserting the request in its best position
and its second-best position. When only one customer is in the
set M’, the insertion method regret_ T is the same as the
greedy_T_1.

Algorithm 3. Basic greedy insertion heuristic

M = set of removal customers
R = set of routes
While M # () do
pO «— +o0
Forjc M do
For r € R do
For (i — 1,i) er do
If Feasible(i,j) and Cost(i,j) < p° then
P—r
i
P
p° — Cost(i,j)
End If
End For
End For
End For
Insert(i%,j°)
M =M\j°
Update(r°)
End While

The probability assignment-first, insertion-second method is
described in the followed way: a customer is firstly assigned to
the depot according to the probability related to the distances
between the customer and each depot. The probability
that customer i is assigned to depot k is p;, where
Pit = Jik/Sjev, 2y Vi€ Ve, k€ Vy, and Jy=1/d} Vie Ve, jeVy A
roulette wheel selection rule is employed to decide which depot
a customer is assigned to. Then, the customers assigned are
inserted in the corresponding depots by the basic insertion meth-
ods, such as the greedy insertion and the regret insertion. The pro-
cess is repeated until all the unrouted customers are arranged to
the routes. The probability assignment-first, basic greedy inser-
tion-second method is simply denoted by A_greedy_B. Likewise,
the probability assignment-first, regret-2 insertion-second
method is simply denoted by A_regret_2.

Algorithm 4. Greedy insertion heuristic based on tournament

M = set of removal customers
R = set of routes
While M # (do
pO — +o0
M’ = subset of M
Forje M do
For r € R do
For (i — 1,i) er do
If Feasible(i,j) and Cost(i,j) < p° then
P—r
i0—i
=i
p° — Cost(i,j)
End If
End For
End For
End For
Insert(i®,j°)
M =M\j°
Update(r®)
End While

The customers are removed by three methods which are ran-
dom removal introduced by Shaw (1998), relatedness removal
introduced by Schrimpf, Schneider, Stamm-Wilbrandt, and Dueck
(2000) and long-arc-broken removal, described as follows in detail.

In random removal, for each customer of the current solution, if
a number r generated randomly is less than threshold level ro, and
r,ro € (0,1), then the customer is removed. For relatedness
removal, a customer i is firstly selected randomly, then customer
j is selected if the distance d; between customer i and customer j
is in the interval (0, r = Average(i)), where Average(i) is the average
distance value of all the arcs which are adjacent to vertexiin E, and
r is random number in the interval (0,1).

Next, the long-arc-broken removal heuristic is designed. Firstly,
we compute the sum of longest arc and second-longest arc of each
route. At the second step we rank these routes by the sum of longest
arc and second-longest arc of each route in a non-increasing way. At
the third step we select stochastically a route from first ¢ routes,
and then remove the customers between the longest arc and the
second-longest arc. Fig. 5 illustrates when the long-arc-broken
removal heuristic can be useful.

As the different combinations of the removal of customers and
the insertion of customers exist, many perturbation neighborhood
methods are generated. Ten perturbation neighborhood methods
are selected to constitute the perturbation neighborhood set. They
are random-greedy_T_1, relatedness-greedy_T_1, random-greedy_T,
relatedness-greedy_T, random-regret_T, relatedness-regret_T,
relatedness- A_greedy_B, relatedness-A_regret_2, long-arc-
broken-greedy_T, and long-arc-broken - regret_T, respectively.
The generation of the perturbation neighborhood operators is shown
as Fig. 6.

4.4. An adaptive neighborhood selection mechanism

As the performance of different neighborhood methods may
vary significantly among different problems and instances
(Chakhlevitch & Cowling, 2008), we embed an adaptive mecha-
nism for the choice of improvement neighbor methods and pertur-
bation neighborhood methods. The adaptive mechanism employs a
scoring rule. According to the score of each neighborhood method,
the roulette wheel selection is used to decide which neighborhood

J. Li et al./ Expert Systems with Applications 42 (2015) 3551-3561 3557

N 4

Fig. 5. Long-arc-broken removal.

Insertion methods

Removal methods greedy T 1
random greedy T
relatedness regret T
long-arc-broken A greedy B
A regret 2

Fig. 6. The generation of perturbation neighborhood operators.

method is applied, which has ever been successfully applied to
simulated annealing by Ropke and Pisinger (2006a) for pickup
and delivery problem.

In ILS_ANS, the adaptive neighborhood selection mechanism is
divided into two parts: the adaptive selection of improvement
and the perturbation neighborhood methods. The adaptive selec-
tion of improvement neighborhood methods is as follows.

Each improvement neighborhood method is selected by the
roulette wheel selection procedure with a probability that is pro-
portional to its known empirical quality. If there are k improve-
ment neighborhood methods with weights w;, i€ {1,2,...,k},
then the improvement neighborhood method j is selected with
probability — —.

k=11

At the beginning of the search, the equal weights are assigned to
all improvement neighborhood methods. During the search, the
weights of the improvement neighborhood methods are updated
every # iterations depending on the success of each method. The
profitability of each method is calculated by a scoring system.
The weight of each improvement neighborhood method is com-
puted and adjusted automatically by three steps:

Step1: dividing the search process into many segments, and
each segment consists of # iterations.

Step2: computing the scores of each improvement neighbor-
hood method after segment j is completed. A score of 0; is
added to an improvement neighborhood method whenever a
new overall best solution is found after applying the method
in improving step of ILS and a score of 6, if the current solution
is improved and the solution is a new solution. Otherwise, a
score of 05 is assigned if the solution is accepted.

Step3: updating the weight of each improvement neighborhood
method in segment j + 1 by the following formula:

Wi = (1 Awyy + 240

1
where w;; is the weight of method i used in segment j, y; is the score
of the method i obtained during the last segment, ¢; is the number
of times of method i used during the last segment,and 4 € (0,1) isa

system parameter that allows for controlling the adaptive behavior
of the algorithm to the recent trend.

In the perturbation step, the adaptive selection of perturbation
neighborhood is the same as the one of the improvement neigh-
borhood methods except for the value of 2, ' and score parame-
ters. The score of 0, is rewarded if a new overall best solution is
obtained, otherwise, a score of 0s is only assigned after applying
a perturbation neighborhood method. If a new overall best solution
is obtained after applying it, the perturbation neighborhood
method is directly selected as the next perturbation neighborhood
method, otherwise, the roulette wheel selection procedure is
employed to select a new perturbation neighborhood method for
next perturbation.

4.5. Objective function and diversification mechanism

To strengthen the search, the objective function (1) described in
Section 2 is augmented with two weighted penalty terms. One is
the assessment value related to distances, and the other is related
to the maximum load of each route. It is assumed that arcs (i — 1,i)
and (i,i+ 1) belong to the current solution. The new objective
function is reformulated as (12),

7 =Z+yd +ow (12)

where d/ = Zievc (di,i_l + di_i+1 —2x d]) * dl, dl = (d,'.,‘* + dl-‘if)/z,
customer i* is the nearest to customér i, while customer i is
the second-nearest to customer i W =) p(maxload(r)/
max(load_p(r),load_d(r))), where R is the route set, maxload(r) is
the maximum load of route r, load_p(r) is the total delivery of route
r, and load d(r) is the total pickup of route r.

4.6. Acceptance and stopping criterion

Whenever a new overall best solution is found in the improve-
ment step, it replaces the current solution. Besides, when a solu-
tion is only better than the current solution, it is still accepted if
the solution has not been accepted before. Otherwise, the solution
is accepted with probability 1/¢/f, where f is the times that the
solution is accepted, and p is a parameter. The probability rule
can broaden the search space by changing the search trajectory,
on the other hand, it can avoid losing all the other solutions with
the same objective value.

When the preset consecutive iteration number iter2 is reached
whereas the current solution s; has not been improved, the pertur-
bation operator will be applied again. The algorithm stops when a
specified number iter1 of iterations are reached.

5. Computational results

The algorithm is coded in visual basic 6.0, and run on a laptop
computer with an Intel Core i7 2.9 GHz processor with 8 GB RAM
and Windows® 7 Professional edition. ILS_ANS is run 10 times on

3558 J. Li et al./ Expert Systems with Applications 42 (2015) 3551-3561

each instance. All the computational times are indicated by
seconds.

In the following section, we first introduce the data sets in Sec-
tion 5.1. The parameter values are given in Section 5.2. In Section
5.3 we compare the adaptive neighborhood selection with the sto-
chastic neighborhood selection for MDVRPSDP. In Section 5.4 we
compare ILS_ANS with other heuristics for MDVRPSDP. In Section
5.5 ILS_ANS is applied to VRPSDP.

5.1. Data sets

In order to assess the effectiveness of ILS_ANS, it is tested on
MDVRPSDP and its special case VRPSDP. We adopt the data set
generated by Salhi and Nagy (1999) as the tested instances. In
total, the computational instances include 22 multi-depot problem
instances (2-5 depots, 50-249 customers) and 28 single-depot
problem instances (50-199 customers). The multi-depot instances
are derived from Gillett and Johnson (1976). Each of the multi-
depot instances is partitioned as X and Y types on the basis of
the difference of deliveries and pickups. The single-depot instances
are derived from Christofides, Mingozzi, and Toth (1979), and each
of them is also sorted as X, and Y types, respectively. The basic
characteristics of the multi-depot and single-depot instances are
shown in Tables 1 and 2, respectively. Items without routing dura-
tion constraints are indicated by dashes.

5.2. Parameter setting

The proposed solution approach contains four kinds of parame-
ters: (1) the parameters of LNS, including random removal proba-
bility ro and the number of routes with longer arcs ¢; (2) the
parameters of adaptive neighborhood selection mechanism, which
include the scoring parameters 01, 0,, 03, 04, 05, reaction factors 4, 2/,
and the number of iterations updating the weight of the neighbor-
hood method #, #’, at improvement steps and perturbation steps,
respectively; (3) the parameters of objective function, containing
distance penalization coefficient y and overload penalization coef-
ficient o; (4) the probability acceptance parameter p, the number
of stopping iteration iter1, and the number of threshold iteration
of the perturbation iter2.

The main parameters of the ILS_ANS approach are scoring
parameter 6 and the probability acceptance parameter p. As for
the scoring parameter 0, the scores of a neighborhood method rep-
resent its effectiveness at the current stage. The more its scores are,
the higher its selected probability at next stage is, when the reac-
tion factor is given. The probability acceptance parameter p con-
trols the search trajectory. The smaller it is, the lower the
acceptance probability of the repetition solution is, and vice versa.
Meanwhile, the lower acceptance probability of the repetition
solution would result in the weakness of local search. However,
the higher acceptance probability of the repetition solution would

Table 1

Basic characteristics of data sets for the MDVRPSDP.
No. of instance n p T Q
GJ1 50 4 - 80
GJ2 50 4 - 160
GJ3 75 5 - 140
GJ4 100 2 - 100
GJ5 100 2 - 200
GJ6 100 3 - 100
GJ7 100 4 - 100
GJ8 249 2 310 500
GJ9 249 3 310 500
GJ10 249 4 310 500
GJ11 249 5 310 500

Table 2

Basic characteristics of data sets for the VRPSDP.
No. of instance n T Q
CMT1 50 - 160
CMT2 75 - 140
CMT3 100 - 200
CMT4 150 - 200
CMT5 199 - 200
CMT6 50 200 160
CMT7 75 160 140
CMTS8 100 230 200
CMT9 150 200 200
CMT10 199 200 200
CMT11 120 - 200
CMT12 100 - 200
CMT13 120 720 200
CMT14 100 1040 200

have the search trapped in a local optima. Therefore, it is important
for the probability acceptance parameter p to obtain a proper
value.

To obtain the values of these parameters, the medium size
MDVRPSDP instances GJ3X and GJ3Y are employed to test the
parameters by changing the value of one parameter while keeping
the other parameters fixed. The tested results show that in the
improvement step, a score of 40 is added to an improvement neigh-
borhood method whenever a new overall best solution is found by
it. If the current solution is improved and the solution is new, then a
score of 20 is added. Otherwise, a score of 5 is added if the solution
is accepted. In the perturbation step, a score of 10 is rewarded to a
perturbation neighborhood method if a new overall best solution is
obtained, otherwise, a score of 1 is assigned to it. To determine the
value of p, we conducted a series of algorithm executions with p
values taken from the range [1,15] with 1 increments. The value
of 8 proved to be rather robust yielding the best average solution
cost for test problems. Following these results, parameter p is set
equal to 8.

The final values of other parameters and ranges are shown in
Table 3. The same parameters configuration is used on all
instances.

5.3. Comparison of the adaptive neighborhood selection with the
stochastic neighborhood selection for MDVRPSDP

In MDVRPSDP, the objective is to minimize a weighted sum of
the number of vehicles and the travel distances. We set fixed cost
o equal to 100 and variable cost f equal to 1.

Table 4 reports the best solutions of the ILS embedded adaptive
neighborhood selection and the ILS embedded stochastic neighbor-
hood selection (ILS_SNS). Table 4 shows that ILS_ANS obtains all
the best solutions whereas ILS_SNS only obtains the best solution
of 4 out of 22 instances within nearly equal average computational
time.

Table 3
Values of the Parameters used by ILS_ANS.
Parameter Range Final Parameter Range Final value
value
To [0.0,1.0] 0.1 n - 100
® [1,5] 3 s [0.0,1.0] 0.9
01 [0,50] 40 n - 50
0 [0,50] 20 Y [0.1,1.0] 0.2
03 [0,50] 5 5 [0.1,2.0] 1.0
04 [0,50] 10 p [1,15] 8
0s [0,50] 1 iter1 - [16,000 * n/50]*
2 [0.0,1.0] 0.1 iter2 - 200

¢ [x] denotes the nearest integer to x.

J. Li et al./ Expert Systems with Applications 42 (2015) 3551-3561 3559

Table 4
The best solutions of ILS_ANS and ILS_SNS for MDVRPSDP.
No. of instance ILS_ANS ILS_SNS
Total cost Routing cost No. of vehicles CPU time(s) Total cost Routing cost No. of vehicles CPU time(s)
GJ1X 1109.13 509.13 6 14 1110.82 510.82 6 15
GJ2X 748.31 448.31 3 18 748.31 448.31 3 18
GJ3X 1204.33 604.33 6 20 1205.53 605.53 6 18
GJ4X 1731.64 831.64 9 55 1743.29 843.29 9 55
GJ5X 1186.80 686.80 5 70 1186.80 686.80 5 61
GJ6X 1670.21 770.21 9 63 1670.92 770.92 9 47
GJ7X 1686.01 786.01 9 71 1686.28 786.28 9 47
GJ8X 4776.97 3376.97 14 604 4790.7 3390.70 14 623
GJoX 4479.82 3079.82 14 552 4490.61 3090.61 14 456
GJ10X 4364.82 2964.82 14 549 4395.38 2995.38 14 502
GJ11X 4374.48 2974.48 14 507 4463.5 2963.50 15 551
Average 2484.77 1548.41 9.36 229.36 2499.29 1553.83 9.45 217.55
GJ1Y 1109.13 509.13 6 13 1111.24 511.24 6 12
GJ2y 747.93 447.93 3 17 747.93 447.93 3 18
GJ3Y 1203.03 603.03 6 17 1203.79 603.79 6 20
GJay 1730.85 830.85 9 55 1735.84 835.84 9 47
GJ5Y 1186.80 686.80 5 63 1186.80 686.80 5 60
GJ6Y 1670.72 770.72 9 39 1671.89 771.89 9 47
GJ7Y 1684.39 784.39 9 45 1687.11 787.11 9 48
GJ8Y 4778.05 3378.05 14 594 4782.76 3382.76 14 586
GJ9y 4481.90 3081.90 14 524 4532.31 313231 14 473
GJ10Y 4372.14 2972.14 14 608 4396.72 2996.72 14 508
GJ11Y 437430 2974.30 14 491 4379.44 2979.44 14 471
Average 2485.39 1549.02 9.36 224.18 2494.17 1557.80 9.36 208.18
Table 5
Comparison of the average results for the MDVRPSDP.
No. of Salhi and Nagy (1999) Nagy and Salhi (2005) ILS_ANS
instance
Routing No. of CPU Routing No. of CPU Initial Solution Final Solution
cost vehicles Time cost vehicles Time
Routing cost No. of CPU Routing cost No. of CPU
vehicles time vehicles time
GJ1X 674 14 0.2 _ _ _ 560.79 9 0.002 509.13 6 14
GJ2X 569 6 2.3 _ _ _ 491.33 5 0.003 448.31 3 18
GJ3X 734 13 1.5 _ _ _ 643.71 10 0.004 604.33 6 20
GJ4X 1193 18 1.6 _ _ _ 978.78 13 0.048 831.64 9 55
GJ5X 909 10 26.5 _ _ _ 748.94 6 0.045 686.80 5 70
GJ6X 954 19 0.7 _ _ _ 881.78 12 0.023 770.21 9 63
GJ7X 973 16 1.5 _ _ _ 839.66 13 0.013 786.01 9 71
GJ8X 5326 30 52.2 _ _ _ 3934.05 19 0.82 3376.97 14 604
GJ9X 4426 26 150 _ _ _ 3605.01 20 0.59 3079.82 14 552
GJ10X 4446 31 157 _ _ _ 3539.08 19 0.184 2964.82 14 549
GJ11X 4323 31 40.5 _ _ _ 3512.93 21 0.116 2974.48 14 507
Average 2230 19.5 394 1993 13.9 1794.19 13.4 0.17 1548.41 9.4 229.36
(10.0%)* (13.7%)°
GJ1Y 614 12 0.2 _ _ _ 560.79 9 0.002 509.13 6 13
GJ2Y 519 5 0.3 _ _ _ 491.33 5 0.002 447.93 3 17
GJ3Y 737 14 14 _ _ _ 643.71 10 0.004 603.03 6 17
GJay 1162 18 1.7 _ _ _ 978.78 13 0.048 830.85 9 55
GJ5Y 912 8 26.5 _ _ _ 748.94 6 0.205 686.80 5 63
GJ6Y 1003 16 3.1 _ _ _ 881.78 12 0.023 770.72 9 39
GJ7Y 973 16 1.5 _ _ _ 839.66 13 0.012 784.39 9 45
GJ8Y 4804 27 24.7 _ _ _ 3934.05 19 0.818 3378.05 14 594
GJ9y 4501 31 27.8 _ _ _ 3605.01 20 0.348 3081.90 14 524
GJ10Y 4183 29 35.9 _ _ _ 3539.08 19 0.184 2972.14 14 608
GJ11Y 4357 31 40.5 _ _ _ 3512.93 21 0.111 2974.30 14 491
Average 2160 18.8 14.9 1993 10.9 1794.19 134 0.16 1549.02 9.4 22418
(10.0%)* (13.7%)°

2 The best routing cost obtained from Nagy and Salhi (2005) improved by our initial solution method.

" The routing cost obtained from our initial solution method improved by ILS_ANS.

5.4. Comparison of ILS_ANS with other heuristics for MDVRPSDP

Table 5 reports the results obtained by previous heuristics and
ILS_ANS for MDVRPSDP. In the previous results, those of Nagy and
Salhi (2005) are better. For the instances X and Y, Table 5 shows that
our proposed initial solution approach improves the average value

of Nagy and Salhi (2005) by 10%, and the results obtained by
ILS_ANS further improve the initial solutions by 13.7%. The main
reason that ILS_ANS outperforms other approaches is because they
are heuristic approaches which have no perturbation. But the
proposed ILS_ANS is a metaheuristic approach which allows
perturbation when a current search is trapped in local optima. By

3560 J. Li et al./ Expert Systems with Applications 42 (2015) 3551-3561

Table 6

Comparison of the best results for VRPSDP.
No. of instance BKS Ropke and Pisinger (2006b) Ai and Catay ILS_ANS Gap% to

Kachitvichyanukul (2009) (2010) BKS
Std. 6R-no 6R-normal Routing No. of CPU
removals learning learning cost vehicles time(s)

CMT1X 466.77 467 467 467 467 470.67 466.77 3 23 0.00
CMT2X 684.21 702 709 704 710 705.24 684.61 6 26 0.06
CMT3X 721.27 727 731 731 738 726.55 721.40 5 71 0.02
CMT4X 852.46 894 877 879 912 893.9 852.46 7 195 0.00
CMT5X 1029.25 1108 1138 1108 1167 1115.75 1035.22 10 315 0.58
CMT6X 555.43 559 559 559 557 558.68 555.43 6 37 0.00
CMT7X 900.12 905 903 901 919 901.22 900.54 11 64 0.05
CMT8X 865.50 866 866 866 896 865.51 865.50 9 81 0.00
CMT9X 1160.68 1221 1197 1205 1225 1173.44 1161.88 14 231 0.10
CMT10X 1373.40 1494 1490 1462 1520 1424.06 1383.76 18 475 0.75
CMT11X 833.92 875 875 837 895 887.36 846.86 4 149 1.55
CMT12X 662.22 688 683 685 691 681.02 663.54 5 98 0.20
CMT13X 1542.86 1595 1591 1578 1560 1551.25 1542.86 11 146 0.00
CMT14X 821.75 876 863 885 826 821.75 821.75 10 74 0.00
Average 890.70 927 925 919 934.50 912.60 893.04 8.50 141.79 0.26
CMT1Y 466.77 467 467 467 467 472.37 466.77 3 17 0.00
CMT2Y 684.21 685 691 685 710 704.16 684.75 6 23 0.08
CMT3Y 721.27 734 742 738 740 729.02 721.40 5 78 0.02
CMT4Y 852.46 854 856 876 913 895.25 854.38 7 154 0.23
CMT5Y 1029.25 1131 1132 1146 1142 1112.61 1032.89 10 302 0.35
CMT6Y 555.43 559 559 559 557 556.68 555.43 6 18 0.00
CMT7Y 900.12 969 979 952 934 901.22 900.54 11 25 0.05
CMT8Y 865.50 880 894 873 902 865.51 865.50 9 79 0.00
CMT9Y 1160.68 1267 1256 1271 1230 1171.95 1161.31 14 261 0.05
CMT10Y 1373.40 1567 1573 1552 1485 1429.46 1391.26 18 487 1.30
CMT11Y 833.92 938 956 920 900 874.13 846.57 4 110 1.52
CMT12Y 662.22 673 686 675 697 671.32 663.59 5 64 0.21
CMT13Y 1542.86 1726 1612 1602 1568 1547.75 1542.86 11 107 0.00
CMT14Y 821.75 - - - 823 822.35 821.75 10 79 0.00
Average 890.70 957.69 954.08 947.38 93343 910.98 893.50 8.50 128.86 0.31
Overall average time(s) 694 679 757 141.18 - 135.33

perturbation, the search can escape the local optima. Accordingly,
the more computational time is needed.

5.5. ILS_ANS applied to VRPSDP

To further evaluate the effectiveness of our algorithm, the
ILS_ANS is applied to VRPSDP. To compare the results, we test our
approach on the data set generated by Salhi and Nagy (1999). The
data set is divided into type X and type Y, and each type of them
contains two classes of instances with max route duration and
without max route duration. So far, although most of the papers
focusing on VRPSDP have tested their algorithm on the data set,
most of them only test VRPSDP instances without max route dura-
tion. All the best known solutions (BKS) are summarized in Table 6.

We compare our results with the ones obtained by large neigh-
borhood search (Ropke & Pisinger, 2006b), particle swarm optimi-
zation (Ai & Kachitvichyanukul, 2009), ant colony optimization
approach (Catay, 2010). Table 6 shows that the average values
obtained by the ILS_ANS are better than those obtained by the
three approaches for type X and type Y. The average gaps% to the
best known solutions are equal to 0.26% and 0.31%, respectively,
for type X and type Y, where gap% = (the best solution obtained
by ILS_ANS-BKS)/BKS * 100. The comparison shows that the perfor-
mance of the ILS_ANS is competitive to the existing sophisticated
methods for VRPSDP.

6. Conclusions

MDVRPSDP is a very important problem in practical applica-
tions. This work presents a metaheuristic to solve it. The proposed
algorithm integrates an adaptive neighborhood selection

mechanism into ILS, employs different structural neighborhoods
in the improvement and perturbation steps, and uses the probabil-
ity rule to accept a worse solution based on the number of its rep-
etition. The new insertion methods are developed for perturbation
neighborhood methods. The effectiveness of our proposed
approach is demonstrated by the computational results for
MDVRPSDP and VRPSDP. Moreover, this approach is flexible,
because it is observed that it can be applied to the related problems
by modifying the initial solution and the feasibility check of neigh-
borhood methods. The approach is easy to be extended and
adjusted by adding or replacing these neighborhood methods.

The drawback of the proposed approach is that the number of
parameters is increased because of the adaptive neighborhood
selection mechanism. To simplify the experiment, the values of
the parameters are obtained by changing the value of one parame-
ter while keeping the other parameters fixed, omitting their inter-
action effect among them.

As for future work, we intend to improve this approach from
several following ways: (1) exploring more effective adaptive
neighborhood selection mechanism by using multiple features
instead of the sole objective function. Especially, different features
are employed in improvement and perturbation steps to assess the
efficiency of the neighborhood method. (2) Considering how to
assessing a sequence of neighborhood methods instead of single
neighborhood method to improve the adaptive neighborhood
selection mechanism, because a local optima is often obtained by
a sequence of neighborhood methods. (3) Improving the parameter
experiment method to obtain the better combination of parameter
values, such as automated parameter tuning, because the
drawback of manual tuning is very time consuming and failure-
prone. (4) Designing the more robust neighborhood methods to

J. Li et al. /Expert Systems with Applications 42 (2015) 3551-3561 3561

strengthen the intensification, such as compound neighborhood
which can execute several simple neighborhood moves
simultaneously.

Acknowledgment

The authors gratefully acknowledge valuable comments of two
anonymous referees, which considerably improved the quality of
this paper. This work is supported by a Research Grant from
National Natural Science Foundation of China (No. 71001053,
71231004) and partially supported by LATNA Laboratory, NRU
HSE, RF government Grant (ag. 11.G34.31.0057).

References

Ai, T.], & Kachitvichyanukul, V. (2009). A particle swarm optimization for the
vehicle routing problem with simultaneous pickup and delivery. Computers &
Operations Research, 36, 1693-1702.

Bianchessi, N., & Righini, G. (2007). Heuristic algorithms for the vehicle routing
problem with simultaneous pick-up and delivery. Computers & Operations
Research, 34, 578-594.

Campbell, A. M., & Savelsbergh, M. (2004). Efficient insertion heuristics for vehicle
routing and scheduling problems. Transportation Science, 38, 369-378.

Catay, B. (2010). A new saving-based ant algorithm for the vehicle routing problem
with simultaneous pickup and delivery. Expert Systems with Applications, 37,
6809-6817.

Chakhlevitch, K., & Cowling, P. (2008). Hyperheuristics: Recent developments. In C.
Cotta et al. (Eds.), Adaptive and multilevel metaheuristics SCI 136 (pp. 3-29).
Heidelberg: Springer.

Chen, J. F., & Wu, T. H. (2006). Vehicle routing problem with simultaneous deliveries
and pickups. Journal of the Operational Research Society, 57, 579-587.

Christofides, N., Mingozzi, A., & Toth, P. (1979). The vehicle routing problem. In N.
Christofides, P. Mingozzi, P. Toth, & C. Sandi (Eds.), Combinatorial optimization
(pp. 315-338). Chichester: Wiley.

Clark, G., & Wright, J. W. (1964). Scheduling of vehicles from a central depot to a
number of delivery points. Operation Research, 12, 568-581.

Cordeau, J.-F., & Maischberger, M. (2012). A parallel iterated tabu search heuristic
for vehicle routing problems. Computers & Operations Research, 39, 2033-2050.

Crispim,]., & Brandao, J. (2005). Metaheuristics applied to mixed and simultaneous
extensions of vehicle routing problems with backhauls. jJournal of the
Operational Research Society, 56, 1296-1302.

Dell’Amico, M., Righini, G., & Salani, M. (2006). A branch-and-price approach to the
vehicle routing problem with simultaneous distribution and collection.
Transportation Science, 40, 235-247.

Dethloff,]J. (2001). Vehicle routing and reverse logistics: The vehicle routing
problem with simultaneous delivery and pick-up. OR Spectrum, 23, 79-96.
Gajpal, Y., & Abad, P. (2009). An ant colony system (ACS) for vehicle routing problem
with simultaneous delivery and pickup. Computers & Operations Research, 36,

3215-3223.

Gajpal, Y., & Abad, P. (2010). Saving based heuristics for vehicle routing problem
with simultaneous pickup and delivery. Journal of Operational Research Society,
61, 1498-1509.

Gillett, B. E., & Johnson, J. G. (1976). Multi-terminal vehicle-dispatch algorithm.
Omega, 4, 711-718.

Goksal, F. P., Karaoglan, L., & Altiparmak, F. (2013). A hybrid discrete particle swarm
optimization for vehicle routing problem with simultaneous pickup and
delivery. Computers & Industrial Engineering, 65, 39-53.

Lourengo, H. R., Martin, O., & Stiitzle, T. (2001). A beginner’s introduction to iterated
local search. In Proceedings of 4th metaheuristics international conference.

Min, H. (1989). The multiple vehicle routing problem with simultaneous delivery
and pickup points. Transportation Research A, 23, 377-386.

Montane, F. A. T., & Galvdo, R. D. (2006). A tabu search algorithm for the vehicle
routing problem with simultaneous pick-up and delivery service. Computers &
Operations Research, 33, 595-619.

Nagy, G., & Salhi, S. (2005). Heuristic algorithms for single and multiple depot
vehicle routing problems with pickups and deliveries. European Journal of
Operational Research, 162, 126-141.

Or, 1. (1976). Traveling salesman-type combinational problems and their relation to
the logistics of blood banking (PhD thesis). USA: Northwestern University.
Potvin, J. Y., Kervahut, T., Garcia, B. L., & Rousseau, J. M. (1992). A tabu search
heuristic for the vehicle routing problem with time windows. Technical Report

CRT-855, Quebec, Canada: Universite de Montreal.

Ropke, S., & Pisinger, D. (2006a). An adaptive large neighborhood search heuristic
for the pickup and delivery problem with time windows. Transportation Science,
40, 455-472.

Ropke, S., & Pisinger, D. (2006b). A unified heuristic for a large class of vehicle
routing problems with backhauls. European Journal of Operational Research, 171,
750-775.

Salhi, S., & Nagy, G. (1999). A cluster insertion heuristic for single and multiple
depot vehicle routing problems with backhauling. The Journal of the Operational
Research Society, 50, 1034-1042.

Schrimpf, G., Schneider,]., Stamm-Wilbrandt, H., & Dueck, G. (2000). Record
breaking optimization results using the ruin and recreate principle. Journal of
Computational Physics, 159, 139-171.

Shaw, P. (1998). Using constraint programming and local search methods to solve
vehicle routing problems. In Proceedings CP-98 (fourth international conference
on principles and practice of constraint program-ming).

Subramanian, A., Drummond, L. M. A, Bentes, C., Ochi, L. S., & Farias, R. (2010). A
parallel heuristic for the vehicle routing problem with simultaneous pick-up
and delivery. Computers & Operations Research, 37, 1899-1911.

Subramanian, A., Uchoa, E., & Ochi, L. S. (2013). A hybrid algorithm for a class of
vehicle routing problems. Computers & Operations Research, 40, 2519-2531.
Tang, F. A., & Galvdo, R. D. (2006). A tabu search algorithm for the vehicle routing
problem with simultaneous pick-up and delivery service. Computers &

Operations Research, 33, 595-619.

Tasan, A. S., & Gen, M. (2012). A genetic algorithm based approach to vehicle routing
problem with simultaneous pick-up and deliveries. Computers & Industrial
Engineering, 62, 755-761.

Zachariadis, E. E., & Kiranoudos, T. (2011). A local search metaheuristic algorithm
for the vehicle routing problem with simultaneous pick-ups and deliveries.
Expert Systems with Applications, 38, 2717-2726.

Zachariadis, E. E., Tarantilis, C. D., & Kiranoudis, C. T. (2009). A hybrid metaheuristic
algorithm for the vehicle routing problem with simultaneous delivery and
pickup service. Expert Systems with Applications, 36, 1070-1081.

Zachariadis, E. E., Tarantilis, C. D., & Kiranoudos, T. (2010). An adaptive methodology
for the vehicle routing problem with simultaneous pick-ups and deliveries.
European Journal of Operational Research, 202, 401-411.

http://refhub.elsevier.com/S0957-4174(14)00770-2/h0005
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0005
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0005
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0010
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0010
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0010
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0015
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0015
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0020
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0020
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0020
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0025
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0025
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0025
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0030
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0030
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0035
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0035
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0035
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0040
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0040
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0045
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0045
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0050
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0050
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0050
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0055
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0055
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0055
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0060
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0060
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0065
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0065
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0065
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0070
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0070
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0070
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0075
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0075
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0080
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0080
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0080
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0090
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0090
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0095
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0095
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0095
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0100
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0100
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0100
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0120
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0120
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0120
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0125
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0125
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0125
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0130
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0130
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0130
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0135
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0135
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0135
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0145
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0145
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0145
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0150
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0150
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0155
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0155
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0155
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0160
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0160
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0160
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0175
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0175
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0175
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0165
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0165
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0165
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0170
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0170
http://refhub.elsevier.com/S0957-4174(14)00770-2/h0170

	Iterated local search embedded adaptive neighborhood selection approach for the multi-depot vehicle routing problem with simultaneous deliveries and pickups
	1 Introduction
	2 Problem description and formulation
	2.1 Notations
	2.2 Mixed-integer linear programming formulation

	3 Related literature review
	3.1 Multi-depot vehicle routing problem with simultaneous deliveries and pickups
	3.2 Vehicle routing problem with simultaneous deliveries and pickups

	4 The proposed solution method
	4.1 Construction of an initial solution
	4.2 Improvement neighborhood structure
	4.3 Perturbation neighborhood structure
	4.4 An adaptive neighborhood selection mechanism
	4.5 Objective function and diversification mechanism
	4.6 Acceptance and stopping criterion

	5 Computational results
	5.1 Data sets
	5.2 Parameter setting
	5.3 Comparison of the adaptive neighborhood selection with the stochastic neighborhood selection for MDVRPSDP
	5.4 Comparison of ILS_ANS with other heuristics for MDVRPSDP
	5.5 ILS_ANS applied to VRPSDP

	6 Conclusions
	Acknowledgment
	References

