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a b s t r a c t

Rich Vehicle Routing Problems are vehicle routing problems (VRPs) that deal with additional constraints,
which aim to better take into account the particularities of real-world applications. They combine
multiple attributes, which constitute a complement to the traditional models. This work proposes an
adaptive solution method based on metaheuristics for solving a Rich Vehicle Routing Problemwith Time
Windows. This software has been embedded into the fleet management system of a company in the
Canary Islands. The attributes considered by the company are a fixed heterogeneous fleet of vehicles, soft
and multiple time windows, customer priorities and vehicle–customer constraints. Furthermore, the
company requires the consideration of several objective functions that include travelled distance and
time/distance balance. Exact algorithms are not applicable when solving real-life large VRP instances.
This work presents a General Variable Neighbourhood Search metaheuristic, which obtains high quality
solutions. The computational experiments are presented in four sections, which comprise the parameter
setting, the analysis of the effect of the considered attributes, the comparative with the literature for the
standard VRP with Time Windows, and the study of the solutions provided by the algorithm when
compared with the solutions implemented by the company.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Many practical applications related to logistics in intelligent
freight transportation systems lead to vehicle routing problems
with varying degrees of difficulty regarding the problem con-
straints. The basic vehicle routing problem (VRP) is composed of
a set of customers requiring a specified volume of goods to be
delivered. A fleet of homogeneous vehicles dispatched from a
single depot is used to deliver the goods, returning to the same
depot once the routes have been completed. The constraints
associated to the problem are that vehicles can carry a maximum
capacity and each customer has to be visited once by a single
vehicle. The VRP has been the subject of intensive research since
the 1960s. A wide range of exact methods, heuristics and meta-
heuristics has been proposed in the specialized literature. We refer
the interested reader to the following surveys by Schmid et al.
(2013), Vidal et al. (2013), Eksioglu et al. (2009), Potvin (2009),
Laporte (2009), Gendreau et al. (2008), Baldacci et al. (2007), and
books by Toth and Vigo (2002) and Goldenet al. (2008).

The aim of this work is to solve a real-world VRP that has been
posed to the authors by a company in the Canary Islands, Spain. The

resulting software has been embedded into a fleet management
system. The requirements provided by the company lead to the
consideration of several constraints, which have to be integrated into
the standard VRP. In the literature, there is a tremendous number of
research papers related to VRP with additional constraints, which
range from the need of time windows to regulations related to long-
distance transportation. With the purpose of collecting all these
possible constraints, Vidal et al. (2013) have given the notion of
attributes of VRPs. Attributes refer to additional constraints that aim
to better take into account the specificities of real-world applications.
These attributes complement the traditional VRP formulations and
lead to a variety of Multi-Attribute Vehicle Routing Problems (MAVRPs).
These MAVRPs are supported by a well developed literature that
includes a wide range of heuristics and metaheuristics (Glover, 1986).
Furthermore, some MAVRPs combine multiple attributes together,
obtaining the so-called Rich VRPs (RVRPs) (Schmid et al., 2013;
Tarantilis et al., 2009). The problem tackled in this work corresponds
to this last class of RVRPs. We refer the interested reader to the
taxonomy and definition of Rich VRP proposed by Lahyani et al. (2015).

Due to the difficulty for solving VRPs to optimality, heuristics and
metaheuristics constitute an increasingly active research area in the
literature. In our work, a General Variable Neighbourhood Search
(VNS) algorithm (Hansen et al., 2010b) is proposed for solving a Rich
Vehicle Routing Problem with Time Windows (RVRPTW).

The main contributions of this paper relies upon the fact that a
Rich VRPTW including several real-world constraints required by
some companies has been tackled. First of all, a fixed heterogeneous
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fleet of vehicles is considered. Moreover, since the fleet is fixed, there
might be customers which cannot be served during the planning
horizon and the so-obtained infeasibility has to be managed. Two
alternative solutions are given in this work; allowing the drivers work
after their working shift or maximizing the number of customers
served postponing the remainder. The problem combines constraints
which have not been managed all together in the literature as far as
we know. Computational experiments on instances based on the real
data and standard benchmark instances have been carried out in
this paper.

It is worth mentioning that the solution method proposed in
this work, implemented as a metaheuristic, has already been
integrated into the optimization tool of the fleet management
system used by some companies. The fleet of a company which
wants to use this optimization tool must have the necessary
devices to communicate with the management system, and then
the system will be able to use the optimization tool and provide an
optimized route plan. The optimization tool has been implemented
using C# and the current solution method has been implemented
using Cþþ . Therefore, in order to integrate the metaheuristic
method in the optimization tool, a DLL has been developed. The
data-interchange format used to communicate the optimization
tool with the DLL has been JSON, that is a text-based open standard
designed for human-readable data interchange. Furthermore, it is
worth noting that through the system interface, the company can
activate or deactivate the consideration of the different attributes.

Since the main goal of our work has been to embed the
developed software into a commercial fleet management tool, it
is desirable to develop an algorithm that not only performs well
over the standard VRPTW instances, but also over constrained real-
world problems. Therefore, this paper is not aimed at overcoming
the best standard VRPTW results, but rather at proposing an
algorithm that works effectively for solving real-world instances.

The rest of the paper is organized as follows. Section 2 is
devoted to describe the Rich Vehicle Routing Problem with Time
Windows (RVRPTW) tackled in this work. Section 3 thoroughly
describes the General Variable Neighbourhood Search (GVNS)
algorithm developed to solve the problem at hand. Section 4
summarizes the computational results carried out over both
instances from the literature and real-world data. Finally, the
conclusions and future work are reported in Section 5.

2. Rich Vehicle Routing Problem with Time Windows

Vidal et al. (2013) distinguish three main classes of attributes
that appear frequently in the literature. These classes are the
assignment of customers and routes to resources, the sequence
choices, and the evaluation of fixed sequences. The attributes that
are taken into consideration in this work are summarized in the
following items.

� Heterogeneous fleet: In the particular application of VRP tackled in
this paper, it is considered a heterogeneous fleet of vehicles. When
the number of available vehicles is not limited, the problem is
usually referred to as Vehicle Fleet Mix Problem (VFMP). In the
case in which the fleet of vehicles is limited, a different version of
the problem, called Heterogeneous Fleet VRP (HFVRP), is revealed.
This last problem corresponds to the real-world application solved
in this work. Precisely, it is available a fixed set of heterogeneous
vehicles. Exact and heuristic methods have been proposed for
solving HFVRPs (Baldacci, 2008; Baldacci and Mingozzi, 2009;
Brandao, 2011; Li et al., 2007; Paraskevopoulos et al., 2008; Penna
et al., 2011; Prins, 2009; Subramanian et al., 2012; Taillard, 1999).
Most literature papers assume an unlimited number of available
vehicles, so that the objective is generally to obtain a solution that

either minimizes the number of vehicles and/or total travel cost.
However, the real-world problems arising in companies face
several resource constraints such as a fixed fleet of vehicles.
Therefore, it might not be possible to obtain a feasible solution
for a certain instance. In that case, it is required to provide a valid
solution for the company by adding more vehicles, letting the
drivers work after their working shift, postponing customers and
maximizing the number of served customers, etc.

� Time windows: Additional constraints arise if time windows are
associated to the depot and customers, obtaining the Vehicle
Routing Problem with Time Windows (VRPTW). VRPTW and a
vast set of its variants have beenwidely studied in the literature.
For recent reviews, see Braysy and Gendreau (2005) and
Gendreau et al. (2010). Furthermore, in the practical application
reported in this paper, working shifts of vehicles are considered
as time windows associated with each vehicle.

� Soft and multiple time windows: In the implementation carried
out in this paper, additional time attributes, which are the
existence of multiple time windows for customers and multiple
time intervals in the working shifts for vehicles, are taken into
consideration (Ibaraki et al., 2005, 2008). Note that time
windows may differ among customers, and working shifts
may differ among vehicles. In any case, the customers have to
be visited at maximum once during the day. Moreover, soft time
windows and soft working shifts are considered, since some of
them can be violated, incurring in additional costs. Particularly,
if working shifts of vehicles can be extended, extra hours are
allowed for the drivers. This leads to additional salary costs,
since the extra time is more expensive. A work related to VRP
with soft time windows is by Taillard et al. (1997).

� Customer priority: In addition to the previous attributes, which
are thoroughly analysed in the paper by Vidal et al. (2013), the
company under consideration in this work assigns priorities to
some customers. Depending on these priorities, some custo-
mers can be postponed until the next day and their service is
not required during the current planning horizon. Together
with extending the working shifts of the vehicles, postponing
customers allow the system to obtain valid solutions for the
company. Therefore, in the case in which the fixed fleet of
vehicles is not sufficient for serving all customers, allowing
extra time and/or postponing customers are possible alterna-
tives if they are permitted by the company.

� Vehicle–customer restrictions: There are also vehicle–customer
limitations, which indicate that some customers cannot be
served by some vehicles. Therefore, there will be a set of
vehicle–customer constraints that can be due to several reasons
such as road restrictions.

In addition to these attributes, several objective functions are
required by the company to solve the problem at hand. Although
the optimality criterion of minimizing the total travelled distance is
the most commonly used in the VRP literature, more recent
approaches recognize the VRP as a multi-objective optimization
problem. Jozefowiez et al. (2008) provide an overview of the
research into routing problems with several objectives. Important
objectives, besides the minimization of the total travelled distance,
are the minimization of the number of vehicles in use, the
minimization of the total required time, the maximization of the
collected profit and some other objectives related to reaching a
balance between the routes. In order to establish a balancing
objective, the workload for a route has to be defined. It can be
expressed, for example, by the number of visited customers, the
cargo, the quantity of delivered goods, the route length or the
required time (Borgulya, 2008; Jozefowiez et al., 2008; Kritikos and
Ioannou, 2010). Among the researchers who have worked on VRPs
considering several objectives and time windows we can mention,
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for instance, Hong and Park (1999), who consider the minimization
of total vehicle travel time and the minimization of total customer
waiting time. Rahoual et al. (2001) consider objectives related to
the minimization of the number of used vehicles and the mini-
mization of the total covered distance. More recently, Calvete et al.
(2007) minimize the total operational cost, the under-utilization of
labour and the vehicle capacity. Jozefowiez et al. (2007) discuss the
motivations for applying multi-objective optimization on vehicle
routing problems and the potential benefits of doing it. Ghoseiri
and Ghannadpour (2010) present a model and a solution method
based on genetic algorithms to solve the multi-objective problem
considering as objectives both the total required fleet size and total
travelling distance. Melián-Batista et al. (2014) consider the objec-
tive of balancing routes regarding time in conjunction with time
windows in a multi-objective context.

In this work, given the fact that the fleet of vehicles is fixed, the
company might require either minimizing the total distance or
balancing time or distance if the use of all the available vehicles is
mandatory. Therefore, the company has to indicate which principal
objective function will be required. If having idle available vehicles
is not allowed, then the time/distance balance objective function
will be selected as principal one. Time balance is measured as the
difference between the longest and shortest routes regarding time.
Distance balance is also measured as the difference between the
longest and shortest routes regarding distance. Otherwise, mini-
mizing the total distance will be the principal objective function.
Furthermore, a set of other objective functions are considered
together with the principal one, as explained in the next section;
particularly, minimizing the number of vehicles, extra hours,
postponed customers and cost. All these functions will be used
following a different lexicographic ordering of them, depending on
the particular goal in each case.

Finally, infeasible solutions are taken into consideration. Particu-
larly, infeasibilities due to the use of more vehicles than available, the
extension of the time windows of the customers and the working
shifts of the vehicles, or the postponing of customers are tackled.

With the purpose of solving the real-world RVRPTW tackled in
this work, we have designed a General Variable Neighbourhood
Search algorithm. A tremendous amount of work in the field of
vehicle routing problem using VNS has been published. Bräysy (2003)
gives the internal design of the Variable Neighbourhood Descent
(VND) and Reduced Variable Neighbourhood Search (RVNS) algo-
rithms in detail, analyses the VRPTW problem, and indicates the VND
algorithm as one of the most effective ways to solve VRPTW
problems. Polacek et al. (2004) design a VNS to solve the multidepot
vehicle routing problem with time windows (MDVRPTW). Kytöjoki
et al. (2007) design a guided VNS algorithm to handle the 32 existing
large-scale VRP problems and compare it with a tabu search (TS)
algorithm. Goel and Gruhn (2008) introduce a RVNS to solve the
general VRP including time windows, vehicle constraints, path
constraints, travel departure time constraints, capacity constraints,
order models compatibility constraints, multisupplier point of the
orders, and transport and service position constraints. Hemmelmayr
et al. (2009) propose a VNS algorithm for periodical VRP. Fleszar et al.
(2008) adopt a VNS algorithm to solve the open-loop VRP and test 16
benchmark problems. In summary, several literature papers have
proved the effectiveness of developing VNS algorithms to solve a
wide variety of VRPs.

3. General Variable Neighbourhood Search for the RVRPTW

Exact algorithmic methodologies are not applicable when solving
real-life large vehicle routing problem instances. Therefore, our
interest is focused on metaheuristic methodologies that are capable
of producing applicable high quality solutions within reasonable

computing times. With the purpose of obtaining high quality solu-
tions for the real-world problem at hand, this work proposes an
algorithm based on General Variable Neighbourhood Search (GVNS)
(Hansen et al., 2010b). Variable Neighbourhood Search (VNS) is a
metaheuristic for solving combinatorial and global optimization
problems based on a simple principle; systematic changes of neigh-
bourhoods within the search. Many extensions have been made,
mainly to be able to solve large problem instances (Hansen et al.,
2010a, 2008; Hoeller et al., 2008; Melian, 2006; Moreno-Vega and
Melian, 2008).

LetN k ðk¼ 1;…; kmaxÞ be a finite set of neighbourhood structures,
and N kðsÞ the set of solutions in the kth neighbourhood of a solution
s. Usually, a series of nested neighbourhoods is obtained from a single
neighbourhood by taking N 1ðsÞ ¼N ðsÞ and N kþ1ðsÞ ¼ N ðN kðsÞÞ, for
every solution s. This means that a move to the k-th neighbourhood is
performed by repeating k times a move into the original neighbour-
hood. A solution s0AS is a local minimum with respect to N k if there
is no solution sAN kðs0ÞDS better than s0 (i.e., such that f ðsÞo f ðs0Þ
where f is the objective function of the problem). In the implementa-
tion performed in this work, the neighbourhoods selected for the
shaking process of the VNS are not nested, and different kinds of
movements are implemented following the ideas described by
Repoussis et al. (2008). The proposed sequence of movements
(kmax ¼ 6) is defined as follows: GENI, Or-opt, CROSS, 2-opt, relocate
and swapInter. This sequential selection is applied based on cardin-
ality, which implies moving from relatively poor to richer neighbour-
hood structures. The GENI operator (Gendreau et al., 1992) chooses a
customer from a route and inserts it into other route between the
two closest customers to the previous one. The Or-opt operator (Or,
1976) relocates a chain of consecutive customers of a route. The
CROSS operator (Taillard et al., 1997) selects a sequence of customers
from a route, other sequence of customers from other route, and
interchanges both sequences. The 2-opt operator (Croes, 1958)
chooses two customers of a route and inverts the sequence of
customer visited between them. The relocate operator (Cassani and
Righini, 2004)deletes a customer from a route and inserts it into
another route. The swapInter operator selects a customer from a
route, other customer from other route, and swaps them.

Additionally, let N l (l¼ 1;…; lmax) be the finite set of neighbour-
hood structures that will be used in the local search conducted by a
Variable Neighbourhood Descent (VND). The Variable Neighbour-
hood Descent (VND) method is obtained if the change of neigh-
bourhoods is performed in a deterministic way. Its steps are
presented in Algorithm 1. The sequence of movements considered
in this work (lmax ¼ 3) is the following: relocate, swapIntra and
swapInter. In a VND algorithm, if solution s0 is worst than s, then
lþþ; otherwise, l¼1.

Algorithm 1. Variable Neighbourhood Descent (VND).

// Function VND(s,lmax).
1while (improvement is obtained) do
2
3
4
5

Set l’1
whileðlo ¼ lmaxÞ do
s0’argminyAN lðsÞf ðsÞ
NeighbourhoodChangeðs; s0; lÞ; ==Change neighbourhood

$
66666664

In order to solve the RVRPTW, we propose the GVNS metaheur-
istic, whose pseudocode is shown in Algorithm 2. Once defined the
neighbourhood structures N k and N l in line 1, the best solution is
initialized at the empty set and the stopping condition is chosen in
lines 2 and 3, respectively. The stopping condition consists of a
number of iterations that corresponds to a parameter N that is set
in the computational experience. Then, for each iteration, an initial
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solution is generated in line 5. With this purpose, an ordering of
the available vehicles is obtained according to which the vehicles
are selected to create the routes. This ordering is given taking into
account the capacity of each vehicle, in such a way that vehicles
with larger capacity are selected earlier. If there are multiple
vehicles with the same capacity, then they will be sorted according
to the number of consecutive hours that the vehicle is available, so
that vehicles having larger working shifts are selected earlier. Once
having the order of selection of vehicles, the routes are created one
after the other. To create a route, a vehicle and a seed customer,
which will be selected among the two customers that are the
farthest from the depot, have to be chosen. Each customer is then
attempted to be inserted, but if it is not compatible with the
vehicle due to restrictions, the next vehicle in the sorted list is
chosen. After inserting the seed customer, the proposed procedure
follows the Solomon (1987) algorithm, establishing the route
locations where to insert each unplanned customer and selecting
the best customer to be inserted. When no more customers can be
inserted into the current route, a new one is created.

Algorithm 2. General Variable Neighbourhood Search (GVNS).

The process of creating a new initial solution takes into account
several aspects. In the first place, it is worth mentioning the fact that
some customers cannot be assigned to certain vehicles due to
restrictions. Moreover, if the implemented Solomon heuristic requires
more vehicles than available, fictitious vehicles are generated. These
vehicles are used to create the other necessary routes and their
working shifts are set at the least restrictive values of all initial
vehicles. Fictitious vehicles are also included when the working shifts
of the remaining vehicles are too restrictive to serve the customers or
when the customers are not compatible with the remaining vehicles.
Before introducing fictitious vehicles in the case in which compatible
vehicles are still available, it is checked if it is allowed to expand their
working shifts obtaining extra working hours. If this is permitted,
some customers can then be assigned to the current expanded route.

Before continuing the explanation of the procedure proposed in
this work, it is worth mentioning that even though several objective
functions are considered, the company has to indicate which is the
principal objective in each case. Therefore, the total distance, time

balance or distance balance can be considered as principal objective.
In the last two cases, if the solution obtained with the procedure in
line 5 uses less vehicles than available, then an empty route for each
unused vehicle will be included in the solution. The rationale behind
this is that the company does not want to have any idle available
vehicle.

The loop corresponding to lines 6–15 is performed for a number
of iterations, M, set by the computational experience. As indicated
above, the sequence of neighbourhoods used to carry out the
shaking process in GVNS is the following: GENI, Or-Opt, Cross,
2-Opt, Relocate and swapInter. Therefore, line 7 indicates that the
first considered neighbourhood is GENI.

The particular implementation performed in this work of these
neighbourhoods is summarized in the following items:

� GENI : In order to make this movement, the next steps are
repeated a certain number of times. Firstly, a source route must be
selected among the fictitious routes, but if there is not any
fictitious route, a non-empty source route is randomly selected.
Then, a destination route must be selected among the empty
routes, but if there is not any, the destination route is randomly

selected among the three routes which have the closest centroid
to the source route. This destination route cannot be fictitious and
must have more than one customer. Then, a customer that can be
deleted from the source route is selected among the three
customers closest to the destination route (sum of distances from
this customer to all destination route customers), and the two
customers from the destination route closest to the previous one
are chosen. If some of these customers cannot be found, the
process is tried again. Otherwise, the customer from the source
route is inserted between the two customers in the destination
route. If the resulting route is infeasible, the movement is undone
and the process is tried again. If not, we eliminate the source route
from the planning if it is left empty and the main objective in
optimization is to minimize the distance or the route is fictitious.

� Or-opt: First of all, in order to perform this movement, it is
necessary to check if all routes have only two customers. In this
case, this movement cannot be carried out. Otherwise, the next
steps are repeated a certain number of times. Initially, a route

Initialization .
1 Select the set of structures N k, for k¼ 1;…; kmax, that will be used in the shaking phase, and the set of

neighbourhood structures N l for l¼ 1;…; lmax that will be used in the local search.
2 Initialize BestSol’∅.
3 Choose a stopping condition.
4 While (the stopping condition is not met (N is not reached)) do

5
6
7
8
9

10
11
12
13
14
15
16

Generate an initial solution s:

// Iterations:

while ðthe stopping condition is not met ðM is not reachedÞÞ do
ð1Þ Set k’1;
ð2Þ Repeat the following steps until k¼ kmax :

ðaÞ Shaking : Generate a point s0 at random from the kth neighbourhood of s ðs0AN kðsÞÞ:
ðbÞ Local search by VND:

ðb1Þ Set l’1;
ðb2Þ Repeat the following steps until l¼ lmax :

�Exploration of neighbourhood: Find the best neighbour s″ of s0 in Nlðs0Þ;
�Move or not: If f ðs″Þo f ðs0Þ; set s0’s″ and l’1; otherwise; set l’lþ1

ðcÞMove or not : If this local optimum is better than the incumbent;move there ðs’s″Þ; and continue the search with
N 1ðk’1Þ; otherwise; set k’kþ1:

66666666666666666666664
Update BestSol:

666666666666666666666666666666664
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with more than two customers is randomly selected. Then, two
different customers are randomly chosen from this route and a
position inside the route is selected to move this sequence of
customers. At this point, the movement is done. If the resulting
route is infeasible, the movement is undone and the process is
tried again.

� CROSS: In order to perform this movement, the next steps are
repeated a certain number of times. Firstly, a source route with
more than one customer is randomly selected. Secondly, a
destination route with more than one customer is randomly
selected among the three ones which have the closest centroid to
the source route. Then, two customers from the source route and
two customers from the destination route are randomly selected
and the interchange is done. If any of the routes is not feasible, the
movement is undone and the process is tried again.

� 2-opt: First of all, in order to perform this movement, it is
necessary to check if all routes have only one customer. In this
case, this movement cannot be carried out. Otherwise, the next
steps are repeated a certain number of times. Initially, a route
with more than one customer is randomly selected. Then, two
different customers are randomly chosen from this route and
the sequence is reversed. If the resulting route is infeasible, the
movement is undone and the process is tried again.

� Relocate: In order to perform this movement, the next steps are
repeated a certain number of times. Firstly, a source route must
be selected among the fictitious ones, but if there is not any
fictitious route, a non-empty source route is randomly selected.
Then, a destination route must be selected among the empty
ones, but if there is not any empty route, the destination route is
randomly selected among the three ones which have the closest
centroid to the source route. This destination route cannot be
fictitious. Later, a customer which can be deleted from the
source route is selected among the three customers closest to
the destination route (sum of distances from this customer to all
destination route customers), and a customer from the destina-
tion route after which the previous one can be feasibly
introduced is chosen. If some of these customers cannot be
found, the process is tried again. Otherwise, the relocation is
done, and we eliminate the source route from the planning if it
is left empty and the main objective in optimization is to
minimize the distance or the route is fictitious.

� SwapInter: In order to perform this movement, the next steps are
repeated a certain number of times. Initially, a non-empty first
route is selected. Then, a second route must be selected among
the three ones that have the closest centroid to the first route.
This second route cannot be empty. Then, a customer that can be
deleted from the first route is selected among the three closest
customers to the destination route (sum of distances from this
customer to all second route customers), and a customer that can
be deleted from the second route is selected among the three
closest customers to the first route (sum of distances from this
customer to all first route customers). If some of these customers
cannot be found, the process is tried again. Otherwise, the swap is
done and its feasibility is checked. If any of the routes is infeasible,
the movement is undone and the process is tried again.

� SwapIntra: First of all, in order to perform this movement, it is
necessary to check if all routes have only one customer. In this
case, this movement cannot be carried out. Otherwise, the next
steps are repeated a certain number of times. Initially, a route
with more than one customer is randomly selected. Then, two
different customers are randomly chosen from this route and
they are swapped. If the resulting route is infeasible, the
movement is undone and the process is tried again.

The processes of shaking, local search and move decision in lines
9, 10 and 15, respectively, are iteratively performed until k¼ kmax.

First of all, the shaking step in GVNS generates a solution s0 at random
from the kth neighbourhood of s (s0AN kðsÞ). Then, a local search
based on VND is performed from s0 to obtain a solution s″. The VND
procedure uses the N l neighbourhoods, which in the implementa-
tion proposed for solving the RVRPTW consists of the next sequence
of random movements: Relocate, swapIntra and swapInter.

As indicated above, the user of the system has to indicate which
the principal objective function will be among minimizing the total
distance, time balance or distance balance. In the last two cases, it
is considered the difference between the largest and shortest time/
distance required by the used vehicles. Additionally, the developed
GVNS takes into consideration additional objective functions that
have to be minimized using a hierarchical approach. Hierarchic
evaluation means that the objective functions are considered in a
certain lexicographic order, so that if two selected solutions have
equal objective function values for a function, then the next one in
the order is considered to break ties. This approach, considered
within VNS, has been referred as Variable Formulation Search in
the paper by Pardo et al. (2013). In the case in which the total
distance is the principal objective, the lexicographic order of the
objectives to be minimized is the following.

� Number of fictitious routes.
� Total travelled distance.
� Total number of routes.
� Time balance.
� Salary costs incurred for expanding the working shifts of the

vehicles (extra hours are more expensive).

The case in which the principal objective function is either time
or distance balance, the objective functions order is the following.
The objective functions have to be minimized.

� Number of fictitious routes.
� Time/distance balance.
� Total travelled distance.
� Salary costs incurred for expanding the working shifts of the

vehicles (extra hours are more expensive).

Note that in this case, the whole fleet of vehicles is required to
be used as indicated by the company. Therefore, minimizing the
number of routes is not an objective to be considered.

The rationale behind considering the number of fictitious routes
as the first objective function to be minimized is the fact that they
can lead to undesirable infeasible solutions. If the customer
services assigned to fictitious routes cannot be relocated in other
routes and the company does not allow postponing them to the
next day, then an infeasible solution is obtained. This result can
also be valid for the company since, in this case, it can rent
additional vehicles for a single day. In any case, a feasible solution
is always preferred.

After one of the N iterations, a solution to the problem s, either
feasible or infeasible, is obtained. Since several iterations are
carried out to finally select the best alternative solution for the
company, in line 16, the best solution is updated. Two different
goals that substitute the minimization of the number of fictitious
routes are taken into account. The obtained lexicographic order
corresponding to the travelled distance as principal objective is the
following.

� Number of postponed services.
� Number of extra hours.
� Total travelled distance.
� Number of routes.
� Time balance.
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� Salary costs incurred for expanding the working shifts of the
vehicles (extra hours are more expensive).

The obtained lexicographic order corresponding to the time/
distance balance as principal objective is the following.

� Number of postponed services.
� Number of extra hours.
� Time/distance balance.
� Total travelled distance.
� Salary costs incurred for expanding the working shifts of the

vehicles (extra hours are more expensive).

In other words, after one of the N iterations, a solution to the
problem s is obtained. It is then compared with the best solution
reached by the algorithm so far stored in BestSol. If in BestSol there
are unserved customers or extra hours for the vehicles, but in the
new solution s there are not, s is the new BestSol. If neither BestSol nor
s has unserved customers or extra hours, the new BestSol is the
solution with the least total travelled distance. If BestSol does not
have unserved customers, but s does, we keep BestSol. Otherwise,
BestSol is updated by s. If BestSol does not require extra hours, but s
does, we keep BestSol. Otherwise, BestSol is updated by s.

Therefore, in order to update the best solution in line 16, it is
given higher priority to those solutions that include all the services
and adjust to the working shifts of the drivers. These two aspects
are not considered while running the GVNS, since the extra hours
remain unchanged, on one hand, and determining the services
belonging to fictitious routes that can be postponed requires high
computational costs, on the other hand.

To summarize the description of the proposed algorithm, it is
noteworthy that in order to carry out the optimization process, the
system requires that the user specifies the desirable principal objective
function (distance, time balance or distance balance), if extra hours are
permitted and what service priorities allow postponing services.

4. Computational experiments

This section is devoted to thoroughly describe the computa-
tional experiments carried out in this work to assess the quality of
the solutions provided by the algorithm developed to solve the
RVRPTW. Our algorithm has been coded in Cþþ and runs on a
machine with Intel(R) Core(TM) i5-2320 CPU, 3 GHz, 6 GB of RAM.
The platform used has been Ubuntu 12.04.

First of all, the parameters of the algorithm are adjusted. Secondly,
five different experiments are executed to analyse the effect of adding
to the standard VRPTW, the real-world constraints suggested by the
company. Furthermore, a comparative analysis with the best results
from the literature corresponding to the standard VRPTW Solomon
benchmark instances1 is performed. Finally, results corresponding to
real instances are also analysed.

4.1. Parameter setting

This section reports the values selected for the parameters that
appear in the GVNS implemented in this work. The parameter
setting for the algorithms has been done using the Friedman test
(Daniel, 1990), which provides the best configuration of parameters
and detects differences or equalities among configurations. The test
instances used to do this parameter setting have been chosen
among the Solomon instances with 100 customers. Two instances
of each category have been randomly selected: C105, C107, R104,

R109, RC102, RC106, C202, C203, R208, R210, RC203 and RC204. This
nonparametric statistical test has also been useful to know the best
combination of operators to be used in the local search phase of
the GVNS algorithm.

Solomon heuristic provides a different solution for each execu-
tion because we have used a parameter α¼ 2 in order to select the
seed for each route. The movement operators used by the GVNS
algorithm also need some parameters, which have been set. These
parameters are used by movement operators that involve two
routes. Regarding the first parameter, when it is necessary to select
the second route to make the movement, this is selected among
the β¼ 3 closest routes to the previous one. The second parameter
is used to select a customer to be deleted from a route. This
customer is selected among the γ ¼ 3 closest feasible customers to
the route where it will be inserted. The third parameter is used to
select a customer from a route after which a previous chosen one
could be inserted. This customer is selected among the λ¼ 3
closest feasible customers. Moreover, the number of iterations, M,
that the shaking, local search and move decision processes are
carried out in each iteration of the GVNS has been fixed to M¼20.
Finally, as mentioned above, the general algorithm consists of
repeating the Solomon and GVNS algorithms for N¼10 iterations.

4.2. Constraint effects

Since the problem tackled in this paper takes into account
several constraints and the instances in the literature are not
prepared to consider all of them together, a set of experiments
has been carried out using 16 test problem instances based on the
real data provided by a company in the Canary Islands. These
instances, which consist of 100 customers, have been used to show
the different behaviours obtained by the algorithm depending on
the constraints that are taken into consideration. They are available
in https://sites.google.com/site/gciports/vrptw/hfvrptw.

The first experiment reported in this section corresponds to the
selection of the principal objective function to be minimized:
Total_Distance, Time_Balance or Distance_Balance. In order to
carry out this experiment, 4 instances have been used, which do
not include any additional constraint to the standard VRPTW. On
one hand, if the objective function Total_Distance is chosen, the
total travelled distance will be optimized, but the balanced time
obtained will be worse than the one obtained using Time_Balance
as objective function, and the balanced distance will be worse than
the one obtained using Distance_Balance as objective function. On
the other hand, if either the objective function Time_Balance or
Distance_Balance is chosen, all vehicles will be used, such as
required by the company. In case of Time_Balance, the balancing
of time among vehicles will be optimized, and in case of Dis-
tance_Balance, the balancing of travelled distance will be opti-
mized. For the next experiments, the Total_Distance objective
function is used, since it is usually the most common and
demanded one.

Table 1 summarizes the results obtained from the analysis of
the principal objective function. The first two columns indicate the
instance under consideration (N1_1–N1_4) and the principal
objective function that is selected by the companies; Total_Dis-
tance, Time_Balance and Distance_Balance. Columns 3–9 report
the number of postponed services (PS), extra time (ET) required by
the vehicles, time balance (TB), distance balance (DB), cost (C), total
distance (D) and number of routes (NR) in the obtained solutions.
Time is expressed in seconds and distance in meters. As shown in
Table 1, in general, when an objective function is selected as
principal one, the best value of this objective is achieved in each
case. Moreover, the best cost is always obtained using the Total_-
Distance objective function, since the total time spent doing less
routes is usually lower.1 http://web.cba.neu.edu/�msolomon/problems.htm.
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The second experiment summarized in Table 2 corresponds to
the use of a heterogeneous fleet of vehicles regarding capacity. This
means that the capacities of the used vehicles are different. First
and second columns indicate the instance and the vehicle capacity,
respectively. Columns 3–8 report the number of postponed ser-
vices (PS), extra time (ET) required by the vehicles, time balance
(TB), cost (C), total distance (D) and number of routes (NR) in the
obtained solutions. If we use vehicles with a high capacity (i.e.
500), we will need a small number of vehicles, but when the
capacity is lower (i.e. 200), it is clear that we will need more
vehicles, and therefore, more routes to serve all customers. How-
ever, when there is a mix of vehicles with different capacities (i.e. a
half of 500 and a half of 200, which corresponds to the case of
Mixed 1 in the table), the results will involve the vehicles with a
higher capacity and there will be a smaller number of routes. If the
number of vehicles with high capacity is reduced, i.e. three vehicles
of 500 and the rest of vehicles of 200, which corresponds to the
case of Mixed 2 in the table, the vehicles with higher capacity will
be used first and then the rest of vehicles, and the number of
routes will be intermediate. In any case, using vehicles with high
capacity is associated with a shorter travelled distance.

The third experiment, which is reported in Table 3, corresponds
to the use of a heterogeneous fleet with regard to the working

shifts. Columns 1 and 2 show the instance and the characteristics
of the working shift selected for the vehicles, respectively. Columns
3–8 report the number of postponed services (PS), extra time (ET)
required by the vehicles, time balance (TB), cost (C), total distance
(D) and number of routes (NR) in the obtained solutions. If the
vehicles have restricted working shifts (narrow and multiple time
intervals within working shifts) and extra hours are permitted
(case Restricted windows, extra time), the results will contain extra
hours and more routes than necessary in the case of homogeneous
fleet. Nevertheless, if extra hours are not allowed, but the priorities
do allow postponing customers for the next day (case Restricted
windows, postponing), the routes will not include the postponed
customers. If we compare these first two cases with restricted
windows, we observe that postponing customers when it is
possible involves lower travelled distance and cost. However, the
number of postponed customers is very small in relation to the
total number of customers, so that this last option could be
appropriate for some companies which can afford this delay in
service. Other tested case with regard to vehicles working shifts
consists of having three vehicles with short working shifts, five
with medium working shifts, and five with large working shifts
(case Mixed windows). This way, the routes will be done by the
vehicles with larger working shifts, involving the lowest number of
routes and distance.

The fourth experiment reported in Table 4 corresponds to the use
of narrow time windows for most of the customers. First and second
columns indicate the instance and the features of the time windows
selected for the customers, respectively. Columns 3–8 report the
number of postponed services (PS), extra time (ET) required by the
vehicles, time balance (TB), cost (C), total distance (D) and number of
routes (NR). In case of using restricted customer windows (case
Restricted customer windows) when priorities allow postponing
customers, the number of postponed services increases, although
the total travelled distance also increases with regard to the case
without restricted customer windows (case Non-restricted customer
windows) due to difficulties in compliance with customers time
windows when trying to visit them in the same route.

4.3. Comparative with the literature

This section summarizes the comparison over the standard Solo-
mon instances of 100 customers. Note that the algorithm proposed in
this work is designed to solve the RVRPTWwith the inclusion of all the
real-world constraints explained in previous sections. Therefore, the
method is not supposed to be the most competitive over these
instances, particularly due to the fact that real instances have different
features that have to be tested in computational time. Table 5

Table 1
Effects of the principal objective function.

Instance Principal Objective PS ET TB DB C D NR

N1_1 Total_Distance 0 0 33 602 231 363 5834.08 1.0323eþ06 7
Time_Balance 0 0 6779 203 177 7490.67 2.11398eþ06 10
Distance_Balance 0 0 23 485 1261 7407.17 2.16066eþ06 10

N1_2 Total_Distance 0 0 17 837 223 827 5054.83 862 046 6
Time_Balance 0 0 484 370 569 6855.08 1.94522eþ06 10
Distance_Balance 0 0 21 989 7738 7231.36 2.17563eþ06 10

N1_3 Total_Distance 0 0 17 354 243 031 5474.00 1.03364eþ06 6
Time_Balance 0 0 1256 256 063 7406.53 1.69382eþ06 10
Distance_Balance 0 0 49 800 2331 7893.19 2.14595eþ06 10

N1_4 Total_Distance 0 0 14 887 201 456 5300.86 962 762 7
Time_Balance 0 0 377 223 874 6679.25 1.98046eþ06 10
Distance_Balance 0 0 26 022 6770 7242.97 1.89009eþ06 10

PS: postponed services; ET: extra time; TB: time balance; DB: distance balance; C: cost; D: distance; NR: number of routes.

Table 2
Effects of using a heterogeneous fleet of vehicles with different capacities.

Instance Vehicle capacity PS ET TB C D NR

N2_1 High 0 0 16 541 6099.47 989 247 7
Low 0 0 45 605 8383.39 1.21453eþ06 11
Mixed 1 0 0 38 572 6322.69 1.0509eþ06 7
Mixed 2 0 0 44 478 7694.36 1.09895eþ06 10

N2_2 High 0 0 15 062 5044.47 858 015 6
Low 0 0 23 876 7829.89 1.34123eþ06 12
Mixed 1 0 0 21769 5333.61 860 895 6
Mixed 2 0 0 30 944 5745.78 934 271 9

High 0 0 37435 6146.00 867 274 6
N2_3 Low 0 0 19 955 8202.14 1.10491eþ06 11

Mixed 1 0 0 21 534 5924.33 879 834 7
Mixed 2 0 0 26 135 6824.64 961 474 9

N2_4 High 0 0 18 032 5320.81 96 9013 7
Low 0 0 20 459 8800.92 1.34612eþ06 12
Mixed 1 0 0 14 304 5668.25 1.00986eþ06 7
Mixed 2 0 0 21 417 6617.17 1.06245eþ06 10

PS: postponed services; ET: extra time; TB: time balance; C: cost; D: distance; NR:
number of routes.
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summarizes the comparative regarding the best known solutions (BKS)
until 2009,2 the results from Hong (2012), and the results from Gong
et al. (2012). These two later works have been chosen as references
because they provide better results than the best known until 2009 for
some particular instances. The first column of the table shows the
Solomon instance category. Then, the average values of number of
vehicles (NV), traveled distance (TD) and computational time (tðs:Þ) are
reported for each approach. Computational times have been scaled
using the computer speed measured in millions of floating-point
operations per second (Mflop/s) in order to make a fair comparison.
Finally, Gap1, Gap2 and Gap3 correspond to the gap (%) between BKS
and our proposal, between Hong (2012) results and our proposal, and
between Gong et al. (2012) results and our proposal, respectively. As

can be seen, the average gap regarding BKS is about 4% and lower
regarding the other later approaches.

Notice that this paper is not aimed at overcoming the best results
for the standard Vehicle Routing Problem with Time Windows, but
rather at proposing an intelligent algorithm that works effectively
when real-world instances with real-world constraints are solved.
However, the GVNS algorithm provides solutions that overcome the
best known literature results for some particular instances, and, in
average, its solutions are very close to these best known. A total
average of 12 min are needed to obtain the result of a Solomon
instance, with an average deviation of 3 min.

Although this has been the solution proposed to the real
company, other approaches can be developed in order to improve
the average deviation for the standard instances which do not
include all the real-world constraints. Until the moment, the used
VND process has made movements in or between routes choosing
routes and customers randomly. However, it is possible to explore

Table 4
Effects of using customers with restricted time windows.

Instance Customer time windows PS ET TB C D NR

N4_1 Non-restricted customer windows 0 0 33 602 5834.08 1.0323eþ06 7
Restricted customer windows 5 0 33 382 9265.47 1.66452eþ06 10

N4_2 Non-restricted customer windows 0 0 17 837 5054.83 862 046 6
Restricted customer windows 3 0 35 661 9829.08 1.63362eþ06 10

N4_3 Non-restricted customer windows 0 0 17 354 5474.00 1.03364eþ06 6
Restricted customer windows 5 0 26 273 10 676.2 1.54976eþ06 10

N4_4 Non-restricted customer windows 0 0 14 887 5300.86 962 762 7
Restricted customer windows 3 0 25 024 7086.28 1.52592eþ06 10

PS: postponed services; ET: extra time; TB: time balance; C: cost; D: distance; NR: number of routes.

Table 5
Computational results of the standard static Solomon instances.

BKS Hong (2012) Gong et al. (2012) GVNS

Instances NV TD NV TD tðs:Þ NV TD tðs:Þ NV TD tðs:Þ Gap1 Gap2 Gap3

C1 10.00 828.48 10.00 833.10 48.89 10.00 835.91 50.94 10.00 838.45 595.66 1.20 0.64 0.30
R1 11.92 1210.34 12.25 1218.28 78.09 12.58 1232.34 95.63 14.08 1263.07 637.66 4.36 3.68 2.49
RC1 11.50 1384.16 12.13 1369.57 58.27 12.13 1385.47 84.57 13.63 1409.31 715.86 1.82 2.90 1.72
C2 3.00 589.86 3.00 590.31 25.26 3.00 593.41 39.52 3.13 632.90 1050.97 7.30 7.21 6.65
R2 2.73 951.03 3.27 964.11 102.07 3.00 1016.66 134.73 5.00 1019.38 774.94 7.19 5.73 0.27
RC2 3.25 1119.24 3.75 1131.18 74.82 3.38 1169.07 132.65 6.00 1151.08 810.97 2.84 1.76 �1.54
Avg. 4.12 3.65 1.65

Table 3
Effects of using a heterogeneous fleet of vehicles with different working shifts.

Instance Vehicle time window PS ET TB C D NR

Restricted windows, extra time 0 2039 21172 6278.89 1.11156eþ06 10
N3_1 Restricted windows, postponing 3 0 14 549 5907.03 1.02771eþ06 8

Mixed windows 0 0 27 252 5777.33 1.02485eþ06 7

Restricted windows, extra time 0 1222 21846 5837.17 1.45060eþ06 10
N3_2 Restricted windows, postponing 2 0 25 974 5418.86 1.17176eþ06 9

Mixed windows 0 0 21 549 5382.89 856 805 6

Restricted windows, extra time 0 2073 11 917 5246.50 1.01146eþ06 8
N3_3 Restricted windows, postponing 2 0 26 434 5099.69 969 548 8

Mixed windows 0 0 31 533 6008.39 870 132 7

Restricted windows, extra time 0 1038 21758 5998 1.29676eþ06 10
N3_4 Restricted windows, postponing 1 0 28 301 5904.5 1.14511eþ06 9

Mixed windows 0 0 15 867 5263.69 963 579 7

PS: postponed services; ET: extra time; TB: time balance; C: cost; D: distance; NR: number of routes.

2 http://www.sintef.no/Projectweb/TOP/VRPTW/Solomon-benchmark/
100-customers/.
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the search space more deeply in order to choose the movement of
customers which involves the shortest distance. This process
would take much more time, and for this reason it would not be
suitable for the real company. Nevertheless, a combination of both
processes can be carried out trying to keep similar times. Further-
more, we can stop the search with the first best solution found.

Taking into account all these aspects, three more approaches
have been developed. Parameters M and N have been adjusted
using Friedman test, among the values that keep similar times to
the original process. For the first tested approach, the relocation
movement has been applied in its best first solution version,
instead of the original VND. Parameters N and M have been set
to 5 and 7, respectively. Results are shown in Table 6. The average
gap regarding the best known solutions decreases from 4.12 to 1.70
using this approach, and even results from Gong et al. (2012) are
improved, demonstrating that it is possible to get better behaviour
with the standard instances in the literature which do not include
all the real-world constraints.

The second tested approach applies the relocation movement in
its greedy version and the original VND half and half. Parameters N
and M have been set to 2 and 9 respectively. This way, results in
Table 7 are obtained, where the average gap regarding the best
known solutions is reduced to 0.64 for the standard instances.
These results are better than the ones obtained if the relocation

movement, in its greedy version, is applied only at some steps of
the GVNS, for example, when k¼3 or k¼6 in the shaking process.
In this case, parameters N and M have been set to 3 and 9 respec-
tively. Table 8 depicts these results, where the average gap
regarding the best known solutions is 2.69.

Therefore, the best approach to use with the standard instances
in the literature is the one that combines the original VND
proposed in this paper and the greedy version of the relocation
movement, half and half.

Finally, it is important to note that the number of vehicles used
is not important for the real company referenced in this paper,
since it has a fixed fleet of vehicles with a fixed number of drivers.
However, if the number of vehicles had to be reduced, a number of
routes reduction algorithm would have to be applied before the
GVNS algorithm. This process usually involves a high increase of
computational time, and for this reason it is not suitable for the
real company, whose main requirement is to obtain a fast solution
with a high quality. Nevertheless, the reduction of routes process
proposed by Nagata and Brysy (2009) has been implemented in
order to check this option. For this purpose, the parameter setting
has been made taking into account that both together, reduction of
routes algorithm and the original algorithm proposed in this paper,
do not overpass the times of the original approach. Results for the
standard static Solomon instances are shown in Table 9. Distance

Table 6
Computational results of the standard static Solomon instances applying first best solution approach.

BKS Hong (2012) Gong et al. (2012) GVNS

Instances NV TD NV TD NV TD NV TD Gap1 Gap2 Gap3

C1 10.00 828.48 10.00 833.10 10.00 835.91 10.00 837.28 1.06 0.50 0.16
R1 11.92 1210.34 12.25 1218.28 12.58 1232.34 13.91 1233.55 1.92 1.25 0.10
RC1 11.50 1384.16 12.13 1369.57 12.13 1385.47 13.50 1395.71 0.83 1.91 0.74
C2 3.00 589.86 3.00 590.31 3.00 593.41 3.25 619.32 4.99 4.91 4.37
R2 2.73 951.03 3.27 964.11 3.00 1016.66 5.90 975.47 2.57 1.18 �4.05
RC2 3.25 1119.24 3.75 1131.18 3.38 1169.07 6.25 1105.87 �1.19 �2.24 �5.41
Avg. 1.70 1.25 �0.68

Table 7
Computational results of the standard static Solomon instances applying best solution and original VND half and half.

BKS Hong (2012) Gong et al. (2012) GVNS

Instances NV TD NV TD NV TD NV TD Gap1 Gap2 Gap3

C1 10.00 828.48 10.00 833.10 10.00 835.91 10.00 833.62 0.62 0.06 �0.27
R1 11.92 1210.34 12.25 1218.28 12.58 1232.34 13.83 1230.08 1.63 0.97 �0.18
RC1 11.50 1384.16 12.13 1369.57 12.13 1385.47 13.62 1395.82 0.84 1.92 0.75
C2 3.00 589.86 3.00 590.31 3.00 593.41 3.12 611.32 3.64 3.56 3.02
R2 2.73 951.03 3.27 964.11 3.00 1016.66 5.27 956.27 0.55 �0.81 �5.94
RC2 3.25 1119.24 3.75 1131.18 3.38 1169.07 6.12 1080.76 �3.44 �4.46 �7.55
Avg. 0.64 0.21 �1.70

Table 8
Computational results of the standard static Solomon instances applying best solution for k¼3 and k¼6.

BKS Hong (2012) Gong et al. (2012) GVNS

Instances NV TD NV TD NV TD NV TD Gap1 Gap2 Gap3

C1 10.00 828.48 10.00 833.10 10.00 835.91 10.00 849.92 2.59 2.02 1.68
R1 11.92 1210.34 12.25 1218.28 12.58 1232.34 14.08 1236.74 2.18 1.52 0.36
RC1 11.50 1384.16 12.13 1369.57 12.13 1385.47 13.63 1404.58 1.47 2.56 1.38
C2 3.00 589.86 3.00 590.31 3.00 593.41 3.13 629.78 6.77 6.69 6.13
R2 2.73 951.03 3.27 964.11 3.00 1016.66 5.64 987.20 3.80 2.40 �2.90
RC2 3.25 1119.24 3.75 1131.18 3.38 1169.07 6.13 1111.60 �0.68 �1.73 �4.92
Avg. 2.69 2.24 0.29
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deviations are not good enough due to the short computational
time which can be used. The time needed for both the reduction of
routes algorithm and the original GVNS algorithm to obtain high
quality solutions need to be increased, but, as said before, the real
company requires a quick algorithm and has a fixed fleet of
vehicles. Therefore, this reduction of routes has not been included
in the final algorithm.

4.4. Results for real instances

This section is devoted to show results corresponding to real
data. In the first place, the solutions provided by the proposed
GVNS are compared with the solution implemented by a company
for a real instance, which consists of 109 customers. Table 10
summarizes the best solutions obtained by GVNS when consider-
ing the total distance objective function, and the best solution
implemented by the company. Moreover, the time/distance bal-
ance associated to the solutions are also reported. The first row of
the table corresponds to the best solution obtained by GVNS if the
total distance is considered as objective function. The second row
shows the solution obtained by GVNS consisting of 6 routes, which
is the number of vehicles of the company solution. The third row
shows the company solution.

From these results, we may conclude that the solution imple-
mented by the company is worst than the solutions obtained by
GVNS if the total distance objective and the number of routes are
taken into consideration. Note that our second obtained solution is
better in total distance, time and distance balance than the one
that had been implemented by the company, and our first obtained
solution provides the lowest total distance although it presents the
worst time balance.

Additionally, the company plans to change its fleet of vehicles,
so that it pretends to have eight vehicles with capacity 100, four
vehicles with capacity 200 and four vehicles with capacity 300.
First kind of vehicles will be available all day, second kind will be
available in two working shifts and the third kind of vehicles will
only be available in the morning. This last kind of vehicle will not
be able to serve some customers due to road size restrictions. With
this plan in mind, the company wants to know how this would
affect the vehicles' routes. Taking all these aspects into account, the
new instance has been solved using the GVNS and results indicate
that the distance and number of routes will increase regarding the

initial solution with initial fleet, as shown Table 11. Therefore,
getting this algorithm is also useful to predict future situations and
help decision maker.

Finally, since the image corresponding to the solution N1 is
confusing due to the large number of routes, the solution to an
instance based on N1 consisting of 50 customers is shown in Fig. 1,
in which its 5 routes are depicted over the map of the island of
Tenerife.

5. Conclusions

This work tackles a real-world Rich Vehicle Routing Problem
(RVRPTW) proposed by a company in Spain that combines multiple
attributes together, which aim to better consider the specificities of
real applications. Particularly, it has developed an efficient solution
method to solve the RVRPTW. The attributes considered by the
company consist of a fixed heterogeneous fleet of vehicles, soft and
multiple time windows for customers, soft and multiple time
intervals in the working shifts for vehicles, customers' priorities
and vehicle–customer constraints, which to the best of our knowl-
edge have not been taken into account all together in the literature.
Given the fact that the company might require to either consider or
not all these attributes, the fleet management system allows
deactivating any of the mentioned attributes. Since exact algo-
rithms are not applicable when solving real-life large vehicle
routing problem instances, the focus of this work is put on the
use of metaheuristic procedures. Particularly, this paper proposes a
General Variable Neighbourhood Search (GVNS) metaheuristic,
which is able to obtain high quality solutions that are valid for
the company. The computational experience carried out in this
work, which includes the analysis of the effect of the different
attributes taken into consideration, the comparative with the
literature for the standard vehicle routing problem with time
windows, and the study of the solutions provided by the algorithm
when compared with the solutions implemented by the company,
corroborate the effectiveness of the developed software. It is worth
to mention that the algorithm has been integrated into a fleet
management system and several tests with real companies have
been conducted. Finally, the next phase of this work is to dynami-
cally route new customers which appear over the planning
horizon. It means that, once the initial routes have been specified

Table 9
Computational results of the standard static Solomon instances applying routes reduction algorithm.

BKS Hong (2012) Gong et al. (2012) GVNS

Instances NV TD NV TD NV TD NV TD Gap1 Gap2 Gap3

C1 10.00 828.48 10.00 833.10 10.00 835.91 10.00 841.37 1.56 0.99 0.65
R1 11.92 1210.34 12.25 1218.28 12.58 1232.34 13.08 1224.68 1.19 0.53 �0.62
RC1 11.50 1384.16 12.13 1369.57 12.13 1385.47 12.87 1405.49 1.54 2.62 1.45
C2 3.00 589.86 3.00 590.31 3.00 593.41 3.12 621.50 5.36 5.28 4.73
R2 2.73 951.03 3.27 964.11 3.00 1016.66 3.36 1079.87 13.55 12.01 6.22
RC2 3.25 1119.24 3.75 1131.18 3.38 1169.07 4.12 1245.58 11.29 10.11 6.54
Avg. 5.75 5.26 3.16

Table 10
Best solutions reached for the real instance using the total distance as principal
objective function.

Solution Distance Time balance Distance balance Nr. routes

GVNS sol. 852.7 37 200 196.5 7
GVNS sol. 858.9 12 840 125.3 6
Real sol. 1247.3 14 040 228.5 6

Table 11
Comparison between initial solution and new constraints solution.

Solution Distance Time
balance

Distance
balance

Nr.
routes

GVNS initial sol. 852.7 37 200 196.5 7
GVNS new constraints

sol.
1154.5 19 800 199.7 13
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and vehicles start to make their work, new customers can ask for
service. At this point real time communication between vehicles
and the fleet management system is required.
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