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Convexity is a central tool in mathematics

convex set non convex set convex function
▶ convexity is a central tool in (continuous) mathematics
▶ study the geometry of shapes (not smooth everywhere)
▶ study the geometry of functions (not differentiable everywhere)
▶ allow convex analysis, convex optimization
▶ extensions to metric space, matrices, etc.

What about defining convexity in images, where space/data are discrete ?



Full convexity vs usual digital convexity

Definition (Usual digital convexity (or 0-convexity))
X ⊂ Zd is digitally convex iff Cvxh (X ) ∩ Zd = X

= ⇒ convex

X Cvxh (X ) ∩ Zd

Full convexity is a specialization of digital convexity that guarantees
(simple) connectedness in arbitrary dimension

digitally convex sets that are not fully convex
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Cubical grid, intersection complex

▶ cubical grid complex C d

▶ C d
0 vertices or 0-cells = Zd

▶ C d
1 edges or 1-cells = open unit segment joining 0-cells

▶ C d
2 faces or 2-cells = open unit square joining 1-cells

▶ . . .
▶ intersection complex of Y ⊂ Rd

C̄ d
k [Y ] := {c ∈ C d

k , c̄ ∩ Y ̸= ∅}

Y cells C̄ d
0 [Y ], C̄ d

1 [Y ], C̄ d
2 [Y ]



Full convexity

Definition (Full convexity [L. 2021])
A non empty subset X ⊂ Zd is digitally k-convex for 0 ⩽ k ⩽ d whenever

C̄ d
k [X ] = C̄ d

k [Cvxh (X )]. (1)

Subset X is fully convex if it is digitally k-convex for all k, 0 ⩽ k ⩽ d .

=

C̄ d
0 [X ] C̄ d

0 [Cvxh (X )]
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Full convexity

Definition (Full convexity [L. 2021])
A non empty subset X ⊂ Zd is digitally k-convex for 0 ⩽ k ⩽ d whenever

C̄ d
k [X ] = C̄ d

k [Cvxh (X )]. (1)

Subset X is fully convex if it is digitally k-convex for all k, 0 ⩽ k ⩽ d .

▶ full convexity eliminates too thin digital convex sets in
arbitrary dimension

▶ fully convex sets are (simply) digitally connected
▶ digital lines and planes are fully convex
▶ connectedness allows local geometric analysis of digital

shapes



Applications of full convexity to digital shape analysis

exact local shape analysis geodesics
(convex, concave, planar (white)) (Euclidean distance in digital planes)

polyhedrization digital polyhedron
(close and reversible) (cells are fully convex)
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Fully convex hulls ?

Let X ⊂ Zd . We wish to build a set Z ⊂ Zd such that
▶ X ⊂ Z

▶ Z is fully convex
▶ Z is “close” geometrically to X

1. fully convex enveloppe FC∗(X )

2. use Minkowski sums
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Local operators Star (·) , Skel (·) ,Extr (·)

Y Star (Y ) = C̄ d
0 [Y ] ∪ C̄ d

1 [Y ] ∪ C̄ d
2 [Y ]

K K ′ = Skel (K ) Extr (K ′)
(skeleton) (extrema)

▶ For any Y ⊂ Rd , let Star (Y ) := C̄ d [Y ]
(coincides with the usual star of combinatorial topology)

▶ For any complex K ⊂ C d , let Skel (K ) :=
⋂

K ′⊂K⊂Star(K ′) K
′

▶ For any complex K ⊂ C d , let Extr (K ) := Cl (K ) ∩ Zd



1. Fully convex enveloppe FC∗(X )

▶ Iterative method for computing a fully convex enveloppe
▶ Let FC(X ) := Extr (Skel (Star (Cvxh (X ))))

▶ Iterative composition FCn(X ) := FC ◦ · · · ◦ FC︸ ︷︷ ︸
n times

(X )

▶ Fully convex envelope of X is FC∗(X ) := limn→∞ FCn(X ).

input X , Y := Cvxh (X ) Star (Y ), Skel (Star (Y )) X ′ = FC(X )

input X ′, Y ′ := Cvxh
(
X ′) Star

(
Y ′), Skel

(
Star

(
Y ′)) X ′′ = FC(X ′) = FC2(X )



1. Fully convex enveloppe FC∗(X )
Properties

Lemma
For any X ⊂ Zd , X ⊂ FC(X ).

Lemma
For any finite X ⊂ Zd , X and FC(X ) have the same bounding box.

Theorem
For any finite digital set X ⊂ Zd , there exists a finite n such that
FCn(X ) = FCn+1(X ), hence FC∗(X ) exists and is equal to FCn(X ).

Theorem
X ⊂ Zd is fully convex if and only if X = FC (X ).

Theorem
For any finite X ⊂ Zd , FC∗(X ) is fully convex.



A 3D digital triangle

vertices A = (8, 4, 18),B = (−22,−2, 4),C = (18,−20,−8)
(black),

edges FC∗({A,B}), FC∗({A,C}), FC∗({B,C}) (grey+black)
triangle FC∗({A,B,C}) (white+grey+black)



Generic digital polyhedron

Quad-mesh Q, non
planar faces

♯Q∗ = 81044 ♯Q∗ = 373225



2. Fully convex sets from Minkowski sums

▶ H+ := [0, 1]d (closed unit hypercube of positive orthant)
▶ H := [−1, 1]d (closed hypercube of edge length 2)

Lemma
Let A and B be real closed convex sets, with H+ ⊂ B, then
(A⊕ B) ∩ Zd is a fully convex set.

Corollary
Let X ⊂ Zd , then

1. (Cvxh (X )⊕ H+) ∩ Zd is fully convex,
2. (Cvxh (X )⊕ H) ∩ Zd is fully convex,
3. i.e. Extr (Star (Cvxh (X ))) is fully convex.



Comparison between hull operators

FC∗(X ) (Cvxh (X )⊕ H+) ∩ Zd Extr (Star (Cvxh (X )))

operator FC∗(X ) (Cvxh (X )⊕ H+) ∩ Zd Extr (Star (Cvxh (X )))

Id. on fully cvx. yes no no
idempotence yes no no
symmetry yes no yes

#(Out)/#(In) low medium high
efficiency iterative yes yes



Full convexity: new characterizations and applications

What is full convexity ?

Fully convex hulls

Characterizations of full convexity

Polyhedrization

Conclusion



Equivalent definition of full convexity with Star

Definition
X ⊂ Zd is fully convex iff Star (X ) = Star (Cvxh (X )).

Full convexity

= ?

X ⊂ Zd , Star (X ) Star (Cvxh (X ))



Computable characterization of full convexity
Discrete Minkowski sum Uα

▶ let X ⊂ Zd , denote ei (X ) the translation of X with axis vector ei
▶ let I d := {1, . . . , d} be the set of possible directions
▶ let U∅(X ) := X , and, for α ⊂ I d and i ∈ α, recursively

Uα(X ) := Uα\i (X ) ∪ ei (Uα\i (X )).

U∅(X ) = X U{1}(X ) = U∅(X ) ∪ e1(U∅(X ))

U{2}(X ) = U∅(X ) ∪ e2(U∅(X )) U{1,2}(X ) = U{1}(X ) ∪ e2(U{1}(X ))



Computable characterization of full convexity
A morphological characterization

Theorem
A non empty subset X ⊂ Zd is digitally k-convex for 0 ⩽ k ⩽ d iff

∀α ∈ I dk ,Uα(X ) = Cvxh (Uα(X )) ∩ Zd . (2)

It is thus fully convex if the previous relations holds for all k, 0 ⩽ k ⩽ d .

̸=
X U{1}(X ) Cvxh

(
U{1}(X )

)
∩ Zd

Algorithm:
∀k, 0 ⩽ k ⩽ d ,
∀α ∈ I dk

▶ compute Uα(X )

▶ compute Cvxh (Uα(X )) and
enumerate lattice points within

= ?

2d convex hull computations and enumerations
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One convex hull computation is enough (2D illustration)

Step 1: compute ∀α, α ⊂ {1, 2},Uα(X ); compute Cvxh
(
U{1,2}(X )

)
∩ Z2

X = C̄ d
0 [X ], C̄ d

1 [X ], C̄ d
2 [X ] Cvxh (X ), C̄ d

2 [Cvxh (X )]

1-1 map
xy 1-1 map

xy

U∅(X ) + ( 1
2 ,

1
2 ), U{1}(X ) + (0, 1

2 ) Cvxh
(
U{1,2}(X )

)
∩ Z2

U{2}(X ) + ( 1
2 , 0), U{1,2}(X )



One convex hull computation is enough (2D illustration)

Step 2: compute intermediate points between two red points

X = C̄ d
0 [X ], C̄ d

1 [X ], C̄ d
2 [X ] Cvxh (X ), C̄ d

2 [Cvxh (X )]
C̄ d

1 [Cvxh (X )]

1-1 map
xy 1-1 map

xy

U∅(X ) + ( 1
2 ,

1
2 ), U{1}(X ) + (0, 1

2 ) Cvxh
(
U{1,2}(X )

)
∩ Z2

U{2}(X ) + ( 1
2 , 0), U{1,2}(X ) + +



One convex hull computation is enough (2D illustration)

Step 3: compute intermediate points between four red points . . .

X = C̄ d
0 [X ], C̄ d

1 [X ], C̄ d
2 [X ] Cvxh (X ), C̄ d

2 [Cvxh (X )]
C̄ d

1 [Cvxh (X )], C̄ d
0 [Cvxh (X )]

1-1 map
xy 1-1 map

xy

U∅(X ) + ( 1
2 ,

1
2 ), U{1}(X ) + (0, 1

2 ) Cvxh
(
U{1,2}(X )

)
∩ Z2

U{2}(X ) + ( 1
2 , 0), U{1,2}(X ) + + +



One convex hull computation is enough (2D illustration)

Step 4: check full convexity by counting points , , .

Full convexity

= ?

X = C̄ d
0 [X ], C̄ d

1 [X ], C̄ d
2 [X ] Cvxh (X ), C̄ d

2 [Cvxh (X )]
C̄ d

1 [Cvxh (X )], C̄ d
0 [Cvxh (X )]

1-1 map
xy 1-1 map

xy
Full convexity

= ?

U∅(X ) + ( 1
2 ,

1
2 ), U{1}(X ) + (0, 1

2 ) Cvxh
(
U{1,2}(X )

)
∩ Z2

U{2}(X ) + ( 1
2 , 0), U{1,2}(X ) + + +



Main argument of the proof

D2 c2

x3

x4

y2
D1c1

x1

x2

y1

c

Lemma
Let c be a k-cell of C d and let D = (σ1, . . . , σn) be the d-dimensional
cells surrounding c (i.e., Star (c)∩C d

d = D), with n = 2d−k . Picking one
point xi in each σ̄i , then it holds that there exists a point of c̄ that
belongs to Cvxh ({xi}i=1,...,n).



Looking for other characterizations of full convexity

1. characterization through “natural” segment convexity
2. characterization through projections



“Natural” segment convexity

Convexity in Rd X ⊂ Rd is convex iff
∀p, q ∈ X , then [pq] is a subset of X

MP-convexity in Zd X ⊂ Zd is convex iff
∀p, q ∈ X , then [pq] ∩ Zd is a subset of X
[Minsky, Papert 88]
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“Natural” segment convexity

Convexity in Rd X ⊂ Rd is convex iff
∀p, q ∈ X , then [pq] is a subset of X

MP-convexity in Zd X ⊂ Zd is convex iff
∀p, q ∈ X , then [pq] ∩ Zd is a subset of X
[Minsky, Papert 88]

MP-convex !
Each blue segment does not
touch any other lattice point



S-convexity and Sk-convexity

Definition (S-convexity in Zd)
X ⊂ Zd is S-convex iff
∀p, q ∈ X , then Star ([pq]) is a subset of Star (X )

X segment convex Star ([pq]) ⊂ Star (X )

Definition (Sk-convexity in Zd)
X ⊂ Zd is Sk -convex iff
∀p1, . . . , pk ∈ X , then Star (Cvxh ({p1, . . . , pk})) is a subset of Star (X )

Remark: S2-convexity is the S-convexity.
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Full convexity implies Sk-convexity

Theorem
For d ⩾ 1, k ⩾ 2, full convexity implies Sk -convexity.

Proof.
Let us consider a fully convex set X . Let T a k-tuple in X .

Cvxh (T ) ⊂ Cvxh (X ) (since Cvxh () is increasing)
⇒ Star (Cvxh (T )) ⊂ Star (Cvxh (X )) (since Star () is increasing)
⇔ Star (Cvxh (T )) ⊂ Star (X ) (since X is fully convex)



S-convexity and Sk-convexity implies full convexity ?

Theorem
S-convexity implies full convexity in Z2

Theorem
S-convexity does not imply full convexity in Zd , d ≥ 3.

Theorem
Sd -convexity implies full convexity in Zd , d ≥ 2.



S-convexity does not imply full convexity in Zd

A

B

C

x y

z

▶ is a piece of digital plane
▶ Set X ⊂ Z3 as • is a subset of this plane
▶ Points A, B, C lie on top of the plane and belong to

X

▶ Point ◦ = 1
3 (A+ B + C ) also but does not belong to

X

▶ X is S-convex but not even convex, so not fully
convex.



Sd -convexity implies full convexity in Zd

Theorem
Sd -convexity implies full convexity in Zd , d ≥ 2.

Lemma (1)
If X is Sd -convex and Cvxh (X ) ∩ c ̸= ∅ for a cell c ∈ C d , then
Cvxh (X ) must touch a 0-cell e ∈ ∂c ∩ X .

Lemma (2)
If X is Sd -convex then FC(X ) = Cvxh (X ) ∩ Zd .

Lemma (3)
If X is Sd -convex then X = Cvxh (X ) ∩ Zd (i.e. X is 0-convex).



Sd -convexity implies full convexity in Zd

Theorem
Sd -convexity implies full convexity in Zd , d ≥ 2.

Lemma (1)
If X is Sd -convex and Cvxh (X ) ∩ c ̸= ∅ for a cell c ∈ C d , then
Cvxh (X ) must touch a 0-cell e ∈ ∂c ∩ X .

▶ proof by contradiction, assume
Cvxh (X ) ∩ ∂c = ∅

▶ there is a supporting d − 1-hyperplane of
∂Cvxh (X ) touching c

▶ there is a d-tuple T of X on this hyperplane
▶ so Star (Cvxh (T )) ⊂ Star (X ) by Sd -convexity,

hence c ∈ Star (X )

▶ thus ∃e ∈ X and e ∈ ∂c .

Lemma (2)
If X is Sd -convex then FC(X ) = Cvxh (X ) ∩ Zd .

Lemma (3)
If X is Sd -convex then X = Cvxh (X ) ∩ Zd (i.e. X is 0-convex).



Sd -convexity implies full convexity in Zd

Theorem
Sd -convexity implies full convexity in Zd , d ≥ 2.

Lemma (1)
If X is Sd -convex and Cvxh (X ) ∩ c ̸= ∅ for a cell c ∈ C d , then
Cvxh (X ) must touch a 0-cell e ∈ ∂c ∩ X .

Lemma (2)
If X is Sd -convex then FC(X ) = Cvxh (X ) ∩ Zd .

Proof.
▶ Skel (Star (Cvxh (X ))) is reduced to 0-cells because of Lemma 1
▶ FC(X ) = Extr (Skel (Star (Cvxh (X )))) =

Skel (Star (Cvxh (X ))) = Cvxh (X ) ∩ Zd by above

Lemma (3)
If X is Sd -convex then X = Cvxh (X ) ∩ Zd (i.e. X is 0-convex).



Sd -convexity implies full convexity in Zd

Theorem
Sd -convexity implies full convexity in Zd , d ≥ 2.

Lemma (1)
If X is Sd -convex and Cvxh (X ) ∩ c ̸= ∅ for a cell c ∈ C d , then
Cvxh (X ) must touch a 0-cell e ∈ ∂c ∩ X .

Lemma (2)
If X is Sd -convex then FC(X ) = Cvxh (X ) ∩ Zd .

Lemma (3)
If X is Sd -convex then X = Cvxh (X ) ∩ Zd (i.e. X is 0-convex).

Proof.
By decomposition of Cvxh (X ) into d-dimensional simplices and similar
reasonning.



Projection convexity
Let Pj be the orthogonal projector associated to the j-th axis.

Lemma
If X ⊂ Zd is fully convex, then ∀j , 1 ⩽ j ⩽ d , Pj(X ) is fully convex
(in Zd−1).

Definition (Projection convexity)
X ⊂ Zd is P-convex iff:
(i) X is 0-convex,
(ii) when d > 1, ∀j , 1 ⩽ j ⩽ d , Pj(X ) is P-convex.

Not P-convex

Full convexity ⇒ P-convexity
Full convexity ⇐ P-convexity ?
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(in Zd−1).

Definition (Projection convexity)
X ⊂ Zd is P-convex iff:
(i) X is 0-convex,
(ii) when d > 1, ∀j , 1 ⩽ j ⩽ d , Pj(X ) is P-convex.

Not P-convex

e2

e1

e2

e3

e3

e1

Not 0-convex

Full convexity ⇒ P-convexity
Full convexity ⇐ P-convexity ?



Projection convexity

Theorem
For arbitrary dimension d ⩾ 1, for any X ⊂ Zd , X is fully convex if and
only if X is P-convex.

Proof.
No time.

Corollary
Any digital subset of the digital hypercube is fully convex.

Corollary
Any intersection of any Euclidean d-dimensional ball with Zd is fully
convex.

Proof.
By induction on dimension using P-convexity.



Projection convexity

Theorem
For arbitrary dimension d ⩾ 1, for any X ⊂ Zd , X is fully convex if and
only if X is P-convex.

Proof.
No time.

Corollary
Any digital subset of the digital hypercube is fully convex.

Corollary
Any intersection of any Euclidean d-dimensional ball with Zd is fully
convex.

Proof.
By induction on dimension using P-convexity.



A measure for full convexity

Let Md(X ) be any d-dimensional digital convexity measure of X ⊂ Zd ,
e.g.

Md(X ) :=
# (X )

# (Cvxh (X ) ∩ Zd)
, Md(∅) = 1.

Definition
The full convexity measure MF

d for X ⊂ Zd , X finite, is then:

MF
1 (X ) :=M1(X ) for d = 1,

MF
d (X ) :=Md(X )

d∏
k=1

MF
d−1(πk(X )) for d > 1.

Theorem
Let X ⊂ Zd finite. Then MF

d (X ) = 1 if and only if X is fully convex and
0 < MF

d (X ) < 1 otherwise. Besides MF
d (X ) ⩽ Md(X ) in all cases.
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A measure for full convexity

A

Md(A) 0.360 0.850 0.656 0.724 0.727 1.000
MF

d (A) 0.184 0.850 0.563 0.634 0.623 1.000

A

Md(A) 1.000 1.000 1.000 1.000 1.000 0.950
MF

d (A) 0.750 0.457 0.595 0.857 0.857 0.814

A

Md(A) 0.500 1.000 0.667 0.500 0.500 1.000
MF

d (A) 0.250 0.500 0.222 0.250 0.200 0.381

A

Md(A) 0.667 1.000 0.667 0.800 0.667 1.000
MF

d (A) 0.296 0.533 0.296 0.427 0.444 1.000



Full convexity: new characterizations and applications

What is full convexity ?

Fully convex hulls

Characterizations of full convexity

Polyhedrization

Conclusion



Full subconvexity / tangency

Definition
The digital set A ⊂ X ⊂ Zd is said to be fully subconvex to X whenever
Star (Cvxh (A)) ⊂ Star (X ).

X and C̄ d [X ] fully subconvex fully subconvex
A A



Full subconvexity / tangency

Definition
The digital set A ⊂ X ⊂ Zd is said to be fully subconvex to X whenever
Star (Cvxh (A)) ⊂ Star (X ).

X and C̄ d [X ] not fully subconvex not fully subconvex
A A



Build a polyhedral model from a digital set

▶ Input: digital set X ⊂ Zd , its digital boundary B := ∂X

▶ Output: a polyhedral surface P approaching ∂X

▶ ideally, edges and faces of P should be fully subconvex to
∂X , i.e.

∀edge(p, q) ∈ P, Star (Cvxh ({p, q})) ⊂ Star (∂X )

∀face(p, q, r) ∈ P, Star (Cvxh ({p, q, r})) ⊂ Star (∂X )

▶ faces of P should align with pieces of digital planes of ∂X



Mixed variational and digital method
Initialization

points in Z3 vertices in 1
2Z

3

1. compute dual surface S to digital surface ∂X
⇒ a combinatorial 2-manifold

2. estimate normal vector field u to X using for instance integral
invariant normal estimator



Mixed variational and digital method
Progressive proxy fitting, similar to “Variational shape approximation” [Alliez et al. 2004]

. . .

1. Proxies: choose K initial facets among N facets randomly, i1, . . . , ik

E(label, i1, . . . , ik) :=
K∑

k=1

N∑
i = 1

label(i) = k

Area(fi )∥ui − uik ∥
2

2. Label the N − K remaining facets to one proxy by progressive aggregation
to minimize E (with i1, . . . , ik fixed).

3. For each proxy k, determine the new best representant ik to minimize E
(label is fixed).

4. Loop back to 2 as long as E decreases



Mixed variational and digital method
Split region boundaries into tangent paths

▶ boundaries between regions i and j are polylines with vertex set Pi,j in 1
2Z

3

▶ Di,j := Extr (Star (Pi,j)) defines the constraint domain in 1
2Z

3

▶ simplified boundaries Bi,j are polylines in 1
2Z

3 that are fully subconvex to
the constraint domain, i.e. for each segment S of Bi,j :

Star (Cvxh (S)) ⊂ Star (Di,j) ⊂ Star (∂X )



Mixed variational and digital method
Triangulate regions with constrained Delaunay triangulation

For each region i :
▶ vertices of simplified boundaries Bi,j are projected onto proxy plane
▶ projected points triangulated using Delaunay triangulation,

constrained with the projected edges of Bi,j

▶ triangles are projected back in 3D to get final triangulation



Some results (computation time 1-5s)



Some results (computation time 1-3s)



Build a polyhedral model from a digital set

▶ Input: digital set Z ⊂ Zd , its digital boundary X := ∂Z

▶ Output: a polyhedral surface P approaching X

▶ edges and faces of P should be “close” to X



Full subconvexity / tangency

Definition
The digital set A ⊂ X ⊂ Zd is said to be fully subconvex to X whenever
Star (Cvxh (A)) ⊂ Star (X ).

X and C̄ d [X ] fully subconvex fully subconvex
A A



Full subconvexity / tangency

Definition
The digital set A ⊂ X ⊂ Zd is said to be fully subconvex to X whenever
Star (Cvxh (A)) ⊂ Star (X ).

X and C̄ d [X ] not fully subconvex not fully subconvex
A A



Formalization of polyhedrization problem
▶ a k-simplex is a (k + 1)-tuple of lattice points, called its vertices.

Its faces are exactly its non-empty proper subsets.
▶ a polyhedron P is a collection of k-simplices (σk

i ), 0 ⩽ k ⩽ d − 1,
such that any simplex σ ∈ P must have its faces also in P.

▶ the body of P is ∥P∥ := ∪σ∈PCvxh (σ).

Input: digital boundary X ⊂ Zd

Output: a polyhedron P such that:
(P covers X ) X ⊂ Extr (Star (∥P∥))
(∀σ ∈ P fully subconvex to X )

Extr (Star (Cvxh (σ))) ⊂ Extr (Star (X ))

(Geometric opt.) P minimizes its area, its number of faces, etc.

Theorem
∥P∥ and X are Hausdorff
close by 1, i.e.
dH
∞(∥P∥,X ) ≤ 1.
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Formalization of polyhedrization problem
▶ a k-simplex is a (k + 1)-tuple of lattice points, called its vertices.

Its faces are exactly its non-empty proper subsets.
▶ a polyhedron P is a collection of k-simplices (σk

i ), 0 ⩽ k ⩽ d − 1,
such that any simplex σ ∈ P must have its faces also in P.

▶ the body of P is ∥P∥ := ∪σ∈PCvxh (σ).
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Output: a polyhedron P such that:
(P covers X ) X ⊂ Extr (Star (∥P∥))
(∀σ ∈ P fully subconvex to X )
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(Geometric opt.) P minimizes its area, its number of faces, etc.

Theorem
∥P∥ and X are Hausdorff
close by 1, i.e.
dH
∞(∥P∥,X ) ≤ 1.



Simple greedy algorithm in 3D

▶ initial polyhedron P : triangulated digital surface X

▶ Let L[i ]← i be the initial labeling of vertices X = (xi )
▶ foreach initial edge (i , j) of P taken in random number

1. if L[i ] = L[j ] then continue
2. m1 ← mergeScore(L[i ], L[j ])
3. m2 ← mergeScore(L[j ], L[i ])
4. if min(m1,m2) = +∞ then continue
5. if m1 < m2 then merge L[j ]← L[i ]
6. else merge L[i ]← L[j ]

mergeScore(k, l) test the edge merge (k, l) by identifying vertex l to vertex k.
Returns either +∞ if the new faces are not fully subconvex or
covering, or returns the difference of area induced by the merge.

Invariant After each merge, P still covers X and simplices of P are still
fully subconvex to X .



Simple greedy algorithm in 3D

20924 quads 22028 triangles 8070 triangles

1886 triangles 460 triangles 250 triangles
Computation time is 28s, area decreases from 20924 to 13723.1



Some results

186760 quads 542 triangles



Some results

692916 quads 2510 triangles
Computation time is 1504s



Some results

520816 quads 7956 triangles (color = normal vector)
Computation time is 723s



Some results

384624 quads 7457 triangles (color = normal vector)
Computation time is 504s



Some results

1543692 quads 15695 triangles (color = normal vector)
Computation time is 2416s



Some results



Speed-up triangulation algorithm

▶ speed-up Star (Cvxh (p, q, r)) ⊂ Star (X )
▶ build lattice polytope P = Cvxh (p, q, r) with 20 inequalities
▶ compute Q := P ⊕ [0, 1]d on inequalities
▶ compute Q ∩ Zd that is isomorphic to the d-cells intersected by P.
▶ speed-up is ×3− 5 compared to quick hull

▶ decompose into independent domains and parallel computations
▶ fix points of X along domain boundaries
▶ triangulate inside each domain independently (OpenMP)
▶ speed-up is ×10− 12 on my laptop

▶ merge results
▶ decompose edges into independent sets
▶ parallel computations within each set
▶ iterate until 95% processed
▶ finish sequentially
▶ speed-up is ×4− 6 on my laptop
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Conclusion and future works

▶ new characterizations of full convexity
▶ complexity of full convexity check reduced by factor 2d

▶ several methods to build fully convex “hulls”
▶ polyhedrization covering and fully subconvex to input data
▶ d-D C++ implementation in DGtal dgtal.org

▶ prove remaining characterizations
▶ determine number of iterations of FC∗(·)
▶ speed-up polyhedrization
▶ smarter optimizations for polyhedrization ?

dgtal.org


Smarter optimization following curvature information

20924 quads 30916 triangles 21812 triangles

14152 triangles 6550 triangles 236 triangles
Computation time is 57s, area decreases from 20924 to 14229.6
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