Full convexity: envelopes, new characterisations and applications

$$
\text { Fabien Feschet }^{1} \quad \text { Jacques-Olivier Lachaud }^{2}
$$

${ }^{1}$ LIMOS, University Clermont Auvergne
${ }^{2}$ LAMA, University Savoie Mont Blanc

Feb 7, 2024
LIMD seminar, LAMA
University Savoie Mont Blanc

Full convexity: new characterizations and applications

What is full convexity?

Fully convex hulls

Characterizations of full convexity

Polyhedrization

Conclusion

Convexity is a central tool in mathematics

convex set

non convex set

convex function

- convexity is a central tool in (continuous) mathematics
- study the geometry of shapes (not smooth everywhere)
- study the geometry of functions (not differentiable everywhere)
- allow convex analysis, convex optimization
- extensions to metric space, matrices, etc.

What about defining convexity in images, where space/data are discrete ?

Full convexity vs usual digital convexity
Definition (Usual digital convexity (or 0-convexity)) $X \subset \mathbb{Z}^{d}$ is digitally convex iff $\operatorname{Cvxh}(X) \cap \mathbb{Z}^{d}=X$

Full convexity vs usual digital convexity
Definition (Usual digital convexity (or 0-convexity)) $X \subset \mathbb{Z}^{d}$ is digitally convex iff $\operatorname{Cvxh}(X) \cap \mathbb{Z}^{d}=X$

\Rightarrow not convex

Full convexity vs usual digital convexity
Definition (Usual digital convexity (or 0-convexity)) $X \subset \mathbb{Z}^{d}$ is digitally convex iff $\operatorname{Cvxh}(X) \cap \mathbb{Z}^{d}=X$

\Rightarrow convex !

Full convexity vs usual digital convexity
Definition (Usual digital convexity (or 0-convexity))
$X \subset \mathbb{Z}^{d}$ is digitally convex iff $\operatorname{Cvxh}(X) \cap \mathbb{Z}^{d}=X$

Full convexity is a specialization of digital convexity that guarantees (simple) connectedness in arbitrary dimension

digitally convex sets that are not fully convex

Full convexity vs usual digital convexity
Definition (Usual digital convexity (or 0-convexity))
$X \subset \mathbb{Z}^{d}$ is digitally convex iff $\operatorname{Cvxh}(X) \cap \mathbb{Z}^{d}=X$

Full convexity is a specialization of digital convexity that guarantees (simple) connectedness in arbitrary dimension

digitally convex sets that are not fully convex

Full convexity vs usual digital convexity
Definition (Usual digital convexity (or 0-convexity))
$X \subset \mathbb{Z}^{d}$ is digitally convex iff $\operatorname{Cvxh}(X) \cap \mathbb{Z}^{d}=X$

Full convexity is a specialization of digital convexity that guarantees (simple) connectedness in arbitrary dimension

digitally convex sets that are not fully convex

Cubical grid, intersection complex

- cubical grid complex \mathscr{C}^{d}
- \mathscr{C}_{0}^{d} vertices or 0 -cells $=\mathbb{Z}^{d}$
- \mathscr{C}_{1}^{d} edges or 1 -cells $=$ open unit segment joining 0 -cells
- \mathscr{C}_{2}^{d} faces or 2 -cells $=$ open unit square joining 1 -cells
- ...
- intersection complex of $Y \subset \mathbb{R}^{d}$

$$
\overline{\mathscr{C}}_{k}^{d}[Y]:=\left\{c \in \mathscr{C}_{k}^{d}, \bar{c} \cap Y \neq \emptyset\right\}
$$

cells $\overline{\mathscr{C}}_{0}^{d}[Y], \overline{\mathscr{C}}_{1}^{d}[Y], \overline{\mathscr{C}}_{2}^{d}[Y]$

Full convexity

Definition (Full convexity [L. 2021])
A non empty subset $X \subset \mathbb{Z}^{d}$ is digitally k-convex for $0 \leqslant k \leqslant d$ whenever

$$
\begin{equation*}
\overline{\mathscr{C}}_{k}^{d}[X]=\overline{\mathscr{C}}_{k}^{d}[\operatorname{Cvxh}(X)] . \tag{1}
\end{equation*}
$$

Subset X is fully convex if it is digitally k-convex for all $k, 0 \leqslant k \leqslant d$.

Full convexity

Definition (Full convexity [L. 2021])
A non empty subset $X \subset \mathbb{Z}^{d}$ is digitally k-convex for $0 \leqslant k \leqslant d$ whenever

$$
\begin{equation*}
\overline{\mathscr{C}}_{k}^{d}[X]=\overline{\mathscr{C}}_{k}^{d}[\operatorname{Cvxh}(X)] . \tag{1}
\end{equation*}
$$

Subset X is fully convex if it is digitally k-convex for all $k, 0 \leqslant k \leqslant d$.

X is digitally 0 -convex

Full convexity

Definition (Full convexity [L. 2021])

A non empty subset $X \subset \mathbb{Z}^{d}$ is digitally k-convex for $0 \leqslant k \leqslant d$ whenever

$$
\begin{equation*}
\overline{\mathscr{C}}_{k}^{d}[X]=\overline{\mathscr{C}}_{k}^{d}[\operatorname{Cvxh}(X)] . \tag{1}
\end{equation*}
$$

Subset X is fully convex if it is digitally k-convex for all $k, 0 \leqslant k \leqslant d$.

X is digitally 0 -convex, and 1 -convex

Full convexity

Definition (Full convexity [L. 2021])
A non empty subset $X \subset \mathbb{Z}^{d}$ is digitally k-convex for $0 \leqslant k \leqslant d$ whenever

$$
\begin{equation*}
\overline{\mathscr{C}}_{k}^{d}[X]=\overline{\mathscr{C}}_{k}^{d}[\operatorname{Cvxh}(X)] . \tag{1}
\end{equation*}
$$

Subset X is fully convex if it is digitally k-convex for all $k, 0 \leqslant k \leqslant d$.

X is digitally 0 -convex, and 1 -convex, and 2 -convex, hence fully convex.

Full convexity

Definition (Full convexity [L. 2021])
A non empty subset $X \subset \mathbb{Z}^{d}$ is digitally k-convex for $0 \leqslant k \leqslant d$ whenever

$$
\begin{equation*}
\overline{\mathscr{C}}_{k}^{d}[X]=\overline{\mathscr{C}}_{k}^{d}[\operatorname{Cvxh}(X)] . \tag{1}
\end{equation*}
$$

Subset X is fully convex if it is digitally k-convex for all $k, 0 \leqslant k \leqslant d$.

X is digitally 0 -convex

Full convexity

Definition (Full convexity [L. 2021])
A non empty subset $X \subset \mathbb{Z}^{d}$ is digitally k-convex for $0 \leqslant k \leqslant d$ whenever

$$
\begin{equation*}
\overline{\mathscr{C}}_{k}^{d}[X]=\overline{\mathscr{C}}_{k}^{d}[\operatorname{Cvxh}(X)] . \tag{1}
\end{equation*}
$$

Subset X is fully convex if it is digitally k-convex for all $k, 0 \leqslant k \leqslant d$.

X is digitally 0 -convex, but neither 1 -convex

Full convexity

Definition (Full convexity [L. 2021])
A non empty subset $X \subset \mathbb{Z}^{d}$ is digitally k-convex for $0 \leqslant k \leqslant d$ whenever

$$
\begin{equation*}
\overline{\mathscr{C}}_{k}^{d}[X]=\overline{\mathscr{C}}_{k}^{d}[\operatorname{Cvxh}(X)] . \tag{1}
\end{equation*}
$$

Subset X is fully convex if it is digitally k-convex for all $k, 0 \leqslant k \leqslant d$.

X is digitally 0 -convex, but neither 1 -convex, nor 2 -convex.

Full convexity

Definition (Full convexity [L. 2021])

A non empty subset $X \subset \mathbb{Z}^{d}$ is digitally k-convex for $0 \leqslant k \leqslant d$ whenever

$$
\begin{equation*}
\overline{\mathscr{C}}_{k}^{d}[X]=\overline{\mathscr{C}}_{k}^{d}[\operatorname{Cvxh}(X)] . \tag{1}
\end{equation*}
$$

Subset X is fully convex if it is digitally k-convex for all $k, 0 \leqslant k \leqslant d$.

- full convexity eliminates too thin digital convex sets in arbitrary dimension
- fully convex sets are (simply) digitally connected
- digital lines and planes are fully convex
- connectedness allows local geometric analysis of digital shapes

Applications of full convexity to digital shape analysis

exact local shape analysis (convex, concave, planar (white))

polyhedrization (close and reversible)

geodesics
(Euclidean distance in digital planes)

digital polyhedron (cells are fully convex)

Full convexity: new characterizations and applications

What is full convexity ?

Fully convex hulls

Characterizations of full convexity

Polyhedrization

Conclusion

Fully convex hulls?

Let $X \subset \mathbb{Z}^{d}$. We wish to build a set $Z \subset \mathbb{Z}^{d}$ such that

- $X \subset Z$
- Z is fully convex
- Z is "close" geometrically to X

Fully convex hulls?

Let $X \subset \mathbb{Z}^{d}$. We wish to build a set $Z \subset \mathbb{Z}^{d}$ such that

- $X \subset Z$
- Z is fully convex
- Z is "close" geometrically to X

1. fully convex enveloppe $\mathrm{FC}^{*}(X)$

Fully convex hulls?

Let $X \subset \mathbb{Z}^{d}$. We wish to build a set $Z \subset \mathbb{Z}^{d}$ such that

- $X \subset Z$
- Z is fully convex
- Z is "close" geometrically to X

1. fully convex enveloppe $\mathrm{FC}^{*}(X)$
2. use Minkowski sums

Local operators Star $(\cdot), \operatorname{Skel}(\cdot), \operatorname{Extr}(\cdot)$

$$
\operatorname{Star}(Y)=\overline{\mathscr{C}}_{0}^{d}[Y] \cup \overline{\mathscr{C}}_{1}^{d}[Y] \cup \overline{\mathscr{C}}_{2}^{d}[Y]
$$

K

$K^{\prime}=\operatorname{Skel}(K)$
$($ skeleton $)$

$\operatorname{Extr}\left(K^{\prime}\right)$
(extrema)

- For any $Y \subset \mathbb{R}^{d}$, let $\operatorname{Star}(Y):=\overline{\mathscr{C}}^{d}[Y]$ (coincides with the usual star of combinatorial topology)
- For any complex $K \subset \mathscr{C}^{d}$, let $\operatorname{Skel}(K):=\bigcap_{K^{\prime} \subset K \subset \operatorname{Star}\left(K^{\prime}\right)} K^{\prime}$
- For any complex $K \subset \mathscr{C}^{d}$, let $\operatorname{Extr}(K):=\mathrm{Cl}(K) \cap \mathbb{Z}^{d}$

1. Fully convex enveloppe $\mathrm{FC}^{*}(X)$

- Iterative method for computing a fully convex enveloppe
- Let $\mathrm{FC}(X):=\operatorname{Extr}(\operatorname{Skel}(\operatorname{Star}(\operatorname{Cvxh}(X))))$
- Iterative composition $\mathrm{FC}^{n}(X):=\underbrace{\mathrm{FC} \circ \cdots \circ \mathrm{FC}}_{n \text { times }}(X)$
- Fully convex envelope of X is $\mathrm{FC}^{*}(X):=\lim _{n \rightarrow \infty} \mathrm{FC}^{n}(X)$.

input $X, Y:=\operatorname{Cvxh}(X)$

input $X^{\prime}, Y^{\prime}:=\operatorname{Cvxh}\left(X^{\prime}\right)$

$\operatorname{Star}(Y), \operatorname{Skel}(\operatorname{Star}(Y))$

$\operatorname{Star}\left(Y^{\prime}\right), \operatorname{Skel}\left(\operatorname{Star}\left(Y^{\prime}\right)\right)$

$X^{\prime}=\mathrm{FC}(X)$

$X^{\prime \prime}=\mathrm{FC}\left(X^{\prime}\right)=\mathrm{FC}^{2}(X)$

1. Fully convex enveloppe $\mathrm{FC}^{*}(X)$

Properties

Lemma
For any $X \subset \mathbb{Z}^{d}, X \subset \operatorname{FC}(X)$.
Lemma
For any finite $X \subset \mathbb{Z}^{d}, X$ and $\mathrm{FC}(X)$ have the same bounding box.
Theorem
For any finite digital set $X \subset \mathbb{Z}^{d}$, there exists a finite n such that $\mathrm{FC}^{n}(X)=\mathrm{FC}^{n+1}(X)$, hence $\mathrm{FC}^{*}(X)$ exists and is equal to $\mathrm{FC}^{n}(X)$.

Theorem
$X \subset \mathbb{Z}^{d}$ is fully convex if and only if $X=F C(X)$.
Theorem
For any finite $X \subset \mathbb{Z}^{d}, \mathrm{FC}^{*}(X)$ is fully convex.

A 3D digital triangle

vertices $A=(8,4,18), B=(-22,-2,4), C=(18,-20,-8)$ (black),
edges $\mathrm{FC}^{*}(\{A, B\}), \mathrm{FC}^{*}(\{A, C\}), \mathrm{FC}^{*}(\{B, C\})$ (grey+black) triangle $\mathrm{FC}^{*}(\{A, B, C\})$ (white+grey+black)

Generic digital polyhedron

2. Fully convex sets from Minkowski sums

- $H^{+}:=[0,1]^{d}$ (closed unit hypercube of positive orthant)
- $H:=[-1,1]^{d}$ (closed hypercube of edge length 2)

Lemma
Let A and B be real closed convex sets, with $H^{+} \subset B$, then $(A \oplus B) \cap \mathbb{Z}^{d}$ is a fully convex set.

Corollary
Let $X \subset \mathbb{Z}^{d}$, then

1. $\left(\mathrm{Cvxh}(X) \oplus H^{+}\right) \cap \mathbb{Z}^{d}$ is fully convex,
2. $(\operatorname{Cvxh}(X) \oplus H) \cap \mathbb{Z}^{d}$ is fully convex,
3. i.e. $\operatorname{Extr}(\operatorname{Star}(\operatorname{Cvxh}(X)))$ is fully convex.

Comparison between hull operators

$\mathrm{FC}^{*}(X)$

$\left(\operatorname{Cvxh}(X) \oplus H^{+}\right) \cap \mathbb{Z}^{d}$

operator	$\mathrm{FC}^{*}(X)$	$\left(\operatorname{Cvxh}(X) \oplus H^{+}\right) \cap \mathbb{Z}^{d}$	$\operatorname{Extr}(\operatorname{Star}(\operatorname{Cvxh}(X)))$
Id. on fully cvx.	yes	no	no
idempotence	yes	no	no
symmetry	yes	no	yes
$\#($ Out $) / \#(I n)$	low	medium	high
efficiency	iterative	yes	yes

Full convexity: new characterizations and applications

```
What is full convexity?
Fully convex hulls
```

Characterizations of full convexity

Polyhedrization

Conclusion

Equivalent definition of full convexity with Star

Definition

$X \subset \mathbb{Z}^{d}$ is fully convex iff $\operatorname{Star}(X)=\operatorname{Star}(\operatorname{Cvxh}(X))$.

Full convexity
$=$?

Star (Cvxh (X))

Computable characterization of full convexity

Discrete Minkowski sum U_{α}

- let $X \subset \mathbb{Z}^{d}$, denote $\mathrm{e}_{i}(X)$ the translation of X with axis vector e_{i}
- let $I^{d}:=\{1, \ldots, d\}$ be the set of possible directions
- let $U_{\emptyset}(X):=X$, and, for $\alpha \subset I^{d}$ and $i \in \alpha$, recursively $U_{\alpha}(X):=U_{\alpha \backslash i}(X) \cup \mathrm{e}_{i}\left(U_{\alpha \backslash i}(X)\right)$.

$U_{\{2\}}(X)=U_{\emptyset}(X) \cup \mathrm{e}_{2}\left(U_{\emptyset}(X)\right) \quad U_{\{1,2\}}(X)=U_{\{1\}}(X) \cup \mathrm{e}_{2}\left(U_{\{1\}}(X)\right)$

Computable characterization of full convexity

A morphological characterization
Theorem
A non empty subset $X \subset \mathbb{Z}^{d}$ is digitally k-convex for $0 \leqslant k \leqslant d$ iff

$$
\begin{equation*}
\forall \alpha \in I_{k}^{d}, U_{\alpha}(X)=\operatorname{Cvxh}\left(U_{\alpha}(X)\right) \cap \mathbb{Z}^{d} \tag{2}
\end{equation*}
$$

It is thus fully convex if the previous relations holds for all $k, 0 \leqslant k \leqslant d$.

$\operatorname{Cvxh}\left(U_{\{1\}}(X)\right) \cap \mathbb{Z}^{d}$

Computable characterization of full convexity

A morphological characterization
Theorem
A non empty subset $X \subset \mathbb{Z}^{d}$ is digitally k-convex for $0 \leqslant k \leqslant d$ iff

$$
\begin{equation*}
\forall \alpha \in I_{k}^{d}, U_{\alpha}(X)=\operatorname{Cvxh}\left(U_{\alpha}(X)\right) \cap \mathbb{Z}^{d} \tag{2}
\end{equation*}
$$

It is thus fully convex if the previous relations holds for all $k, 0 \leqslant k \leqslant d$.

Algorithm:
$\forall k, 0 \leqslant k \leqslant d$, $\forall \alpha \in I_{k}^{d}$

- compute $U_{\alpha}(X)$
- compute $\operatorname{Cvxh}\left(U_{\alpha}(X)\right)$ and
$=?$ enumerate lattice points within

Computable characterization of full convexity

A morphological characterization
Theorem
A non empty subset $X \subset \mathbb{Z}^{d}$ is digitally k-convex for $0 \leqslant k \leqslant d$ iff

$$
\begin{equation*}
\forall \alpha \in I_{k}^{d}, U_{\alpha}(X)=\operatorname{Cvxh}\left(U_{\alpha}(X)\right) \cap \mathbb{Z}^{d} \tag{2}
\end{equation*}
$$

It is thus fully convex if the previous relations holds for all $k, 0 \leqslant k \leqslant d$.

> Algorithm:
> $\forall k, 0 \leqslant k \leqslant d$, $\forall \alpha \in I_{k}^{d}$

- compute $U_{\alpha}(X)$
- compute $\operatorname{Cvxh}\left(U_{\alpha}(X)\right)$ and $=$? enumerate lattice points within

One convex hull computation is enough (2D illustration)

Step 1: compute $\forall \alpha, \alpha \subset\{1,2\}, U_{\alpha}(X)$; compute $\operatorname{Cvxh}\left(U_{\{1,2\}}(X)\right) \cap \mathbb{Z}^{2}$

$X=\overline{\mathscr{C}}_{0}^{d}[X], \overline{\mathscr{C}}_{1}^{d}[X], \overline{\mathscr{C}}_{2}^{d}[X]$
1-1 map

$U_{\emptyset}(X)+\left(\frac{1}{2}, \frac{1}{2}\right), U_{\{1\}}(X)+\left(0, \frac{1}{2}\right)$
$U_{\{2\}}(X)+\left(\frac{1}{2}, 0\right), U_{\{1,2\}}(X)$

$\operatorname{Cvxh}(X), \overline{\mathscr{C}}_{2}^{d}[\operatorname{Cvxh}(X)]$
1-1 map \uparrow

$\operatorname{Cvxh}\left(U_{\{1,2\}}(X)\right) \cap \mathbb{Z}^{2}$

One convex hull computation is enough (2D illustration)

Step 2: compute intermediate points between two red points

$X=\overline{\mathscr{C}}_{0}^{d}[X], \overline{\mathscr{C}}_{1}^{d}[X], \overline{\mathscr{C}}_{2}^{d}[X]$
1-1 map

$U_{\emptyset}(X)+\left(\frac{1}{2}, \frac{1}{2}\right), U_{\{1\}}(X)+\left(0, \frac{1}{2}\right)$
$U_{\{2\}}(X)+\left(\frac{1}{2}, 0\right), U_{\{1,2\}}(X)$

$\operatorname{Cvxh}(X), \overline{\mathscr{C}}_{2}^{d}[\operatorname{Cvxh}(X)]$ $\overline{\mathscr{C}}_{1}^{d}[\operatorname{Cvxh}(X)]$
1-1 map

$\operatorname{Cvxh}\left(U_{\{1,2\}}(X)\right) \cap \mathbb{Z}^{2}$
$+\cdots+$:

One convex hull computation is enough (2D illustration)

Step 3: compute intermediate points between four red points...

$X=\overline{\mathscr{C}}_{0}^{d}[X], \overline{\mathscr{C}}_{1}^{d}[X], \overline{\mathscr{C}}_{2}^{d}[X]$
1-1 map

$U_{\emptyset}(X)+\left(\frac{1}{2}, \frac{1}{2}\right), U_{\{1\}}(X)+\left(0, \frac{1}{2}\right)$
$U_{\{2\}}(X)+\left(\frac{1}{2}, 0\right), U_{\{1,2\}}(X)$

$\operatorname{Cvxh}(X), \overline{\mathscr{C}}_{2}^{d}[\operatorname{Cvxh}(X)]$ $\overline{\mathscr{C}}_{1}^{d}[\operatorname{Cvxh}(X)], \overline{\mathscr{C}}_{0}^{d}[\operatorname{Cvxh}(X)]$ 1-1 map

$\operatorname{Cvxh}\left(U_{\{1,2\}}(X)\right) \cap \mathbb{Z}^{2}$
$+\cdots+\vdots+\bullet \bullet$

One convex hull computation is enough (2D illustration)

Step 4: check full convexity by counting points •, •, •.

$X=\overline{\mathscr{C}}_{0}^{d}[X], \overline{\mathscr{C}}_{1}^{d}[X], \overline{\mathscr{C}}_{2}^{d}[X]$
1-1 map

$U_{\emptyset}(X)+\left(\frac{1}{2}, \frac{1}{2}\right), U_{\{1\}}(X)+\left(0, \frac{1}{2}\right)$
$U_{\{2\}}(X)+\left(\frac{1}{2}, 0\right), U_{\{1,2\}}(X)$

Full convexity
= ?

Full convexity

$$
=?
$$

$\operatorname{Cvxh}\left(U_{\{1,2\}}(X)\right) \cap \mathbb{Z}^{2}$
$+\cdots+\vdots+\bullet \bullet$

Main argument of the proof

Lemma
Let c be a k-cell of \mathscr{C}^{d} and let $D=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ be the d-dimensional cells surrounding c (i.e., $\operatorname{Star}(c) \cap \mathscr{C}_{d}^{d}=D$), with $n=2^{d-k}$. Picking one point x_{i} in each $\bar{\sigma}_{i}$, then it holds that there exists a point of \bar{c} that belongs to $\operatorname{Cvxh}\left(\left\{\mathrm{x}_{i}\right\}_{i=1, \ldots, n}\right)$.

Looking for other characterizations of full convexity

1. characterization through "natural" segment convexity
2. characterization through projections

"Natural" segment convexity

Convexity in $\mathbb{R}^{d} X \subset \mathbb{R}^{d}$ is convex iff
$\forall p, q \in X$, then $[p q]$ is a subset of X

"Natural" segment convexity

Convexity in $\mathbb{R}^{d} X \subset \mathbb{R}^{d}$ is convex iff
$\forall p, q \in X$, then $[p q]$ is a subset of X
MP-convexity in $\mathbb{Z}^{d} X \subset \mathbb{Z}^{d}$ is convex iff
$\forall p, q \in X$, then $[p q] \cap \mathbb{Z}^{d}$ is a subset of X
[Minsky, Papert 88]

"Natural" segment convexity

Convexity in $\mathbb{R}^{d} X \subset \mathbb{R}^{d}$ is convex iff
$\forall p, q \in X$, then $[p q]$ is a subset of X
MP-convexity in $\mathbb{Z}^{d} X \subset \mathbb{Z}^{d}$ is convex iff
$\forall p, q \in X$, then $[p q] \cap \mathbb{Z}^{d}$ is a subset of X
[Minsky, Papert 88]

MP-convex!

Each blue segment does not touch any other lattice point

S-convexity and S^{k}-convexity

Definition (S-convexity in \mathbb{Z}^{d})
$X \subset \mathbb{Z}^{d}$ is S-convex iff
$\forall p, q \in X$, then $\operatorname{Star}([p q])$ is a subset of $\operatorname{Star}(X)$

X segment convex

$\operatorname{Star}([p q]) \subset \operatorname{Star}(X)$

S-convexity and S^{k}-convexity

Definition (S-convexity in \mathbb{Z}^{d})
$X \subset \mathbb{Z}^{d}$ is S-convex iff
$\forall p, q \in X$, then $\operatorname{Star}([p q])$ is a subset of $\operatorname{Star}(X)$

X segment convex

$\operatorname{Star}([p q]) \subset \operatorname{Star}(X)$

Definition $\left(S^{k}\right.$-convexity in $\left.\mathbb{Z}^{d}\right)$
$X \subset \mathbb{Z}^{d}$ is S^{k}-convex iff
$\forall p_{1}, \ldots, p_{k} \in X$, then $\operatorname{Star}\left(\operatorname{Cvxh}\left(\left\{p_{1}, \ldots, p_{k}\right\}\right)\right)$ is a subset of $\operatorname{Star}(X)$
Remark: S^{2}-convexity is the S-convexity.

Full convexity implies S^{k}-convexity

Theorem
For $d \geqslant 1, k \geqslant 2$, full convexity implies S^{k}-convexity.
Proof.
Let us consider a fully convex set X. Let T a k-tuple in X.

$\operatorname{Cvxh}(T)$	$\subset \operatorname{Cvxh}(X)$		(since Cvxh () is increasing)
$\Rightarrow \operatorname{Star}(\operatorname{Cvxh}(T))$	$\subset \operatorname{Star}(\operatorname{Cvxh}(X))$		$($ since Star () is increasing)
$\Leftrightarrow \operatorname{Star}(\operatorname{Cvxh}(T))$	$\subset \operatorname{Star}(X)$		(since X is fully convex)

S-convexity and S^{k}-convexity implies full convexity ?

Theorem
S-convexity implies full convexity in \mathbb{Z}^{2}
Theorem
S-convexity does not imply full convexity in $\mathbb{Z}^{d}, d \geq 3$.
Theorem
S^{d}-convexity implies full convexity in $\mathbb{Z}^{d}, d \geq 2$.

S-convexity does not imply full convexity in \mathbb{Z}^{d}

is a piece of digital plane

- Set $X \subset \mathbb{Z}^{3}$ as • is a subset of this plane
- Points A, B, C lie on top of the plane and belong to X
- Point $\circ=\frac{1}{3}(A+B+C)$ also but does not belong to X
- X is S-convex but not even convex, so not fully convex.

S^{d}-convexity implies full convexity in \mathbb{Z}^{d}

Theorem
S^{d}-convexity implies full convexity in $\mathbb{Z}^{d}, d \geq 2$.

S^{d}-convexity implies full convexity in \mathbb{Z}^{d}

Theorem

S^{d}-convexity implies full convexity in $\mathbb{Z}^{d}, d \geq 2$.
Lemma (1)
If X is S^{d}-convex and $\operatorname{Cvxh}(X) \cap c \neq \emptyset$ for a cell $c \in \mathscr{C} \mathscr{C}^{d}$, then $\operatorname{Cvxh}(X)$ must touch a 0 -cell $e \in \partial c \cap X$.

- proof by contradiction, assume $\operatorname{Cvxh}(X) \cap \partial c=\emptyset$
- there is a supporting $d-1$-hyperplane of $\partial \operatorname{Cvxh}(X)$ touching c
- there is a d-tuple T of X on this hyperplane
- so $\operatorname{Star}(\operatorname{Cvxh}(T)) \subset \operatorname{Star}(X)$ by S^{d}-convexity, hence $c \in \operatorname{Star}(X)$
- thus $\exists e \in X$ and $e \in \partial c$.

S^{d}-convexity implies full convexity in \mathbb{Z}^{d}

Theorem
S^{d}-convexity implies full convexity in $\mathbb{Z}^{d}, d \geq 2$.
Lemma (1)
If X is S^{d}-convex and $\operatorname{Cvxh}(X) \cap c \neq \emptyset$ for a cell $c \in \mathscr{C}^{d}$, then
$\operatorname{Cvxh}(X)$ must touch a 0 -cell $e \in \partial c \cap X$.
Lemma (2)
If X is S^{d}-convex then $\mathrm{FC}(X)=\operatorname{Cvxh}(X) \cap \mathbb{Z}^{d}$.
Proof.

- $\operatorname{Skel}(\operatorname{Star}(\operatorname{Cvxh}(X)))$ is reduced to 0 -cells because of Lemma 1
- $\operatorname{FC}(X)=\operatorname{Extr}(\operatorname{Skel}(\operatorname{Star}(\operatorname{Cvxh}(X))))=$ $\operatorname{Skel}(\operatorname{Star}(\operatorname{Cvxh}(X)))=\operatorname{Cvxh}(X) \cap \mathbb{Z}^{d}$ by above

S^{d}-convexity implies full convexity in \mathbb{Z}^{d}

Theorem
S^{d}-convexity implies full convexity in $\mathbb{Z}^{d}, d \geq 2$.
Lemma (1)
If X is S^{d}-convex and $\operatorname{Cvxh}(X) \cap c \neq \emptyset$ for a cell $c \in \mathscr{C}^{d}$, then Cvxh (X) must touch a 0 -cell $e \in \partial c \cap X$.

Lemma (2)
If X is S^{d}-convex then $\operatorname{FC}(X)=\operatorname{Cvxh}(X) \cap \mathbb{Z}^{d}$.
Lemma (3)
If X is S^{d}-convex then $X=\operatorname{Cvxh}(X) \cap \mathbb{Z}^{d}$ (i.e. X is 0 -convex).
Proof.
By decomposition of $\operatorname{Cvxh}(X)$ into d-dimensional simplices and similar reasonning.

Projection convexity

Let \mathscr{P}_{j} be the orthogonal projector associated to the j-th axis.
Lemma
If $X \subset \mathbb{Z}^{d}$ is fully convex, then $\forall j, 1 \leqslant j \leqslant d, \mathscr{P}_{j}(X)$ is fully convex (in \mathbb{Z}^{d-1}).

Definition (Projection convexity)
$X \subset \mathbb{Z}^{d}$ is P-convex iff:
(i) X is 0 -convex,
(ii) when $d>1, \forall j, 1 \leqslant j \leqslant d, \mathscr{P}_{j}(X)$ is P -convex.

Projection convexity

Let \mathscr{P}_{j} be the orthogonal projector associated to the j-th axis.
Lemma
If $X \subset \mathbb{Z}^{d}$ is fully convex, then $\forall j, 1 \leqslant j \leqslant d, \mathscr{P}_{j}(X)$ is fully convex (in \mathbb{Z}^{d-1}).

Definition (Projection convexity) $X \subset \mathbb{Z}^{d}$ is P -convex iff:
(i) X is 0 -convex,
(ii) when $d>1, \forall j, 1 \leqslant j \leqslant d, \mathscr{P}_{j}(X)$ is P-convex.

Projection convexity

Let \mathscr{P}_{j} be the orthogonal projector associated to the j-th axis.
Lemma
If $X \subset \mathbb{Z}^{d}$ is fully convex, then $\forall j, 1 \leqslant j \leqslant d, \mathscr{P}_{j}(X)$ is fully convex (in \mathbb{Z}^{d-1}).

Definition (Projection convexity)
$X \subset \mathbb{Z}^{d}$ is P -convex iff:
(i) X is 0 -convex,
(ii) when $d>1, \forall j, 1 \leqslant j \leqslant d, \mathscr{P}_{j}(X)$ is P-convex.

Projection convexity

Let \mathscr{P}_{j} be the orthogonal projector associated to the j-th axis.
Lemma
If $X \subset \mathbb{Z}^{d}$ is fully convex, then $\forall j, 1 \leqslant j \leqslant d, \mathscr{P}_{j}(X)$ is fully convex (in \mathbb{Z}^{d-1}).

Definition (Projection convexity)
$X \subset \mathbb{Z}^{d}$ is P -convex iff:
(i) X is 0 -convex,
(ii) when $d>1, \forall j, 1 \leqslant j \leqslant d, \mathscr{P}_{j}(X)$ is P -convex.

Projection convexity

Theorem
For arbitrary dimension $d \geqslant 1$, for any $X \subset \mathbb{Z}^{d}, X$ is fully convex if and only if X is P-convex.

Proof.
No time.

Projection convexity

Theorem
For arbitrary dimension $d \geqslant 1$, for any $X \subset \mathbb{Z}^{d}, X$ is fully convex if and only if X is P-convex.

Proof.
No time.
Corollary
Any digital subset of the digital hypercube is fully convex.
Corollary
Any intersection of any Euclidean d-dimensional ball with \mathbb{Z}^{d} is fully convex.

Proof.
By induction on dimension using P-convexity.

A measure for full convexity

Let $M_{d}(X)$ be any d-dimensional digital convexity measure of $X \subset \mathbb{Z}^{d}$, e.g.

$$
M_{d}(X):=\frac{\#(X)}{\#\left(\operatorname{Cvxh}(X) \cap \mathbb{Z}^{d}\right)}, \quad \quad M_{d}(\emptyset)=1
$$

Definition
The full convexity measure M_{d}^{F} for $X \subset \mathbb{Z}^{d}, X$ finite, is then:

$$
\begin{array}{ll}
M_{1}^{F}(X):=M_{1}(X) & \text { for } d=1 \\
M_{d}^{F}(X):=M_{d}(X) \prod_{k=1}^{d} M_{d-1}^{F}\left(\pi_{k}(X)\right) & \text { for } d>1
\end{array}
$$

A measure for full convexity

Let $M_{d}(X)$ be any d-dimensional digital convexity measure of $X \subset \mathbb{Z}^{d}$, e.g.

$$
M_{d}(X):=\frac{\#(X)}{\#\left(\operatorname{Cvxh}(X) \cap \mathbb{Z}^{d}\right)}, \quad \quad M_{d}(\emptyset)=1
$$

Definition

The full convexity measure M_{d}^{F} for $X \subset \mathbb{Z}^{d}, X$ finite, is then:

$$
\begin{array}{ll}
M_{1}^{F}(X):=M_{1}(X) & \text { for } d=1 \\
M_{d}^{F}(X):=M_{d}(X) \prod_{k=1}^{d} M_{d-1}^{F}\left(\pi_{k}(X)\right) & \text { for } d>1
\end{array}
$$

Theorem
Let $X \subset \mathbb{Z}^{d}$ finite. Then $M_{d}^{F}(X)=1$ if and only if X is fully convex and $0<M_{d}^{F}(X)<1$ otherwise. Besides $M_{d}^{F}(X) \leqslant M_{d}(X)$ in all cases.

A measure for full convexity

A						

Full convexity: new characterizations and applications

> What is full convexity?

> Fully convex hulls

> Characterizations of full convexity

Polyhedrization

Conclusion

Full subconvexity / tangency

Definition

The digital set $A \subset X \subset \mathbb{Z}^{d}$ is said to be fully subconvex to X whenever $\operatorname{Star}(\operatorname{Cvxh}(A)) \subset \operatorname{Star}(X)$.

Full subconvexity / tangency

Definition

The digital set $A \subset X \subset \mathbb{Z}^{d}$ is said to be fully subconvex to X whenever $\operatorname{Star}(\operatorname{Cvxh}(A)) \subset \operatorname{Star}(X)$.

X and $\overline{\mathscr{C}}[X]$

not fully subconvex A

not fully subconvex
A

Build a polyhedral model from a digital set

- Input: digital set $X \subset \mathbb{Z}^{d}$, its digital boundary $B:=\partial X$
- Output: a polyhedral surface P approaching ∂X
- ideally, edges and faces of P should be fully subconvex to ∂X, i.e.

$$
\begin{array}{r}
\forall \operatorname{edge}(p, q) \in P, \operatorname{Star}(\operatorname{Cvxh}(\{p, q\})) \subset \operatorname{Star}(\partial X) \\
\forall \operatorname{face}(p, q, r) \in P, \operatorname{Star}(\operatorname{Cvxh}(\{p, q, r\})) \subset \operatorname{Star}(\partial X)
\end{array}
$$

- faces of P should align with pieces of digital planes of ∂X

Mixed variational and digital method Initialization

1. compute dual surface S to digital surface ∂X
\Rightarrow a combinatorial 2-manifold
2. estimate normal vector field u to X using for instance integral invariant normal estimator

Mixed variational and digital method

Progressive proxy fitting, similar to "Variational shape approximation" [Alliez et al. 2004]

1. Proxies: choose K initial facets among N facets randomly, i_{1}, \ldots, i_{k}

$$
E\left(\text { label }, i_{1}, \ldots, i_{k}\right):=\sum_{k=1}^{K} \sum_{\substack{i=1 \\ \operatorname{label}(i)=k}}^{N} \operatorname{Area}\left(f_{i}\right)\left\|\mathbf{u}_{i}-\mathrm{u}_{i_{k}}\right\|^{2}
$$

2. Label the $N-K$ remaining facets to one proxy by progressive aggregation to minimize E (with i_{1}, \ldots, i_{k} fixed).
3. For each proxy k, determine the new best representant i_{k} to minimize E (label is fixed).
4. Loop back to 2 as long as E decreases

Mixed variational and digital method

Split region boundaries into tangent paths

- boundaries between regions i and j are polylines with vertex set $P_{i, j}$ in $\frac{1}{2} \mathbb{Z}^{3}$
- $D_{i, j}:=\operatorname{Extr}\left(\operatorname{Star}\left(P_{i, j}\right)\right)$ defines the constraint domain in $\frac{1}{2} \mathbb{Z}^{3}$
- simplified boundaries $B_{i, j}$ are polylines in $\frac{1}{2} \mathbb{Z}^{3}$ that are fully subconvex to the constraint domain, i.e. for each segment S of $B_{i, j}$:

$$
\operatorname{Star}(\operatorname{Cvxh}(S)) \subset \operatorname{Star}\left(D_{i, j}\right) \subset \operatorname{Star}(\partial X)
$$

Mixed variational and digital method

Triangulate regions with constrained Delaunay triangulation

For each region i :

- vertices of simplified boundaries $B_{i, j}$ are projected onto proxy plane
- projected points triangulated using Delaunay triangulation, constrained with the projected edges of $B_{i, j}$
- triangles are projected back in 3D to get final triangulation

Some results (computation time 1-5s)

Some results (computation time 1-3s)

Build a polyhedral model from a digital set

- Input: digital set $Z \subset \mathbb{Z}^{d}$, its digital boundary $X:=\partial Z$
- Output: a polyhedral surface P approaching X
- edges and faces of P should be "close" to X

Full subconvexity / tangency

Definition

The digital set $A \subset X \subset \mathbb{Z}^{d}$ is said to be fully subconvex to X whenever $\operatorname{Star}(\operatorname{Cvxh}(A)) \subset \operatorname{Star}(X)$.

Full subconvexity / tangency

Definition

The digital set $A \subset X \subset \mathbb{Z}^{d}$ is said to be fully subconvex to X whenever $\operatorname{Star}(\operatorname{Cvxh}(A)) \subset \operatorname{Star}(X)$.

X and $\overline{\mathscr{C}}[X]$

not fully subconvex A

not fully subconvex
A

Formalization of polyhedrization problem

- a k-simplex is a $(k+1)$-tuple of lattice points, called its vertices. Its faces are exactly its non-empty proper subsets.
- a polyhedron P is a collection of k-simplices $\left(\sigma_{i}^{k}\right), 0 \leqslant k \leqslant d-1$, such that any simplex $\sigma \in P$ must have its faces also in P.
- the body of P is $\|P\|:=\cup_{\sigma \in P} \operatorname{Cvxh}(\sigma)$.

Formalization of polyhedrization problem

- a k-simplex is a $(k+1)$-tuple of lattice points, called its vertices. Its faces are exactly its non-empty proper subsets.
- a polyhedron P is a collection of k-simplices $\left(\sigma_{i}^{k}\right), 0 \leqslant k \leqslant d-1$, such that any simplex $\sigma \in P$ must have its faces also in P.
- the body of P is $\|P\|:=\cup_{\sigma \in P} \operatorname{Cvxh}(\sigma)$.

Input: digital boundary $X \subset \mathbb{Z}^{d}$
Output: a polyhedron P such that:
$(P$ covers $X) X \subset \operatorname{Extr}(\operatorname{Star}(\|P\|))$
($\forall \sigma \in P$ fully subconvex to X)
$\operatorname{Extr}(\operatorname{Star}(\operatorname{Cvxh}(\sigma))) \subset \operatorname{Extr}(\operatorname{Star}(X))$
(Geometric opt.) P minimizes its area, its number of faces, etc.

Formalization of polyhedrization problem

- a k-simplex is a $(k+1)$-tuple of lattice points, called its vertices. Its faces are exactly its non-empty proper subsets.
- a polyhedron P is a collection of k-simplices $\left(\sigma_{i}^{k}\right), 0 \leqslant k \leqslant d-1$, such that any simplex $\sigma \in P$ must have its faces also in P.
- the body of P is $\|P\|:=\cup_{\sigma \in P} \operatorname{Cvxh}(\sigma)$.

Input: digital boundary $X \subset \mathbb{Z}^{d}$
Output: a polyhedron P such that:
$(P$ covers $X) X \subset \operatorname{Extr}(\operatorname{Star}(\|P\|))$
($\forall \sigma \in P$ fully subconvex to X)
$\operatorname{Extr}(\operatorname{Star}(\operatorname{Cvxh}(\sigma))) \subset \operatorname{Extr}(\operatorname{Star}(X))$
(Geometric opt.) P minimizes its area, its number of faces, etc.

Theorem
$\|P\|$ and X are Hausdorff close by 1, i.e.

$$
d_{\infty}^{H}(\|P\|, X) \leq 1
$$

Simple greedy algorithm in 3D

- initial polyhedron P : triangulated digital surface X
- Let $L[i] \leftarrow i$ be the initial labeling of vertices $X=\left(\mathrm{x}_{i}\right)$
- foreach initial edge (i, j) of P taken in random number

1. if $L[i]=L[j]$ then continue
2. $m_{1} \leftarrow \operatorname{mergeScore}(L[i], L[j])$
3. $m_{2} \leftarrow \operatorname{mergeScore}(L[j], L[i])$
4. if $\min \left(m_{1}, m_{2}\right)=+\infty$ then continue
5. if $m_{1}<m_{2}$ then merge $L[j] \leftarrow L[i]$
6. else merge $L[i] \leftarrow L[j]$
mergeScore (k, I) test the edge merge (k, I) by identifying vertex I to vertex k. Returns either $+\infty$ if the new faces are not fully subconvex or covering, or returns the difference of area induced by the merge.
Invariant After each merge, P still covers X and simplices of P are still fully subconvex to X.

Simple greedy algorithm in 3D

Computation time is 28s, area decreases from 20924 to 13723.1

Some results

Some results

Computation time is 1504 s

Some results

520816 quads
Computation time is 723 s

7956 triangles

(color $=$ normal vector $)$
me results

384624 quads
7457 triangles
(color $=$ normal vector)
Computation time is 504 s

Some results

Speed-up triangulation algorithm

- speed-up $\operatorname{Star}(\operatorname{Cvxh}(p, q, r)) \subset \operatorname{Star}(X)$
- build lattice polytope $P=\operatorname{Cvxh}(p, q, r)$ with 20 inequalities
- compute $Q:=P \oplus[0,1]^{d}$ on inequalities
- compute $Q \cap \mathbb{Z}^{d}$ that is isomorphic to the d-cells intersected by P.
- speed-up is $\times 3-5$ compared to quick hull
decompose into independent domains and parallel computations
- fix points of X along domain boundaries
- triangulate inside each domain independently (OpenMP)
- speed-up is $\times 10-12$ on my laptop
- merge results
- decompose edges into independent sets
- parallel computations within each set
- iterate until 95% processed
- finish sequentially
- speed-up is $\times 4-6$ on my laptop

Full convexity: new characterizations and applications

> What is full convexity ?

> Fully convex hulls

> Characterizations of full convexity

> Polyhedrization

Conclusion

Conclusion and future works

- new characterizations of full convexity
- complexity of full convexity check reduced by factor 2^{d}
- several methods to build fully convex "hulls"
- polyhedrization covering and fully subconvex to input data
- d-D C++ implementation in DGtal dgtal.org
- prove remaining characterizations
- determine number of iterations of $\mathrm{FC}^{*}(\cdot)$
- speed-up polyhedrization
- smarter optimizations for polyhedrization ?

Smarter optimization following curvature information

Computation time is 57 s , area decreases from 20924 to 14229.6

