
Journal of Mathematical Imaging and Vision (2025) 67:11

https://doi.org/10.1007/s10851-024-01226-6

Corrected Laplace–Beltrami Operators for Digital Surfaces

Colin Weill–Duflos1 · David Coeurjolly2 · Jacques-Olivier Lachaud1

Received: 15 September 2024 / Accepted: 18 December 2024

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025

Abstract

Defining consistent calculus frameworks on discrete meshes is useful for processing the geometry of meshes or model

numerical simulations and variational problems onto them. However, digital surfaces (boundary of voxels) cannot benefit

directly from the classical mesh calculus frameworks, since their vertex and face geometry is too poor to capture the geometry

of the underlying smooth Euclidean surface well enough. This paper proposes three new calculus frameworks dedicated

to digital surfaces, which exploit a corrected normal field, in a manner similar to the recent digital calculus of Coeurjolly

and Lachaud (IAPR second international conference on discrete geometry and mathematical morphology, Springer, Berlin

2022). First, we build a corrected interpolated calculus by defining inner products with position and normal interpolation in

the Grassmannian. Second, we present a corrected finite element method which adapts the standard Finite Element Method

with a corrected metric per element. Third, we present a corrected virtual refinement method adapting the method of Bunge

et al. (Comput Graph Forum 39(2):303–313, 2020, https://doi.org/10.1111/cgf.13931). Experiments show that these digital

calculus frameworks seem to converge toward the continuous calculus, offer a valid alternative to classical mesh calculus,

and induce effective tools for digital surface processing tasks. We then use these corrected Laplace–Beltrami operators in

order to build a regularization method for digital surface, using geometric information given by discrete normal and curvature

estimators.

Keywords Digital calculus · Laplacian operator · Differential operators

1 Introduction

When solving differential equations on a mesh, it is often

required to build a set of differential operators for this mesh.

Perhaps the most commonly found is the Laplace–Beltrami

operator as it is used in a wide variety of applications such as

mesh editing [3, 4], mesh smoothing [5] or geodesic path

approximation [6]. Building a simple graph Laplacian or

discrete Laplacian does not suffice, since the mesh geom-

etry must be taken into account. Using a subdivision scheme

and building the operators on it (as done in [7]) do not suf-

fice either, as the limit surface does not solve the metric

B Colin Weill–Duflos

colin.weill-duflos@univ-smb.fr

David Coeurjolly

david.coeurjolly@cnrs.fr

Jacques-Olivier Lachaud

jacques-olivier.lachaud@univ-smb.fr

1 CNRS, LAMA, Université Savoie Mont Blanc, 73000

Chambéry, France

2 CNRS, INSA, LIRIS, Université Lyon, 69000 Lyon, France

issues (staircase effects induced by the grid). On triangular

and polygonal surfaces, several calculus frameworks pro-

duce these differential operators, such as the Finite Element

Method (FEM) [8], Discrete Exterior Calculus (DEC) [9], the

Virtual Element Method [10], etc. (see [11] for a comparative

evaluation).

Usually these frameworks operate under the assumption

that the mesh interpolates the underlying "true" smooth

geometry. In the case of digital surfaces made of surfels

(boundary of voxels), which are frequent when processing 3D

images, this assumption is false, and these frameworks fail

at yielding convergent operators. However, several geomet-

ric quantities can be evaluated with convergence properties,

such as surface area [12], or the normal field and the curva-

ture tensor [13, 14] on digital surfaces. We are aware of only

two digital analogs to differential operators: Caissard et al.

[15] proposed a digital Laplacian based on the heat kernel,

while two of the authors have adapted in [1] the polygonal

calculus of [16], by correcting its normal vector field. The

digital “Heat kernel” Laplacian of [15] is the only one that is

proven convergent and its convergence is observed through

0123456789().: V,-vol 123

Lowres version

http://crossmark.crossref.org/dialog/?doi=10.1007/s10851-024-01226-6&domain=pdf
http://orcid.org/0000-0003-4236-2133
https://doi.org/10.1111/cgf.13931

 11 Page 2 of 16 Journal of Mathematical Imaging and Vision (2025) 67:11

experiments. The digital “Projected PolyDEC” Laplacian of

[1] is not pointwise convergent, but yet provides meaningful

results in variational problems.

This paper proposes three new digital calculus frame-

works that are constructed with a tangent space corrected

by a prescribed normal vector field (e.g., the II normal

estimator [13]). Tangent space correction has proven to be

effective for tasks such as estimating curvatures [14] and

reconstructing a piecewise smooth surface from a digital

surface [17]. The first one, called “interpolated corrected

calculus”, embeds the digital surface into the Grassmannian

with a vertex-interpolated corrected normal vector field: the

resulting surface is thus continuous in positions and nor-

mals. It is thus more consistent than the Projected PolyDEC,

whose embedding is discontinuous between surfels. The sec-

ond one, called “corrected FEM”, adapts the Finite Element

Method with metrics tailored to a constant corrected nor-

mal vector per element. The third one adapts the virtual

refinement method [2], where each face gets subdivided intro

triangles thanks to the addition of a virtual vertex. The three

constructions are consistent with classical calculus construc-

tions, and we hope they will allow proving the convergence of

operators. For now, we conducted experiments which show

that these frameworks build a consistent Laplacian, conver-

gent when slightly diffused. We achieve results on par with

[15] while retaining the ease of build and sparsity from [1].

We also build a regularization method for digital surface

using corrected Laplace–Beltrami operator and geometric

estimators: since we can estimate the normals n and the

mean curvature H , using the equality �p = −2 Hn we

can recover the position p. We compare our method with

a former method for regularization [17] based solely upon

normals, and we explore the modification of curvatures dur-

ing the reconstruction.

2 Digital Calculus with Corrected Tangent
Space

We demonstrate here that the same approach of corrected

lengths and areas used in [1] can be used to build differ-

ential operators with other methods. The approach can be

summarized as a correction of lengths and areas based on

how orthogonal they are to the true normal. Assuming we

have a vector v and a normal u, the corrected length of v

is given by ||v × u||. The corrected area of a parallelogram

defined by two vectors v and w with normal u is given by

det(u, v, w). These can be seen as the length/areas of the

projected vector/parallelogram onto the tangent plane.

Our data here will be defined by values at vertices, mean-

ing that each face has 4 degrees of freedom. We use these

degrees of freedom to build a base of functions on the

mesh. These functions are bilinear on mesh elements here

f00 f10

f11f01

f̄0 = 1

2
(f00 + f10)

f̄1 = 1

2
(f10 + f11)

f̄2 = 1

2
(f01 + f11)

f̄3 = 1

2
(f00 + f01) f̄ = 1

2
(f̄0 + f̄2)

Fig. 1 Notations for the interpolations of the values of a function f on

a surfel

but other basis functions are possible (e.g., the Virtual Ele-

ments Method [10] solely requires knowing the behavior of

functions on edges). The methods we present, similarly to

[1], use a per face construction of sparse operators.

Notations The parameter space of each surfel is a unit square

� := [0, 1]2 parameterized by s and t . We denote by n

the natural or naive normal of a surfel σ , that can be com-

puted with a cross product of two consecutive edges. The

corrected normal field will be denoted u. Inside a surfel, we

can decompose this normal in the natural base of the surfel

into u = (ux , uy, uz).

A function f in a surfel σ is assumed to be bilinearly inter-

polated. We denote then by
[

f (σ)
]

:= [f00(σ), f10(σ),

f11(σ), f01σ)]ᵀ the degrees of freedom of f , correspond-

ing to its values at each vertex when circulating around σ .

We will often write simply
[

f
]

when the surfel is obvious

from the context. We sometimes use averages of these values,

whose notations are illustrated in Fig. 1.

2.1 Interpolated Corrected Calculus

We propose here a calculus where the corrected normal

vector field u(x) is continuous over the mesh: corrected

normal vectors are given at vertices; these vectors are bilin-

early interpolated within each face. Hence, within a surfel,

u(s, t) = u00(1−s)(1−t)+u10s(1−t)+u01(1−s)t+u11st .

Although this naive bilinear interpolation does not respect

the condition that normals need to be unitary vectors, it

yields much simpler formulas in calculation. Furthermore,

experiments show that a more complex interpolation yield-

ing almost unit normals does not improve the results, while

increasing the complexity of formulas.

The construction of the calculus is similar to the polygo-

nal calculus of [16], building inner products, sharp and flat

operators on a per face basis. However, the correction of the

geometry does not follow [1], but instead use an embedding

of the mesh into the Grassmannian to correct the area/length

measures. The Grassmannian is a way to represent affine

subspaces, hence tangent spaces here.

Within this space, one can define differential forms that

are invariant to rigid motions (Lipschitz–Killing forms).

We exploit here the corrected area 2-form (see [14, 18]):

123

Lowres version

Journal of Mathematical Imaging and Vision (2025) 67:11 Page 3 of 16 11

ωu
0 (x)(v, w) := det(u(x), v, w), for v and w tangent vectors.

As one can see, thanks to the embedding in the Grassman-

nian, the corrected area form can be expressed as a simple

volume form (i.e., a determinant). Note that it falls back to

the usual area measure ‖v × w‖ when v and w are indeed

orthogonal to a unit normal vector u(x), while it gets smaller

if there is a mismatch between tangent and normal informa-

tion.

We first define how we integrate a quantity g defined at ver-

tices. In the case of a surfel σ with constant normal n aligned

with z-axis wlog, and with v = ∂x
∂s

and w = ∂x
∂t

, the cor-

rected area form reduced on � to ωu
0 (s, t) = 〈n | u(s, t)〉 =

uz(s, t). We can now compute the integral of g inside a surfel:

∫∫

�
gωu

0 :=

∫∫

�
g(s, t)uz(s, t)dsdt

=
[

uz
]ᵀ 1

36

⎡

⎢
⎢
⎣

4 2 1 2

2 4 2 1

1 2 4 2

2 1 2 4

⎤

⎥
⎥
⎦

[

g
]

.

We study now the integral quantity
∫∫

∇�ωu
0 , which is

an integrated gradient corrected by the normal vector field

u. First of all, the scalar field � will generally be defined as

the bilinear interpolation of a scalar field φ defined over the

domain. Thus, φ(s, t) = �(x(s, t)). We relate the gradient

of � with the partial derivatives of φ by writing the standard

chain rule with Jacobian matrices:

Jφ(s, t) = J�(x(s, t))Jx(s, t)

⇔
[

∂φ
∂s

∂φ
∂t

]

(s, t) = (∇�)T (x(s, t))
[

∂x
∂s

∂x
∂t

]

(s, t) .

We quite naturally extend φ as constant along the u direc-

tion. The preceding relation can now be inverted given that

(∂x
∂s

=
[

1 0 0
]T

, ∂x
∂t

=
[

0 1 0
]T

, u =
[

ux uy uz
]T

) forms

a basis ((s, t) is omitted for conciseness):

∇�(x) =

⎡

⎣

uz 0 0

0 uz 0

−ux −uy 1

⎤

⎦

︸ ︷︷ ︸

C

⎡

⎣

∂φ
∂s
∂φ
∂t

0

⎤

⎦ .

It follows that
∫∫

� ∇�ωu
0 =

∫∫

� C
[

∂φ
∂s

∂φ
∂t

0

]ᵀ
uzdsdt .

Below, we explicit the vector
[

∂φ
∂s

∂φ
∂t

0

]ᵀ
involving deriva-

tives of φ as

⎡

⎣

(1 − t)(φ10 − φ00) + t(φ11 − φ01)

(1 − s)(φ01 − φ00) + s(φ11 − φ10)

0

⎤

⎦

=

⎡

⎣

1 − t 0 −t 0

0 s 0 s − 1

0 0 0 0

⎤

⎦

︸ ︷︷ ︸

B

⎡

⎢
⎢
⎣

−1 1 0 0

0 −1 1 0

0 0 −1 1

1 0 0 −1

⎤

⎥
⎥
⎦

︸ ︷︷ ︸

D0

[

φ
]

.

The matrix D0 is the differential operator and is common to

all quad faces. We get:

∫∫

�
∇�ωu

0 =

∫∫

�
C Buzdsdt

︸ ︷︷ ︸

Gσ

D0

[

φ
]

,

where Gσ is a 3 × 4 matrix whose expression is (note the use

of averages):

Gσ =
1

3

⎡

⎣

ūz 0 −ūz 0

0 ūz 0 −ūz

−ūx −ūy ūx ūy

⎤

⎦

+
1

6

⎡

⎣

ūz
0 0 −ūz

2 0

0 ūz
1 0 −ūz

3

−ūx
0 −ū

y
1 ūx

2 ū
y
3

⎤

⎦ .

The (corrected) area aσ of such a surfel σ has a simple

expression, while a pointwise expression of the gradient Gσ

is obtained by normalizing Gσ by the corrected area leading

to:

aσ :=

∫∫

�
ωu

0 =

∫∫

�
uzdsdt = ūz,

Gσ :=
1

aσ

Gσ D0 .

Sharp and flat operators. The sharp operator transforms

a 1-form into a vector field. We use the expression of the

pointwise gradient to raise any 1-form as a representative

vector per surfel. Within a surfel, a 1-form associates a

scalar value to each (oriented) edge. Let β be a 1-form, and
[

β (σ)
]

:=
[

β0 β1 β2 β3

]ᵀ
its values on the 4 edges of σ .

Omitting the differential operator D0 in the pointwise gradi-

ent gives the representative 3D vector of β on surfel σ :

β	(σ) :=
1

aσ

Gσ

[

β (σ)
]

.

The discrete sharp operator on σ is thus the 3 × 4 matrix

Uσ := 1
aσ

Gσ .

The flat operator projects a vector field onto the tangent

plane and computes its circulation along each edge. The 1-

form v
 associated with vector v is thus:

[

v

]

:=

∮

∂ f

tT (I − uuT)v

123

Lowres version

 11 Page 4 of 16 Journal of Mathematical Imaging and Vision (2025) 67:11

=

∫ 1

0

⎡

⎢
⎢
⎣

[

1 0 0
]

(I − u(r , 0)uT (r , 0))v
[

0 1 0
]

(I − u(1, r)uT (1, r))v
[

−1 0 0
]

(I − u(r , 1)uT (r , 1))v
[

0 −1 0
]

(I − u(0, r)uT (0, r))v

⎤

⎥
⎥
⎦

dr .

By linearity, the flat operator Vσ is a 4 × 3 matrix (see

appendix for details).

Inner products for discrete forms (i.e., metrics). The inner

product between 0-forms is simply the integration of their

product on the surfel σ . For any bilinearly interpolated func-

tions φ,ψ , we obtain on the surfel σ the scalar:

〈φ | ψ〉0 (σ) :=

∫∫

σ

φψω
(u)
0

=
[

φ (σ)
]ᵀ

M0,σ

[

φ (σ)
]

.

The associated metric matrix is a 4 × 4 symmetric matrix,

called mass matrix, whose expression is given in the

appendix. If the corrected normal vector u is consistent with

the naive surfel normal n (i.e., 〈u(s, t) | n〉 > 0), then M0,σ

is positive definite.

We would like the inner product between 1-forms β and γ

to be defined by emulating the continuous case. We integrate

the scalar product between the vectors associated with the

1-forms on the surfel σ :

〈β | γ 〉1 (σ) :=

∫∫

�

〈

β	 | γ 	
〉

ω
(u)
0

=
[

β (σ)
]ᵀ

Mnaive
1,σ

[

γ (σ)
]

.

Using the above relations, we have:

〈β | γ 〉1 (σ) = aσ (Uσ

[

β (σ)
]

)ᵀ(Uσ

[

γ (σ)
]

γ)

=
[

β (σ)
]ᵀ

(
1

aσ

G
ᵀ
σ Gσ

)
[

γ (σ)
]

.

Hence Mnaive
1,σ = 1

aσ
G

ᵀ
σ Gσ ; it is a symmetric matrix. It can be

verified that, if u is a unit constant vector over the surfel σ and

〈u | n〉 > 0, then this matrix is symmetric positive definite.

However, it is not definite. To remedy this, we follow [16]

and complement the definition to get the stiffness matrix as

M1,σ :=
1

aσ

G
ᵀ
σ Gσ + λ(I − Uσ Vσ) . (1)

Calculus on the whole mesh. Let n, m and k be, respectively,

the number of vertices, edges and faces of the mesh. Let V be

the space of all sampled functions (an n-dimensional vector

space), and E be the space of all discrete 1-forms (an m-

dimensional vector space). Global operators sharp U (size

3k × m), flat V (size m × 3k), mass matrix M0 (size n × n),

stiffness matrix M1 (size m × m), and differential D0 (size

m×n) are obtained by merging the corresponding local oper-

ators Uσ , Vσ , M0,σ , M1,σ , D0 on the corresponding rows and

columns.

Codifferentials and Laplacian.

We build the 1-codifferential δ1 : E → V by adjointness

in our inner products.

∀ f ∈ V ,∀α ∈ E ,

〈D0 f | α〉1 = −〈 f | δ1α〉0 ⇔ (D0 f)ᵀM1α

= − f ᵀM0δ1α.

Being true for all pairs (f , α), it follows that δ1 :=

−M0
−1 D

ᵀ
0 M1. The Laplacian operator �0 is the compo-

sition of the codifferential and the differential, i.e.,

�0 := δ1 D0 = −M0
−1 D

ᵀ
0 M1 D0.

Since it is very costly to build the matrix M0
−1, we will

generally not use the two operators δ1 and �0 as is when

solving numerical problems, but we will rather work with

their “integrated” version (M0δ1 and M0�0). We can now see

another approach to compute a Laplace–Beltrami operator

coming from the Finite Elements framework.

2.2 Generalization to Finite Element Method

We show here how to adapt the standard Finite Element

Method (FEM), e.g., see [8], in order to solve a Poisson prob-

lem. The method builds a stiffness matrix L and a mass matrix

M to transform the Poisson problem into a linear problem.

We will see also that a Laplace operator can be obtained with

the same method. Our adaptation consists in correcting the

metric used, changing the formulas used for derivatives and

dot products. While we only demonstrate here how to cor-

rect FEM on a Poisson problem, other problems can also be

corrected with the same metric.

The Poisson problem is formulated as solving for g in

�g = f , with a given boundary constraint for g if the domain

has a boundary, or with a fixed value somewhere if the domain

has no boundary. The weak formulation of this problem is

given by: solve for f

∫

�

∇g.∇� = −

∫

�

f � +

∫

∂�

�〈∇g, n〉 , (2)

for any �. In our case, we will evaluate against � the locally

bilinear functions inside each element. The third term is

dependent on the boundary condition, and we will make it

vanish here for now.

The FEM approach consists in discretizating the problem

at nodes and splitting the domain into elements bordered by

nodes (quads here): functions g (say) are discretized at these

nodes as vectors g of their values at nodes. FEM assumes

123

Lowres version

Journal of Mathematical Imaging and Vision (2025) 67:11 Page 5 of 16 11

bilinear interpolation of functions within elements. It builds a

stiffness matrix L and a mass matrix M such that Lg = Mb.

This corresponds to the first two terms in (2). Boundary

constraints are integrated in this linear problem, either by

removing rows and columns or by setting equalities. We can

then solve the Poisson problem by solving the linear system

Lg = Mb, but we can also deduce a Laplacian operator

� := M−1L .

The matrices are built quad by quad, so here per surfel. We

start by defining a metric G per surfel, since it depends on the

corrected normal u, then using this metric in the formulas for

derivatives and scalar products when building the matrices.

Our reference element is a unit square in the plane �. We

obtain:

G =

[

1 − (ux)2 −ux uy

−ux uy 1 − (uy)2

]

.

Since we assume now that our corrected normal field

is constant on the surfel, the metric is also constant. This

is an arbitrary choice we make in order to keep formu-

las simple. It becomes easy to compute the gradient and

Laplacian. We use the formula d f (w) = 〈∇ f , w〉G for

any vector w, with 〈·, ·〉G the inner product. It follows that

∇ f = G−1
[

∂ f
∂s

∂ f
∂t

]T

. For the Laplacian, since the metric

is constant, we use � f = ∇ · ∇ f . We write them more

explicitly as:

∇ f =
1

(uz)2

[

(1 − u2
y)

∂ f
∂s

+ ux uy ∂ f
∂t

ux uy ∂ f
∂s

+ (1 − (ux)2)
∂ f
∂t

]

(3)

� f =
1

(uz)2

(

(1 − (uy)2)
∂2 f

∂s2
+ 2ux uy ∂2 f

∂s∂t

+ (1 − (ux)2)
∂2 f

∂t2

) (4)

We choose a basis of bilinear functions on the square as

our basis functions. This choice can be disputed: while lin-

ear functions are still harmonic regarding to the Laplacian

in (4), bilinear functions are no longer harmonics in this set-

ting. However, finding a way to build hat functions that stay

harmonic in this setting is not obvious. Yet, bilinear func-

tions are still used on quad meshes that are not rectangular

and where the same reasoning can be applied to show that

they are not harmonic. We define the four basis functions as

f0 = (1 − s)(1 − t), f1 = s(1 − t), f2 = st , f3 = (1 − s)t .

In order to build our stiffness matrix we evaluate:
∫

�〈∇ f ,∇ p〉G for any bilinear f and p. The local stiffness

matrix L M is given in (5) of Fig. 2.

The global stiffness matrix L is then obtained by summing

over all the local stiffness matrices. The local mass matrix

MM is computed from
∫

�
f p , with f and p bilinear:

MM =
uz

36

⎡

⎢
⎢
⎣

4 2 1 2

2 4 2 1

1 2 4 2

2 1 2 4

⎤

⎥
⎥
⎦

. (6)

We recognize the standard mass matrix for quad mesh with

a factor correcting the area of the surfel. It is the same as

M0 for constant u. The global mass matrix M is obtained

similarly by summing over all the local mass matrices.

2.3 Generalization to Virtual Refinement Method

Here we show how we can adapt the method from Bunge et

al. [2] for surfels with corrected normals.

The method can be summarized as: each face has a virtual

point added to it, that is then used as a basis for the trian-

gulation the face. The point is chosen as the one minimizing

the squared areas of the created triangles. Then, the point is

expressed as a linear combination of the face. The weights

used in the linear combination are used to create a prolon-

gation operator. The stiffness matrix are then built on the

triangulation, and the polygonal versions of those matrices

are deducted using the prolongation.

First, we find the position of the virtual point inside each

face, by minimizing the squared areas of the four created

triangles. For the corrected normals, we use normals interpo-

lated at vertices, otherwise a constant normal per face would

lead to a point at the center of the face every time and wouldn’t

take advantage of this step. Thus, our goal is to find s0 and

t0. Our goal is to minimize the sum of the squared areas of

the triangles A2
0 + A2

1 + A2
2 + A2

3 (Fig. 3). The area of these

triangles can be expressed as an integral, recalling that the

corrected area form ωu
0 (x(s, t)) reduces to uz(s, t) on a sur-

fel:

A0 =

∫ s0

0

∫ s
s0

t0

0

uz(s, t)tdtds

+

∫ 1

s0

∫ 1−s
1−s0

t0

0

uz(s, t)tdtds. (7)

The three other areas have similar form. The component uz

being bilinear in s and t , the total area to optimize is given

by a sixth-order polynomial, and the exact solution is hard to

obtain: instead, we use a simple gradient descent to minimize

it. Using randomly generated values for the normals, we see

that it generally converges in a few steps and always stays

inside the surfel.

Once we have s0 and t0, we have our virtual point p as

a bilinear combination of the vertices of the face. We can

directly deduce the weights and build the projection operator

P . For the vertices v0, v1, v2, v3 that make up the surfel,

123

Lowres version

 11 Page 6 of 16 Journal of Mathematical Imaging and Vision (2025) 67:11

Fig. 2 Local stiffness matrix

L M for the corrected finite

element method LM =
1

6uz

⎡

⎢

⎢

⎣

3ux
u

y + 2 + 2(uz)2 2(uy)2 − 1−(ux)2 1 − 3ux
u

y
− (uz)2 2(ux)2 − 1−(uy)2

2(uy)2 − 1−(ux)2 2 − 3ux
u

y + 2(uz)2 2(ux)2 − 1)−(uy)2 3ux
u

y + 1 − (uz)2

2 − 3ux
u

y
− (uz)2 2(ux)2 − 1 − (uy)2 3ux

u
y + 2 + 2(uz)2 2(uy)2 − 1−(ux)2

2(ux)2 − 1−(uy)2 3ux
u

y + 1 + (uz)2 2(uy)2 − 1−(ux)2 2 − 3ux
u

y + 2(uz)2

⎤

⎥

⎥

⎦

.

s0

t0

v0 v1

v3 v2

A0

A1

A2

A3

Fig. 3 We find s0 and t0 such that the sum of the squared areas A2
0 +

A2
1 + A2

2 + A2
3 is minimized

the corresponding weights are w0 = (1 − s0)(1 − t0), w1 =

s0(1 − t0), w2 = s0t0, w3 = (1 − s0)t0. The prolongation

operator then needs to assign values to vertices and the virtual

vertices from the vertices: for a single face, it would be a 5×4

matrix of the form

P f =

⎡

⎢
⎢
⎢
⎢
⎣

w0 w1 w2 w3

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

.

The global prolongation operator P ∈ R
nv+n f ×nv is built

on the same principle: the first n f rows have nonzero values

on the columns whose indices correspond to the vertices of

the face, with the values being the wi of the virtual point of

this face associated to the vertex corresponding the row. The

following nv rows correspond to the identity matrix.

For the mass matrix, we simply apply the area formula of

7. For the stiffness matrix, we could try to again use a finite

element approach, however trying to evaluate
∫

∇g · ∇ f d A

for two linear functions f and g, and using the correction

metric, is quite complex. Instead, we adapt the metric ver-

Fig. 4 Naive forward evaluation of the mesh Laplacian on an exponen-

tial function. No convergence is observed

sion of the cotan formula. For a triangle with edges l0, l1
and l2 (opposite to vertices v0, v1 and v2, respectively), the

coefficient between two different vertices i and j is given by

(−l2
k + l2

i + l2
j)/(4A).

Once we have built the mass matrix M
 and L
 on the

triangulation, using our prolongation operator we compute

M = P�M
 P and L = P�L
 P .

We now have three ways of building a sparse Laplace–

Beltrami operator. We see now how they compare against

operators from previous works. We compare the method

"PolyDEC" [16], its corrected version "Projected PolyDEC"

[1], the interpolated corrected calculus "Corrected Calculus",

the corrected finite element method "Corrected FEM", the

corrected virtual refinement method "Corrected VRM" and

the heat kernel method "Heat Kernel" [15].

3 Evaluations and Comparisons

We compare the resulting operators and the ones from pre-

vious works on several use cases: first on the sphere, with

forward evaluation (compute the Laplacian of a function),

backward evaluation (solve a Poisson problem getting a

function back from its Laplacian), eigenvalue comparisons,

and then on a standard mesh by comparing with the results

obtained on an underlying triangle mesh. Plots related to

123

Lowres version

Journal of Mathematical Imaging and Vision (2025) 67:11 Page 7 of 16 11

Fig. 5 Forward evaluation of the mesh Laplacian with added diffu-

sion on a quadratic function (top), exponential function (middle) and

the sixth spherical harmonic (bottom). Adding diffusion significantly

improves the results, achieving linear convergence on the sphere. We

achieve similar rates of convergence as Heat Kernel [15], with a better

quality on less smooth functions. The Heat Kernel method is, however,

limited to a grid step of h ≥ 0.03, due to its enormous memory usage

digitized spheres are the means of the results of 32 computa-

tions for each step, each conducted with a different center to

better take into account the variability in sphere discretiza-

tions.

Fig. 6 Evaluation of the Laplacian using the integral invariant normal

estimator. Estimated normals give slightly worse results than with true

normals, yet the Laplacian seem to converge too. Computations are

performed for grid steps h ≥ 0.008 because integral invariant normal

estimator is very slow on finer grids

3.1 Forward Evaluation

Several previous works tried to evaluate the quality and con-

vergence of the Laplacian operator when used in a forward

123

Lowres version

 11 Page 8 of 16 Journal of Mathematical Imaging and Vision (2025) 67:11

Fig. 7 Error when solving a Poisson problem with different Laplacians.

We approach a quadratic convergence rate

manner: from f defined on the mesh, we compute � f both

analytically and with a discrete Laplacian, then compare the

two results. In other words, if our stiffness matrix is called L

and our mass matrix M , we solve the equation L F = M X

where X is the unknown.

A naive approach consists in computing X = M−1L F .

This is the one that was used for evaluation in previous

works, and was not convergent when using sparse operators.

We reproduce this behavior by computing the Laplacian of

f (x) = ex using various methods, none of which seem to

Fig. 8 Results using integral invariant estimated normals for solving a

Poisson problem

converge (see Fig. 4). This is disappointing since we expect

the Laplacian operator to have linear convergence when eval-

uated in forward manner, as observed in [15] and proven for

the mesh Laplacian on triangle mesh.

Our idea for improving the convergence consists of adding

a small diffusion step to the result. It suffices to replace the

mass matrix M by M −dt L . In other words, instead of evalu-

ating X = M−1L F , we evaluate X = (M −dt L)−1L F . The

result depends on the choice of parameter dt : we found that

we approach linear convergence when dt is in the order of

123

Lowres version

Journal of Mathematical Imaging and Vision (2025) 67:11 Page 9 of 16 11

Fig. 9 The smallest 49 eigenvalues of the Laplacian on unit sphere with

discretization step 0.1 and 0.01. Relative error is given by (λ̂ − λ)/λ,

where λ̂ is the approximated eigenvalue and λ the correct value

h, and the best quality for dt = 0.035h. This means that we

add a diffusion step with a characteristic length of order h
1
2 ,

which is coherent with results from other works. Using this

method, we achieve what seems to be linear convergence on

different functions (Fig. 5), with results comparable or even

higher quality than in [15].

We run the same experiment as Fig. 5, with estimated nor-

mal vectors (using Integral Invariant [13]) instead of ground

truth. Results are shown in Fig. 6, and also approach linear

convergence.

3.2 Backward Evaluation

A Laplacian is often built to solve a Poisson problem. We

evaluate a function on our digital surface, we also evaluate

its Laplacian using an exact formula, then we compute an

approximation of the original function that we compare to the

exact original. It is a criterion used for Laplacian evaluation

(see [11]), which has not yet been done for digital Laplacians.

It also makes more sense to evaluate the Finite Element

Methods in this case than in forward evaluation, as this is the

problem the operator is built for and is proven (in the case

of standard regular meshes) to converge. We find that all

methods give roughly the same results (Fig. 7). They seem to

be convergent, with a rate around h1.9, which is coherent with

the theoretical quadratic rate. Again, we run the experiment

using the Integral Invariant estimators and approach similar

rate of convergence (Fig. 8).

3.3 Eigenvalues

We follow the evaluation of eigenvalues on the spherical

harmonics used in [11]. Since the spherical harmonics have

analytic expressions, we can compare the eigenvalues of our

operator to the exact eigenvalues of the Laplace-Beltrami

operator on the sphere. To obtain these eigenvalues, we

solve for λ in the following generalized eigenvalue prob-

lem Lu = λMu. Figure 9 shows the first eigenvalues of

our Laplacians on the unit sphere with discretization steps

h = 0.1 and h = 0.01. The PolyDEC method [16] is not

accurate, but corrected methods are, with accuracy increased

at finer resolutions.

3.4 Comparison to the Cotan Laplacian

Until now, all our comparisons were made on a digitized

sphere: this is because there are some closed form expres-

sions of Laplacians, and its eigen decomposition is well

studied. However, the sphere is a very specific case, and our

evaluations may not reflect well more general cases. We com-

pare here our operators to the results obtained on a regular,

high quality triangle mesh with the standard cotan Lapla-

123

Lowres version

 11 Page 10 of 16 Journal of Mathematical Imaging and Vision (2025) 67:11

Fig. 10 Comparison between classical cotan Laplacian of a function defined on a triangle mesh and the digital Laplacian operators. All three

operators have comparable performances. The error decreases as the resolution increases, suggesting that all three operators are convergent

Fig. 11 Regularization of a

256 × 256 × 256 voxelization of

the armadillo mesh with and

without a position attachment

term. While most of the features

of the shape are obtained, the

members highly deviate from

the original position when α = 0

cian. To do so, we use a refined version of a triangle mesh (at

100,000 vertices), and equivalent digital surfaces at different

resolutions (1283, 2563, 5123). Then we built a projection

operator allowing us to map values on the high resolution

mesh to the digital one (orthogonal projection and linear

interpolation). We also use this projection operator to map

the normal vector field computed on the mesh to the surfels

or vertices in the calculus frameworks. We then compute a

function on the triangle mesh as well as its Laplacian using

the cotan Laplacian on the triangle mesh [4], and then their

projection on the digital surface, which we use as "ground

truth". Forward evaluation results are shown in Fig. 10. We

use the same diffusion constant as previously (0.035h). Error

is significantly reduced with the discretization step of the dig-

ital surface, suggesting that our operator is convergent toward

the result given by the cotan Laplacian.

As a more complex testbed for our corrected differential

operators, we propose in the following section a method for

mesh regularization that relies on differential calculus.

4 Surface Regularization fromNormal
Vectors and Curvatures

Since we can estimate normal vectors, curvatures, and build

a corrected Laplace–Beltrami operator even with bad posi-

tions, we can leverage the equality �p = −2Hn in order

to recover consistent positions after estimating normals and

curvatures. Another way to view this approach is to say that

we use our mean curvature estimator along with the normal

estimator in order to build delta coordinates which encode

the deviation of each point to the barycenter of its neighbors.

123

Lowres version

Journal of Mathematical Imaging and Vision (2025) 67:11 Page 11 of 16 11

Fig. 12 We use several regularization methods on a voxelization of

the bunny shape on a 256 × 256 × 256 grid. Left: original shape,

middle-left: regularization of [17], middle-right: our regularization with

a corrected Laplacian, right with a non-corrected Laplacian. The bottom

row shows that our results do not shrink compared to the ones obtained

by Coeurjolly et al. [17]. Here, the difference between corrected and

non-corrected is visually small

In this situation, following the argument from [19], we need

less precision in order to recover the result since encoding

delta coordinates requires less precision that encoding the

absolute position. Our approach can also include curvature

modifications steps if needed.

4.1 Digital Surface Regularization

We describe here a process of regularization for digital sur-

faces. The steps are the following: we first compute integral

invariants [13] (with α = 1/3) for normals n on the digital

surface, and then use corrected curvature measures [18] (with

radius r = 0.1) for estimation of the mean curvature H . We

also build a corrected Laplacian from the corrected normals

and the digital surfaces. We could then minimize the energy

||�p′ − Hn||2. However, similarly to some high-pass quan-

tization that does not preserve low frequencies, the results

we have shown have good features but tend to deviate from

the original surface (Fig. 11). In the case of digital surfaces,

the error in position is in high frequencies, so it makes sense

to use this energy to fix the high frequencies: in order to also

match in lower frequencies by minimizing

||�p′ − Hn||2 + α||p′ − p||2,

where p are the original positions and α is a weight between

the two energies. The α coefficient has to be homogeneous

to the inverse of a square length, so we take it of the form

α = α0

h2 (h being the discretization step) and we use α0 = 10.

This energy is quadratic, so it can be minimized in a single

step by computing

p′ = −
1

2
(L�M−1L + αM)−1(L Hn − αMp).

We compare our results with the ones obtained using the

method of Coeurjolly et al. [17] (Fig. 12). Their method also

uses an input corrected normal field, and also includes a

term attaching positions to the original ones: however, in

their case, it is used in order to avoid shrinkage (the rest of

the energy can be minimized by just shrinking the surface),

while we only use this term in order to avoid a low frequen-

cies deviation (removing this term yields a non-degenerate

solution). Our results are visually similar to the one obtained

by [17]. We compare the use of non-corrected and corrected

operators, by using non-corrected ones built using the method

from de Goes et al. [16] and the normal corrected variants

from Coeurjolly and Lachaud [1] (Fig. 13). Compared to the

results obtained using corrected operators, the non-corrected

one look inflated: this is explained by the lack of correction

in the mass matrix, meaning that the estimated area of the

shape is taken to be the same as the area of the digital sur-

face which is significantly larger than the area of the actual

surface. However, since the non-corrected Laplacian does

not change the geometry of the surfels, the quads resulting

from the regularization have similar edge lengths: if this is a

123

Lowres version

 11 Page 12 of 16 Journal of Mathematical Imaging and Vision (2025) 67:11

Fig. 13 Left: regularization with a corrected Laplacian vs right with a

non-corrected one, both on a 256 × 256 × 256 voxelization of the spot

shape. The corrected Laplacian shows the pattern given if the digital sur-

face was projected onto the underlying surface, while the non-corrected

one provides a surface where each edge has approximately the same

length. The top row uses α = 0.1 and the bottom one α = 1000:

when using low α (so a weak attach to the original positions), the non-

corrected Laplacian regularization is visually worse than the corrected

one. However, if the regularity of edge lengths is a desired effect, α can

be increased to decrease the influence of the Laplacian

desired feature for the result, α can be increased in order to

make the result match more closely to the digital surface and

counter the expansion effect caused by overestimated area.

A drawback of our method is that the recovered surface

tends to be smoother than the original (Fig. 14), due to the

nature of the normal and curvature estimators which smooths

the actual curvature and normals.

We do some experiments on known surfaces in order to

measure the accuracy of the method: we first voxelize the

surface, then regularize the digital surface and then measure

the distance of the regularized surface to the original one.

We measure the l1 distance and the difference between the

Fig. 14 Top: original shape (voxelization of the fandisk shape on a

256 × 256 × 256 grid). Middle: regularization from [17]. Bottom: our

regularization using a corrected Laplacian. Our method exhibits less

sharp angles (2), but tends to be smoother and to avoid stair-like effects

on parts of the surface that should be flat (1). Our method is also sensible

to artifacts from curvature estimations: the bottom side isn’t flat and

there is a visible bump inside an angle (3)

of the regularization and of the original surface: both errors

are reduced as the grid step diminishes (Fig. 15).

4.2 Mesh Reconstruction fromNormal Fields

We explore the possibility of using corrected operators when

using other geometries than digital surface, or other normal

fields than one estimated from an estimator ran on positions.

Such a case arises when using surfaces with normal maps.

We use a high resolution surface in order to build a lower

resolution surface with a normal map. The latter is a much

123

Lowres version

Journal of Mathematical Imaging and Vision (2025) 67:11 Page 13 of 16 11

Fig. 15 Error obtained on the

regularization of digital surfaces

by comparing with the surface

that was voxelized. The error is

first obtained pointwise by

computing the distance of each

point of the regularization to the

original surface (and by taking

the difference of the normals for

the normal error) and then

integrated into the l1 error

Fig. 16 Meshes used in order to emulate a normal map on a surfel

mesh, and then the use of our method to recover the original geometry.

Using non-corrected operators results in a geometry with bad visual

artifacts, suggesting that the corrected operator stabilizes the method.

Surfels have been subdivided three times, the radius used for corrected

curvature estimation is 0.2 and the curvature is clamped to be at most

10 in absolute value

more compact data structure than the former. Our goal is to

build back the original surface from the lower resolution one

and the normal map.

As a proof of concept, we start from a coarse mesh with a

normal map. We then build a voxelization of this coarse mesh,

which we then subdivide. We compute a projection for the

center of each surfel onto the coarse mesh in order to sample

the normal map on the coarse mesh, thus emulating a normal

map directly defined on the digital surface. The procedure is

illustrated on Fig. 16. This case illustrates a situation where

the positions highly deviate from the underlying surface, and

where the reconstruction tends to be unstable. As a way to

stabilize this procedure, we clamp the curvature estimator as

it introduces very high incorrect values at some points. Our

method is able to recover the original surface with only a few

defects visible. Using non-corrected operators induces a far

worse reconstruction.

4.3 Curvature Edition

Since we use normals and curvature to recover positions, we

can modify the curvature and recover a shape with this cur-

vature. A simple way to do this is through the modification

of the H component. Since we do not modify the normals

123

Lowres version

 11 Page 14 of 16 Journal of Mathematical Imaging and Vision (2025) 67:11

and we still try to match the original positions, the result-

ing surface doesn’t exactly have the target curvature: as an

example, we can multiply the curvature by a constant, which

in theory only rescales the shape by the same amount, while

in our case this exaggerates the features of the shape.

Thus, our reconstruction can include various curvature

modifications such as curvature amplification or curvature

clamping (Fig. 17). This can be used in order to exaggerate

some features, or instead to smooth some part of the shape.

As a way to further modify the curvature, we can directly

manipulate the shape operator S := dn. It is a symmetric

3 × 3 matrix, with at most two nonzero eigenvalues k1 and

k2 corresponding to the principal curvatures. Their eigen-

vectors correspond to the principal curvatures directions. It

can usually be obtained from classical curvature estimators,

such as corrected curvature measure. The last eigenvalue of

the resulting matrix is generally not zero, however (corre-

sponding to the normal direction): this is fixed by computing

instead S + K nn�, where K is a big constant (like 106)

and then ignoring the largest eigenvalue. The two remaining

eigenvalues can then be modified, and a shape operator S′ can

be built. Since dn = S, we can integrate our shape operator

S′ in order to build n′ (again, we also add a term to attach

the new normals to the original normals), which we then nor-

malize. We then evaluate p′ from n′ and H ′ = Tr(S′). The

procedure is summarized in algorithm 4.3.

Algorithm 1: Normal and surface regularization

Data: P, F, N , S, α //digital surface of

positions P and faces F, normal fields N,

shape operator field S

Result: P ′ //Corrected positions

L, M ← BuildCorrectedLaplacian(P, F, N);

Div ←

BuildCorrectedDivergence(P, F, N);//Build

corrected operators

d S ← Div(S);

//Minimize ||M−1 L N ′ − d S||2 + α||N ′ − N ||2

N ′ ← (L M−1 L + αM)−1(−2Ld S + αM N);

H ← trace(S) //Compute mean curvature

N ′ ← normalize(N’);

//Minimize ||M−1 L P ′ − H N ′||2 + α||P ′ − P||2

P ′ ← (L M−1 L + αM)−1(−2L H N ′ + αM P);

return P’;

This procedure does not make the curvature exactly match

the input: for example, if we try to set Gaussian curvature to

0 everywhere, since the Gauss–Bonnet theorem states that
∫

�
K d A = 2 − 2g with g the genus, a surface homeomor-

phic to a sphere (g = 0) cannot have 0 Gaussian curvature

everywhere. In practice, setting one of the two curvature com-

ponents to 0 everywhere gives a smoother surface. Curvatures

Fig. 17 Various reconstructions of the fandisk shape with mean curva-

ture manipulations

123

Lowres version

Journal of Mathematical Imaging and Vision (2025) 67:11 Page 15 of 16 11

Fig. 18 Various curvature editions of the principal curvatures k1, k2, with k1 > k2. These are applied during the regularization process starting

from voxelized shapes on a 256 × 256 × 256 grid

can also be modified in order to, for example, exaggerate the

strongest principal curvature (see Fig. 18).

5 Conclusion

We show that, similarly to the corrected PolyDEC method

[1], a corrected normal field can be inserted within discrete

calculus frameworks yielding different Laplace–Beltrami

operators. All these operators seem to converge when solving

Poisson problems, and when used in a forward evaluation,

the addition of a slight diffusion also seems to make them

convergent. A limit of our study is that these results are only

experimental: only the Heat kernel Laplacian of [15] is yet

proven to converge on digital surfaces (strong consistency).

However, since results on a common framework (the finite

element method) seem promising, it may be interesting to

see if the proof of convergence from this framework can be

adapted to digital surfaces. The same type of calculus con-

struction could also be tested outside digital surfaces, for

instance on a triangle mesh with a corrected normal field

or a normal field of much higher resolution such as a nor-

mal map (as done in [18]). The idea of adding diffusion

and modifying the mass matrix can be seen as similar to the

approach of [20]. However, Caissard et al. [15] were not able

to reproduce their experiments and expected convergence,

probably because digital surfaces do not have the mesh reg-

ularity required by the proof. Indeed, from our metric G it is

easy to find that mesh regularity means that 1
|uz |

is bounded.

Such a condition can be fulfilled for some specific meshes

(such as a digital plane), but is not guaranteed on surface

digitization in general (such as a sphere).

A: Details on the Interpolated Corrected Cal-
culus

Let σ be a surfel aligned with x and y and with normal aligned

with z. The flat operator has the following expression:

Vσ :=
1

6

[

V1 V2 V3

]

with:

V1 :=

⎡

⎢
⎢
⎣

6 − 2((ux
00)

2 + ux
00ux

10 + (ux
10)

2)

−(2ux
10 + ux

11)u
y
10 − (ux

10 + 2ux
11)u

y
11

2((ux
01)

2 + ux
01ux

11 + (ux
11)

2) − 6

(2ux
00 + ux

01)u
y
00 + (ux

00 + 2ux
01)u

y
01

⎤

⎥
⎥
⎦

V2 :=

⎡

⎢
⎢
⎣

−(2ux
00 + ux

10)u
y
00 − (ux

00 + 2ux
10)u

y
10

6 − 2((u
y
10)

2 + u
y
10u

y
11 + (u

y
11)

2)

(2ux
01 + ux

11)u
y
01 + (ux

01 + 2ux
11)u

y
11

2((u
y
00)

2 + u
y
00u

y
01 + (u

y
01)

2) − 6

⎤

⎥
⎥
⎦

V3 :=

⎡

⎢
⎢
⎣

−(2ux
00 + ux

10)u
z
00 − (ux

00 + 2ux
10)u

z
10)

(2u
y
10 + u

y
11)u

z
10 − (u

y
10 + 2u

y
11)u

z
11

(2ux
01 + ux

11)u
z
01 + (ux

01 + 2ux
11)u

z
11

(2u
y
00 + u

y
01)u

z
00 + (u

y
00 + 2u

y
01)u

z
01

⎤

⎥
⎥
⎦

123

Lowres version

 11 Page 16 of 16 Journal of Mathematical Imaging and Vision (2025) 67:11

The metric matrix for 0-forms is defined as the matrix

such that, for any bilinearly interpolated functions φ,ψ , we

obtain on surfel σ the scalar:

〈φ | ψ〉0 (σ) :=

∫∫

σ

φψω
(u)
0 =

[

φ (σ)
]ᵀ

M0

[

φ (σ)
]

.

Let us now define weighted sums for components of u over

the quad. We number the edges when turning along the

boundary of the surfel σ from 0 to 3, such that edges 0,1,2,3

connect vertex pairs (x00, x10), (x10, x11),(x01, x11),(x01, x00),

respectively. We define

ū00 := 9u00 + 3u10 + u11 + 3u01

ū10 := 3u00 + 9u10 + 3u11 + u01

ū11 := u00 + 3u10 + 9u11 + 3u01

ū01 := 3u00 + u10 + 3u11 + 9u01

ū00,10 := 3u00 + 3u10 + u11 + u01

ū10,11 := u00 + 3u10 + 3u11 + u01

ū11,01 := u00 + u10 + 3u11 + 3u01

ū01,00 := 3u00 + u10 + u11 + 3u01

By integration of the left-hand side, we obtain for a surfel

with normal z:

M0 =
1

144

⎡

⎣

ūz
00

ūz
00,10 4ūz ūz

01,00
ūz

00,10
ūz

10
ūz

10,11
4ūz

4ūz ūz
10,11 ūz

11 ūz
11,01

ūz
11,01

4ūz ūz
11,01

ūz
01

⎤

⎦ .

Acknowledgements This work is supported by the French National

Research Agency in the framework of the � France 2030 � program

(ANR-15-IDEX-0002), by the LabEx PERSYVAL-Lab (ANR-11-

LABX-0025-01) and by the StableProxies project (ANR-22-CE46-

0006).

References

1. Coeurjolly, D., Lachaud, J.-O.: A simple discrete calculus for dig-

ital surfaces. In: Baudrier, Naegel, B., Krähenbühl, A., Tajine, M.

(eds.) IAPR Second International Conference on Discrete Geom-

etry and Mathematical Morphology. Springer, Berlin (2022)

2. Bunge, A., Herholz, P., Kazhdan, M., Botsch, M.: Polygon Lapla-

cian made simple. Comput. Graph. Forum 39(2), 303–313 (2020).

https://doi.org/10.1111/cgf.13931

3. Sorkine, O.: Laplacian mesh processing. In: Chrysanthou, Y., Mag-

nor, M. (eds.) Eurographics 2005-State of the Art Reports. The

Eurographics Association (2005)

4. Lévy, B., Zhang, H.: Spectral mesh processing. In: ACM SIG-

GRAPH 2010 Courses, pp. 1–312 (2010)

5. Nealen, A., Igarashi, T., Sorkine, O., Alexa, M.: Laplacian mesh

optimization. In: Proceedings of the 4th International Conference

on Computer Graphics and Interactive Techniques in Australasia

and Southeast Asia. GRAPHITE ’06, pp. 381–389. Association for

Computing Machinery, New York (2006)

6. Crane, K., Weischedel, C., Wardetzky, M.: The heat method for

distance computation. Commun. ACM 60(11), 90–99 (2017)

7. Goes, F., Desbrun, M., Meyer, M., DeRose, T.: Subdivision exterior

calculus for geometry processing. ACM Trans. Graph. 35(4) (2016)

8. Reddy, J.N.: Introduction to the Finite Element Method. McGraw-

Hill Education, New York (2019)

9. Hirani, A.N.: Discrete exterior calculus. Ph.d. thesis, USA.

AAI3086864 (2003)

10. Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L., Russo,

A.: Basic principles of virtual element methods. Math. Models

Methods Appl. Sci. 23 (2012)

11. Bunge, A., Botsch, M.: A survey on discrete Laplacians for general

polygonal meshes. Comput. Graph. Forum 42(2), 521–544 (2023)

12. Lachaud, J.-O., Thibert, B.: Properties of Gauss digitized shapes

and digital surface integration. J. Math. Imaging Vis. 54(2), 162–

180 (2016)

13. Lachaud, J.-O., Coeurjolly, D., Levallois, J.: Robust and convergent

curvature and normal estimators with digital integral invariants. In:

Laurent Najman, P.R. (ed.) Modern Approaches to Discrete Cur-

vature. Lecture Notes in Mathematics, vol. 2184. Springer, Berlin

(2017)

14. Lachaud, J.-O., Romon, P., Thibert, B.: Corrected curvature mea-

sures. Discrete Comput. Geom. 68(2), 477–524 (2022)

15. Caissard, T., Coeurjolly, D., Lachaud, J.-O., Roussillon, T.:

Laplace–Beltrami operator on digital surfaces. J. Math. Imaging

Vis. 61(3), 359–379 (2019)

16. De Goes, F., Butts, A., Desbrun, M.: Discrete differential operators

on polygonal meshes. ACM Trans. Graph. (TOG) 39(4), 110–1

(2020)

17. Coeurjolly, D., Lachaud, J.-O., Gueth, P.: Digital surface regular-

ization with guarantees. IEEE Trans. Vis. Comput. Graph. 27(6),

2896–2907 (2021)

18. Lachaud, J.-O., Romon, P., Thibert, B., Coeurjolly, D.: Interpo-

lated corrected curvature measures for polygonal surfaces. Comput.

Graph. Forum 39(5), 41–54 (2020)

19. Sorkine, O., Cohen-Or, D., Toledo, S.: High-pass quantization for

mesh encoding. In: Proceedings of the 2003 Eurographics/ACM

SIGGRAPH Symposium on Geometry Processing. SGP ’03, pp.

42–51. Eurographics Association, Goslar, DEU (2003)

20. Hildebrandt, K., Polthier, K.: On approximation of the Laplace–

Beltrami operator and the Willmore energy of surfaces. Comput.

Graph. Forum (2011)

Publisher’s Note Springer Nature remains neutral with regard to juris-

dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the accepted

manuscript version of this article is solely governed by the terms of such

publishing agreement and applicable law.

123

Lowres version

https://doi.org/10.1111/cgf.13931

	Corrected Laplace–Beltrami Operators for Digital Surfaces
	Abstract
	1 Introduction
	2 Digital Calculus with Corrected Tangent Space
	2.1 Interpolated Corrected Calculus
	2.2 Generalization to Finite Element Method
	2.3 Generalization to Virtual Refinement Method

	3 Evaluations and Comparisons
	3.1 Forward Evaluation
	3.2 Backward Evaluation
	3.3 Eigenvalues
	3.4 Comparison to the Cotan Laplacian

	4 Surface Regularization from Normal Vectors and Curvatures
	4.1 Digital Surface Regularization
	4.2 Mesh Reconstruction from Normal Fields
	4.3 Curvature Edition

	5 Conclusion
	A: Details on the Interpolated Corrected Calculus
	Acknowledgements
	References

