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Figure 1: Discrete models approximating smooth surfaces embedded in R3: polygonal meshes with piecewise
linear elements, without (a) or with topological defects (b); point clouds sampling the surface (c), or digital
surface (d), i.e., the boundary of voxels within the object in Zd.

In digital geometry processing, whether it is for surface reconstruction, shape alignment, compression, de-
noising, parameterization, or more generally, the processing of scalar or vector fields defined on a 3D surface, we
often have to solve variational problems on discrete structures (point clouds, embedded graphs, piecewise linear
approximations - whether triangular or not, voxel grids, etc.), frequently affected by topological perturbations
or inconsistencies (see Figure 1).

For this purpose, we need robust operators on these structures, in particular the counterparts of classical
differential geometry operators (gradient, divergence, curl, Laplace-Beltrami, connections, etc.). Furthermore,
we must also ensure certain properties on these operators through a notion of convergence to their continuous
counterparts on smooth differential manifolds while preserving their algebraic properties.

The literature offers a rich toolbox of operators and schemes for such calculus on triangulated or quadrangu-
lated meshes (discrete exterior calculus, finite elements, finite volumes, etc.). However, these operators exhibit a
behavior similar to classical differential operators only on triangular or quadrangular surface data, with strong
assumptions regarding vertex positions relative to the smooth surface or the shape of elements (reasonably
regular triangles, close normal vectors).

The goal of this master’s topic is to investigate a proposal for differential calculus on discrete surfaces
referred to as corrected. A corrected surface is a discrete surface (triangular or polygonal mesh, digital
surface) equipped with a corrected normal field, which may not necessarily be the normal vector field induced
by vertex positions. This corrected field can, for example, provide a better estimation of normal vectors when
the surface is noisy or irregularly sampled (e.g., the Schwarz lantern) or offer a convergent estimator of normal
vectors in the case of digital surfaces (where trivial normals have only 6 possible directions). If we can prove the
stability of this calculus, considering the error in the corrected position/normal fields concerning the underlying
smooth surface, we then have a differential calculus that remains consistent across various discrete data. Thus,
we can hope to solve differential problems on the different data types shown in Figure 1 with a common, similar
computation framework, yielding results that are close in each case.

We will primarily study the stability of the following discrete calculi:

• The corrected calculus presented in [1], which is an adaptation of the polygonal calculus proposed in
[2]. This calculus illustrates that it is possible to perform differential operations on digital surfaces with
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numerical results close to what one would obtain on a triangulated surface sampling the underlying smooth
surface. This type of calculus is conceptually similar to discrete calculus [3], discrete exterior calculus [4],
discrete differential calculus [5, 6], or the method of virtual elements, which aim to respect the structural
properties of calculus (e.g., Stokes’ theorem) rather than focusing on precision.

• The two corrected calculus presented in [7], one is a variant of the finite element method with correction
through the metric, while the other formalizes the corrected calculus in the Grassmannian by interpolating
position and normal fields. Experiments show that these variants of calculi yield results comparable to
calculus on typical meshed surfaces. For example, there is a convergence of the Laplace-Beltrami operator
similar to [8], whereas it was previously the only operator shown to strongly converge on digital surfaces.

The interpolated calculus in the Grassmannian seems to be a promising candidate for a generic corrected
calculus because it defines its operators within the Grassmannian, a space that decouples positions and normals,
allowing the embedding and comparison of various discrete geometric models. With this same approach, we
were able to extend the normal cycle[9] to more general surfaces [10, 11], leading to the convergence of curvature
measures (including point-to-point curvatures) on challenging surfaces such as digital surfaces or the Schwarz
lantern. The numerical results were even better than the state of the art on typical meshed surfaces. Recently,
we demonstrated that this framework also allows for the stable definition of curvatures on point clouds [12]. If
this approach has proven effective for computing geometric differential quantities, we can hope that it will yield
good results for differential calculus as well.
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