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Abstract In this paper, we present CamiTK, a specific modular framework that
helps researchers and clinicians to collaborate in order to prototype Computer
Assisted Medical Intervention (CAMI) applications by using the best knowledge
and know-how during all the required steps. CamiTK is an open-source, cross-
platform generic tool, written in C++, which can handle medical images, surgical
navigations and biomechanical simulations. This paper first gives an overview of
CamiTK core architecture and how it can be extended to fit particular scientific
needs. The MML extension is then presented: it is an environment for comparing
and evaluating soft-tissue simulation models and algorithms. Specifically designed
as a soft-tissue simulation benchmark and a reference database for validation, it
can compare models and algorithms built from different modeling techniques or
biomechanical software. This article demonstrates the use of CamiTK on a text-
book but complete example, where the medical image and MML extensions are
collaborating in order to process and analyze MR brain images, reconstruct a
patient-specific mesh of the brain, and simulate a basic brain-shift with different
biomechanical models from ANSYS, SOFA and ArtiSynth.
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1 Introduction

Soft-tissue biomechanical modeling in the context of Computer Assisted Medical
Intervention (CAMI thereafter) is a complex and multi-disciplinary field. The
general objective of intra-operative simulation requires a patient specific model
that can be built only from medical image analysis and reconstruction, image or
mesh registration and finally efficient and trustworthy simulations. CAMI research
requires the collaboration of experts in several fields as various as medicine,
computer science, mathematics, instrumentation, signal processing, mechanics,
modeling, automatics, or optics. As shown in Fig. 1, CAMI research can be
divided into three steps requiring very different expertise:

• Perception to acquire data on the patient, requiring sensor development and
calibration, signal processing and analyzing, 2D/3D or even 4D images recon-
struction, data processing (e.g., image segmentation) and analysis;

• Reasoning to extract and fuse information from several sensors, acquisition
times, patients, between patients and models, etc. and which implies, among
others, anatomic, biomechanical and functional modeling of patients as well as
surgical intervention modeling, results analysis and prediction;

• Action to help procedures carried out on the patient, possibly using image-
guided and/or surgical robotic technologies.

Even though this book mainly focuses on the reasoning part, soft tissue mod-
eling is a key element to a bigger picture and needs other fields to be efficiently
developed, used and validated. For research to be efficient, scientists must share
not only their knowledge but also their know-how. The first is generally performed
through publications, conferences and meetings. However, know-how is difficult
to transmit outside lectures or tutorials. In addition, the use of specific computer
software for each field can become a hindrance to share data and know-how. Data
have to be converted several times, specific parameters are not visible by other
specialists and prototyping a new concept or algorithm requiring several fields
often becomes a obstacle race.

CamiTK offers a common framework for many fields of CAMI so that scientists
from one field can develop their own expertise and use the tools developed by
other experts without changing application or data structure. This is achieved
through extensibility and modularity of the framework which allows every user to
develop their own piece of software and use any other developed pieces thanks to
the CamiTK abstraction layer.

1.1 Related Work

Different types of applications, libraries, and more generally frameworks are today
available for scientists, most of them are open-source or based on collaborative
projects. The lists given here are in no particular order and are not exhaustive but
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try to give the most popular non-defunct choices. The software websites can easily
be found using any search engine. They can be categorized into different area,
depending of their main functionality: data visualization (VTK, Paraview, voreen),
medical image analyzing or surgical planning (ITK, Analyze, Medical Imaging
Interaction Toolkit, MeVisLab, DeViDE, SciRun, amira, 3D Slicer, GIMIAS,
MedINRIA/vtkINRIA3D, CreaTools), surgical navigation (IGSTK), biomechani-
cal simulation (ANSYS, GiPSi, SOFA, ArtiSynth, see also the corresponding
chapters in this book), generic viewers and user interaction (Common ToolKit).

Most of the open-source medical image analysis software are based on three
key open-source component libraries: VTK for data visualization, ITK for medical
image analysis, and Qt for the user interaction. These software systems are
developed to fulfill needs in their main domain and offer a highly specialized
vision of a specific CAMI scientific field. This specialization is a big advantage
when the targeted application depends on one or two fields (e.g., image segmen-
tation and organ surface reconstruction, or biomechanical simulation). Most of
them are also workflow oriented, i.e., the data are transformed step by step through
processing or visualization filters. The workflow may be conveniently displayed
and modified interactively. This is a very efficient way of organizing medical
image processing application. However, when trying to solve a problem that
includes many different facets of CAMI research, both can be a disadvantage.
Interoperability between very specific data structures in highly specialized libraries
or frameworks is difficult to achieve. Static workflows are not always possible:
algorithms might have to cooperate in a more complex way. CamiTK proposes to
address these issues by introducing some abstraction of the software components,
viewers and algorithms in order to ease the full collaboration between CAMI
fields.

Fig. 1 CAMI research domains includes perception, reasoning and action. This figure shows
some examples of research projects lead by members of our team. Courtesy of Jocelyne Troccaz
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1.2 Contributions

A common environment for CAMI requires data management, algorithms on data,
Human-Machine Interface or Graphical User Interface (GUI) and scientific data
visualization. As it would be problematic to impose one operating system to
research scientists of various fields and area of competences, the choice has been
made for CamiTK to be multi-platform. This requires to choose basic libraries to
also be multi-platform and multi-compilers. For those reasons, we choose to base
CamiTK on two multi-platform open source libraries: Qt for GUI and Vtk for
scientific data visualization. Those libraries are mature, rapidly evolving and
benefit from a large community of developers. CamiTK is therefore mainly
implemented in C++, a very efficient object-oriented language. Object-Oriented
programming paradigms, including inheritance and polymorphism, data abstrac-
tion, encapsulation and interface and numerous design patterns are used in
CamiTK in order to achieve a clean and extensible architecture. Other technical
details and how to get your version of CamiTK are given in Table 1. CamiTK is
composed by CamiTK core and CamiTK extensions (see Fig. 2). CamiTK core
includes an abstract layer, useful interaction widgets and viewers, as well as some
default data component implementations (see Sect. 2). CamiTK plugins or
extensions hold concrete implementations for specific CAMI fields’ data or
algorithms. While CamiTK core is distributed under the LGPL open-source
license, the license of each extension can be freely chosen by the developer.

CamiTK extensively uses Kitware CMake, CPack, and CTest cross-platform
suite in order to facilely manage the build process on all targeted platforms, being
Linux or Microsoft Windows, gcc or MS Visual C++ (a CamiTK MacOS version
can also be build but is not yet supported by our development team).

CamiTK’s general design is inspired by component-based software engineering
(CBSE). Instead of building an application by adding features on existing code,
CBSE intends to build a software by integrating, arranging or assembling pre-built
software components. CamiTK shares the CBSE guiding principles:

Table 1 CamiTK factsheet

URL http://camitk.imag.fr

License The core and distributed extensions are available under the terms
of the LGPL v3

Language C++
Size � 200 classes, 35,000 Single Lines Of Code
Some Metrics McCabbe cyclomatic complexity \12 (moderate risk),

SLOC/Comments � 1:5
Components 6 component extensions are distributed: DICOM,

Vtk image, Vtk mesh, Itk image, PML, MML
Documentation API documentation, user tutorials, developer tutorials, mailing lists
Dependencies Qt, VTK, optional: libxml2, xerces-c, ITK, IGSTK
Download Windows setup, Ubuntu package, source package, svn (through the

collaborative forge)
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• reuse and do not reinvent the wheel,
• assemble pre-built modules and components instead of adding codes where

needed.

This can be very efficient when component standard exists. Unfortunately no
such standard exists in CAMI field. CamiTK core therefore introduces simple light
standards for software modules that can be found in CAMI application. These light
standards are not specific to any sub-domain such as imaging, robotics, surgical
navigation or simulation. To conform to these standards, a software component
simply has to inherit from one of the four CamiTK extensions. The four possible
types of extension are component (data management), viewer (data visualization),
action (algorithms), and application (the GUI). Figure 2 shows some examples of
existing extensions. CamiTK source code includes a list of commonly required
extensions. Provided component extensions include support for several formats of
volume image and mesh management (e.g., DICOM/Itk/Vtk/Analyze images and
Vtk/VRML/Obj/PML/SOFA scenes and meshes). Provided viewer extensions
include a classical medical image viewer with four zones: one for axial plane
display, one for coronal one for sagittal plane display and the last zone for 3D
view. Among existing action extensions, we developed volume image filtering
algorithms using ITK, model deformation using SOFA, ArtiSynth or ANSYS, and
3D mesh reconstruction from stereoscopic video. Some basic application exten-
sions are also provided with CamiTK.

Section 2 details CamiTK framework and extension principles, Section 3
focuses on biomechanical modeling in CamiTK. Section 4 shows a whole CAMI
textbook example that target the simulation of the brain shift, from volume image
visualization to model construction, biomechanical simulation and data fusion.
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Fig. 2 CamiTK architecture: Several existing and collaborating modules. a CamiTK core
viewed as a collaboration platform. b An example of a provided application extension
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2 CamiTK Architecture and Key Concepts

2.1 Overview

CamiTK core architecture follows the Model-View-Presenter design pattern (MVP
thereafter), a generalization of the Model-View-Controller design pattern where
the presenter acts more like a supervising controller.

In classical software architecture, MVP design pattern helps to divide the logic
in two: domain logic and application logic. Domain logic, the Model, is the part of
the data structures and algorithms that is directly linked with the research field or
sub-domain. Application logic is the part generally used to build a GUI to present
and interact with the domain logic data and algorithms. Application logic generally
aggregates the View and Presenter parts of MVP. CamiTK core lets the researcher
concentrate on the domain logic and eases the development of the application logic
by following CBSE principles. To do so, a software based on CamiTK assembles
what we called viewers (application logic) than are used to present and interact
with components (i.e., the data, the data logic), and actions (i.e., the algorithms, the
processing logic). Viewers and components are bound together by a main window
to build an interactive application where actions on the components can be trig-
gered. Figure 3 presents an overview of the CamiTK architecture.

CamiTK furthermore distinguishes the domain logic in data logic (i.e., the
management of dynamic or static data structures) and the processing logic (i.e., the
modification and transformation of data). This is an essential distinction as it
facilitates software testing (unit and integration testing) and improves the seg-
mentation of tasks (it is easy to define precise and well segmented software
development tasks). The data logic is handled by what we called components
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Fig. 3 CamiTK architecture overview
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(generalized by the Component class), while the processing logic is handled by
what we called actions (generalized by the Action class). In order to easily glue
together viewers, components and actions, CamiTK uses a Service Layer Pattern
[6]. The service layer is classically linked to the viewers by an Observer Pattern.

The service layer simplifies the creation of new components and actions by
generalizing concepts and predefining generic behaviors. The service layer is an
overlay of the Component class (see Fig. 3). The Component class implements
the four interfaces: InterfaceNode, InterfaceProperty, Interface
Geometry and InterfaceBitMap, see Fig. 4. Each interface describes the
capabilities of a component without committing it to use a specific implementa-
tion. It can also be thought as contracts where the component is the provider of
four services. On the other side of the MVP, the viewers are consumers of the
services. The viewers interact with the components without knowing exactly
which kind of data is managed by the component or how it reacts to a specific call.

Each interface lists the methods to be implemented and describes the corre-
sponding capabilities of components:

• InterfaceNode guarantees that each component has a name and can be
associated with other components in a tree-like hierarchical structure or a
dependency graph.

• InterfaceProperty guarantees that components are associated with a list
of properties and can be identified in the class hierarchy of component families.

• InterfaceGeometry defines the ability of a component to provide a 3D
geometric representation of some kind (mutually exclusive with Inter-
faceBitMap). This is a convenient wrapper and simplifier for data that can be
represented by a vtkPointSet.

• InterfaceBitMap defines the ability of a component to provide a repre-
sentation as a bit map of a given thickness (mutually exclusive with Inter-
faceGeometry). This is a convenient wrapper and simplifier for data that can
be represented by a vtkImageData.

Fig. 4 CamiTK service layer overview
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A component has a concrete implementation of either an InterfaceGeome-
try or an InterfaceBitMap or none.

The Action class generalizes the notion of component processing. An action
applies a given algorithm to a given component or list of components. Generally,
viewers trigger actions on the currently selected components.

CamiTK viewers handle all the presentation and interaction logic (the View and
Presenter part of MVP). The CamiTK viewers are using either Qt widgets or VTK
renderers, but are not limited to that. Viewers manage the user interactions and
map them into calls to the interface methods of the components. For example,
viewers are aware of the current selection, that is the list of currently selected data
component, and can be used to add or remove components to the selection (e.g., in
the explorer viewer clicking on component while pressing the Ctrl key adds it to
the selection). A specific interaction in a specific viewer is translated to a specific
call of one of the method of the service layer interface. This method is imple-
mented in the Component class or specialized in one of its subclass.

In order to build a CamiTK application, the developer may subclass Main-
Window. MainWindow is a kind of super Presenter: it instantiates and organizes
the viewers in an application GUI. It also sets up menus or widgets that allow the
user to open, close, save or export components from files or connected devices.

Two extensions mechanisms are possible in CamiTK: software plugins (for
component and action extensions) and simple inheritance (for viewer and main
window). Adding an extension mainly consists in writing a new C++ class derived
from a CamiTK core class. This can generally be done in 10–50 Single Lines Of
Code. Core extension classes already define a lot of default behaviors, and each of
them can be redefined by just overriding the corresponding method.

CamiTK also follows some rules of test-driven development by providing a
default unit test architecture for its components. An automated quality software
process is currently being set up for CamiTK thanks to Kitware CDash.

Sections 2.2–2.5 describe the four types of extensions in details for a developer
or technical reader. Section 2.6 presents use-cases for the different types of
extensions.

2.2 Viewer

CamiTK viewers are automatically aware of instantiated data components, they
can be considered as content managers that present the data and allow the end
users to trigger actions.

Similarly to CommonTK1 CamiTK defines low-level software components that
can be used to build viewers (see Fig. 5). Such low-level components include pure Qt
code (e.g., a synchronized slider and text input or a programmer-friendly Qt Property

1 http://www.commontk.org
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controller) as well as pure VTK code (e.g., a 2D/3D full featured renderer that support
in particular mouse interaction, camera, lightning, 3D axes, node/facet picking, and
screenshots, similar to what can be found in MedINRIA, [15] or Slicer 3D).

CamiTK Viewers offer a specific way of displaying a CamiTK component. The
same component can be displayed by any number of viewers, each showing a
different representation or facet of the component (see Fig. 6).

CamiTK viewers can have a menu, a widget, a toolbar and some properties.
Each of them can be assembled to build a CamiTK MainWindow, for example
properties can be automatically added in the application settings dialog, toolbar in
the main toolbar and menu in the application View menu.

Viewers can also be assembled to build other viewers (e.g., the medical image
viewer), see Fig. 6e, is composed of three 2D interactive viewers and a 3D
interactive viewer.

A specific viewer is the action viewer, which displays the list of possible actions
for the currently selected component and triggers the action chosen by the user
amongst tagged actions or families of actions.

Another useful viewer is the Explorer viewers, see Fig. 6a, which displays
the Components as a hierarchical tree view.

2.3 Component

The component extension is very important in the CamiTK architecture. A com-
ponent wraps the domain objects (specific data) so that they can be inserted into

Fig. 5 Some pure Qt and
pure VTK low-level software
components available for
building CamiTK viewers.
a Synchronized slider and
text Qt widget.
b ObjectController features
display and interaction of any
Component or Viewer. c Full
featured VTK 2D/3D
renderer

CamiTK: A Modular Framework Integrating Visualization



the viewers and manipulated by the user. CamiTK core class Component inherits
from all the service layer interfaces (InterfaceNode, InterfaceProperty,
InterfaceGeometry and InterfaceBitMap). The Component class also
provides a default implementation for most of the service layer methods for visual-
ization and interaction, as detailed in the remaining of this section.

Fig. 6 Main viewers available to build a CamiTK MainWindow. a Explorer (data hierarchical
tree). b Property explorer. c Axial, sagittal, or coronal viewer (block in 2D). d 3D interactive
viewer. e Medical image viewer
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2.3.1 Node

A component is designed as a simplified Composite design pattern: an instance can
be an individual component or a composition of components. For example, faces
and nodes can be managed by one single component or may be managed indi-
vidually by dedicated components. Therefore component instances can contain
other components, and instances can form a hierarchical tree, each component
being either the root or a node. The root of a component tree is specific and is
called the top-level component. It is the master component that ensures the
building of the whole tree. InterfaceNode ensures that a component provides
an implementation of root and node behaviors. InterfaceNode also forces
each component to have a name and other optional features like an icon pixmap.

Thanks to the service layer, the InterfaceNode may be used in a textual
viewer, for example to display the component hierarchical tree (see Fig. 6a), like
in a desktop file manager. If the user clicks on the textual representation of the
component in a viewer, the latter calls the setSelected(bool) method of the
component.

Examples of methods already implemented by default include getParent():In-
terfaceNode �; addChild(InterfaceNode*), isTopLevel ():bool.

2.3.2 Property

Each component can have a list of properties and methods for class introspection.
It allows components to have static properties (declared in headers) as well as
dynamic properties. Each property has a name and a value. Value types can be
anything compatible with Qt class QVariant: int, double, boolean, string, 3D or
2D vector, color, char, date, time, rectangle, font... InterfaceProperty is
directly managed by a QObject in order to benefit from the very efficient Qt
Meta-Object system.

Thanks to the service layer, the PropertyInterface is used in the property
viewer to let the user interact with some of the encapsulated data of the component,
for example to view a medical image’s dimensions or to change the color of a mesh.
A specific viewer, called PropertyExplorer, is available in CamiTK to dis-
play and interact with any defined component properties as shown in Fig. 6b.

Examples of methods already implemented by default include prop-
erty(const char *):QVariant and setProperty(const char *,
QVariant):bool.

2.3.3 Graphical Representation

A component can have no graphical representation or can have one of the fol-
lowing two: a 3D geometry or a bit map (a flat image of a given thickness).
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Under the hood, 3D geometry are managed by a vtkPointSet and bit map
are managed by a vtkImageData. A component handling a dataset that
explicitly uses 2D or 3D point arrays, with or without any topological elements
like scattered points, lines, polygons, and tetrahedra, should therefore implement
the InterfaceGeometry. A component handling a dataset that has a topo-
logical and geometrical regular array of points such as volumes (voxel data), slice
in a volume, and pixmaps, should therefore implement the InterfaceBitMap.

In order to facilitate the development of new components, a lot of default
behaviors are already programmed. Examples of methods already implemented by
default include getBoundingRadius():double for InterfaceGeome-
try and getNumberOfColors():int for InterfaceBitMap. To satisfy
code interdependency and modularity, graphical representation implementation is
handled by two separate classes. Therefore components do not directly handle
their geometrical or image representation. An Object Adapter design pattern (also
known as Delegate pattern) is used by the component to delegate all Inter-
faceGeometry and InterfaceBitMap to an instance of respectively the
Geometry class and the Slice class. In the considered design pattern, the
Component class is the adapter and the Geometry and Slice classes are the
adaptee classes.
Geometry and Slice are convenient overlays of VTK basic representation

(respectively vtkPointSet and vtkImageData). They provide all the con-
crete implementation of the 2D/3D visualization service and define a lot of default
behavior. A 3D viewer for example can easily access the surface representation of
a component implementing InterfaceGeometry by calling getActor
(RenderingModes::Surface):vtkActor*. Geometry and Slice
can also be used to directly manipulate the low-level VTK objects.

One of the main advantages of the Object Adapter pattern is to simplify the
construction of the 2D/3D representation. A component only needs to build the
low-level encapsulated VTK structure corresponding to the chosen adaptee.
The service layer implementation is therefore automatically added without any
intervention the developer.

2.3.4 Component Extension

CamiTK core provides two generic classes: MeshComponent and Image-
Component. Both classes allow for quick integration of user data that are based
on geometries and images respectively. They provide basic behavior for importing,
loading and interacting with such data.

A component extension is managed by a class inheriting from the Compo-
nentExtension class. It defines the extension name, the supported file suffix
for opening and exporting and the dynamic or shared library itself. Image-
ComponentExtension and MeshComponentExtension fasten the
development of user data plugins to provide image-based or mesh-based support in
CamiTK. For example, ImageComponentExtension is the base class for
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DICOM and JPEG plugins, while MeshComponentExtension is the base
class for the VRML and PML plugins.

CamiTK extension wizard generates the extension class header and code, the
component class skeleton, as well as the CMake configuration file: integration of a
new component in the project, compilation, linking and configuration are therefore
completely automated.

2.4 Action

CamiTK actions derive from the core class Action and are used to implement
any kind of algorithms on components (transformation or computation). Actions
are specific to a component or a family of components, they must therefore specify
the targeted component classes, which could be one of the generic MeshCom-
ponent and ImageComponent class or a more specialized user-defined
component class. Actions are also grouped by family and can be tagged for quick
retrieval.

Building a new action requires subclassing the Action class and overriding
the apply(ComponentList) method. Actions can be grouped in an
ActionExtension, similarly to the component extension. The CamiTK
extension wizard can be used to generate all skeleton code and configuration files
that are needed for a new action.

Actions can be triggered many different ways, such as by the context menu of a
component in the explorer viewer or by selecting the desired action in the action
viewer (see Sect. 2.2). The context menu only displays the available action of the
selected component.

The CamiTK action extension helps to concentrate on building or improving a
given algorithm. This could be very useful to define a specific task for a limited
amount of time and resource. The generalization of an action is currently being
extended to define a scripting framework for CamiTK applications.

Available actions include image visualization (e.g., LUT), image processing
(e.g., ITK filters, marching cube), mesh visualization (e.g., modifying the ren-
dering mode or color) and processing (e.g., rigid transformation,
tetrahedralization).

2.5 Application

Building a CamiTK application requires assembling viewers or other Qt-based
software components together. CamiTK core MainWindow extension allows for
rapid development of a CAMI application GUI. It can be done by subclassing
MainWindow or by adding elements to the default application main window. It is
also possible to build pure console or text-based applications, although, considering
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the goal of CamiTK, it should be a rare need. Subclassing CamiTK MainWindow
also provides a way to add menus, application settings and preferences.

Thanks to the framework specific architecture, there is no need for a main
controller or presenter as each viewer is managing its own Presenter/View inter-
action. Therefore there are no connections to be made between the viewers and the
component instances. As soon as a CamiTK component is instantiated, all the
viewers are aware of its existence. Some viewers may automatically display
the component (e.g., the explorer viewer), and other may follow the component
policy (e.g., the medical image viewer).

We defined some basic main window components that can be used to build
MainWindow extensions: a text console where all output and errors can be
automatically redirected, application logs (to be saved in a file or displayed on the
output stream), and application settings (see Fig. 7).

Figure 8 shows a very basic example code where the axial 2D interactive viewer is
added to the default CamiTK MainWindow and a test UNC Meta Image (mha) is
loaded. Note that there is no need to tell which component extension is to be used to
load the MHA file format and no need to tell the axial viewer to display the image.

Three example applications are distributed with CamiTK (see Fig. 9): the
default imp that is used daily at TIMC-IMAG lab, a very simple application with
only a medical image viewer, and fancy that demonstrates that CamiTK can also
generates non-traditional GUI.

2.6 Use-cases and Tutorials

Table 2 describes CamiTK extension use cases, that is a list of situations where
you should consider using CamiTK and how it can be done in CamiTK. It gives an
overview of CamiTK possibilities from the developer point of view. For each use

Fig. 7 Low-level GUI elements available to build a CamiTK MainWindow. a Console for
standard output and error redirection. b Application setting widget showing all the included
viewers preferences, and loaded component extension plugins
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case, the situation is described, examples are given and a quick how-to program it
using CamiTK is briefly described. Each use case refers to a type of CamiTK
extension or component customization. Tutorials are available for each extension
on the CamiTK website.

3 MML: An Environment for Physical Model Comparison
and Evaluation

Soft tissue simulation is one of the main application fields of CamiTK. Using the
CamiTK framework we built an environment for evaluation and comparison of
soft tissue models. This section describes the main objectives of this environment
and its integration into CamiTK.

3.1 Comparison and Evaluation of Soft Tissue Modeling

The evolution of modeling techniques and the improvement of computer hardware
have lead to an increasing number of new algorithms which try to describe the
mechanical motion of soft tissues. Lots of heterogeneous modeling techniques
have been developed since the adaptation of traditional mechanical engineering
techniques to medical simulation: soft tissue models using continuous mechanics
equations and a numerical resolution method (e.g., Finite Element Method,
thereafter FEM), discrete models (e.g., mass-spring networks) or meshless models.
Furthermore, numerous implementations of these models have been developed in-
house, by communities of scientists (e.g., SOFA [5] or ArtiSynth [8]) or by
commercial software developers (e.g., ANSYS, Comsol, Abaqus). In the
remaining, such software and libraries where soft tissue models are implemented

Fig. 8 Very basic example to add an axial slice viewer in the default MainWindow. a Basic
application code. b Basic application GUI
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are generically named ‘‘simulation engine’’. The heterogeneity of modeling
techniques and the number of existing implementations lead to a wide variety of
available algorithms. It is very challenging to compare them because models may
not have the same structure (e.g., discrete, continuous, meshless) and may be
implemented in different simulation engines. However, comparisons between
algorithms are crucial to determine their relevance for a particular medical
application depending of the targeted level of compromise between computational
efficiency and calculation accuracy.

Fig. 9 Three examples of CamiTK MainWindow extension. a simple. b fancy. c imp
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Table 2 CamiTK extension use cases

Description Examples Solutions

Viewer extension
New type of interaction with

the data or a new way of
visualizing the data

Volume rendering Program a new viewer extension

Fly camera in 3D using a
path and timer

Or inherit from an existing one and
add/redefine a behavior

Take regular screenshots to
create a movie

Component extension
View a new mesh, graph scene

or image format
Import.obj format Program a new component

extension
View 3D Ultrasound

images
Or combine existing components in

a new one
View a SOFA scene

Connect a new device to view
its data, control its
parameter/action

Connect a medical robot or
sensor

Program a new component
extension

Connect a motion tracker
device to interact with
the 3D viewer

Or a new generic component

Component or action parameters
Interact with a specific

parameter of an algorithm
or a data

Numbers (int, double...),
boolean

Choose which component/action is
concerned and

2D/3D Position, Rectangle Program a new property (10–20
lines of code)

Color, Font, Time, Date,
Key sequence...

Optionally add a new user settings
(5 lines of code) to keep the
value between two runs

Action extension
New algorithm to process

some data
Image filter, volume

reconstruction
Choose which component is

concerned and
Biomechanical simulation

using a specific method
Program a new action extension

Export a data to a specific
format

Mesh/image registration
MainWindow extension.

You need a specific
application with specific
elements

No 2D/3D interaction, just
data explorer and
property viewer

Program a new MainWindow
extension

Specific application to test
on a group of user
(including log/trace)

Use the default CamiTK empty
Main Window and add only the
needed elements
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Evaluation is another challenge in soft tissue modeling. If these algorithms are
to be used for clinical purpose, they have to prove that their predictions are correct.
These evidences can be gathered only by performing a large amount of validation
tests. Validation is the process to determine the level to which a verified com-
putational model accurately represent the reality of interest [12]. In soft tissue
simulation, validation is often performed by comparing simulation results with in-
vitro or in-vivo experiments. These experiments are quite difficult to perform
because boundary conditions are difficult to control, in particular during in-vivo
experiments. Therefore, validation studies often rely on a limited amount of tests
which only implies partial validation.

We propose an environment, called MML framework, to ease the communi-
cation between different simulation engines and to allow comparisons between
algorithms built from different modeling techniques. The second main objective is
to propose a generic and sharable description of validation experiments in order to
fill the lack of validation references. This framework is implemented as an external
and independent library, and is introduced in CamiTK as a new type of component
and actions (see Sect. 3.6).

3.2 Environment Overview

The main concepts of the MML framework are (see Fig. 10):

1. Constitutive elements of a simulation and simulation results are described by a
set of generic languages.

2. Simulation calculations are computed by different simulation engines thanks to
a plugin mechanism.

3. A set of quantitative metrics can be automatically computed.
4. A database stores the simulation descriptions, as well as simulation and real

experiment metric values for further comparisons.

These key concepts are discussed in the next sections.

3.3 Generic Description

In order to achieve interoperability between different simulation engines and
different modeling techniques, we use a generic XML description of a simulation.
Other scientific domains tried to define standard formats for sharing models using
XML description. This kind of XML description is for example widely used in
biological system modeling (e.g., CellML [7], SBML [3] and many other [14]).

In our framework we use the two languages defined in [2]: PML and LML.
PML stands for Physical Model markup Language. It aims at describing the
geometry and physical structure independently of the modeling technique used
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(discrete or continuous). PML includes an easy way to freely label any individual
or set of nodes and degrees of freedom, any geometric or logical structures. LML
stands for Load Markup Language. It aims at describing constraints and boundary
conditions applied to a physical model.

We extended these descriptions with a third language called MML which stands
for Monitoring Markup Language. MML description is divided in two parts:
MMLin and MMLout.

MMLin describes a reproducible simulation by integrating PML and LML
description together with the list of data to monitor, simulation parameters (e.g.,
integration step) and stability criteria. Monitored data can be standard measure-
ments (e.g., positions, velocities, stress) or comparison metrics (see Sect. 3.5). The
use of a stability criterion to decide when a simulation is considered finished is
discussed in Sect. 3.5. In Sect. 4, an example of an MMLin description for a
simple simulation is given. Having a simulation described by a MMLin document
allows one to reproduce the same exact simulation on different simulation engines
so that comparisons can be made between them.

MMLout is a description of both simulation and real experiment results.
MMLout describes monitored data and stability criterion values for each step of
the simulation. MMLout can be stored after simulation in order to be used as a
comparison reference for other simulations. MMLout can also be created from real
experiments in order to test the accuracy of simulations and make validation
assessments. In this case, the MML framework takes advantage of the integration

Fig. 10 MML framework
overview
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into CamiTK where medical imaging taken from real experiments can be pro-
cessed (e.g., segmentation, 3D reconstruction) and converted into MML descrip-
tion (see Sect. 4 for an example of the workflow from medical images to MML
description using CamiTK). Once stored, MMLout documents can be used for
automatic comparison with future simulations of the same problem using the
corresponding MMLin document as input. The use of this kind of experiment
description can help to reduce the lack of reference for validation by facilitating
sharing of experimental results between research teams.

3.4 Simulation Engines

Our framework aims to help scientists to compare algorithms from different
simulation engines by wrapping a comparison layer on top of them. A simulation
engine plugin describes the interface between the simulation engine and the MML
framework. Simulation engine plugins are simply named ‘‘simulator’’ in this
section. Their roles are:

• to export an MML description into a specific simulation engine,
• to drive the simulation engine in order to compute the simulation steps, and
• to import back the computed data into the framework in order to compute the

metrics.

Simulation generic parameters (e.g., integration step) are directly stored in the
MMLin document. For simulation engine specific parameters, default configura-
tion is used by the plugin. These specific parameters can also be manually changed
before or during simulation.

There is two kinds of simulators: interactive and non-interactive. Interactive
simulators are based on pluggable C++ simulation libraries (e.g., SOFA) which
allows our framework to have a complete control during each step of the simu-
lation. Non-interactive simulators are designed for other simulation engines run
directly in a standalone application (e.g., ANSYS). In non-interactive simulators,
all calculations are generally made in one big step by the simulation engine and
post-processed afterward.

Figure 11 shows a partial UML class diagram for simulators. Simulation engine
specific simulation is generated from simulation context containing the MMLin
description. An optional QWidget item can be specified to provide user inter-
action. For example a specific widget acts as a SOFA .scn editor that let the user
interactively modify parameters and apply changes to the current simulation.
Interactive simulators have a doMove() method which makes the simulation
engine compute one step of simulation. This method is replaced by the do-
AllCalculations() method in non-interactive simulators which launch the
calculations that can be post-processed. A set of methods (only getPosition()
method is represented in Fig. 11) allows to retrieve computed data for a given step
from simulation engine.
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In order to simplify the development of new plugins we try to keep the inter-
action with the simulation engines the easiest possible, so that no extra code has to
be written within the simulation engine. To achieve this goal, all metrics are
computed inside the MML framework and only basic data are extracted from the
simulation engine. For example only positions are needed to compute velocity-
based or distance-based metrics. Therefore, only the getPosition() method
has to be implemented in a plugin in order to compute a large amount of metrics,
as described in the Sect. 3.5. Other metrics based on different data (e.g., force or
stress) can be also implemented.

We have currently developed three simulators for SOFA, ANSYS and
ArtiSynth. The SOFA plugin is an interactive simulator and is the most complete
simulation engine developed so far. It can not only launch simulations computed
by SOFA from MML description but also import SOFA .scn documents into
MML compatible descriptions. While in ArtiSynth the user can interact with the
simulation at each step using Controllers or Monitors, in the current version of
MML, the Artisynth plugin is considered as a non-interactive simulator because
we did not have immediate access to a C++ API. ANSYS and ArtiSynth non-
interactive plugins, even though not as complete as SOFA one, can still be used for
simple interactions with those applications.

3.5 Metrics

Comparison metrics are used to quantitatively compare models against themselves
or against references. As explained before, soft tissue models used for a CAMI
application have to be tested in terms of accuracy (Sect. 3.5.1) and computational
efficiency (Sect. 3.5.2).

Metrics are computed from basic data taken from simulation context (e.g.,
current time), from simulator (e.g., nodes position) and from references if needed

Fig. 11 Partial UML class
diagram of the simulation
engine plugins structure
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(e.g., reference’s nodes position for Relative Energy Norm computation, see
Sect. 3.5.2). We developed a first set of metrics which are mostly position based.
New metrics based on other extracted data can be defined. The metrics can be a
simple output of values calculated in a simulator (e.g., velocities, stress and strain
values) or a more or less complex combination of these data. As the overall
performance during validation is not an issue, the best practice is to compute all
values again externally in the MML library from basic extracted data (e.g.,
positions and forces). This avoids to maintain a complex interaction with the
simulator and simplifies simulation plugins, as explained in Sect. 3.4. For example
velocities can be computed from node positions and time step. This section
illustrates this principle and gives some position-based metric examples.

3.5.1 Accuracy Metrics

Accuracy can be assessed by comparing the simulation results with a reference.
Reference values can be measured on real experiments or calculated by other
simulation engines. There are only few papers which deal with the problem of the
choice of metrics [1, 10]. Soft tissue models are often a collection of 3D nodes
(degrees of freedom) linked together in a mesh. Depending on the structure of the
simulated model and the reference used, different types of metrics are available.

If models and reference have the same structure (a node of the model corre-
sponds to a node of the reference) node to node comparisons can be computed.
This is for example the case when a simulation is compared to a previous version
of the same model in order to test the influence of a parameter. Node to node
metrics include for example, distances or Relative Energy Norm (REN) [1].

If the models and reference do not have the same structure (e.g., the reference
has more nodes than the model) node set comparisons can be used. This is the case
with references obtained from experiments which are often composed by sets of
3D points generated by surface segmentation. Node set comparisons include for
example, point to set distance or Hausdorff distance.

If the model and reference are made of a mesh, volume and surface compari-
sons are possible.

All the metrics given here as examples only need the node positions of the
model at a given time and then can be computed if the getPosition method is
implemented.

3.5.2 Computational Efficiency Metrics

A classical way of evaluating the computational efficiency is to measure the
number of frames per second (FPS) the simulation engine can compute.

Another interesting measurement, especially for CAMI, is the stability crite-
rion. Indeed, even if computations are fast (i.e., if the FPS is high), a model cannot
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be used in an interactive simulation if it requires a large number of iterations to
reach equilibrium.

By stability criterion we do not mean a specific measurement of an algorithm
convergence, but the global dynamic behavior of the simulation, that is the
definition of the state of dynamic equilibrium. The stability criterion is defined by
a boolean expression using tests on basic data extracted from simulation
(e.g., positions) or computed externally from these data (e.g., velocities or kinetic
energy). This boolean expression can be a complex combination of tests (e.g., a
decreasing global kinetic energy and all nodal kinetic energy under a given
threshold value). The stability criterion is defined in the MMLin document so that
the same criterion can be used for all the simulations based on the same
experiment.

3.6 Implementation and CamiTK Integration

3.6.1 Independent Library

The XML structure of MML documents is described using the WC3 standard
XML Schema (XSD).2 XSD documents are formal representations of the XML
document format, including type definitions, possible values and content model
organization. The open source software xsdcxx from CodeSynthesis3 is used to
validate MML documents and to generate a C++ library for unmarshalling and
marshalling MML documents. Using automatic C++ code generation simplifies the
extension of MML description, for example when a new monitor or stability
criteria is added.

The MML library is built on top of the generated I/O library. It supports
simulation management and metrics calculation. This library can be used inde-
pendently of CamiTK to build standalone applications, for example to build an
optimization application that can use the computed metrics in order to optimize
any model parameters (including mesh or rheology), or a sensitivity analysis
application that can automatically explore the parameter spaces. In Sect. 4, a
specific standalone application is used to optimize the stiffness of a mass-spring
model.

3.6.2 CamiTK Integration

A component extension is dedicated to interface the MML library into CamiTK. It
can load any MMLin document in CamiTK Core. The MML component reuses the

2 http://www.w3.org/XML/Schema
3 http://www.codesynthesis.com/products/xsd
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PML component which can load and manipulate PML documents and display their
3D representation in the interactive viewer. A specific action was added to interact
with the simulation engines and display computed metrics as color code or vectors
in the interactive viewer (see Fig. 12).

4 Example: Brain-Shift Modeling, From the Images
to the Simulation

This section presents an example of a CAMI application which can be performed
with CamiTK from image volume opening and display to deformation model
comparison.4

The chosen application is the brain shift phenomenon. During neurosurgeries,
when the surgeon opens the patient’s skull, the brain deforms due to physical
changes among which are the loss of cerebrospinal fluid, surgical tool interactions
and resections, as well as physiological changes due for example to inflammation,
drugs and anesthesia.

Fig. 12 MML framework into CamiTK. The specific action widget is shown on the right of the
3D interactive viewer. Its simulation tab can be used to interact with the simulation parameters
(integration step, PML and LML documents,...). Other tabs are used to display, modify and add
monitors and stability criteria. The ‘‘simulator‘‘ tab is used to display the simulation engine
plugin specific widget (if available). This screenshot shows the comparisons of two SOFA
simulations presented in [10]

4 Videos of the different steps are available as supplementary material on http://camitk.imag.fr
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As the tissues have moved or deformed, the brain structures during the oper-
ation are not where they can be seen on the preoperative images. It is especially
true when one considers the targeted tissues or zones: a tumor region for example
may be displaced or the cortex may be compressed compared to pre-operative
images. A soft tissue simulation may therefore be used to estimate the deforma-
tions due to the brain shift.

4.1 Image Analysis and Mesh Generation

To obtain a patient-specific model of the brain deformation, lets start from a
patient-specific MR Image.

4.1.1 Image Volume Visualization

Volume medical image I/O are handled by component extension inheriting from
ImageComponent. This component implements the InterfaceBitMap
interface. A specific ImageComponentExtension is dedicated to manage the
DICOM format. Loading any kind of MR Image is therefore possible in CamiTK
(see Fig. 13).

On the initial MR Image (see Fig. 13), the voxels belonging to the brain can be
extracted in order to be define a biomechanical mesh. Once the volume image is
loaded in the CamiTK application, any action extension designed to work on
ImageComponent can be applied (independently of the specific original file
format). The Look Up Table action can therefore be used to enhance the lumi-
nosity and the contrast of an image, as illustrated Fig. 14. Using this action shows
that the choice of a unique threshold to only segment all the voxels belonging to
the brain is impossible: voxels of the same gray level are present in the brain as
well as in other tissues.

Fig. 13 Visualization of a
MR Image in a CamiTK
application (here imp)
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4.1.2 Segmentation of the Brain

In this textbook example, a simple but yet efficient way can be used to segment the
brain with ITK algorithms available as CamiTK actions. This example is freely
inspired from [9]. Of course, one can imagine more precise, robust or efficient
ways to segment this tissue thanks to ITK or other algorithms. The integration of
such algorithms in CamiTK framework would only need a few lines of code and
only requires one to interface the algorithm with vtkImageVolume. Table 3
illustrates the different segmentation steps.

4.1.3 Mesh Generation

The triangular mesh obtained by marching cube reconstruction needs some
cleaning. It can be done automatically by merging nearby nodes and eliminating
resulting invalid triangles. Tetrahedralization is achieved thanks to a CamiTK
action that encapsulates TetGen5 mesh modeler. The resulting mesh is described in
a PML document and has 336 nodes and 1.184 tetrahedrons, see Fig. 15a. Note
that this is a very rough representation, only suitable for this textbook example.

4.2 Model Comparisons

In this section, comparison tests between different modeling techniques from
different simulation engines are performed using the MML framework. Using the
brain tetrahedral mesh obtained after segmentation and reconstruction in the

Fig. 14 Use of the Look Up Table action to visualize an image component and choose between
several luminosities and contrasts. a Look Up Table action widget. b Axial view with a rather
large LUT window. c Axial view with a small LUT window

5 http://tetgen.berlios.de
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Table 3 Automatic brain segmentation from MR Image in six steps

Step 1 Step 2

Preprocessing: automatic threshold using the Otsu
method.

,

A binary erosion is applied to disconnect
voxels of the brain from
those of other tissues.

,

Step 3 Step 4

Labeling of the
connected components

,

Selection of the largest
connected component.

,

Step 5 Step 6

Dilatation to retrieve
the brain original size,
mirroring the erosion
of Step 2.

,

Creation of a Mesh Component by
applying the marching cubes VTK
implementation integrated as a
CamiTK action extension.

,
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previous section, a set of brain shift simulations is performed. To clarify, we do not
aim to build an accurate simulation of the phenomenon but to show an example of
how our framework can help scientists to compare different approaches when
modeling soft tissue.

4.2.1 Generic Description Set-Up

In order to make a comparison study, we need:

• a PML description of the geometry, as obtained in Sect. 4.1,
• a LML description of the loads and boundary conditions,
• a MMLin description which encapsulates PML and LML description and adds

simulation parameters, stability criterion and monitored data.

For the brain shift simulation the chosen boundary conditions are composed by a
set of fixed nodes at the bottom of the brain (opposite to the skull opening) and a
gravity field. We described these loads in a LML document, see Fig. 15b.

We choose to use an ANSYS simulation as reference for our simulations.
ANSYS is a commercial FEM software widely used as reference for continuum
mechanics simulation because of its well established verification procedure.
Therefore, the ANSYS simulation is performed first, in order to obtain a reference.
In order to fit the brain material, FEM parameters are a young modulus of 1,440
Pa, a Poisson ratio of 0.45 and a density of 1kg=m3 [13]. The chosen integration
step is 0.01 s. The specific ANSYS parameters for this simulation are shown in
Table 4 (e). The monitored data are the brain total volume and node positions. The
MMLin document uses the previously introduced PML and LML document
alongside the monitored data (Fig. 15c). Stability criterion cannot be specified for
ANSYS simulation as the equilibrium is determined inside the software. Once

Fig. 15 Simplified visualization of the MML description of the ANSYS reference simulation
(MMLin) and its results (MMLout)
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ANSYS simulation are performed, the MMLout description is saved and consid-
ered as the reference (Fig. 15d).

4.2.2 Tested Models

We perform a set of simulations using different modeling techniques. The same
MMLin document is used (same integration step and material parameters), except
that the distance between nodes and reference nodes, and REN errors against
ANSYS are added to the monitored data and a stability criterion is specified. We
choose a threshold on nodal displacement of 0.1 mm as the stability criterion.
Models, simulation engines and specific parameters are summarized in Table 4.
For the mass-spring model, a spring is placed at each edge of the tetrahedral mesh.
The best stiffness for the springs is determined by a small standalone optimization
program based on the MML library. This standalone program repeatedly computes
the average distance between the ANSYS reference and the simulated positions
obtained by SOFA. It automatically creates and runs a SOFA simulation in order
to explore a given stiffness interval and to minimize the distance metric.

4.2.3 Results

Results of the simulations and monitoring are shown in Fig. 16 and Table 5. The
time to reach stability represents the time to reach the stability criterion defined in
Sect. 3.5.2. The computation time is the total time needed by the simulation engine
to compute every steps of the simulation. REN and distance refer to ANSYS
reference. Volume ratio is the ratio between final and initial brain volume. Let us
emphasis that the results shown in Table 5 are not a comparison with a gold
standard or ground truth, but with the ANSYS reference, including all the probable
errors and approximations induced by the simple assumptions presented in
Table 4. The metrics are given here to illustrates how scientists can use our
framework to compare different models from different simulation engines.

Results Table 5 shows that both FEM based model (from SOFA and ArtiSynth) are
closer to reference. These two simulations are quite similar even if SOFA is slightly
closer to ANSYS. However, ArtiSynth has a better maximum distance which can be an
important criterion to consider when a critical value can not be exceeded.

Table 4 Models and specific parameters used for comparisons

Engine Model Reference Solver Specific parameters

(a) SOFA Corotational FEM [11] Euler implicit Large deformation
(b) SOFA Tensor-Mass [4] Euler implicit
(c) SOFA Mass-Spring Euler implicit Spring stiffness: 430
(d) ArtiSynth Linear elasticity FEM [8] Euler implicit Large deformation
(e) ANSYS Linear elasticity FEM Default Solid285 element and

large deformation
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Mass-spring model is the fastest (almost ten times higher FPS than FEM) but
has the highest distance from reference: average distance to reference is three
times more important than SOFA FEM, and maximum is near 5 mm, which would
be a critical problem for neurosurgery if we consider the ANSYS simulation close
to reality. This model also needs the longest time to reach stability.

The Tensor-Mass model shows a compromise between FEM models and mass-
spring. This model succeed to 50% faster than the FEM model but is nearly as
close to reference with an average 0.1 mm.

For a more realistic simulation, a mesh convergence study should be performed
to select the proper mesh refinement; constitutive law and parameters should also
be studied more intensively. For example, a non-linear model could be used as
brain is often considered non-linear [13].

Fig. 16 3d colored shape displaying distance between the four models and ANSYS simulation

Table 5 Summary of the quantitative values of the computed metrics

Model FPS Time to reach
stability (s)

Computation
time (s)

REN (%) Distance (mm) Volume
ratio (%)

min. max. avr. min. max. avr.

(a) 96 57.46 58.44 1.97 32.85 12.76 0.21 1.86 0.78 96.7
(b) 143 55.86 38.54 3.70 32.60 13.49 0.17 2.15 0.87 96.4
(c) 947 70.21 7.25 7.14 105.42 44.06 0.64 4.76 2.60 94.5
(d) n/a n/a n/a 5.13 27.73 12.98 0.24 1.78 0.83 96.2
(e) n/a n/a 764 n/a n/a n/a n/a n/a n/a 96.7
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5 Conclusion

Our framework could be seen as a linking module that can fill the gap between
highly specialized software covering different CAMI research fields.

The first public version of CamiTK was published in October 2011 (version
2.0). Anybody wanting to contribute and join the effort is welcome. The current
work is focusing on simplifying the scripting of actions and on software quality
(test, packaging, continuous integration).

We are interested in participating to any workgroup in order to increase
interoperability between CAMI software.
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