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ABSTRACT

In order to predict where humans look in a 3D immersive en-
vironment, saliency can be computed using either 3D saliency
models or view-based approaches (2D projection). In fact,
building a 3D complete model is still a challenging task that
is not investigated enough in the research field while 2D imag-
ing approaches have been extensively studied and have shown
solid performances.
As 6 degrees of freedom are allowed in volumetric videos,
users are able to navigate through the content in different
manners. In this case, 2D saliency models might be less ro-
bust if applied naı̈vely, since advanced parameters such as
viewing distance are not considered in such models.
The aim of this paper is to investigate the influence of view-
point on 2D saliency models when applied on volumetric data
and this to get a better understanding of how viewpoint infor-
mation could be integrated into view-based approaches.
To do so, a subjective psycho-visual experiment was con-
ducted and a fine analysis was led using the variance analysis
statistical method.

Index Terms— Visual attention models, volumetric data,
view-based approach, perception, computer vision.

1. INTRODUCTION

With the emergence of volumetric videos (viewing 3D envi-
ronment with 6 degrees of freedom), understanding human
visual attention mechanisms and interaction in immersive
scenes are of great importance in perception. Since 6 degrees
of freedom are allowed in volumetric videos, users are able
to navigate through the content in different manners. There-
fore, viewpoint (depending on both visualization distance
and viewing angle) is more likely to change according to the
user’s interaction in virtual scenes. When looking at a scene
with no specific task, humans do not focus on each region
of the image with the same intensity [1]. In fact, attentive
mechanisms guide their gazes on salient and relevant parts.
In order to predict where humans look in a 3D environment,
saliency can be computed. As defined in [2], visual saliency
is the distinct subjective perceptual quality which makes
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some items in the world stand out from their neighbors and
immediately grab our attention. In other words, our attention
is attracted to visually salient stimuli.
Being an active research area in the computer vision commu-
nity, visual saliency modeling aims to predict human fixations
as a way to detect the regions attracting the human gaze [3].
This modeling not only gives an insight into the complex hu-
man visual system but also shows much potential in the wide
range of applications using computational saliency such as
image object segmentation [4], object recognition [5], video
compression [6], tracking [7], etc. Since the few existing 3D
models consider geometry information only without texture
or shading [8], applying them in an immersive environment
is very restricted (because of the lack of texture for exam-
ple). On the other hand, several promising 2D models that
showed high performances could be applied by considering
2D projection views of 3D data, rendered by a specific rule.
Investigating the impact of viewing distance when consider-
ing volumetric data could help us understand the influence
of such parameter on the human gaze and therefore give us
an insight of how to integrate this parameter in view-based
models to adapt the latter for immersive imaging.

2. RELATED WORK

Although visual saliency concept firstly arose in psycholog-
ical and neurobiological context, it generated a noticeable
interest in neuroscience and computer vision communities.
One of the earliest models was proposed by Itti et al [9]. It
is an implementation of general computational frameworks
and psychological theories of bottom-up attention based on
center-surround mechanisms. Saliency models could be di-
vided into 2 main categories: conventional models [1] and
deep models [10]. In fact, conventional saliency prediction
methods define features that capture low-level cues such as
color, contrast, intensity, edge, orientation, and texture or
semantic concepts such as faces, people, text, etc. Whereas,
deep models are based on automatic hierarchical features
extraction and end-to-end task learning. Thanks to annotated
datasets that are publicly available and to the development
of different deep learning architectures, the imitation of the
selective human visual system have been progressing for the
past years. Compared with conventional saliency models,



deep saliency models achieved much higher performances
when dealing with human eye fixation prediction [10].
Since the user’s interaction is possible in volumetric videos,
the viewing distance from which a 3D object is seen is more
likely to change. In this case, although advanced 2D saliency
approaches showed impressive results in 2D imaging, they
might be impaired if applied naı̈vely. In fact, the viewing
information is not included as a parameter either in the an-
notated datasets (used to train models) such as MIT300 [11],
CAT 2000 [12] that were established for the MIT saliency
Benchmark (saliency.mit.edu) or in the computational
model itself.

3. EXPERIMENTAL METHODOLOGY

In order to evaluate how much computational saliency pre-
diction models and human saliency are aligned, a subjective
psycho-visual study was conducted. The main purpose is to
investigate how current state-of-the-art saliency models per-
form when varying the visual angle. For the sake of simplifi-
cation, a static environment is considered. The reason behind
this simplification is the lack of dynamic saliency models and
the large variation of gaze data. In fact, observers tend to
agree less on dynamic scenes when collecting ground truth
data [8]. One can interact with the static environment by mov-
ing forward, backward. This generates a zoom-in, zoom-out
leading to 3 main variations: A change in the level of details,
the presence of occlusions and a change in the viewing dis-
tance. Given different 3D objects, an eye-tracking experiment
was conducted. The details of stimuli generation, experiment
setup and data collection are presented in the following parts.

3.1. Data collection - Stimuli generation

Our dataset aims to provide comprehensive and diverse cover-
age of objects (visual angles) for eye-tracking analysis. Stim-
uli are generated from several 3D objects by varying the vi-
sual angle parameter which is directly related to the viewing
distance. This leads to a change in the level of detail and pres-
ence of occlusion. Objects sizes are quite different and their
content is quite diverse: richness, brightness, and complexity
of the contents. Moreover, their inherent representation is dif-
ferent. This means that some objects are modeled by textured
meshes others are modeled by colored vertices (mean num-
ber of vertices per object is equal to 500k). The visualization
and the manipulation of the different objects used were done
using Unity software which is a game engine that is used to
create both 2D and 3D games as well as to produce computer
simulations. To capture the rendering of the 3D objects, one
plan projection was considered as well as 3 scales for each
object. The stimulus scale variation is illustrated in figure 2.
A semantic definition to differentiate the 3 scales of a given
object was introduced. The biggest scale of a given object is
defined as the maximal vertical occupancy of the rendering on
the monitor screen which resolution is 1920× 1080 and also

by making sure that the whole content of the rendered image
remains visible.

3.2. Experiment Design

In order to design the psycho-visual experiment, dedicated
software for eye-tracking experiments, (Experiment builder;
SR research) was used. Based on the MIT Saliency Bench-
mark protocol [13, 14], every stimulus is displayed for 3 sec-
onds. To make sure that one observer sees each stimulus only
once, 2 sessions were created when designing the experimen-
tal protocol. One observer can attend one session only to min-
imize the ”memory effect” that could bias the eye-tracking
experiment. Each session contains 3 series of 12 stimuli that
are randomized. Before each series, a calibration of the eye-
tracker is applied.

3.3. Material setup and subjective test

3.3.1. Eye-tracker characteristics and configuration

In order to conduct the subjective experiment and collect sub-
jects eye gaze data, the eye-tracker EyeLink 1000 Plus (Desk-
top System) by SR research was used. It has a sampling rate
of 1000Hz, allows tracking both eyes simultaneously and
reports an average accuracy between 0.25◦ and 0.5◦ under
recommended conditions. The only distance requested dur-
ing the eye-tracker configuration is the distance between the
screen and the lens which was set to 430 mm in this exper-
iment. The distance between the observer and the screen
is around 1000 mm leading to a pixel density value of 66
pixel/degree.

3.3.2. Participant setup and gaze data acquisition

In remote tracking mode, a target sticker is put on the fore-
head of the participants so that head movements can be
compensated during tracking. Stimuli were displayed on a
monitor with a refresh rate of 60Hz. The distance between
the observer and the eye-tracker was defined in such a way
as to guarantee an accurate recording while also ensuring
comfortable viewing for the observer. This distance range is
[550mm− 600mm].
30 observers (university students, aged between 20 and 24)
volunteered to participate to this experiment. All participants
had normal/ corrected-to-normal visual acuity and normal
color vision. The conducted experiment was based on a free
viewing task. A calibration step was performed for each
observer before each session. It consists of presenting 13 cal-
ibration points in a spherical shape followed by a validation
step.

4. ANALYSIS PROTOCOL AND RESULTS

4.1. Data Analysis

Data was recorded via the eye-tracker every 1 ms. It includes
saccades, fixations, and blinks. In order to detect saccades,



three thresholds were used: motion (◦), velocity (◦/sec), and
acceleration (◦/sec2). The saccadic motion threshold is used
to delay the onset of a saccade until the eye has moved signif-
icantly. A velocity threshold of 22◦/sec allows detection of
saccades as small as 0.3◦. Acceleration data has a threshold of
8000◦/sec2 as recommended for cognitive research. In order
the get the saliency map corresponding to every stimulus, a
Gaussian distribution having a standard deviation correspond-
ing to 1 degree of visual angle was applied on each fixation
point. For each considered saliency model, 72 saliency maps
were computed (24 objects × 3 views). Moreover, 72 human
fixation maps and 72 ground truth saliency maps were gen-
erated from the acquired gaze data. With such data, saliency
models performances were investigated considering different
viewing distances. In order to show the overall differences be-
tween semantic scales, medians and standard deviation were
computed according to the vertical visual angle using box
plots as illustrated in figure 1.
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Fig. 1. Semantic scales box plot along vertical visual angles.

4.2. Results

4.2.1. Evaluation metrics and post-processing

Many techniques exist to measure the agreement between
model prediction and human eye fixations. But it is hard to
achieve a fair comparison for saliency models by one single
metric since every metric provides a slightly different infor-
mation [13]. Among widely accepted and standard metrics
for saliency evaluation, a quantitative experiment was carried
out by considering a variety of metrics such as Normalized
Scanpath Saliency (NSS), Similarity Metric (SIM), Linear
Correlation Coefficient (CC), Area under the ROC curve
(AUC) in its different variants of AUC-Judd and AUC-Borji,
and Kullback-Leibler Divergence (KLD). These different
metrics can be split into 2 different categories. The main
difference between them concerns ground-truth representa-
tion. Metrics such as CC, SIM, KLD could be classified as
distribution based since they use the saliency map as ground-
truth, others such as NSS, AUC-Judd, and AUC-Borji could
be classified as location-based categories since they use the
fixation map.
Before using different metrics to evaluate the models, an im-
portant step was integrated in order to make sure that there is
no bias introduced by the size of the image content. In fact, as

some metrics consider the number of salient and non-salient
points (typically metrics using ROC) and in order to have
a fair comparison between different object scales, cropping
was applied on the inputs before applying different metrics.
The used bounding box changes from one content to another
based on the window size ensuring the whole image content
wrapping as illustrated in figure 2 where the bounding box is
plotted in red. Moreover, in order to decrease objects location
impact when looking at different stimuli, the rendered objects
are always screen-centered as shown in figure 2.

Small scale Medium scale Big scale

Fig. 2. Bounding boxes applied on the content of one 3D object

Once ground truth fixation maps and saliency maps generated,
different computational models were applied on all stimuli to
get their respective saliency maps. Afterwards, different met-
rics were evaluated for each stimulus on its cropped window.
Figure 3 illustrates the ground truth saliency map of the stim-
uli presented in figure 2.
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Fig. 3. Ground truth saliency maps of one 3D object in 3 scales

4.2.2. Experimental results and interpretation

In order to study the impact of the rendered object size,
some top performance saliency models [15, 16] were selected
among many existing ones. For the following metrics: NSS,
AUC Judd, AUC Borji, CC and SIM, the higher the score
value is the closer the computational model compared to
the ground truth is. Contrary to KLD metric that computes
the divergence between the saliency model and the ground
truth. Therefore the lower the value of KLD is the better
performance the model has. An overall analysis was firstly
conducted in order to get an idea of how scores are spread
out for a given model and a given metric along with image
content size. Table 1 synthesizes the mean and the standard
deviation score values according to 3 groups of scales (Small,
Medium, Big) when applied on 24 stimuli for a given model
and a given metric. In table 1, only 3 most used metrics [17]
are presented for the sake of simplification. Such preliminary



analysis shows that the CC of the Salicon model is higher
than the CC of both versions of SAM model for all scales.
However, the standard deviation is quite high which means
that score values are quite dispersed. Moreover, a closer look
into different score values in table 1 shows that CC metric
has very close mean values for the 3 different scales. Such
behavior could be explained by the fact that the used correla-
tion coefficient is the Pearson Correlation Coefficient (PCC)
which is a linear correlation between two variables. One can
assume that Spearman correlation which measures the non-
parametric statistical dependency could be more suitable.
Overall, these observations motivate the necessity of a finer
analysis.

Saliency
model Metrics

Mean ± Standard deviation

Small Medium Big

CC ↑ 0.64 ± 0.23 0.65 ± 0.24 0.66 ± 0.20

Salicon NSS ↑ 0.89 ± 0.44 1.04 ± 0.50 1.25± 0.53

KLD ↓ 0.28 ± 0.16 0.36 ± 0.28 0.54 ± 0.42

CC ↑ 0.34 ± 0.29 0.32 ± 0.20 0.36 ± 0.17

SAM-Vgg NSS ↑ 0.48 ± 0.25 0.56 ± 0.29 0.73± 0.27

KLD ↓ 0.69 ± 0.37 0.89 ± 0.35 1.18 ± 0.56

CC ↑ 0.41 ± 0.29 0.40 ± 0.24 0.43 ± 0.20

SAM-Resnet NSS ↑ 0.58 ± 0.37 0.70 ± 0.36 0.83± 0.37

KLD ↓ 0.54 ± 0.35 0.75 ± 0.36 1.06 ± 0.61

Table 1. Metrics evaluation for different saliency models

As already mentioned, the preliminary analysis is not suffi-
cient to conduct a consistent comparison therefore an analysis
of variance (ANOVA) was led. It is a collection of statisti-
cal models used to evaluate the dependency of a quantitative
variables with qualitative variables. The aim of the applied
ANOVA method is to evaluate if the studied dependency be-
tween a given model and the image size content is statistically
significant or not. ANOVA can determine whether the means
of the three scaling groups are different. According to the
computed p-values for a given model and different metrics,
it is possible to explain information diversity when consider-
ing different viewing distances and this by investigating the
statistical significance. Table 2 synthesizes the outputs of the
ANOVA including p-values and f ratios. The former indicates
if there is a statistical significance between group means and
the latter determines whether the variability between group
means is larger than the variability of the observations within
the groups. The main difference between p-value and f ra-
tio is that they are inversely proportional and that p-value is a
probability, while the f ratio is a statistical test.

Saliency
model

Metrics p-value Statistical
significance

f ratio

CC 0.9680 7 –
Salicon NSS 0.0461 X 3.22

KLD 0.0134 X 4.59

CC 0.8715 7 –
SAM-Vgg NSS 0.0062 X 5.47

KLD 0.0011 X 7.54

CC 0.9381 7 –
SAM-Resnet NSS 0.0670 7 –

KLD 0.0008 X 7.91

Table 2. Overall ANOVA output values for different metrics

As shown in table 2, some metrics have no significant sta-
tistical difference for all models such as CC metric whereas
some others have a significant statistical difference for all
models such as KLD metric. Concerning the NSS metric, sta-
tistical significance depends on the saliency model. Overall
analysis showed that for the smaller scale of image rendering,
saliency models have slightly better scores when compared
to the different ground-truth images. This gives information
about the sensitivity of the saliency models to the stimuli
scales. Further analysis should be led in order to rank models
according to different scales. It is important to mention that
the preliminary analysis and the ANOVA are complementary.

5. CONCLUSION AND FUTURE WORK

Lately, human interaction in 3D immersive scenes has been
an active research topic. In fact, many efforts have been made
in order to understand and predict where humans look in such
volumetric scenes. Depending on the viewing distance, the
viewpoint is more likely to change according to the users in-
teraction in the virtual scene. In this paper, a subjective study
of the perceptual effect of the viewpoint was conducted.
A first investigation of the impact of visual angle on saliency
models showed that a fine grain analysis should be conducted
in order to ensure that the interpretation of different results
is consistent. In fact, the overall analyses showed that for
the smaller scale of image rendering saliency models have
slightly better scores when compared to the different ground-
truth images. This behavior should be reassessed by conduct-
ing complementary analyses.
Furthermore, pair comparisons could be applied as well as
linear mixed models to take into consideration the variety be-
tween stimuli. For future work, in addition to different anal-
yses, another aspect of visual attention should be investigated
in immersive imaging. Apart from the viewing distance, the
impact of the viewing angle should also be studied.
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