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ABSTRACT

Recent advances in digitization of geometry and radiometry
generate in routine massive amounts of surface meshes with
texture or color attributes. This large amount of data can
be compressed using a progressive approach which provides
at decoding low complexity levels of details (LoDs) that are
continuously refined until retrieving the original model. The
goal of such a progressive mesh compression algorithm is to
improve the overall quality of the transmission for the user,
by optimizing the rate-distortion trade-off. In this paper,
we introduce a novel meaningful measure for the cost of a
progressive transmission of a textured mesh by observing
that the rate-distortion curve is in fact a staircase, which en-
ables an effective comparison and optimization of progressive
transmissions in the first place. We contribute a novel generic
framework which utilizes the cost function to encode triangle
surface meshes via multiplexing several geometry reduction
steps (mesh decimation via half-edge or full-edge collapse
operators, xyz quantization reduction and uv quantization
reduction). This framework can also deal with textures by
multiplexing an additional texture reduction step. We also
design a texture atlas that enables us to preserve texture
seams during decimation while not impairing the quality of
resulting LODs. For encoding the inverse mesh decimation
steps we further contribute a significant improvement over
the state-of-the-art in terms of rate-distortion performance
and yields a compression-rate of 22:1, on average. Finally,
we propose a unique single-rate alternative solution using
a selection scheme of a subset among LODs, optimized for
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our cost function, and provided with our atlas that enables
interleaved progressive texture refinements.
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1 INTRODUCTION

Surface meshes with textures are widely used for approximat-
ing 3D objects or scenes. When representing high resolution
objects, these meshes consume a large amount of memory
and induce high workload on graphics pipelines. In addition,
they generate large transmission latencies when used in net-
worked environments. The increasing demand for visualizing
and interacting with 3D objects in heterogeneous graphics
and networked environments has motivated research on com-
pression of such data. This can be done by identifying and
removing statistical redundancy or unnecessary or less im-
portant information, in a single-rate manner. The single-rate
compression improves the transmission speed on high latency
networks and reduces the storage footprint for portable de-
vices. The recent initiatives such as the Draco open source
library [4] confirm the renewed interest for practical mesh
compression methods.

Progressive textured mesh compression offers a means to
encode the mesh geometry and the texture image (e.g. texture
atlas) in stages, where each stage results in a refined precision
of the various texture and mesh components (connectivity,
vertex coordinates, texture coordinates). Every stage results
in an increasingly faithful level of detail (LOD), considered in
our context as a combination of a mesh geometry and texture
data. This is specifically relevant for the transmission of high
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Figure 1: Progressive decompression of a textured
surface triangle mesh. Top: key levels of details with
their size and compression rate compared to the raw
.obj file (texture data not included). Bottom: Dis-
tortion against the bit consumption, in bits per ver-
tex, where the number of vertices refers to the input
mesh. Green is our progressive approach, red is the
the state-of-the-art single-rate DRACO [4].

resolution models as the user on the client side can already
display lower resolution levels of detail, without having to
wait until the entire model is transmitted (Figure 1). Thus,
it not only addresses limited bandwidth and storage but
also ensures high scalability to heterogeneous networks with
variable bandwidth and to devices with limited visualization
performance.

While the levels of details can be single-rate encoded and
transmitted to offer some level of progressiveness, in a real
progressive compression algorithm the encoding of the next
level takes advantage of the information already contained in
the previous level. As a result, another motivation for progres-
sive compression stems from the simplicity of providing only
one file or stream to the client, which is more flexible and
responsive for networked infrastructures than the single-rate
alternatives.

In this context, reducing the latency requires optimizing
the rate-distortion trade-off. While there is no universal con-
sensus on the best way to measure distortion, we utilize
a common screen-based error metric [6, 22] to capture the
combination of geometry and texture.

In this paper we focus on progressive compression of surface
meshes. More specifically, we seek for lossless connectivity
compression for the finest level of detail and lossy geometry

compression up to the user-requested quantization level for
the vertex coordinates and the texture coordinates. While
lossless connectivity is a hard constraint that prevents remesh-
ing, this choice is justified by the fact that we assume that
the input models are carefully designed and given to us only
for compression, and not for mesh processing. We review next
the closely related work, and refer to a recent survey [13] for
a comprehensive review of a wider scope.

1.1 Previous Work

3D mesh compression has received some interest since the
pioneering work of Deering [3]. The key principle behind most
lossless compression approaches is the idea of transforming
the input representation, so that the transformed data are
amenable to effective compression. The same principle com-
monly applies to lossy compression, where bits are allocated
to transformed components according to how perceptible
they are. As textured meshes contain different pieces of infor-
mation that are different in nature (connectivity, vertex and
texture coordinates), different transforms are performed. For
single-rate encoding the connectivity is often transformed
into a sequence of symbols that records the canonical tra-
versal of the connectivity graph: either few atomic symbols
for the popular EdgeBreaker approach [17] or the degree of
the mesh vertices [20]. The continuous attributes (geometry
or texture coordinates) are commonly transformed into a
sequence of integer residuals after global quantization and
prediction derived from the connectivity traversal order.

Progressive compression requires converting the input mesh
into a series of refinable levels of details, ideally a stream of
fine-grain refinement operations. The approach pioneered by
Hoppe [8] proceeds by iterative decimation and encodes the
reverse atomic refinement operations that record where and
how to refine the current level of detail. Several transforms
were proposed to organize the operators into batches via
canonical mesh traversal and the notion of independent set
[1, 14]. Lee et al. pioneered an adaptive quantization approach
for meshes with colored vertex attributes [11] that trades the
quantization level for the mesh complexity, with improved
rate-distortion trade-offs.

The related work is substantially narrower when focusing
on textured meshes, and very few approaches multiplex mesh
with texture refinement data. Yang et al. [23] first compress
texture and mesh data separately, and represent them by
a series of levels of details. Then, for each viewpoint they
construct a so-called rate-distortion surface computed by
measuring the visual quality of rendered images. An optimal
path over this surface is computed via steepest descent. A
hierarchical variant is proposed to deal with several view-
points. Tian and Alregib [19] contributed a bit-allocation
framework with capability to properly balance the bit rates
for the mesh and the texture, so that the best visual fidelity
is achieved during transmission. The main contribution is
a fast quality measure for estimating the quality. Recently,
Caillaud et al. [2] introduce another bit-allocation framework
which multiplexes mesh and texture refinement data using
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a perceptually-based image metric, in order to optimize the
quality of levels of detail. Beyond multiplexing, this approach
can deal with general non-manifold polygon meshes, with
arbitrary configurations of texture seams (discontinuities in
the texture mapping). In addition, Lavoué et al. [10] explore
the optimal multiplexing of mesh and texture LODs (using
Progressive JPEG) for the web, where both streaming and
decompression are achieved via a parallel JavaScript/WebGL
implementation. Finally, we note that the recent advances
may have overlooked the work of Sander et al. [18] which
focused on the generation of progressive meshes in which
all meshes share a common parameterization, optimized to
reduce stretch and deviation over the whole progressive mesh
sequence. Albeit not specifically targeting compression, this
paper emphasized the importance of sharing a common tex-
ture atlas across levels of details, which matches our intuition
that sharing is an effective means to take advantage of the
information already transmitted.

1.2 Positioning and Contributions

As preliminary work we performed a series of experiments to
compare progressive compression with alternative approaches
involving single-rate compression and multiplexing. To our
knowledge, measuring the real advantage of progressive com-
pression over such single-rate alternatives has not been carried
out before. Our experiments reveal that (1) the advantage is
smaller than the common belief, and (2) the definition of a
cost function is required to measure altogether the quality
of a series of levels of detail (LOD) and the bits required to
encode them.

Our first main contribution is the introduction of such a
cost function, referred to as “agony” in the sequel, which
can be derived from an arbitrary used-defined measure of
distortion.

Our second main contribution is a generic cost-driven
framework for textured surface meshes, in which the afore-
mentioned cost is used to choose between several reduction
steps. Genericity comes (1) in terms of the reduction step
type, as any reduction technique can be used and (2) in terms
of the texture type, since it can handle any texture image
parameterized with uv coordinates such as color maps, spec-
ular maps or transparency maps (bumps maps containing
normals would need another thread of work).

Finally, we contribute several novel ideas on the current
implementation of each step that improve the rate-distortion
performance, compared to previous work.

2 COST OF PROGRESSIVE
TRANSMISSION

The common criterion used for measuring the performance
of a progressive compression algorithm is the rate-distortion
(RD) “curve”. And in most cases a quick look suffices to
determine whether an approach is better than the other.
However, there seems to be no consensus in the literature for
cases that are not that obvious, for instance, if two curves

are really close, having multiple intersections with each other,
etc.

The original motivation for progressive transmission stems
from a user first approach. Specifically, the goal is to minimize
the “agony” of the user defined as the “pain” the user suffers
over time for either seeing nothing or being shown only a
distorted version of the actual model. However, before we
define the agony below the RD “curve”, we should make clear
that this term is misleading. To our knowledge, we are the first
to notice that the alleged RD “curve” is in fact a RD staircase,
as the distortion remains constant in-between two levels of
details (LODs). Thus, for a given set of N LODs, the agony is

defined as : Agony =
∑N−1

i=0 Di ×Ri+1, where distortion D0

denotes “nothing on the screen” and D1, D2, ..., DN denote
the distortions of the LODs, and R1, R2, ..., RN denote to
bit-rates consumed by each LOD. The better the progressive
transmission of 3D data is, the closer the agony is to 0.

We remark that this cost is “unit invariant” in the sense
that it does not matter for the comparison of different ap-
proaches whether the given distortion metric is normalized
or not. For this paper, we use the image-based perceptual
metric detailed in [7] which compares image renderings of the
textured mesh with MS-SSIM [22]. The actually measure of
time (aka x-axis) can be the total number of bits, or bits per
vertex or actual transmission time when the bandwidth is
known. Throughout the paper, we consider the x-axis as the
mesh compression performance in number of bits per vertex
(bpv), where the number of vertices chosen as reference is
the one of the input mesh. By default a rate expressed in
bits per vertex is the average rate computed on all models
shown by Figure 14.

Given this prerequisite, sending only the single-rate en-
coded highest LOD ,which corresponds to a single point on
the rate-distortion curve (DN = 0 and RN ), induces a single
rectangle as the agony. Namely, the cost corresponds to the
pain for seeing nothing D0 (high distortion measured by the
given metric), multiplied by the bit-rate it consumes to see
the final mesh RN .

3 PROGRESSIVE COMPRESSION
FRAMEWORK

Our compression framework is devised to generate a series of
levels of details (LODs) which yield a low agony.

3.1 Overview

The framework comprises the following main steps (see Figure
2):

(1) From the input mesh, we generate via mesh decimation
a coarse mesh referred to as abstraction, while ignoring
the texture content. Generate a new texture atlas from
the abstraction and re-parameterize the input high
resolution mesh onto the new atlas, so that the triangles
of the abstraction are matched to triangular patches
of the input mesh.

(2) We generate a mesh stream of refinements via a “fine
to coarse” approach:

177



MMSys ’19, June 18–21, 2019, Amherst, MA, USA C. Portaneri, L. Birklein, E. Schoemer, P. Alliez, M. Hemmer

• We interleave steps of mesh geometry reduction,
while also encoding the data required to revert each
step. When generating the next lower LOD the en-
coder simulates the application of each of these mod-
ular steps, and leverages the cost function to select
the best, in a greedy fashion.

• We noticed that reducing towards one vertex like in
previous work [2] was not very effective, especially
when the mesh is too small, the progressive encoding
is no longer worth it as the header is larger in size
than the encoded data. Thus, we propose as novelty
to stop the reduction at a certain LOD and later en-
code it via a state-of-the-art single-rate compression
algorithm from the DRACO library [4].

(3) We generate a texture stream of refinements since
we must transmit the texture as well, which can be
sometimes bigger than the mesh file itself.

(4) Finally, we multiplex the mesh and texture streams to
minimize the cost to get a visually smoother transmis-
sion. This way either the mesh or the texture can be
refined first, depending on the content of the texture
or mesh data.

Figure 2: Overview of our framework.

We now detail our current technical choices and implemen-
tation for each step. Obviously, there is room for improvement
for each of the steps, which is discussed in the future work
section.

3.2 Abstraction and Texture Atlas

As the abstraction corresponds to the first LOD shown to the
user during transmission, we wish to control its visual quality.
The goal is thus to generate an as coarse as possible mesh
whose visual distortion does not exceed a user-specified max-
imum distortion. This abstraction will drive the progressive
stream generation toward it. In our current implementation
we proceed by mesh decimation through the quadric error
metric [5], until the MS-SSIM distortion of the textured
abstraction exceeds a user-defined tolerance.

Re-atlasing. Many input textured meshes are generated
using automated algorithms, which often create a complex
texture atlas with fragmented and irregular texture seams.
The extreme case occurs when all triangle edges correspond to
seams (Figure 4 (bottom)). In other cases, most texture map-
ping methods are LOD-unaware and hence unfit to effective
progressive compression.

Such fragmentation may generate high visual distortion,
as the texture mapping is no longer representative of the
input data after decimation. More specifically, during decima-
tion the triangles having uv-coordinates in different texture
patches are merged. The initial texture seams are thus not
respected and the areas covered by the mesh triangles over
the texture tend to shrink or expand as the decimation pro-
ceeds (Figure 4 (top)). One solution is to preserve the seams
as much as possible, but the quality of the coarse LODs
inevitably drops as decimation proceeds.

This motivates a complete re-atlasing process as investi-
gated in [18], in which we re-parameterize the input mesh
onto the abstraction mesh, while reducing fragmentation and

Figure 3: Abstraction. Left: input mesh (1.3M ver-
tices) without texture. Right: abstraction generated
by mesh decimation (300 vertices).
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Figure 4: Artifacts due to texture seams. Top: Arti-
facts during mesh decimation. Bottom: each edge of
the input Taichi mesh is a seam (green).

length of texture seams. The decimation is later driven to-
ward the abstraction while being constrained to preserve the
seams of the new atlas.

More specifically, we first cluster all triangles of the input
mesh such that each cluster corresponds to one triangle of the
abstraction. We then form a texture patch for each cluster by
computing a planar parameterization onto the corresponding
abstraction triangle. At this point, and depending on the
complexity of the abstraction, the new texture atlas may still
contain a large number of seams which constrain decimation
and are costly to single-rate encode as each seam requires
duplicated texture coordinates. We thus pack the triangular
texture patches by gluing the triangles as much as possible,
so as to trade low number of texture seams for limited texture
distortion. All texture seams that are glued are first saved as
“virtual seams” which are preserved during decimation.

After re-atlasing, both the abstraction and the input mesh
are assigned new uv-coordinates onto the newly generated
texture atlas.

3.3 Progressive Geometry

From the re-atlased input mesh we now generate the geom-
etry stream of refinement via a “fine to coarse” reduction
approach.

3.3.1 Initial Quantization. First and foremost, to gain in
compression rates we perform a global, uniform quantization
process for both vertex and texture coordinates by turning
the continuous coordinates into integer ones, using respec-
tively Qg and Qt bits. The initial values Qg and Qt are large
enough to yield a negligible distortion. Then, they are auto-
matically readjusted by our framework to best fit our model,
as discussed next.

Figure 5: Re-atlasing. Top: input atlas and new at-
las. Middle: input seams and seams after re-atlasing
via the abstraction mesh. Bottom: abstraction and
textured abstraction mesh.

3.3.2 LOD Generation. We then generate the LODs by per-
forming a heterogeneous sequence of reduction steps. Because
we position ourselves for being lossless in terms of mesh con-
nectivity, we choose to use the conventional batched mesh
decimation approach introduced in [8] with the edge collapse
operator to achieve finer granularity. As adaptive quantiza-
tion seemed to have a high potential reducing the bit-rate [12],
we add extra steps of decrease in the quantization bits for
mesh attributes. We illustrate the versatility of this generic
framework by providing modular components to decimate
the mesh via either half or full-edge collapse operators, re-
duce the quantization bits for vertex coordinates or texture
coordinates.
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Figure 6: Local mesh operators. Top: full-edge col-
lapse operator. Bottom: half-edge collapse operator.

Hence, the type of each step is simulated and we choose
the best among the following types:

• Full-edge decimation step: We perform a batch of
full-edge collapse operators, using the quadric error
metric extended in 5D for textured meshes [9] to select
which edge are going to be collapsed and compute the
location of each merged vertex. Mesh decimation is
driven toward the abstraction and it is constrained to
preserve the discontinuities of the new atlas to ensure
that the texture remains valid for all LODs.

• Half-edge decimation step: Similar to the full-edge
decimation step, except that the merged vertex is re-
stricted to be located to its two ancestors (see Figure
6). This step is less expensive in terms of bits but yields
a larger distortion than its full-edge counterpart. Hence
it is mostly used during the first reduction steps, as
the distortion remains low.

• Quantization step for xyz vertex coordinates:
Qg is decreased by one by relocating each vertex at a
3D cell center of the coarser quantization grid, where a
coarser cell contains eight cells from the finer grid. It is
an expensive step in terms of size and can cause a very
high distortion if the grid is too coarse compared to
the current state of the mesh. That is why it is chosen
once a while only when the grid is way finer for the
mesh. Most importantly, it helps reducing much the
following decimation steps and the single-rate lowest
LOD in size.

• Quantization step for uv texture coordinates :
Qt is decreased by one by relocating each uv coordinate
at the 2D cell center of the coarser quantization grid,
where a coarser cell contains four cells of the finer grid.
Same comments as the previous step but applied for
the parameterization grid.

More details about these steps are given below. Note that
the first quantization reduction steps chosen before any other
step are discarded and not added to the final bit-stream.
They are used to readjust our initial quantization bits Qg

and Qt.

3.3.3 Multiplexing. Each of the several types of steps above:
half-edge decimation, full-edge decimation, xyz quantization,
uv quantization induces an increase of distortion ∆D, and
reversing a step during decoding requires a certain number of
bits ∆R. In other words, we can trace backward (from right
to left) the (staircase) rate-distortion curve for the whole
sequence of steps, up to the translation of the curve along
the bit-rate axis. What remains to decide is the type of each
step. To do so we compute different local agony equating to
∆D ∗∆R for types of steps, and select the step with smallest
agony. Note that we depart from Lee et al. [12] who select
instead the vector (−∆R;∆D) forming the smallest slope.
The latter works well when the steps have similar bit-rates
and different distortions but it fails when they have similar
distortions as the step with higher bit-rate would be selected.
Instead, the local agony handles both cases.

The sequence of steps progresses until the user-specified
maximum distortion error, already used for the above abstrac-
tion, is met. The connectivity cannot be simplified beyond
the one of the abstraction due to the seam-preserving con-
straints. Finally, we single-rate encode the lowest LOD mesh
with lowered quantization bits via the single-rate compression
algorithm from the DRACO library, consuming 1.3 bpv on
average. We detail next the mesh decimation process.

3.3.4 Mesh Decimation. The constraint to restore the input
mesh connectivity for the highest LOD led us to apply the
common batched decimation paradigm. Mesh decimation
proceeds by batches of independent edge collapse operators
sorted in a priority queue.

Independent set. We use during decoding a canonical order-
ing of the vertices to locate the vertex split operators which
reverse all the edge collapse operators, within the current
batch. Such a canonical order differs form the order of the
edge collapse operators applied during the decimation, which
depends on a priority queue. For this reason the collapsed
edges must form a so-called independent set, i.e. must be
sufficiently separated from each other such that each edge
can be collapsed without interfering with the other edges in
the set. That is, an edge cannot be collapsed if one of the
vertices of its patch is the result of a previous edge collapse.

Error metric. We leverage the quadric error metric ex-
tended in 5D to account for xyz and uv coordinates [9]. This
approach preserves both the input mesh geometry and the
re-atlased texture coordinates, and handles texture seams as
well. The metric computes for each edge the optimal xyz-uv
attributes of the resulting vertex upon collapse which min-
imizes the error defined by the metric. In each batch the
collapse operators are organized into a priority queue, where
priority refers to their error upon collapse. The next collapse
operator popped out of the queue is the one with the lowest
error. We stop the decimation for a given batch when the cur-
rent collapse error is greater than a user-specified percentile
(30% by default) of the errors computed for the initial set of
edges of the batch.
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Collapse operators. The main degree of freedom is the type
of collapse/split operator. We propose a hybrid approach that
combines batches of half-edge and full-edge collapse operators.
In the full-edge collapse operator the location of the merged
vertex is determined by minimizing the local error using the
metric. Such a generality comes at the cost of having to
encode two residuals between the merged vertex and its two
ancestors, to reverse the operator during decoding. In the
half-edge collapse operator the merged vertex is restricted
to be located at one of its two ancestors (see Figure 6).
While the local error may be larger than that of the full-edge
collapse operator, it requires to encode only one residual
vector to reverse the operator during decoding. Intuitively,
this operator proceeds by subsampling instead of resampling
the mesh vertices. Note that the midpoint variant used by
Caillaud et al. [2] also requires a single residual, at the expense
of a higher distortion.

Intuitively, the vast majority of the batches operating on a
really dense mesh can rely upon half-edge collapse operators
at lower bit-rate, while the ones operating on a very coarse
mesh require using the full degrees of freedom with careful
vertex optimization, and hence the full-edge collapse opera-
tor. This approach departs from previous work by switching
operators several times during decimation. If we use instead
batches of only half-edge collapse operators our final bit-rate
is reduced by 5% but we increase the agony by 2%, and if we
use instead batches of only full-edge collapse operators our
final bit-rate is increased by 27% and we increase the agony
by 3%.

Decimation toward abstraction. Seam-preserving decima-
tion avoids artifacts around the texture seams. In addition,
preserving the texture seams and the virtual seams of the
re-atlas texture enables to drive the decimation toward the
abstraction. Similar in spirit to Sander et al. [18], seam-
preserving decimation is achieved by constraining the edge-
based operators to match the following rules, that hold inde-
pendently from the type of edge collapse operator selected
for the current batch:

• If one of the edge vertices is on a seam, resp. corner,
then only half-edge collapse toward the seam, resp.
corner (Figure 7, bottom).

• Do not collapse the edge when its two vertices are on a
seam but it is not a seam itself, or when the two edge
vertices are on texture corners (Figure 7, top).

3.3.5 Encoding Inverse Mesh Decimation. The inverse mesh
decimation process consists of batches of independent vertex
split operators. Each batch requires both a combinatorial
information (which vertices to split, and how to update the
connectivity during vertex split) and a continuous information
(where to relocate the two vertices after splitting, in xyz−uv
space). We describe next several ideas to further decrease
the compression rates.

Vertex Split Location. After each decimation batch the
mesh vertices are ordered in accordance to a canonical span-
ning tree traversal, and the vertices to split are identified

by a sequence of binary symbols. This sequence is shortened
by omitting the vertices that cannot be split due to the
constraints of having an independent set of split operators
and costs 3.2 bpv [2]. For each split vertex we encode after
prediction the geometry, connectivity and texture mapping
data.

Connectivity. As geometry data consume more bits in gen-
eral, we encode connectivity first in order to help predict
geometry. When splitting a vertex into two vertices, recov-
ering the connectivity information requires indicating how
the two vertices are connected to their neighbors. As in most
cases the surface remains locally 2-manifold, we encode in
separate contexts the manifold and non-manifold cases. An
edge collapse can transform a non-manifold connectivity into
a manifold one, and vice-versa. We thus use a binary symbol
to indicate a topological change. For the non-manifold connec-
tivity cases we reuse the symbols proposed by Caillaud et al.
[2] which handle arbitrary patches. For manifold connectivity
cases, the umbrella of the split vertex is split into two parts.
The first part is formed by the vertices that are connected to
only one vertex of the (un-collapsed) edge, either the first or
the second, which forms two sets. The second part if formed
by the two vertices that delineate the boundary of these two
sets, which are connected to both edge vertices, forming two
new triangles. During decoding we need to identify these two
boundary vertices and to assign to each set its connected
vertex.

For encoding the boundary vertices of the umbrella, we
utilize the notion of diameter of a point set, that is, the two
boundary vertices of the umbrella that are furthest apart as a
predictor for deriving the direction of the split edge. We then
compute the bisector plane of the diameter, and order the
umbrella vertices according to their probability to be the split
vertex, which we assume to be related to the distance to the
bisector plane of the two diameter vertices (Figure 8). More
specifically, the two vertices that are closest to the bisector
plane are predicted as split vertices. This predictor yields

Figure 7: Seam-preserving operators. Top: half-edge
collapse. Bottom: do not collapse.
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Figure 8: Diameter-based prediction. The diameter,
connecting the two furthest vertices, is depicted in
orange. The boundary vertices are ordered in accor-
dance to the distance to the bisector (plane in 3D)
of the diameter.

reduce the bit-rate by 7% compared to an arbitrary traversal
to find split edges. Having the two boundary vertices, and
thus the two sets of the patch vertices (left and right side
from the boundary vertices), we use one bit symbol to record
which set is connected to which vertex. Overall, we obtain
5.56 bpv versus 7.03 bpv for [2], which instead encodes first
the geometry in order to predict the connectivity.

Geometry. Encoding the two vertex locations v1 and v2
after vertex split requires two residuals to reverse the full-
edge collapse, and only one residual for the half-edge collapse.
We leverage the already decoded connectivity, and perform
two independent and sequential barycentric predictions for
v1 then v2, (in the full-edge collapse case) using the vertices
of their respective patch. Once v1 is decoded we utilize its
location for the barycentric prediction of v2. 85% of the
operators are half-edge collapses, for a total of 9.8 bpv (a half-
edge operator consumes on average 12b). The remaining 15%
of the operators are full-edge collapses, for a total of 3.2 bpv
(a full-edge operator consumes on average 22b). We obtain
in total 13 bpv for the geometry with adaptive quantization.
To do a fair comparison for this predictor against the state-
of-the-art [2], we use fixed bits for quantization and obtain
still 15.65 bpv versus their 17.35 bpv.

Texture coordinates. The uv texture coordinates are pre-
dicted similarly to the parallelogram prediction scheme used
in DRACO, which utilizes the xyz and uv coordinates of
the triangle vertices to predict new texture coordinates. The
results are comparable to the one generate by the predictor
used in recent work [2] (6.5 bpv using adaptive quantization).
In case of texture seams, we encode extra indices to identify
which face belong to which texture region as described in [2].

3.3.6 Adaptive Quantization. Previously introduced in [12]
for color meshes, adaptive quantization consists in decreasing
the precision of vertex or texture coordinates as the mesh
simplification progresses. Intuitively, the increase of distortion
induced by coarser quantization is smaller for a coarse than for
a dense mesh. A quantization step reduces by one the number

of quantization bits for a coordinate type. This is performed
when the grid is way finer for the mesh, via relocating all
vertices of the current LOD, in either xyz or uv space to the
centers of a coarser grid of integers.

Reversing this operation requires relocating each vertex to
the center of smaller child cells (8 in xyz, resp. 4 in uv space),
which consumes respectively 3 and 2 bpv. Predicting the new
location is possible based on the distance to the centroid
of the neighboring vertices of the parent cell, as proposed
by Peng et al. [15] and used by Lee et al. [12]. However,
and as the decimation deteriorates the mesh regularity, this
predictor yields a negligible gain of 0.02 bpv.

Such an adaptive quantization step is costly, but its cost
is compensated by the gain obtained on the geometry and
texture mapping residuals in the next decimation steps. In
addition, it helps improving the compression rate of the
lowest LOD as we can use single-rate compression with lower
quantization bits, which shifts the rate-distortion curve to
the left. Our multiplexer selects a low number quantization
bits for the coarser LODs. By switching off the adaptive
quantization, the agony is increased by 17%.

3.4 Geometry and Texture Multiplexing

We encode the texture via the standard progressive JPEG
algorithm [16, 21] as it is widely known and integrated. We
then multiplex the progressive geometry and texture data
from coarse to fine, as we obtain better performance than
proceeding fine to coarse as introduced in [2]. This is made
possible by the fact that the texture and the geometry data
are independent. Specifically, starting from the LOD0 which
pairs the coarsest mesh and coarsest texture, we select to
refine either the geometry or the texture based on the smallest
agony, which is this time equivalent to the steepest slope.

Figure 9: Geometry and texture multiplexing. Each
dot on the graph represents a pair (mesh and tex-
ture), and multiplexing amounts to find the best
path connecting the left-bottom and right-top dots.
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Figure 10: Output bitstream.

3.5 Bitstream

Figure 10 depicts the content of output binary bitstream
after encoding. The header records the lowest LOD mesh
encoded via DRACO, the lowest resolution texture encoded
via progressive JPEG, the number of bits used for xyz and
uv coordinates and the bounding box required to reverse
the quantization process. The rest of the file records the
heterogeneous series of geometry or texture refinements.

A geometry refinement can be either a batch of xyz quan-
tization refinements, a batch of uv quantization refinements
or a batch of mesh refinement operators. Each batch of re-
finement operators is organized as follows:

• Vertex splits location. We entropy encode the bits
required to recover the bit-mask of the independent
set of vertices to split, in a canonical order along a
spanning tree.

• Connectivity. The connectivity symbols after diameter-
based prediction are encoded using an entropy coder.

• Geometry. We entropy encode the quantized residuals
after barycentric predictions. For special half-edge col-
lapse operators (such as half-edge collapse toward a
seam), we record the orientation of the half-edge via
extra binary symbols. The regular half-edge collapse
operators do not require any extra bits as they are
performed in a canonical orientation.

• Texture coordinates. We entropy encode the quantized
residuals of uv coordinates.

• We entropy encode the indices of texture regions for
collapse operators located near the seams, such that
the uv coordinates are assigned to the right texture
location.

These different symbols, organized into separate contexts,
are encoded using the DRACO ANS entropy coder.

For example, the Tiger model bitstream contains 43 batches
of mesh refinement operators, 2 xyz quantization refinements,
3 uv quantization refinements, 20 texture refinements and the
header which represent respectively 58%, 4%, 3%, 32% and
3% of the total bitstream. Our average geometry compression
ratio computed on all models shown by Figure 14 is 22x,
meaning that our output bitstream is 22 times smaller than
the input file.

4 SINGLE RATE ALTERNATIVES

Progressive compression is not the only way to provide the
user with a refined depiction while the final high resolution
mesh is loading. With a few more bits one can already send
a first approximation and then, let the user wait for the rest
or send even a few more single rate encoded LODs before
sending the highest LOD. In these regard we discuss (1)
a single-rate alternative to the progressive approach and
identify (2) a promising hybrid alternative, that uses single
rate encoding for the geometric part, while using the same
progressively encoded texture image via a previous re-atlased
step.

The alternative based on single-rate encoding first gener-
ates a series of LODs, then selects the best subset in terms
of agony and single-rate encodes them.

4.1 LOD Generation

While there are many ways possible to generate independent
LODs, we propose the following LOD generation approach
to carry an as rigorous as possible comparison with the
progressive approach.

4.1.1 Geometry. The geometry is generated by decimating
the re-atlased input mesh using QEM5D as error metric.
Decimation is made “toward abstraction” while preserving
the virtual seams of the re-atlased texture. Compared to the
progressive approach we are not constrained by independent
sets, and hence use a dynamic priority queue that produces
LODs with higher quality. We generate LODs with the same
mesh complexity than our progressive geometric LODs and
compress them using DRACO, with the same number of
quantization bits than the progressive LODs. This sequence
of geometry LODs is referred to as SG.

4.1.2 Texture. We generate the texture LODs by downsam-
pling with bicubic interpolation. The total number of LODs
matches the ones of our progressive LODs, and the number
of pixels of each LOD is determined by linear interpolation
between the number of pixels of the input texture, and the
total number of pixels that correspond to the same single-rate
JPEG bit-rate than the lowest LOD of the JPEG progressive
texture. This sequence of texture data is referred to as ST.

4.1.3 LODs. We now have the same number L of geometry
LODs and texture LODs, in the order of 40 in our experiments.
Instead of pairing the first geometry LOD from SG with the
first texture LOD from ST and so on, we compute for all
possible LODs (ie, L2 pair mesh/texture LOD) the pairs
(bit-rate; distortion) and store them in an array. We then sort
the L2 LODs by increasing order of distortion, and reduce
the size of this array as follows. Let x and y be two different
LODs, Dx (resp. Dy) be the distortion of x (resp. y) and
Rx(resp. Ry) be the bit-rate of x (resp. y). If Dx < Dy and
Rx < Ry, then y is discarded. The array is now also sorted by
decreasing order of bit-rate. This sequence of LODs is referred
to as SGT. In these regards, qualities of single-rate LODs
are better than the progressive LODs, since their geometry
do not have to use the batched process via independent sets.
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4.2 Best LOD Subset

Assume that we have N valid LODs, in the order of 125 for
40 initial geometry LODs. We must include both the highest
LOD (to be lossless in terms of connectivity) and the lowest
LOD (to avoid deciding about how to penalize the time until
the first LOD is depicted). From these N − 2 intermediate
LODs, it remains to determine which subset from these LODs
yields the smallest agony. As trying all the 2N−2 possibilities
is too compute-intensive, we instead wish to find the best
k intermediate LODs (k ∈ [0, N − 2]) which minimize the
agony. Let A∗ be the smallest agony overall and A∗

x be the
smallest agony for k = x.

Theorem:

If A∗
k < A∗

k+1 then A∗
k < A∗k+2 and so on...

Thus A∗ = A∗
k

See proof in Appendix A. As we find that the optimal k is
around 5, we can try out all combinations for small k, which
obviously results in the best combination for that k. Define
by OPT(LODs) the resulting optimal subset of this algorithm
from a given set of LODs.

4.3 Naming LOD Sequences

In the sequel we name the following LOD sequences as follows:

(1) OPT(SG): Optimal subset of single-rate geometry
without texture costs (the full resolution texture is
assumed to be already sent).

(2) PG: Progressive geometry without texture costs (full
resolution texture already sent).

(3) OPT(SGT): Optimal subset of single-rate geometry
sent with single-rate texture.

(4) OPT(SG) + PT: Optimal subset of single-rate ge-
ometry multiplexed with progressive texture.

(5) PG + PT: Progressive geometry multiplexed with
progressive texture.

All sequences above are generated with adaptive quantization.

Progressive LODs (2),(5). They come from Section 3 and
are straightforward as the progressive encoding leaves no
choice as to which LOD is next.

Single-rate LODs (1),(3). We use the algorithm described
in Section 4.2 to find the optimal LOD sequences from the
LOD generated in Section 4.1 . OPT(SG) from SG with
high resolution texture and OPT(SGT) from SGT.

Hybrid LODs (4). The hybrid approach OPT(SG)+PT
comes from the geometry optimal LOD sequences multiplexed
with a progressive texture. We use the previous re-atlas
approach to generate a shared texture atlas for all LODs.

5 RESULTS

We implemented our progressive approach in C++, using
the Draco library [4] for single-rate encoding of LOD0 and
entropy/bit encoders, the progressive JPEG library for en-
coding the texture, the Eigen library and OpenGL/OpenCV
for the distortion measurement. Figure 14 depicts the set

of models used to measure the rate-distortion performance.
As the distortion due to the re-atlasing process is negligible
(0.000711 for the Tiger model), all the following distortion
scores are measured directly on re-atlased models. To get
a meaningful interpretation of the following agony scores,
note that sending only the high-resolution LOD using the
single-rate state-of-the-art [4] yields an agony of 5.0 on the
re-atlased Tiger, when ignoring the texture cost. This number
corresponds to the agony value when the transmission is not
progressive, i.e. when the user sees nothing on the screen
until the full model is transmitted.

5.1 Comparison with Progressive
State-of-the-art

We compare our method with the recent state-of-the-art [2],
see Figure 11. For fairness of comparison, we use our re-
atlased mesh as input for both method. Next, we stop the
state-of-the-art compression when reaching the same com-
plexity and single-rate encode the lowest LOD, as performed
in our approach. For clarity, and as we used the same progres-
sive JPEG library (and associated compression parameters)
we exclude the texture compression rates from the bit-rates.

Figure 11: Rate-distortion curves of the progressive
state-of-the-art [2] and our method on the re-atlased
Tiger. Our method (Green, agony: 0.133725) yields
a better curve than the state-of-the-art (Red, agony:
0.196941).

Our progressive approach improves over the state-of-the-
art in terms of agony, as recorded in Table 1. The lower
agony in our method illustrates our superior LOD generation
and compression strategies. It yields better quality in the
transmission of textured meshes, meaning better LODs with
fewer bits sent.

5.2 Comparison with our Single Rate
Alternatives

5.2.1 Without Texture Costs. We now compare OPT(SG)
and PG, the performance of the progressive vs single rate
alternatives without considering textures. That is, at all
times, including LOD evaluation and selection, we used the
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full resolution texture and ignored the costs of transmitting
it. For both approaches we use the reatlased texture. On the
one hand, using the original texture would in general be a
significant disadvantage for the single rate approach as this
would be too restrictive, i.e., it would have to obey texture
patch boundaries of the input while decimating. On the other
hand, providing a new texture for each LOD would require
taking the costs of textures into account, see next section.
OPT(SG) and PG are utilized with adaptive quantization
enabled for position and textures.

Figure 12: Rate-distortion curves for LOD sequences
without texture costs on the re-atlased Tiger. PG
(Green, agony: 0.133725) is a better curve than the
OPT(SG) (Red, agony: 0.159542).

The lower agony in the progressive case illustrates the
smoothness and fine granularity of the approach, improving
LOD quality with smaller bit chunks sent.

5.2.2 With Texture Costs. We now compare all approaches
while including the cost for transmitting the texture, i.e.
OPT(SGT), OPT(SG)+PT and PG+PT. For the pro-
gressive approach (curve depicted in green) we now also use
progressive texture compression which becomes an additional
encoding/decoding step, i.e., all options of our framework we
are now activated. For the single-rate we used the optimal
OPT(SGT). We also investigated a hybrid approach that
uses optimal single-rate geometry with progressive texture
OPT(SG)+PT.

The progressive approaches with or without including the
texture are better in terms of agony than the single-rate
approaches, as recorded in Table 1. We acknowledge the fact
that the hybrid OPT(SG)+PT is a valid alternative to the
progressive. However, progressive compression has the advan-
tage to be more adaptive to heterogeneous network latency
and performance in terms of processing or rendering as each
level takes advantage of the information already contained in
the previous level. In addition, it generates smoother visual
transitions between levels and most importantly requires to
store and transmit only one file.

Figure 13: Top: Rate-distortion curves for LOD se-
quences with texture costs on the re-atlased Tiger.
Bottom: LODs at 2.86 bpv. PG+PT (Green, agony:
0.461431) is a better curve than OPT(SG)+PT
(Orange, agony: 0.48670). OPT(SGT) (Red, agony:
0.632629) is the worst.

5.3 Timings

We ran our experiments on a laptop with an Intel core i7
clocked at 2.7GHz, with 32GBytes of memory. Most of the
time is spent optimally packing the textures of the new
atlas and using the screen-based error metric [6, 22] during
geometry encoding and texture multiplexing. On an input
model with 300k vertices and a 4.2M pixel texture, re-atlasing
takes 84s, packing of the texture 1,838s, geometry encoding
926s and multiplexing with texture 158s. Decoding takes
0.03s to get the first level of detail, 3s before reaching a
level of detail with a distortion close to 0, and 44s to recover
the input connectivity. Decoding is obviously not as fast
as it should be. Specifically, we have been focusing on fast
prototyping and therefore chose a very flexible (but slow)
data structure.

6 CONCLUSION

Putting the user first, our ambition is to maximize the users
experience with an application. By introducing the to be
minimized “agony”, we are (to the best of our knowledge)
the first to provide a well defined cost function that reflects
this goal. The agony allows us to compare progressive trans-
mission, even across different approaches, and to optimize
progressive transmissions in the first place. Since the agony
is also applicable to the degenerated case of sending just
the single-rate encoded original mesh, we consider it as a
generalization of the usual metric that quantifies the quality
of a single-rate encoded model for a requested quality.

185



MMSys ’19, June 18–21, 2019, Amherst, MA, USA C. Portaneri, L. Birklein, E. Schoemer, P. Alliez, M. Hemmer

Models # vertices
without texture cost with texture cost

CVDL16 OPT(SG) PG OPT(SGT) OPT(SG)+PT PG+PT

Aix 686,061 0.257466 0.298142 0.227286 0.541693 0.432085 0.358942

Ajaccio 617,257 0.265585 0.173482 0.166666 0.296426 0.288352 0.283547

Barabas 36,741 0.646291 0.654915 0.527746 6.831700 5.554740 5.178070

Bird 12,432 0.925169 0.624688 0.568855 2.827090 1.752870 1.723806

Dwarf 1,288,973 0.066505 0.062620 0.053197 0.299184 0.264752 0.259349

Maasai Man 99,564 0.565755 0.452293 0.441271 1.548940 1.276600 1.269712

Maasai Woman 112,513 0.479838 0.469566 0.422668 1.692860 1.305260 1.223950

Taichi 50,000 1.158152 0.706814 0.629271 3.933750 2.014700 1.929665

Tiger 314,218 0.196941 0.159542 0.133725 0.632629 0.486700 0.461431

Salamander 35,289 0.779823 0.643655 0.553208 4.670200 3.933090 3.795793

Table 1: For each model we record the agony of different approaches: CVDL16 is the progressive state-
of-the-art [2], OPT(SG) (resp. OPT(SGT)) the single-rate alternative without (resp. with) the texture cost,
OPT(SG)+PT the hybrid method, and PG (resp. PG+PT) our progressive framework without (resp. with) the
texture cost. Our method yields a smaller agony than other progressive alternatives. Besides, progressiveness
improves by a factor 20 the quality of the transmission versus sending the single-rate high-resolution only.

Figure 14: Gallery of input textured meshes used for measuring performances (number of vertices / mesh
size in MB / texture size in MB). Top: Bird (12,432 / 1.5 / 0.66); Salamander (35,289 / 4.3 / 16.6); Barabas
(36,319 / 6.9 / 3.9); Taichi (50,000 / 15.6 / 2.9); Maasai Man (99,564 / 19.2 / 2.1); Bottom: Maasai Woman
(112,513 / 14.4 / 2.3); Tiger (314,218 / 60.1 / 2.9); Ajaccio (617,257 / 81.3 / 2.8); Aix (686,061 / 92.8 / 3.1);
Dwarf (1,288,973 / 320.3 / 19.3).
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Following this narrative, our remaining contributions in-
clude: (1) A generic framework for progressive mesh compres-
sion that is driven by the above cost in the sense that in each
round it simulates each possible encoding step and chooses
the one that adds the least agony, aka, least area below that
step; (2) A texture atlas generation scheme, essential step to
any textured mesh progressive compression algorithm, that
allows to share the texture among all LODs and enables mul-
tiplexing of progressive texture image refinements; and (3)
An optimal selection scheme for the subset among available
LODs in case one is restricted to single-rate encoding.

We show that our progressive framework yields better
results than the state-of-the-art progressive compression ap-
proach [2] and single-rate variants. The re-atlasing together
with the optimal selection scheme for single rate encoded
LODs enables a hybrid approach that strikes a good compro-
mise in case progressive geometry encoding is not available.
Moreover, it enables a dual serving approach in which the
server provides the LODs by the sequence of refinements steps,
and in addition provides the single-rate encoded version of
each LOD. This combines the advantages of both worlds.
For instance, the client has full flexibility and can start the
progressive transmission with any LOD of the sequence.

Limitations. Our approach requires that all LODs share
the same topology and texture atlas. For models with com-
plex topology a progressive approach with capability to refine
the topology of the mesh and texture atlas during transmis-
sion would be desirable. Then, starting with the geometry
encoding and further multiplex the texture might not be the
best solution, despite the fact that such a multiplexing is
optimal in terms of agony. When we choose the next geom-
etry refinement step, the distortion of each simulated step
is measured using the high-resolution texture, which is not
representative of the final bit-stream. Solving this issue would
require adding the texture refinement step as an additional
fine-to-coarse encoding step.

Future work. As future work, we wish to take advantage of
the generic nature of our framework by exploring additional
encoding steps. One of them consists in interchanging geom-
etry and textures via so-called normal maps. We also plan to
jointly generate and optimize the abstraction and re-atlas, so
as to further optimize the later “agony”. We wish to explore
more advanced predictors for the decimation or the adaptive
quantization that depend on both the local mesh context and
texture content. An approach with random access capability
is highly desirable for large-scale scenes, but would deserve
its own thread of work. Finally, as a natural extension of
our work, we will deal with animated meshes and adapt our
progressive compression framework for time-varying data.
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APPENDIX A: PROOF OF OPTIMAL
SINGLE-RATE LOD SELECTION

Assume that we have N LODs. As we exclude first and last
one we have n = N − 2 intermediate LODs and we want
to find the best k intermediate LODs (k ∈ [0, n]) which
minimize the agony. Let A∗ be the smallest agony overall
and A∗

x be the smallest agony for k = x.
Let the “nothing on the screen” distortion be D0(= inf)

and the distortion of each LOD be D1, D2, ..., DN (= 0). As-
sumption: D0 > D1 > D2 > ... > DN = 0. Let the individual
bit-rate of each LOD be R1, R2, ..., RN , Ri being the number
of bits of LODi after being single-rate encoding. Assumption:
0 < R1 < R2 < ... < RN .

For a given k, let Dxi (resp. Rxi) be the distortion (resp.
individual bit-rate) of the ith selected LOD (i ∈ [1, k]), given
that Dx1 > Dx2 > ... > Dxk and Rx1 < Rx2 < ... < Rxk. We
name xi∗ the ith selected LOD of the subset which give the
optimal agony A∗

k. However for different k, each xi∗ does not
correspond to the same LODs (we do not pick necessarily the
same LODs), that is why we will use yi∗ or zi∗ for different
values of k.

A∗
0 =D0 ×R1 +D1 ×RN

...

A∗
k =D0 ×Rx1∗ +Dx1∗ ×Rx2∗ +Dx2∗ ×Rx3∗ + ...+

Dxk−1∗ ×Rxk∗ +Dxk∗ ×RN

A∗
k+1 =D0 ×Ry1∗ +Dy1∗ ×Ry2∗ +Dy2∗ ×Ry3∗ + ...+

Dyk−1∗ ×Ryk∗ +Dyk∗ ×Ryk+1∗ +Dyk+1∗ ×RN

A∗
k+2 =D0 ×Rz1∗ +Dz1∗ ×Rz2∗ +Dz2∗ ×Rz3∗ + ...+

Dzk−1∗ ×Rzk∗ +Dzk∗ ×Rzk+1∗+

Dzk+1∗ ×Rzk+2∗ +Dzk+2∗ ×RN

We now prove that if A∗
k < A∗

k+1 then A∗
k < A∗

k+2. Note
that: x1∗ = y1∗ = z1∗ = 1, so we can remove D0 × Rx1∗ ,
D0 ×Ry1∗ and D0 ×Rz1∗ of the equation because they have
the same value. We start with A∗

k < A∗
k+1 :

A∗
k < A∗

k+1 ≡
Dx1∗ ×Rx2∗ + ... +Dxk−1∗ ×Rxk∗ +Dxk∗ ×RN <

Dy1∗ ×Ry2∗ + ... +Dyk−1∗ ×Ryk∗ +Dyk∗ ×Ryk+1∗+

Dyk+1∗ ×RN

A∗
k < A∗

k+1 implies that A∗
k < Ak+1: if it is better than

optimal, it is better than any k + 1 LOD combination.

Dx1∗ ×Rx2∗ + ... +Dxk−1∗ ×Rxk∗ +Dxk∗ ×RN <

Dy1 ×Ry2 + ... +Dyk−1 ×Ryk +Dyk ×Ryk+1+

Dyk+1 ×RN

(1)

Substitute right part of (1) with the tail of A∗
k+2

Dx1∗ ×Rx2∗ + ... +Dxk−1∗ ×Rxk∗ +Dxk∗ ×RN <

Dz2∗ ×Rz3∗ + ... +Dzk−1∗ ×Rzk∗ +Dzk∗ ×Rzk+1∗+

Dzk+1∗ ×Rzk+2∗ +Dzk+2∗ ×RN

(2)

Adding Dz1∗ ×Rz2∗ to the right part of (2) and we are done:

Dx1∗ ×Rx2∗ + ... +Dxk−1∗ ×Rxk∗ +Dxk∗ ×RN <

Dz1∗ ×Rz2∗ +Dz2∗ ×Rz3∗ + ... +Dzk−1∗ ×Rzk∗+

Dzk∗ ×Rzk+1∗ +Dzk+1∗ ×Rzk+2∗ +Dzk+2∗ ×RN

≡ A∗
k < A∗

k+2

188


