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Abstract—Visual attention is a key feature to optimize visual
experience of many multimedia applications. 2D visual attention
computational modeling is an active research area considering
the visualization of natural images on a conventional display.
In this paper, we question the ability of such models to be
applicable to single computer-generated objects rendered at
different sizes (on a conventional display). We benchmark state
of art visual attention models and investigate the influence of the
viewpoint on those computational models applied on volumetric
data and this to get a better understanding of how viewpoint
information could be integrated into view-based approaches. To
do so, a subjective experiment was conducted and a fine analysis
was led using the variance analysis statistical method.

Index Terms—Visual attention models, perception, computer
generated objects, computer vision.

I. INTRODUCTION AND PROBLEM STATEMENT

With the emergence of immersive imaging, understanding
human visual attention mechanisms is of great importance
when optimizing the quality of visual experience.
Such mechanism indicates the regions attracting the human
gaze. Generally, visual saliency models aim to predict
human fixations as a way to detect saliency [1], [2]. This
modeling gives not only an insight into the complex human
visual system, but also shows much potential in the wide
range of applications using computational saliency such as
compression [3], objects segmentation [4], selective rendering
[5], visual tracking [6], etc.
In this paper, we are interested in how visual attention is
deployed on single computer generated (CG) objects. As
user’s interaction is possible in immersive environments, the
viewing distance (i.e. distance from which a CG object is
seen) is more likely to change leading to a change of the
covered visual angle. The viewing distance variation affects
not only the perceived levels of details (during the rendering)
but also the visual exploration of the perceived object.
–
Visual saliency [7] is the distinct subjective perceptual quality
which makes some items in the world stand out from their
neighbors and immediately grab our attention. In other words,
our attention is attracted to visually salient stimuli.

The field of visual attention computational modeling has
bloomed the last two decades reaching impressive results
in 2D imaging. Nevertheless, one should carefully examine
the conditions on which these models were validated before
naively applying them in another context. In fact, most of these
computational models have been validated using eye tracking
data obtained in fixed conditions (e.g. image displayed on
a screen and seen in a fixed viewing field). As a matter of
fact, the viewing information is not included as a parameter
neither in the annotated datasets (used to train models) such
as MIT300 [8], CAT 2000 [9] that were established for
the MIT saliency Benchmark (saliency.mit.edu) nor in the
computational models themselves.
–
Since the few existing 3D models consider geometry informa-
tion only without texture or shading [10], applying them in an
immersive environment is very restricted (because of the lack
of texture for example).
On the other hand, several promising 2D models [11] that
showed high performances could be applied in the immersive
context by considering 2D projection views of 3D data,
rendered by a specific rule. This would allow to compute visual
attention and therefore indicate the regions attracting human
gaze. Investigating the impact of viewing distance when con-
sidering rendered CG objects could help us understand the
influence of such parameter on human gaze and therefore give
us an insight of how to integrate this parameter in view-based
models to adapt the latter to immersive imaging.
In this work, different CG contents were displayed on a
monitor screen with HD resolution. Its typical visual acuity
at standardized viewing distance is around 60 pixel/degree.
The reason behind contents’ visualization on a conventional
display in this preliminary work is to respect the recommended
visual acuity. In fact, when it comes to devices used in
immersive experiments (i.e. Head Mounted Displays (HMDs)),
their corresponding fields of view changes according to their
embedded characteristics. This might lead to a different human
perceptual experience. Typical visual acuity at standardized
viewing distance of a common VR HMD device is around
15 pixel/degree for the HTC vive and 30 pixel/degree for
the HTC vive Pro.
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II. EYE-TRACKING EXPERIMENT

A. Stimuli generation - Dataset establishment

We designed an experimental protocol to collect gaze data for
our research context. Different stimuli have been generated
from original CG objects with different shapes, aspect ratio
and properties (brightness, richness of details, colorfulness,
etc). Our dataset aims to provide a comprehensive and diverse
coverage of objects in terms of visual angle for eye-tracking
analysis.
CG objects were rendered by considering a specific viewpoint
using Unity software. By varying the visual angle and the
viewing distance, we could generate diverse rendered objects
from a visual attention deployment perspective. For each CG
object, we selected an appropriate viewpoint. Afterwards, three
scale variants were considered leading to a change of the
level of details and occlusion as shown in figure 1. Rendered
CG objects were systematically displayed in the center of the
monitor screen with a gray background.

Fig. 1. Three variants of the same CG object as rendered in our
experiment (the bounding-box in red was not displayed but serves
the discussion section III-A).

To show the overall difference between semantic scales, me-
dian and standard deviation were computed according to the
vertical visual angle using box plots as illustrated in figure 2.
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Fig. 2. Semantic scales boxplot along vertical visual angles.

In total, we considered 72 rendered objects (24 CG objects ×
3 size variants).

B. Experimental protocol

We limited this study to rendered objects visualization in HD
standardized viewing conditions. In such conditions, rendered
objects were presented on a display with native resolution of
1920 × 1080 pixels and frame rate 60fps. It covers 30◦ of
visual field horizontally and 17◦ vertically.
The 72 rendered objects covered visual angle ranges of
[2◦, 25◦] horizontally and [4◦, 16◦] vertically.
A remote EyeLink 1000 Plus eye-tracker [12] by SR research

was used for data collection, with a 1000Hz sampling rate and
a gaze position average accuracy between 0.25◦ and 0.5◦.
Thirty university students with normal/ corrected-to-normal
vision participated. Non-familiar to eye-tracking experiments,
these participants were instructed to explore the image content
without any specific task (free-viewing). Every participant
attended one session composed of 3 series of 12 stimuli (i.e.
2D views of CG objects) presented in random order.
Each stimulus was displayed for 3 seconds which is sufficient
to cover both bottom-up and top-down visual attention behav-
iors in a balanced manner.
Calibration was performed before each series. This helped
align the gaze data and the display time together in addition
to verifying the calibration state of the eye-tracker. To reduce
eventual memory effect, each observer can see at maximum 2
scale variants of the same object.
Raw gaze data recorded via the eye-tracker includes saccades,
fixations and blinks. Fixations were extracted using specific
algorithms [12] allowing to derive ground-truth saliency maps
for each object.
In order the get the saliency map corresponding to every
stimulus, a Gaussian distribution with σ = 1◦ was applied on
fixation points (to take spatial uncertainty into consideration).
The obtained saliency maps are displayed in figure 3.
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Fig. 3. Ground-truth saliency maps of the computer generated object
presented in Fig.1

III. DATA ANALYSIS

Among best models according to the performances of
current state-of-the-art [13] : SALICON [14], SAM Vgg [15],
SAM resnet [15], GBVS [16]. Most of these models are based
on deep learning architectures.

A. Adapting metrics usage on rendered CG objects

As we are investigating visual attention deployment on
single objects, one should consider the visual information of
the CG content. Since rendered CG views were shown to
subjects on a monitor screen with HD resolution, saliency
models were given the same rendering format.
Afterwards, a bounding-box corresponding to the CG object
content (see red box figure 1) was considered for saliency eval-
uation (when using metrics). Note that without this processing,
usual figure of merit of visual attention models (i.e. metric
measurements) would be highly biased due to the content-free
background. For this reason, when evaluating saliency maps
using metric measurements, cropping was applied on both
ground-truth saliency maps (derived from the eye-tracking ex-
periment) and computed saliency maps (derived from saliency
models). This limits the agreement between the model output



and the considered ground-truth to the bounding-box.
Since the CG object sizes are different, the cropping window
size changes from rendering to another as well as the excited
visual angle by observers (cf. figure 1). In other words, the
applied cropping window on a given computed saliency map
and its corresponding ground-truth are directly related to the
CG object size once rendered.

B. Comparing the output of visual attention model with
ground-truth saliency map

To measure the ability of visual attention model to predict
ground-truth, many metrics have been introduced in the liter-
ature, but they do not necessarily provide consensual results
[17], [18]. Following these recent results, we adopt for our
analysis two widely accepted and standard metrics: Kullback-
Leibler Divergence (KLD) [19] and Normalized Scanpath
Saliency (NSS) [20] metrics. This choice is also motivated
by the fact that a pre-analysis of our data revealed that these
two metrics were more sensitive to the visual angle change
than the others.
KLD metric measures the dissimilarity degree between pre-
dicted and ground-truth saliency maps both seen as probability
density functions. The lower measurement value is, the better
performance a saliency model has. Whereas NSS metric
involves saliency map and a set of fixations. Note that this
metric is used exclusively for saliency evaluation. The idea
is to measure saliency values at fixation locations along the
observers scanpath. The higher NSS value is, the better the
saliency model is.
As already mentioned, images given as input to computational
models include both bounding-box and content-free back-
ground to ensure the same stimuli format shown to observers.
Once saliency maps computed, all metrics were evaluated for
each stimulus on its cropped window.
Figure 3 illustrates the ground-truth saliency map of the stimuli
presented in figure 1. Whereas figure 4 shows the computed
saliency map using SALICON model of the same stimuli.
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Fig. 4. Computed saliency maps using SALICON model of the
computer generated object presented in Fig.1

C. Human agreement consideration

The so called ground-truth is the result of the pooling of
limited observations, e.g the number of observers, to derive
a saliency map. It naturally contains uncertainty as all the
observers are not gazing the same. In [21] and [22] methods
have been introduced to capture this uncertainty to estimate
the coherence, dispersion, congruence or also called agreement
between observers. Such indicator can be used to interpret the

performance metric of visual attention model with respect to
observers disagreement. In this paper, we adopt the method
in [22]. The KLD (or NSS) is computed between the saliency
map coming from one observer and the saliency map coming
from global human (average human observer). This is iterated
over the set of all observers per object. All KLD values
(or NSS) are then averaged leading to the estimate of the
dispersion-disagreement (DIS) between observers for each
object referred as DISmetric in this formula (metric being
either KLD or NSS):

DISmetric =
1

n

n∑
i=1

metric(obsi, GT ) (1)

In the case of KLD metric, a high value indicates that the
visual strategies of observers are different and a low value
indicates that the visual attention strategies of observers are
quite similar. On the contrary, for NSS metric, a high value
indicates that the visual strategies of observers are quite
similar and a low value indicates that the visual attention
strategies of observers are different. The lower bound is zero
and is obtained only if all the observers look at the same set
of locations during the same viewing duration.
As this value is the result of a set of limited observations
(30 observers), we propose to add the uncertainty on the
dispersion-disagreement estimate.
To that end, we estimate 95% Confidence Interval of DIS
reflecting the interval of the real DIS value if we had
an infinity of observers. In this paper, we assume that
metric(obsi, GT ) follows a normal distribution so CI95%
can be derived from standard error.
For KLD metric we consider upper-bound as a baseline:
if the KLD value of a model falls bellow the upper-bound
baseline (DISKLD + CI95%,KLD) suggests that the model
is performing below the uncertainty of the ground-truth. On
the contrary, for NSS metric lower-bound was considered
as the baseline. A model has an accepted performance if
NSS value is above this lower-bound (DISNSS−CI95%,NSS).

IV. RESULTS AND DISCUSSION

An evaluation of view-based saliency models’ performance
in the context of CG contents (i.e. 2D views taken from a
certain viewpoint of CG 3D objects and not natural scenes)
was conducted with respect to human disagreement (cf. section
IV-A). Moreover, an analysis of variance based on size change
and therefore viewing distance variation was considered using
KLD and NSS metrics (cf. section IV-B).

A. Model performance with respect to ground-truth uncer-
tainty

For each saliency model and each metric (KLD and NSS), we
report in table I:

• % in baseline DIS: the percentage of objects for which
the model succeeds to reach the DIS baseline.

• Mean: the average metric value (KLD or NSS) including
the objects that fails to meet the baseline DIS.



TABLE I
METRIC MEASUREMENT FOR DIFFERENT MODELS

Saliency
model

Metrics
% in baseline

DIS
Mean

SALICON NSS ↑ 24.64% 1.06
KLD ↓ 24.64% 0.54

SAM-Vgg NSS ↑ 5.80% 0.59
KLD ↓ 7.25 % 0.94

SAM-Resnet NSS ↑ 11.59 % 0.70
KLD ↓ 7.25 % 0.87

GBVS NSS ↑ 8.70 % 0.61
KLD ↓ 10.14 % 1.05

As shown in table I, according to a given metric (e.g. NSS):
SALICON model shows the highest percentage in terms of
the baseline DIS’s values and in terms of the computed mean
value.
The benchmark between different state-of-the-art saliency
models showed that SALICON is the most suitable saliency
model (without fine-tuning or model re-training ) in the context
of CG contents’ saliency prediction.
The relatively overall low scores (compared to model perfor-
mances on the MIT saliency benchmark) could be explained
by the fact that CG contents are different from natural scenes
on which deep learning models were trained. Note that these
performances could be improved by fine-tuning saliency mod-
els.

B. Viewing distance impact on computational saliency models

Depending on the viewing distance, the viewpoint is more
likely to change according to the user’s interaction with the
objects held in the immersive scene. In order to study the im-
pact of the viewing distance on saliency models in the context
of CG objects, a statistical analysis of variance (ANOVA) was
considered in order to evaluate if the dependency between
a given model and the image size content is statistically
significant or not.
According to the computed p-values for a given model and
different metrics, it is possible to explain information diversity
cause when considering 3 scales and this by getting the
statistical significance. Table II synthesizes the outputs of the
ANOVA including p-values and f ratios. The former indicates
if there is a statistical significance between group means and
the latter determines whether the variability between group
means is larger than the variability of the observations within
the groups.

Based on table II, we can get information about the sensitivity
of the saliency models to the stimuli’ scales. For a given
metric and a given saliency model, the higher f ratio is the
more metrics values change according to the stimuli size (for a
same CG object). In fact, if the saliency model takes implicitly
the stimulus size of a given object, it would keep almost the
performances and there would not be a statistical significance
in metric values.

TABLE II
OVERALL ANOVA OUTPUT VALUES FOR KLD AND NSS METRICS

Saliency
model

Metrics p-value Statistical
significance

f ratio

Salicon NSS 0.0461 X 3.22
KLD 0.0134 X 4.59

SAM-Vgg NSS 0.0062 X 5.47
KLD 0.0011 X 7.54

SAM-Resnet NSS 0.0670 7 –
KLD 0.0008 X 7.91

As a result, the evaluated saliency models are not robust to
stimuli size change. Moreover, when we consider the small
scale of CG object, saliency models have slightly better scores
than for medium and big scales. This might be due to the
small comparison’s area that leads to small possibility of miss-
prediction. This interpretation corresponds to salient regions
displayed in figure 3 and figure 4 when compared.

V. CONCLUSION AND PERSPECTIVE

Lately, human interaction in 3D immersive scenes has
been an active research topic. Many efforts have been made
to understand and predict where humans look to such CG
contents. In fact, CG objects are perceived differently from
natural scenes on which saliency models were trained and
tested. A comparative study was conducted with a subjective
experiment to evaluate the most suitable saliency model in the
context of CG contents. Moreover, the perceptual impact of the
viewpoint on saliency models was investigated as preliminary
work.
For future work, re-training deep learning models on CG
dataset and adequate fine-tuning will be considered.
Moreover, additionally to viewing distance, the impact of the
viewing angle will be investigated in the context of immersive
imaging.
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[10] G. Lavoué, F. Cordier, H. Seo, and M.-C. Larabi, “Visual attention for
rendered 3d shapes,” Comput. Graph. Forum, vol. 37, pp. 191–203,
2018.

[11] A. Borji, “Saliency prediction in the deep learning era: An empirical
investigation,” 10 2018.

[12] “Eye tracking with the eyelink eye trackers - sr research ltd.” [Online].
Available: https://www.sr-research.com/

[13] Z. Bylinskii, T. Judd, A. Borji, L. Itti, F. Durand, A. Oliva, and
A. Torralba, “Mit saliency benchmark.”

[14] M. Jiang, S. Huang, J. Duan, and Q. Zhao, “Salicon: Saliency in
context,” in 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015, pp. 1072–1080.

[15] M. Cornia, L. Baraldi, G. Serra, and R. Cucchiara, “Predicting human
eye fixations via an lstm-based saliency attentive model,” IEEE Trans-
actions on Image Processing, vol. 27, no. 10, pp. 5142–5154, Oct 2018.

[16] J. Harel, C. Koch, and P. Perona, “Graph-based visual saliency,” in
Advances in neural information processing systems, 2007, pp. 545–552.

[17] Z. Bylinskii, T. Judd, A. Oliva, A. Torralba, and F. Durand, “What
do different evaluation metrics tell us about saliency models?” IEEE
transactions on pattern analysis and machine intelligence, vol. 41, no. 3,
pp. 740–757, 2018.

[18] M. Kummerer, T. S. Wallis, and M. Bethge, “Saliency benchmarking
made easy: Separating models, maps and metrics,” in Proceedings of
the European Conference on Computer Vision (ECCV), 2018, pp. 770–
787.

[19] O. Le Meur and T. Baccino, “Methods for comparing scanpaths and
saliency maps: strengths and weaknesses,” Behavior research methods,
vol. 45, no. 1, pp. 251–266, 2013.

[20] R. J. Peters, A. Iyer, L. Itti, and C. Koch, “Components of bottom-up
gaze allocation in natural images,” Vision research, vol. 45, no. 18, pp.
2397–2416, 2005.

[21] A. Torralba, A. Oliva, M. Castelhano, and J. Henderson, “Contextual
guidance of eye movements and attention in real-world scenes: the role
of global features in object search,” Psychological review, vol. 113, no. 4,
2006.

[22] O. Le Meur, D. Barba, P. Le Callet, and D. Thoreau, “A human
visual model-based approach of the visual attention and performance
evaluation,” in Human Vision and Electronic Imaging X, vol. 5666.
International Society for Optics and Photonics, 2005, pp. 258–267.


