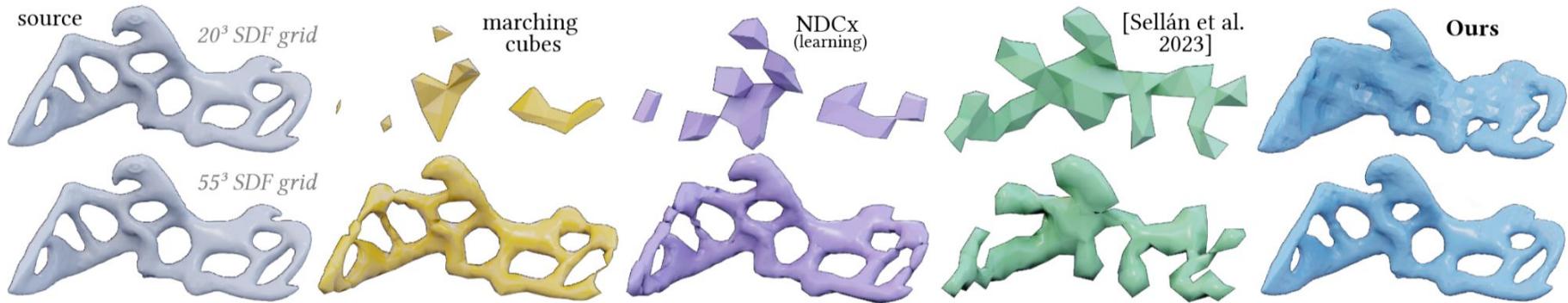


Reach for the Arcs: Reconstructing Surfaces from SDFs via Tangent Points



Silvia Sellán

Yingying Ren

Christopher Batty

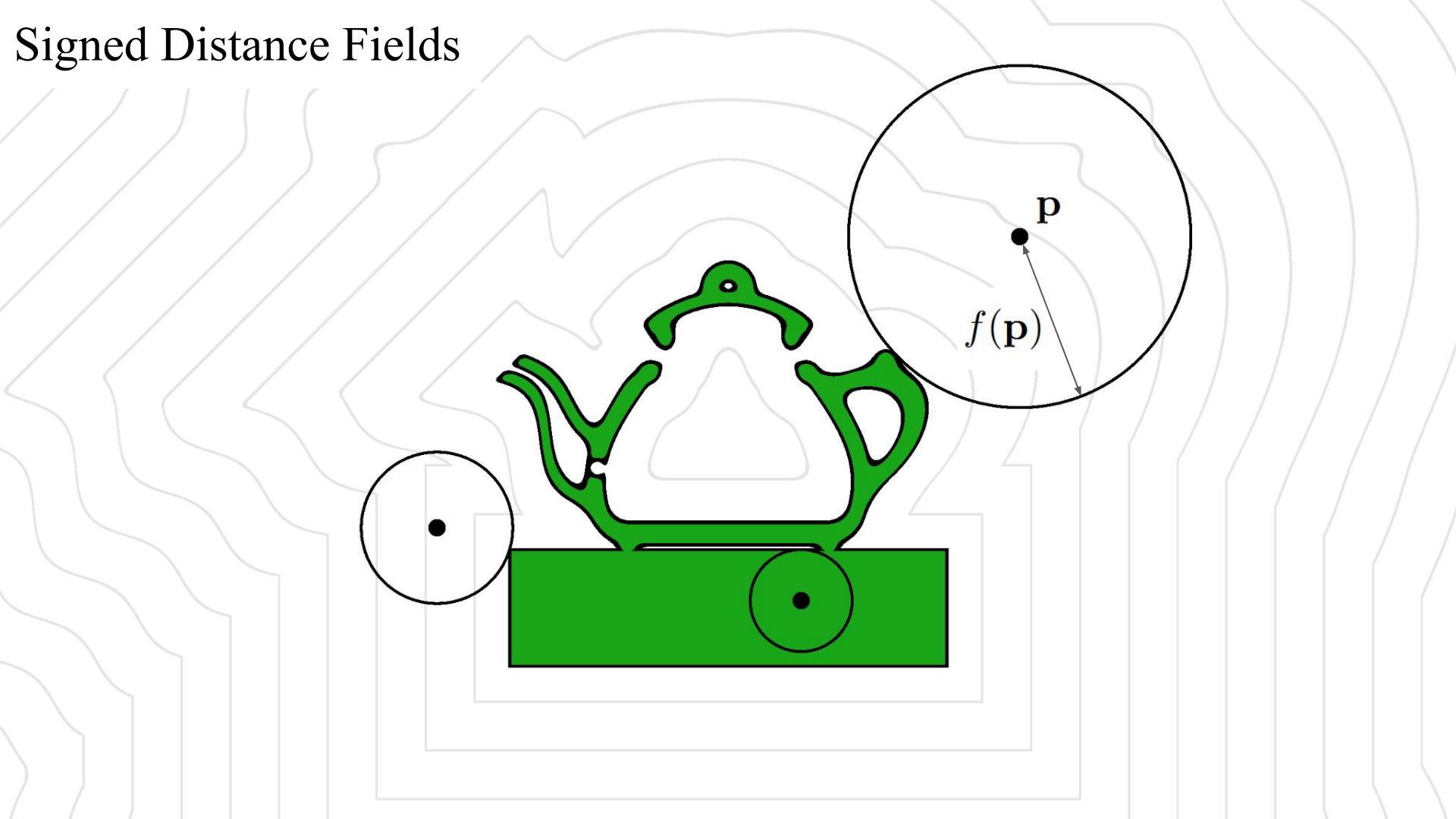
Oded Stein

Signed Distance Fields

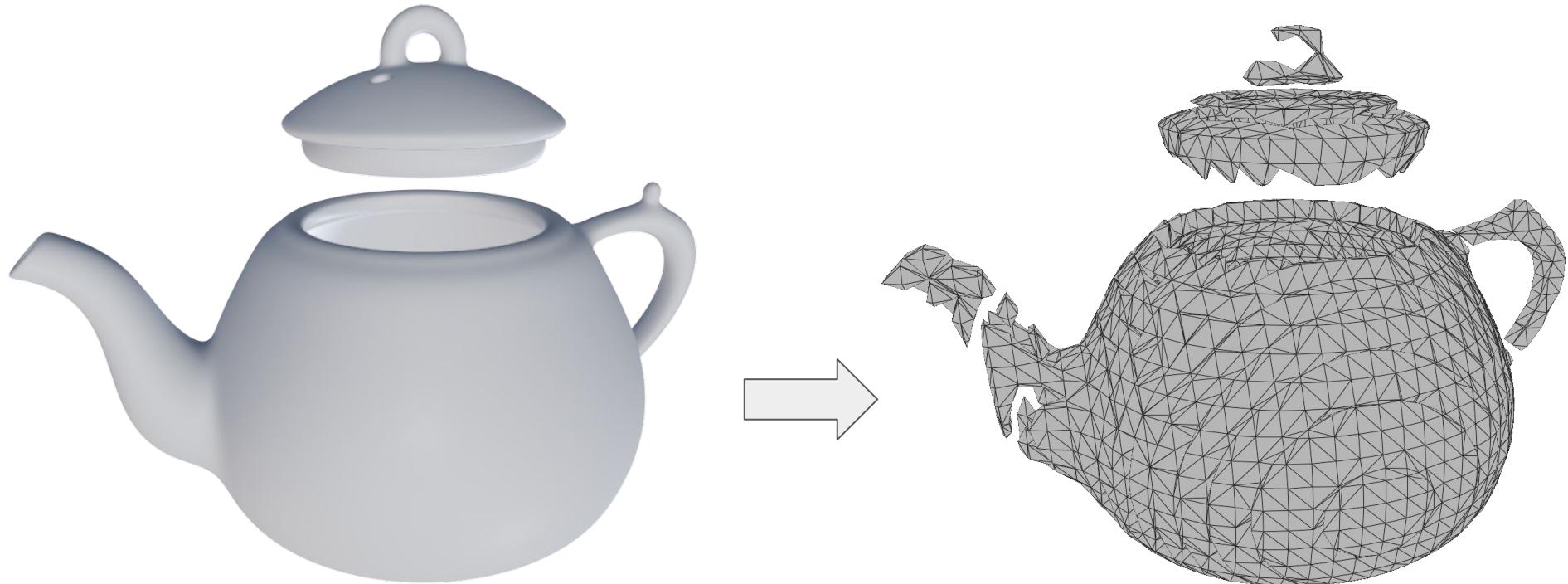
$$\mathcal{S} = \{\mathbf{p} \in \mathbb{R}^3, f(\mathbf{p}) = 0\}$$

$$|f(\mathbf{p})| = d(\mathbf{p}, \mathcal{O})$$

Signed Distance Fields



Signed Distance Fields to Mesh



Surface reconstruction - Marching Cubes

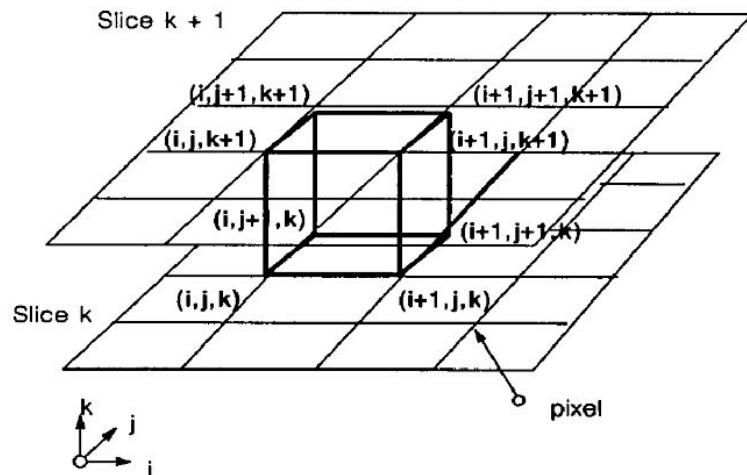


Figure 2. Marching Cube.

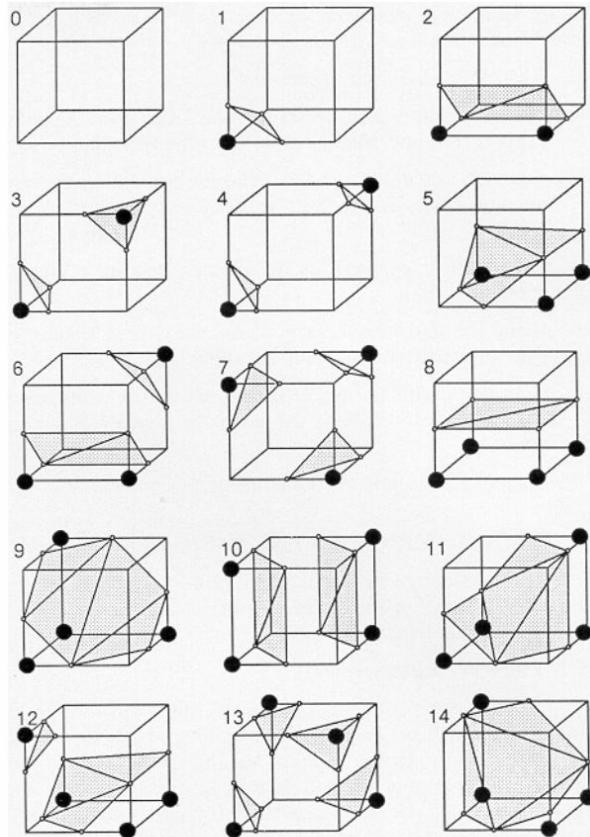
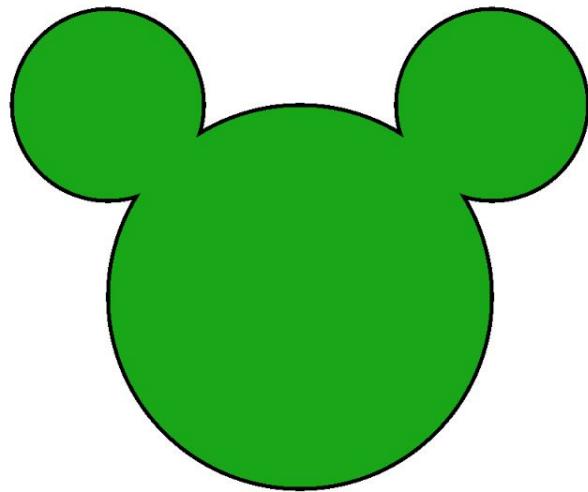
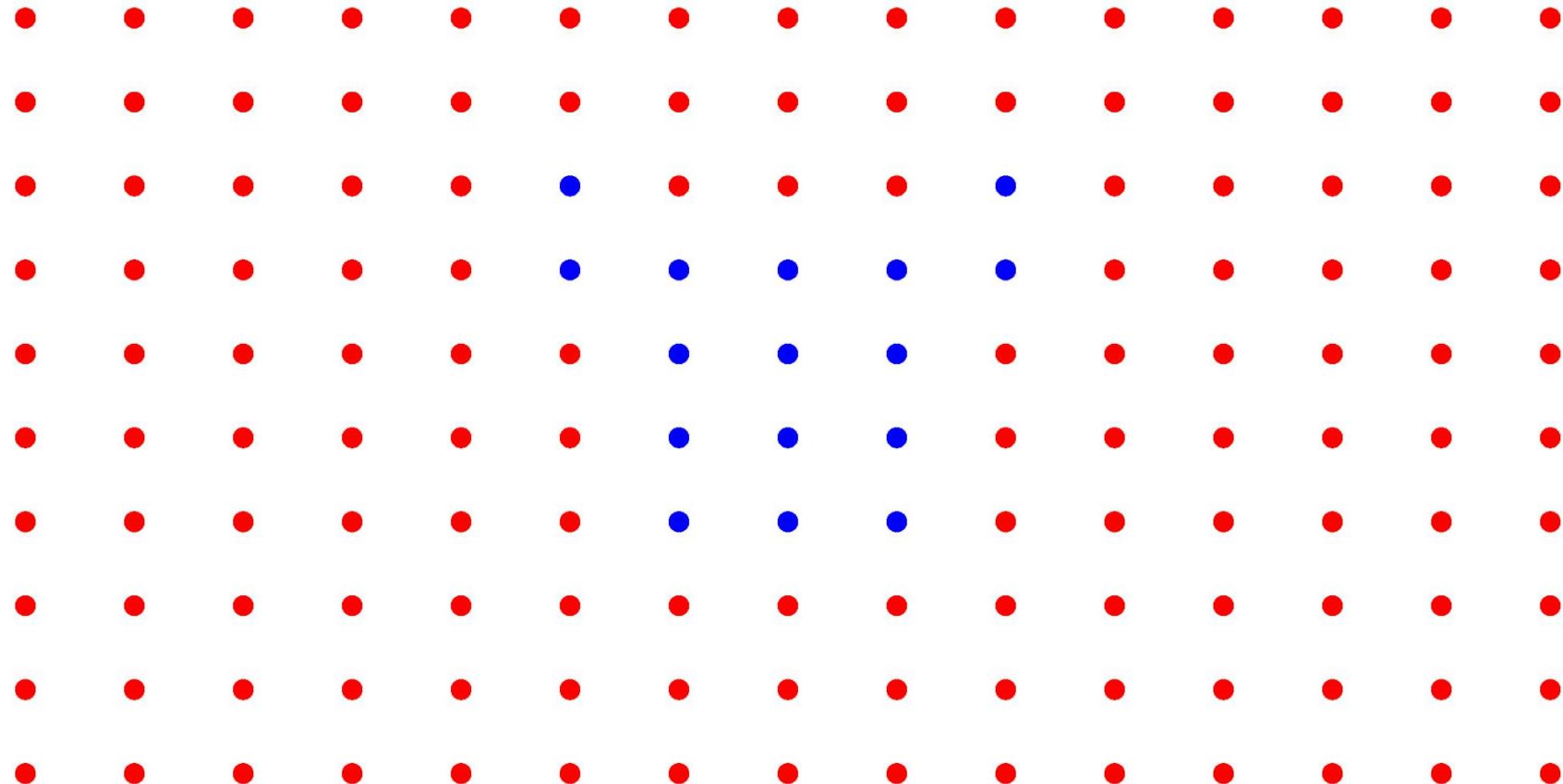


Figure 3. Triangulated Cubes.

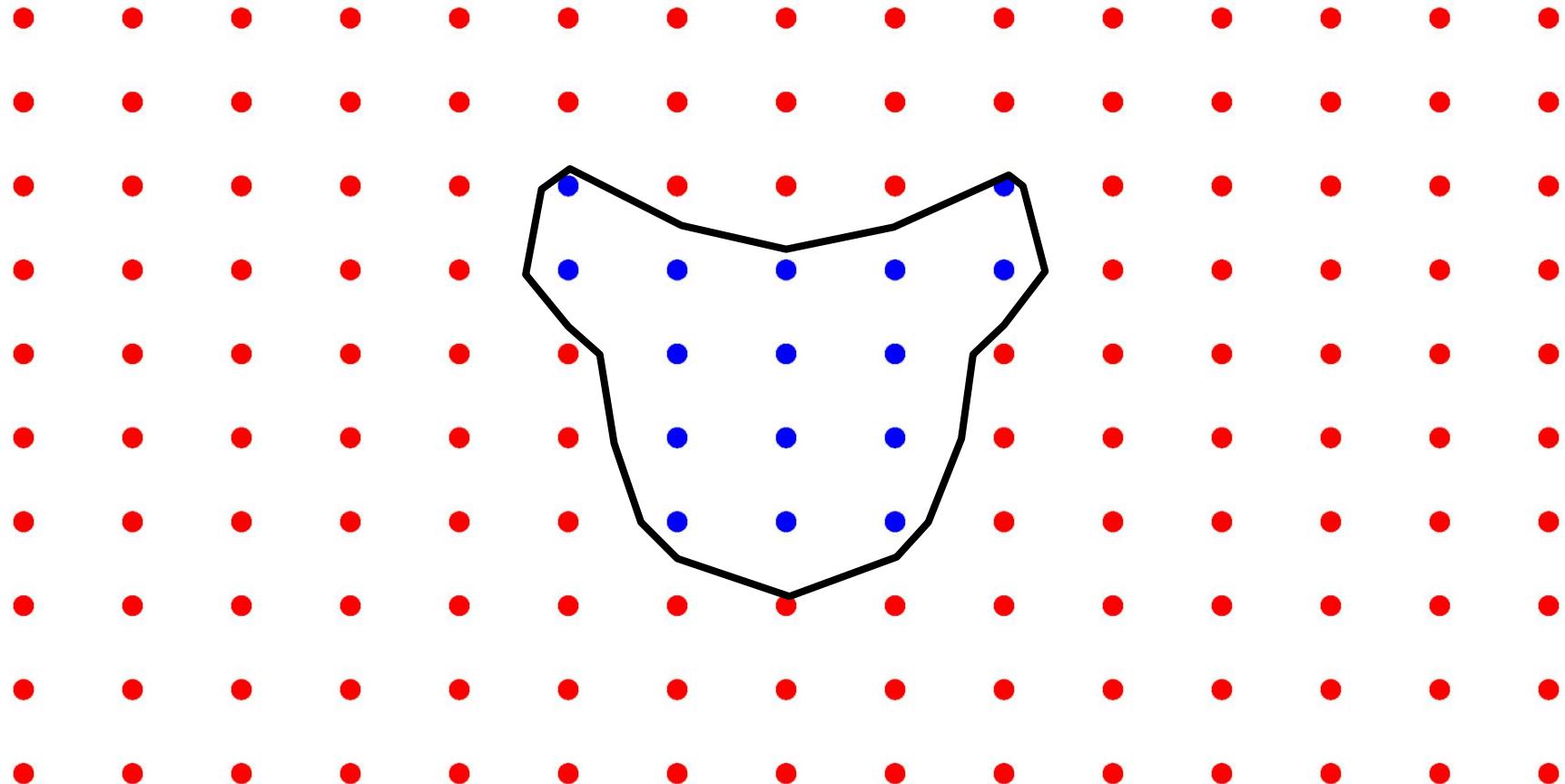
Surface reconstruction - Marching Cubes

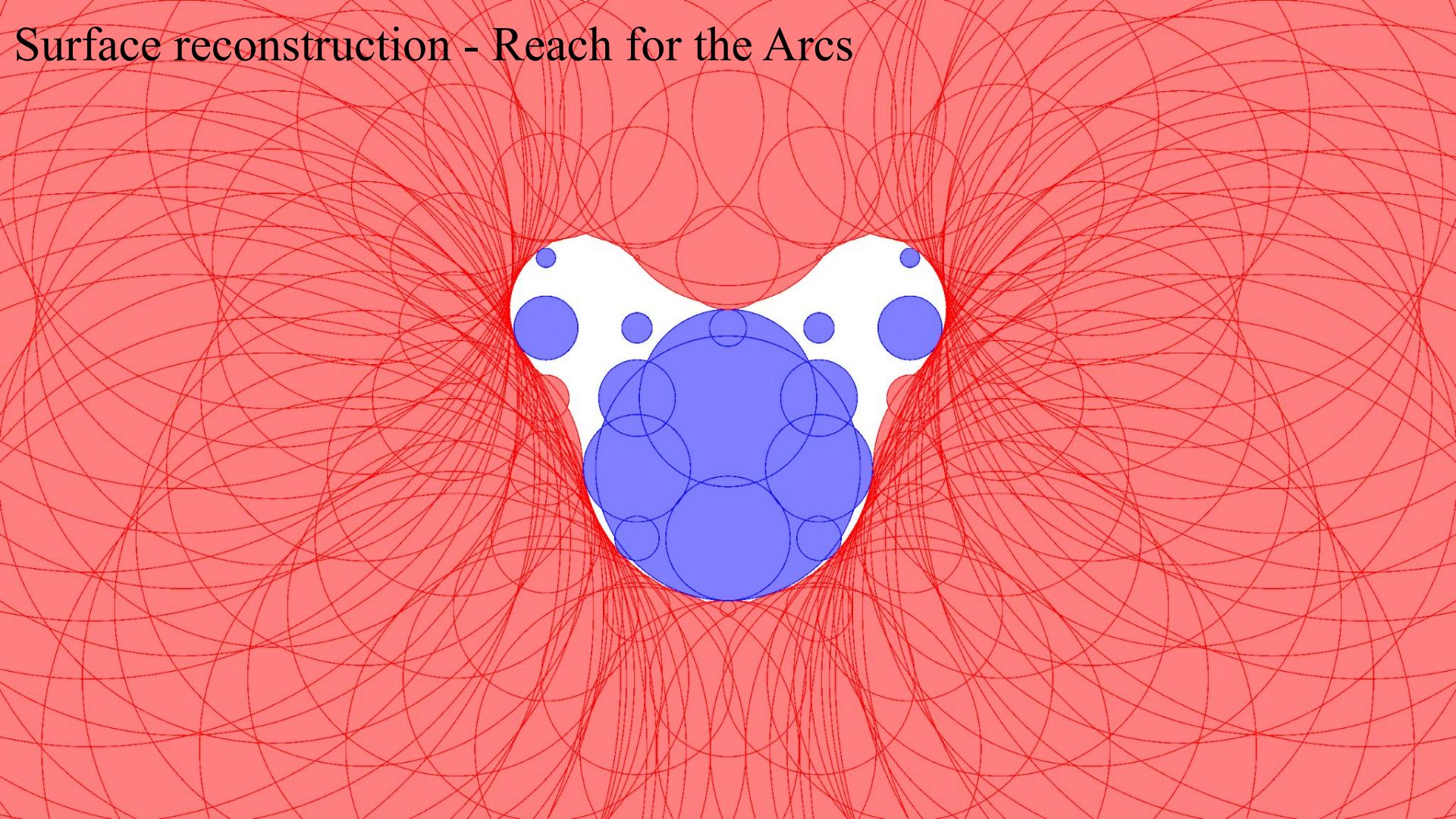


Surface reconstruction - Marching Cubes



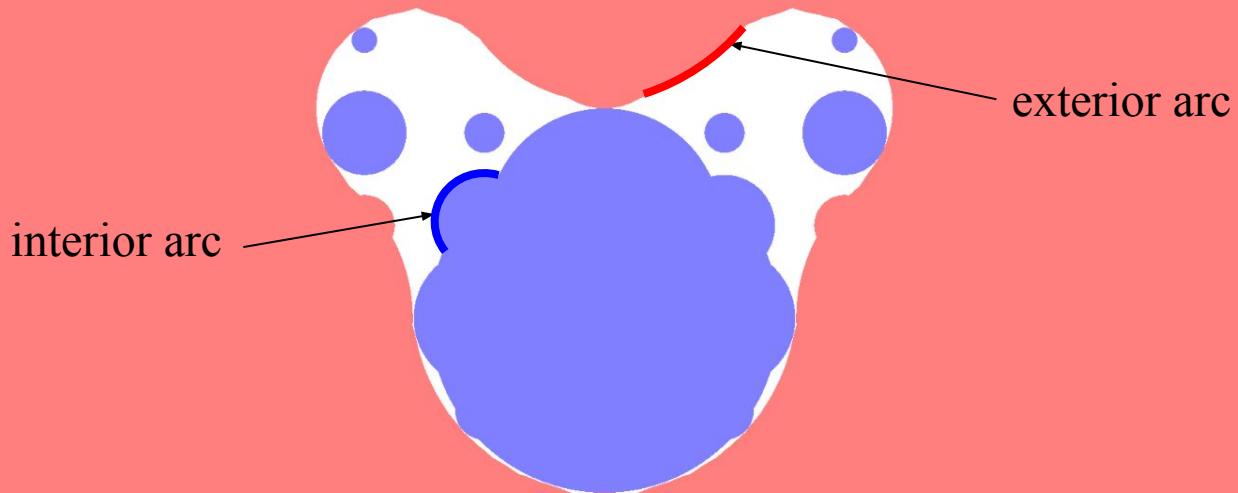
Surface reconstruction - Marching Cubes



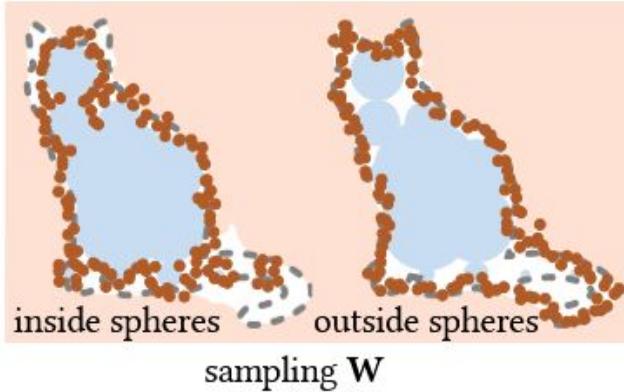
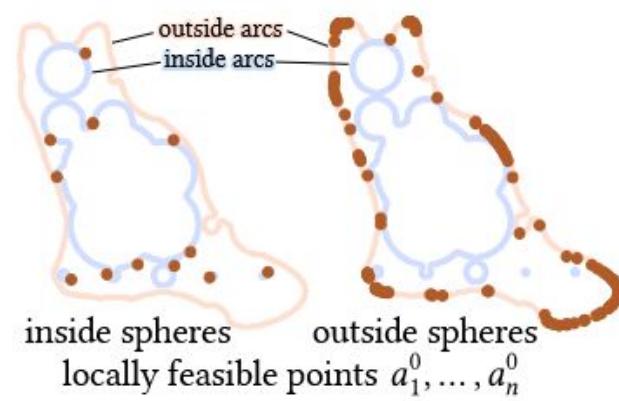
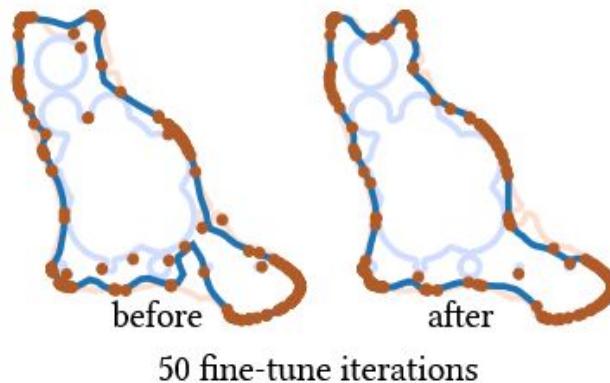
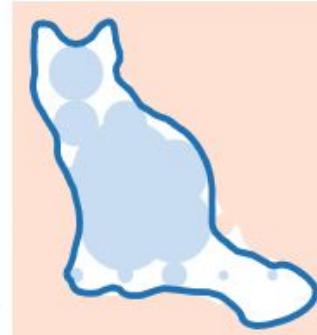


Surface reconstruction - Reach for the Arcs

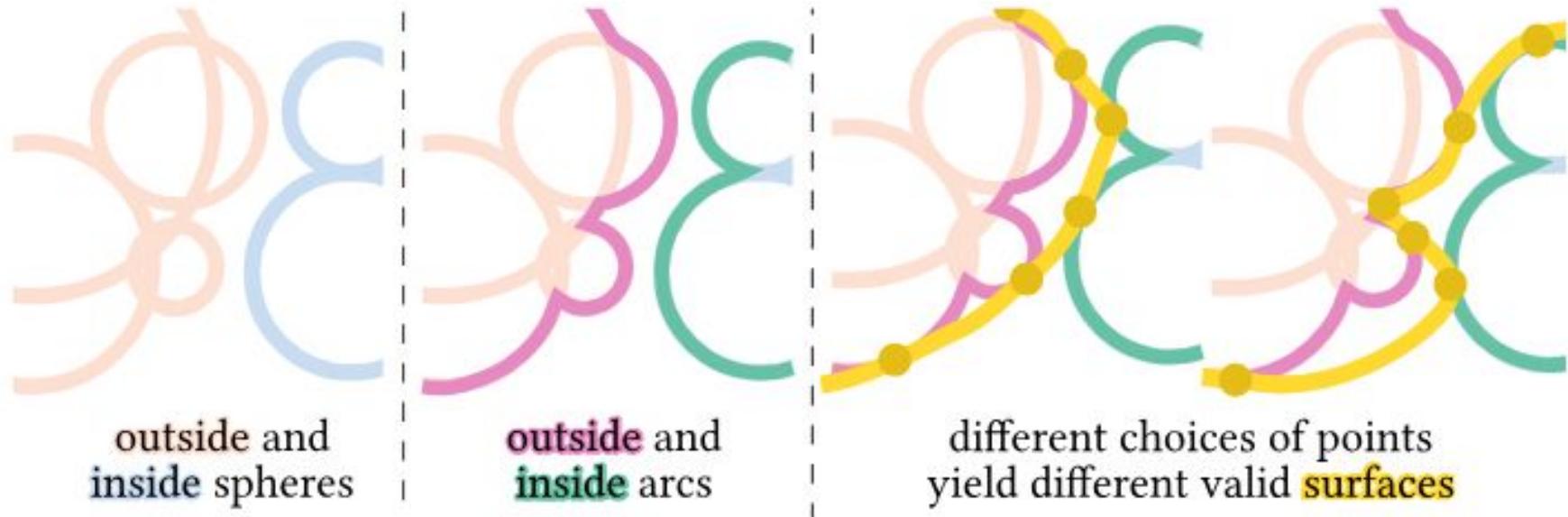
Surface reconstruction - Reach for the Arcs



Reach for the Arcs



Feasible surfaces & Feasibility arcs



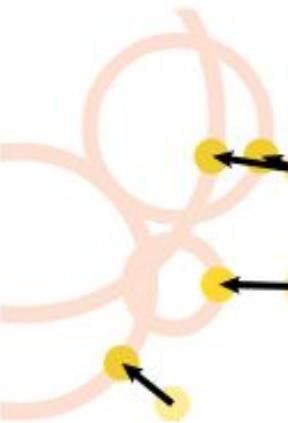
In other words, a feasible surface must be tangent to every *feasibility arc*

$$\mathcal{A}_i = \mathcal{S}_i \setminus \bigcup_{j \neq i} \mathcal{S}_j,$$

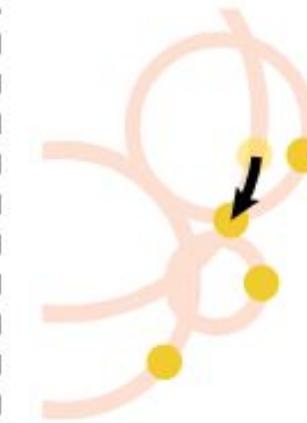
Sampling feasibility arcs

spheres

sampling W



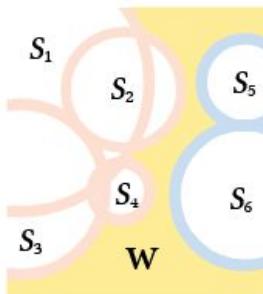
projecting
onto arcs



making points
locally feasible

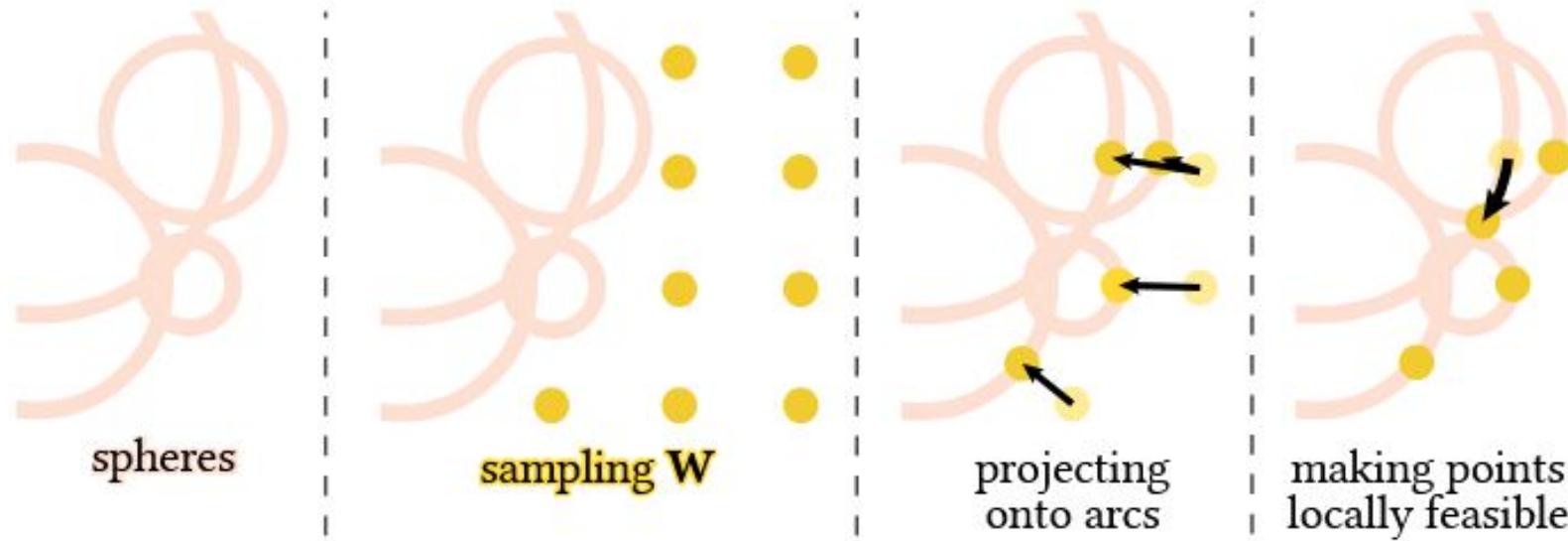
$$W = B \setminus \bigcup_{i=1}^n \text{int}(S_i)$$

↗
feasibility volume



to sample W , rasterize the
spheres in a grid

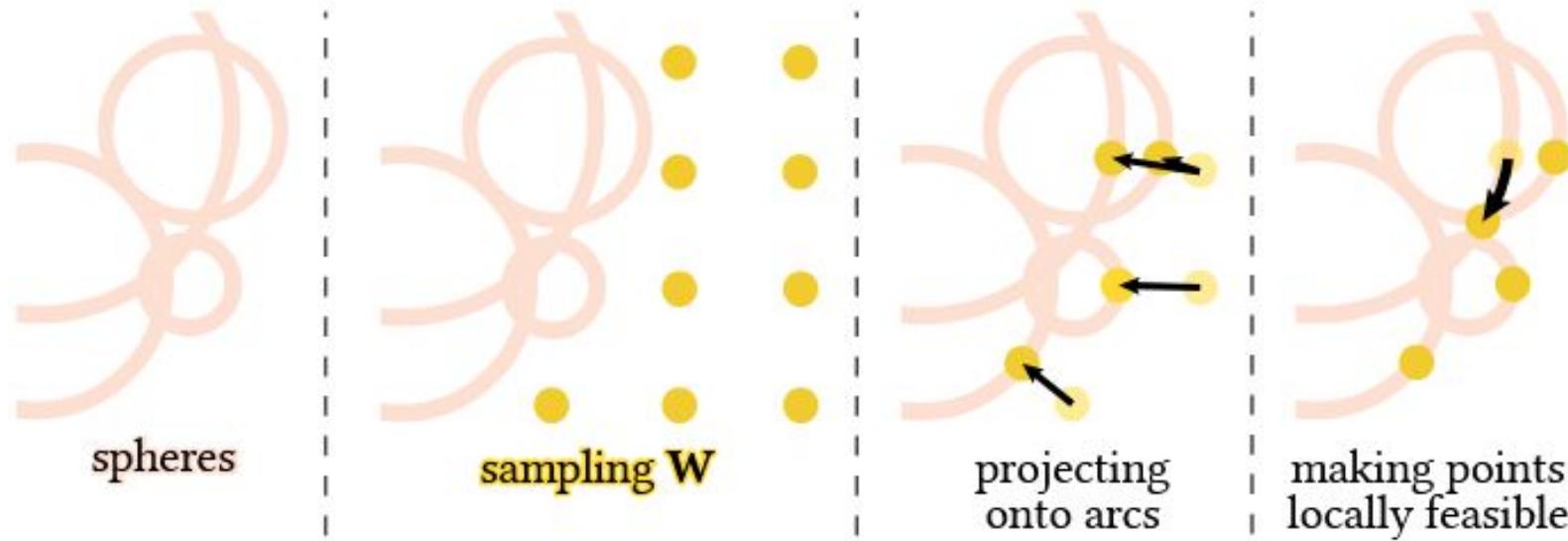
Sampling feasibility arcs



$$w^i = \operatorname{argmin}_j d(w_j, S_i)$$

find the closest sample for
each sphere

Sampling feasibility arcs



If we sampled W perfectly and with infinite density, then simply selecting w^i as the closest point to the i -th sphere would yield a point on its feasibility arc \mathcal{A}_i . I

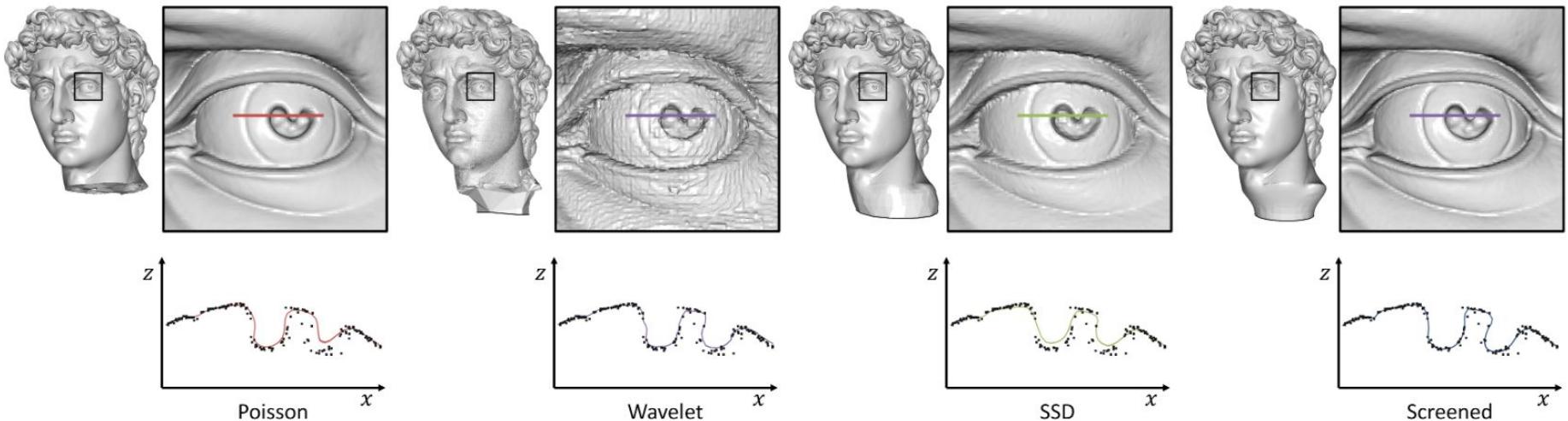
Replace with other candidates : intersection of spheres that also contain the wrong point

Surface reconstruction

Screened Poisson Surface Reconstruction

Michael Kazhdan and Hugues Hoppe. 2013

The problem of **point cloud reconstruction** is not too dissimilar from the task considered in this paper, in which the incomplete surface information comes instead from a discrete set of SDF samples. By explicitly elucidating this duality, we reformulate SDF reconstruction as a modified point cloud reconstruction problem. As such, our work could theoretically employ any of the above listed methods and priors; however, in practice, we opt for the smoothness prior imposed by Poisson Surface Reconstruction (PSR) [Kazhdan et al. 2006] and its follow-ups [Hou et al. 2022; Kazhdan and Hoppe 2013; Sellán and Jacobson 2022, 2023].



Fine-tuning the tangency set

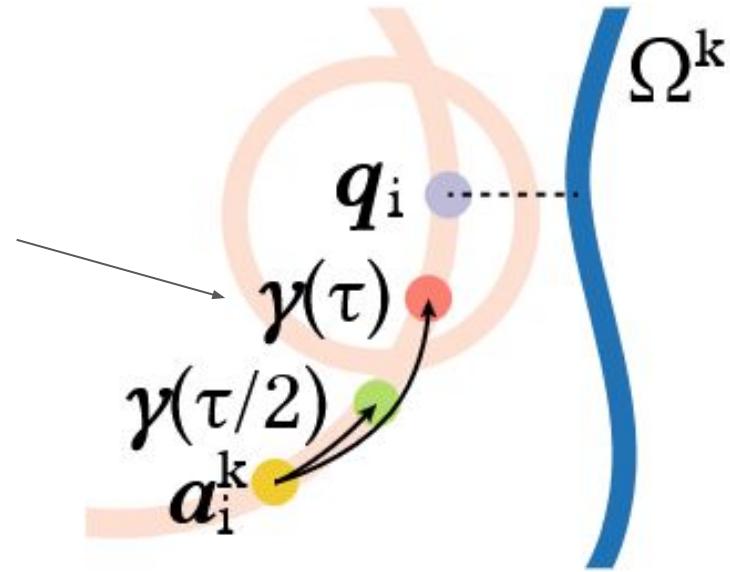
initial tangency set

$$\mathbf{a}^0 = \{a_1^0, \dots, a_n^0\}$$

reconstructed surface
at iteration k

$$\Omega^k = \Omega(\mathbf{a}^k)$$

geodesic γ
on the sphere S_i
from a_i^k to q_i

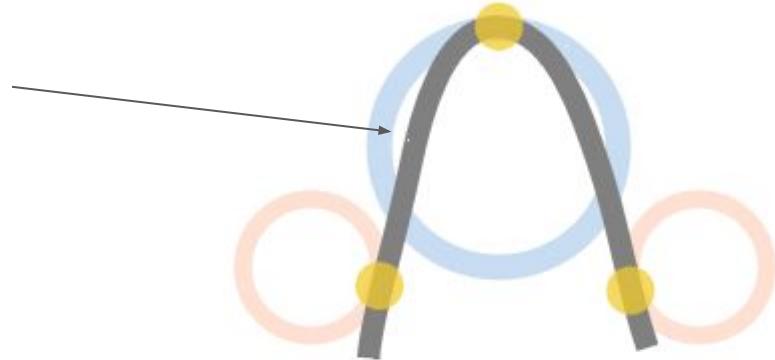


move the tangency point of
each S toward its closest point
on the surface

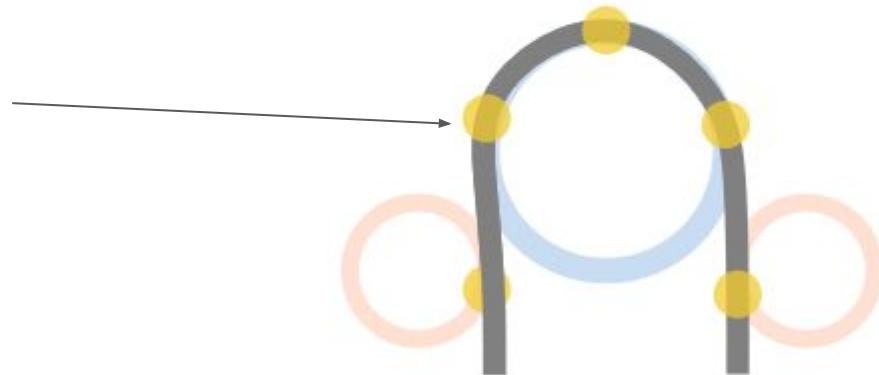
$$a_i^{k+1} = \gamma(\tau)$$

Preventing intersections

The closest surface point to S is inside S: intersection detected

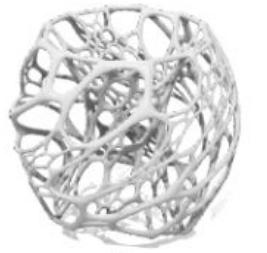


Multiple tangency point
for one sphere



Results

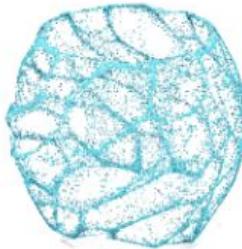
Source



$40^3 SDF$ grid

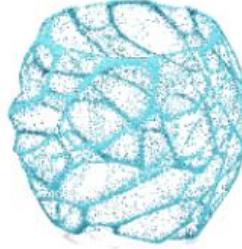
Marching
Cubes

Our algorithm...
...without fine-tuning



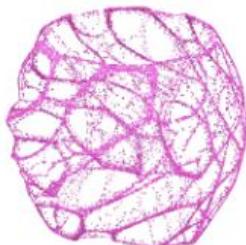
Point cloud *Reconstruction*

...with fine-tuned points
(only one per sphere)



Point cloud *Reconstruction*

...with oracle-provided “best”
one point per sphere



Point cloud *Reconstruction*

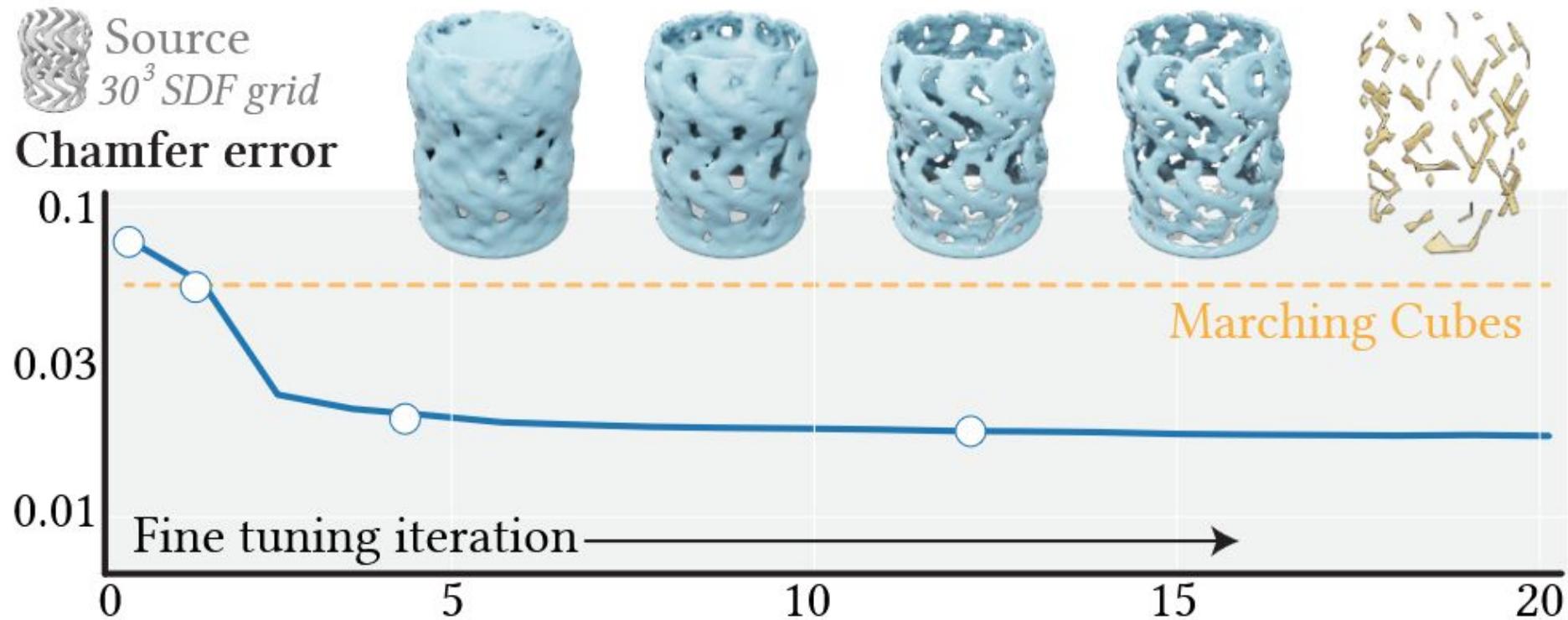
...with fine-tuned and
added points (full method)



Point cloud *Reconstruction*

Results

Results



Results

Source

10^3 SDF grid

Marching
Cubes

Neural
DC

Ours

20^3

Marching
Cubes

Neural
DC

Ours

50^3

Marching
Cubes

Neural
DC

Ours

100^3

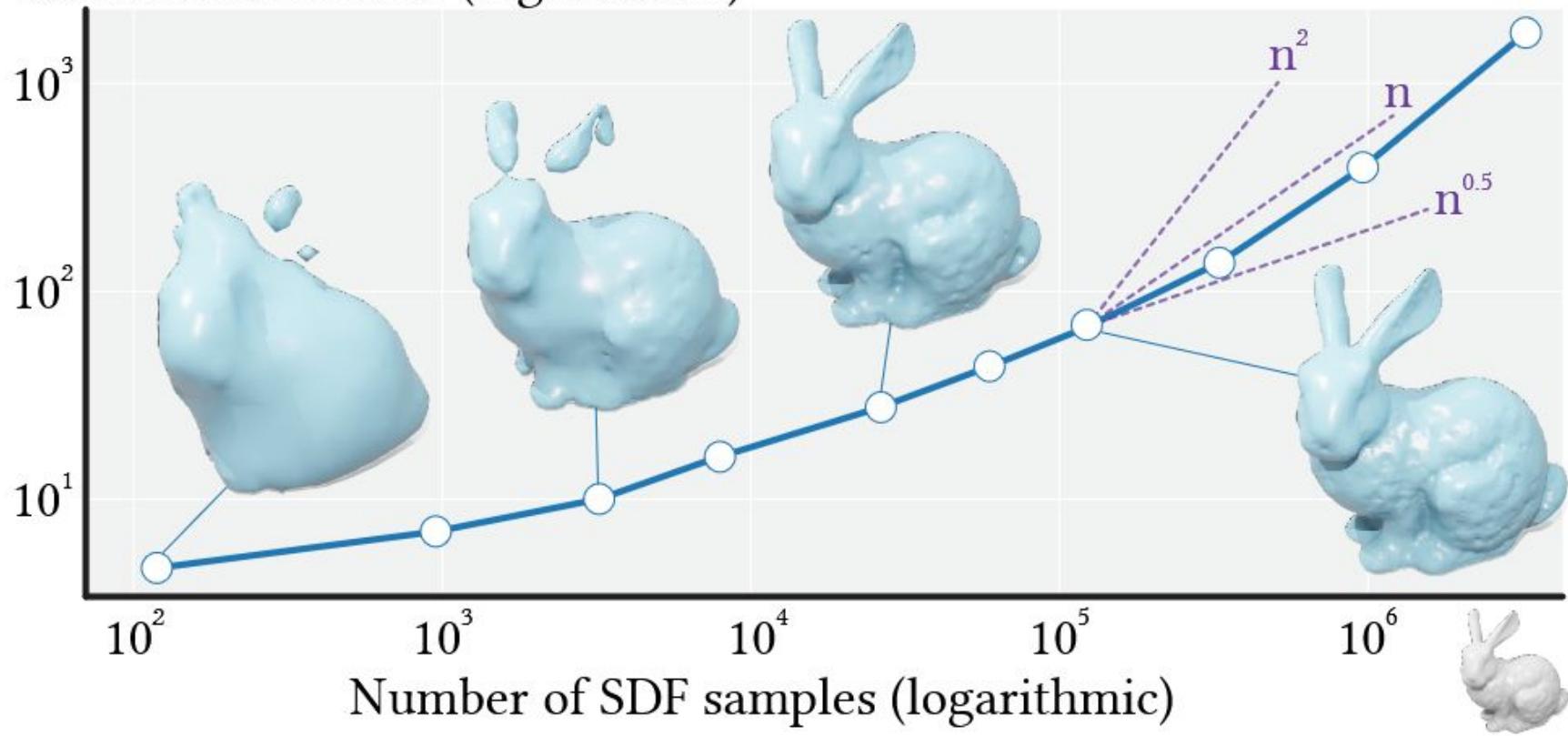
Marching
Cubes

Neural
DC

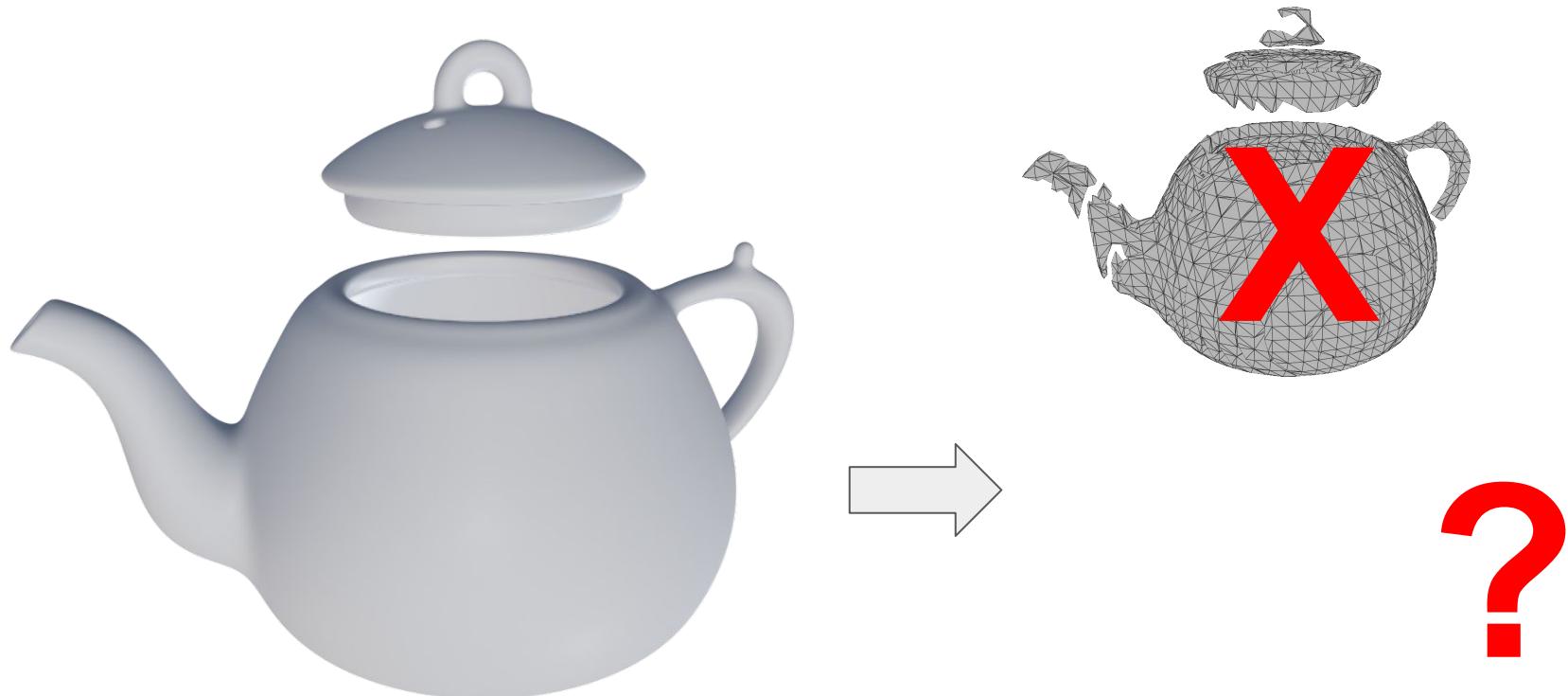
Ours

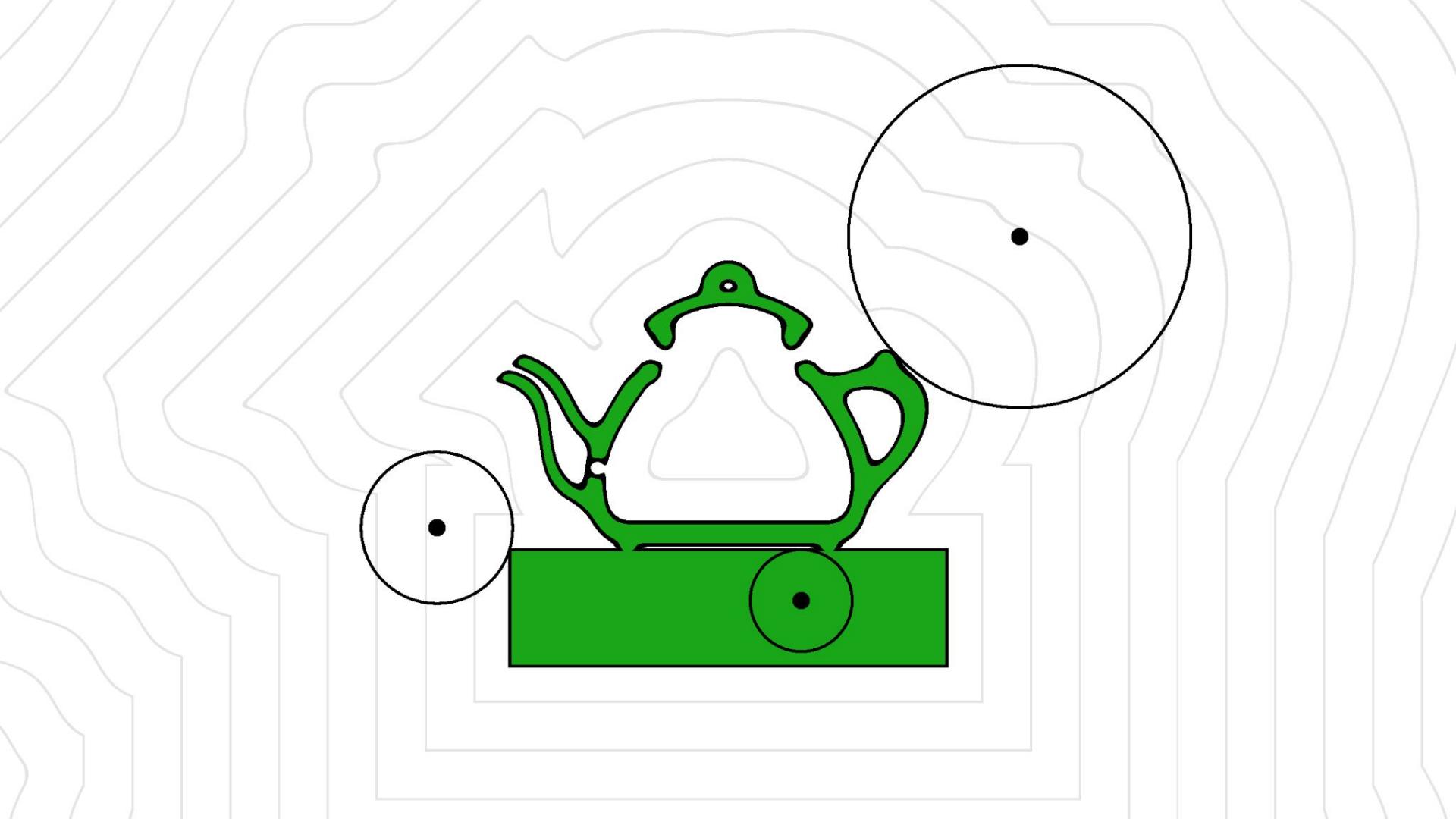
Results

Runtime in seconds (logarithmic)

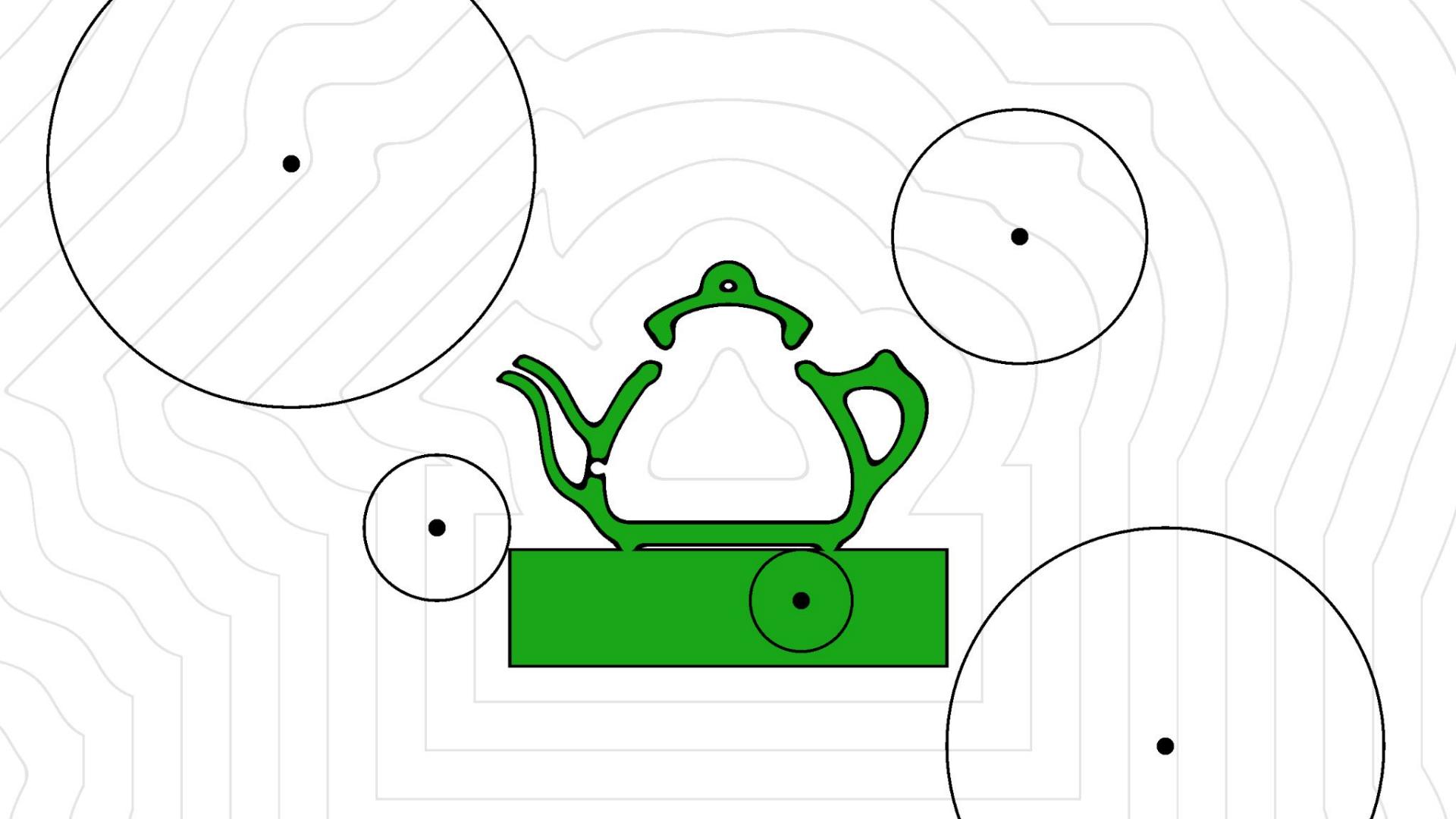


Signed Distance Fields to Mesh









Error between SDF and correct euclidean distance

