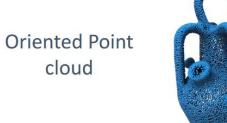
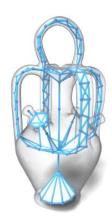
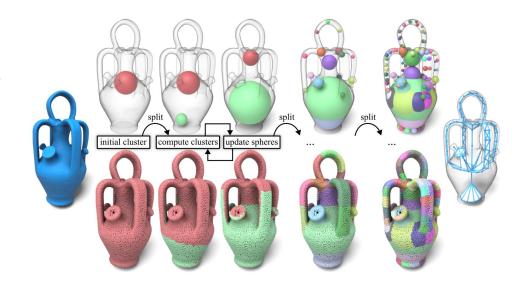

Dynamic Skeletonization via Variational Medial Axis Sampling

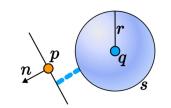

Qijia Huang, Pierre Kraemer, Sylvain Thery, Dominique Bechmann SIGGRAPH ASIA 2024


Medial axis


Discretization of Medial Axis

Method overview

1. Find medial spheres


- determine the cluster of each medial sphere
- o adjust each medial sphere to its cluster
- correction: project each adjusted medial sphere onto the medial axis
- o split sphere if required

2. Establish connectivity

Distances

- distance of sphere s=(q,r) with a point p: $d_p(s)=(\|p-q\|)-r$ distance of sphere s=(q,r) with a plane (p,n): $d_{p,n}(s)=n^t\cdot(p-q)-r$

squared distance sphere – plane: $Q_{p,n}(s) = \frac{1}{2}s^t \cdot A \cdot s - b^t \cdot s + c$

$$A = 2 \begin{bmatrix} n \cdot n^t & n \\ & & \\ & n^t & 1 \end{bmatrix}, b = 2 (n^t \cdot p) \begin{bmatrix} n \\ & \\ 1 \end{bmatrix}, c = (n^t \cdot p)^2$$

Distances of a medial sphere s to points / tangent planes

Mesh

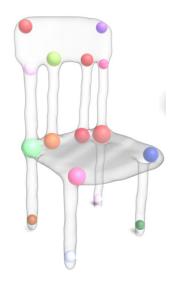
Oriented point cloud

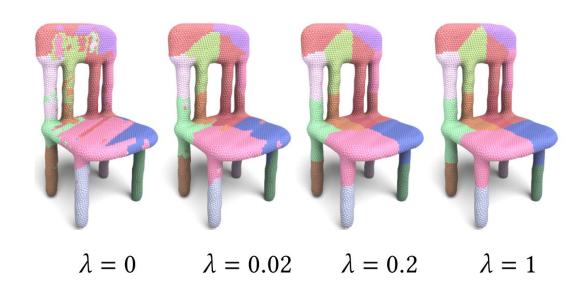
weighted squared distance from
$$v_i$$

$$D_{v_i}(s) = \left(\sum_{t_i \in T(v_i)} \frac{\mathcal{A}(t_j)}{3}\right) d_{v_i}(s)^2$$

$$Q_{v_i}(s) = \sum_{t_j \in T(v_i)} \frac{\mathcal{A}(t_j)}{3} Q_{v_i, n_j}$$

weighted squared distance from tangent planes associated with $\,\mathcal{U}_i$


$$D_{v_i}(s) = \mathcal{A}(v_i) \ d_{v_i}(s)^2$$


$$Q_{v_i}(s) = \sum_{v_j \in KNN(v_i)} \frac{\mathcal{A}(v_j)}{k} Q_{v_j, n_j}$$

Clusters associated with the medial spheres

• associate vertex v_i with the medial sphere m_i that minimizes the cost:

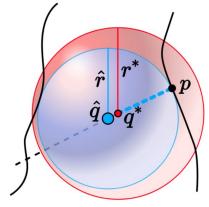
$$E_{v_i}(m_j) = Q_{v_i}(m_j) + \lambda D_{v_i}(m_j)$$

Sphere updating

• adjust each medial sphere $s_i = (q_i, r_i)$ to match the geometry of its cluster:

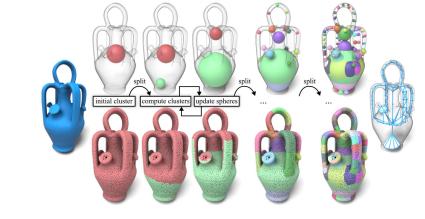
$$(q_i^*, r_i^*) = \arg\min_{q_i, r_i} \left(E_{\text{SQEM}}(C_i) + \lambda E_{\text{euclidean}}(C_i) \right)$$

$$E_{\text{SQEM}}(C_i) = \sum_{v_j \in C_i} Q_{v_j}(m_i) \qquad E_{\text{euclidean}}(C_i) = \sum_{v_j \in C_i} D_{v_j}(m_i)$$

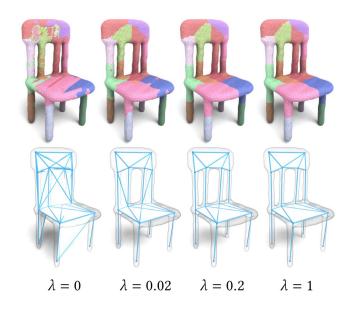

- solved with Gauss-Newton method
- final error by cluster: $E(C_i) = \frac{1}{\mathcal{A}(C_i)} \sum_{v_i \in C_i} E_{v_j}(m_i)$

Sphere correction

- Adjusted medial spheres no more on the medial axis
- Project back each medial sphere $s = (q^*, r^*)$ onto the medial axis
 - p closest point on the shape to q^*

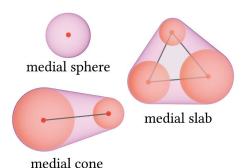

 - direction $d = \frac{q^* p}{\|q^* p\|}$ make s tangent to p along d
 - iteratively reduce its radius and move its center along d so that it becomes tangent to another

point of the shape (shrinking ball algorithm)


Sphere splitting

- start with one medial sphere
- at each iteration
 - sort the clusters by error
 - if a cluster has an error above some threshold and its neighbors clusters have not been splitted yet
 - select the vertex with maximal error, define it as a new medial sphere
- stop when all clusters errors are below some threshold (or a number of medial spheres is met)

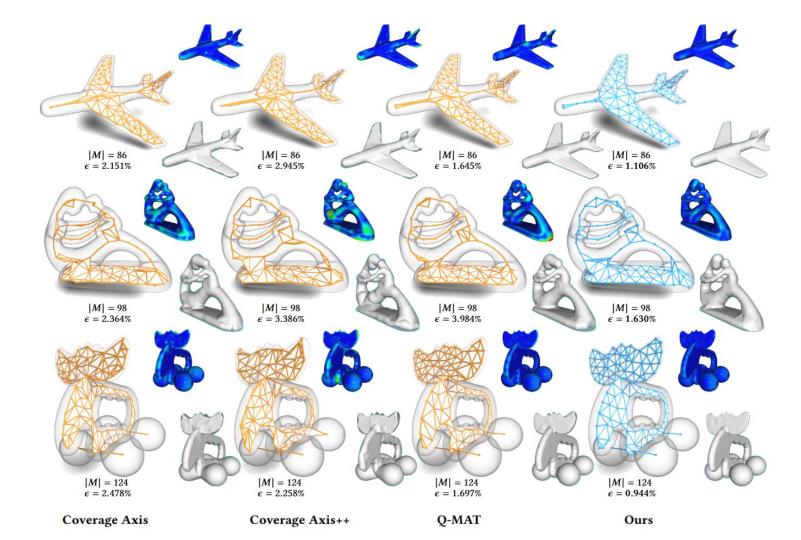
Connectivity

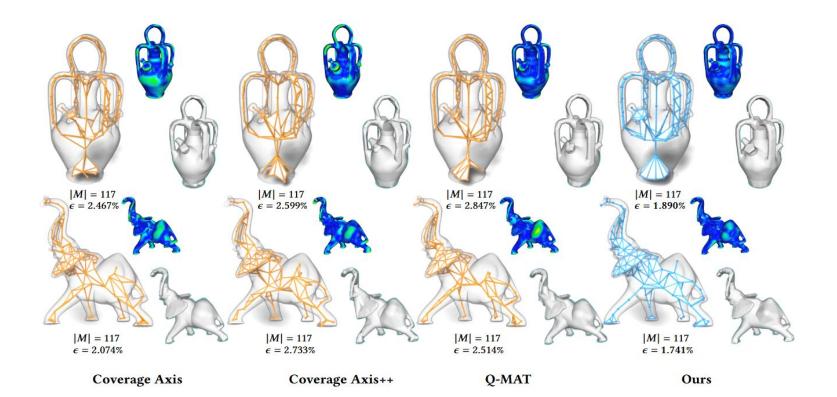

- Last step: establish the connectivity between medial spheres
 - ⇒ use the dual of the connectivity of their clusters

Results (quality)

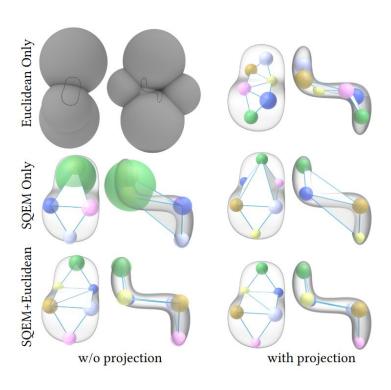
ε: two-sided Hausdorff distance between original and reconstructed shapes

reconstructed shape: interpolation of the medial spheres along the edges and faces of the medial mesh

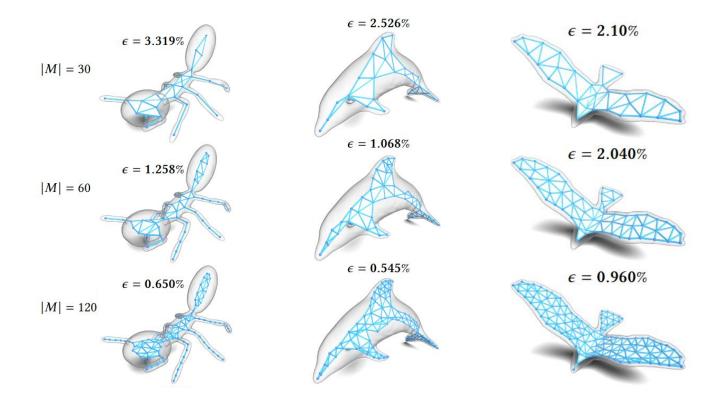

|V| number of vertices

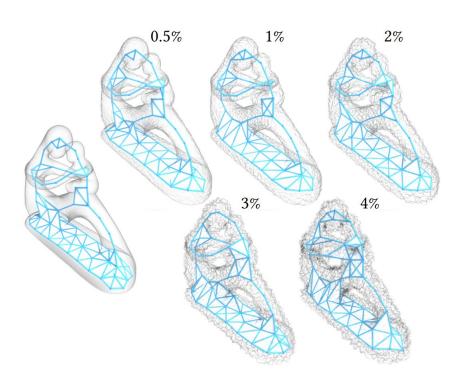

|M| number of medial spheres

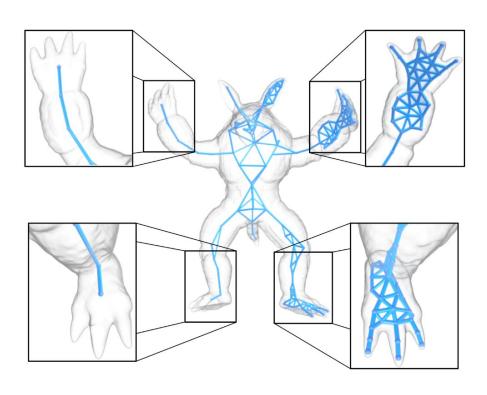
Method		Coverage Axis	Coverage Axis++	Q-MAT	$\frac{ }{ }\frac{\text{Ours}}{\epsilon}$	
Model(V)	M	ϵ	ϵ	ϵ		
Armadillo (36725)	83	3.438%	3.905%	3.860%	2.735%	
Fertility (17827)	98	2.364%	3.386%	3.984%	1.630%	
Chair (10500)	117	1.892%	2.412%	1.606%	1.123%	
Vase (14859)	117	2.467%	2.599%	2.847%	1.890%	
Elephant(24955)	117	2.074%	2.733%	2.514%	1.741%	
Bug(8640)	75	2.338%	2.429%	2.117%	1.001%	
Seahorse(20494)	76	3.195%	3.393%	5.088%	2.967%	
Dove(5519)	76	2.754%	2.885%	2.186%	0.952%	
Vessel (49698)	99	3.054%	3.033%	0.818%	1.716%	
Pinion (10369)	230	3.393%	3.319%	2.194%	2.127%	
Elk (24013)	124	2.478%	2.258%	1.697%	0.944%	
Neptune (14814)	106	4.063%	3.199%	3.329%	2.374%	
Dolphin (15100)	51	2.043%	2.446%	1.983%	1.296%	
Santa (10241)	90	2.011%	2.372%	2.158%	1.475%	
Bear (10141)	45	3.285%	3.391%	2.204%	1.659%	
Plane (7651)	86	2.151%	2.945%	1.643%	1.106%	
Spider (11051)	107	1.692%	1.604%	0.901%	0.495%	
Venus (10760)	43	2.162%	2.701%	3.768%	2.929%	


Results (time)

Method			Coverage Axis			Coverage Axis++			Q-MAT		Ours
Model(V)	M	MA init	Selection	Connectivity	Total time	Selection	Connectivity	Total time	Simplification	Total time	Time
Armadillo (36725)	83	4.528	3.6	10.476	18.604	0.93	10.753	16.211	10.323	14.851	2.179
Fertility (17827)	98	1.811	24.29	5.012	31.113	1.106	4.855	7.772	4.632	6.443	1.46
Chair (10500)	117	1.091	509.4	2.481	512.972	1.31	2.347	4.748	2.091	3.182	0.971
Vase (14859)	117	1.512	1.3	4.095	6.907	1.3	4.157	6.969	4.256	5.768	0.9
Elephant (24955)	117	2.703	3.84	6.933	13.476	1.3	7.359	11.362	6.554	9.257	2.226
Bug (8640)	75	0.91	5.1	1.96	7.97	0.9	1.991	3.801	1.848	2.758	0.429
Seahorse (20494)	76	2.019	18.85	5.494	26.363	0.9	5.511	8.43	5.074	7.093	1.035
Dove (5519)	76	0.53	>1000	1.017	>1000	0.88	1.186	2.596	1.029	1.559	0.42
Vessel (49698)	99	5.337	1.2	11.849	18.386	1.127	12.587	19.051	11.185	16.522	2.495
Pinion (10369)	230	1.02	2.3	2.295	5.615	2.79	2.289	6.099	2.439	3.459	2.584
Elk (24013)	124	2.538	2.62	6.108	11.266	3.485	6.228	12.251	5.746	8.284	1.94
Neptune (14814)	106	1.148	5.6	3.478	10.226	1.196	3.562	5.9063	3.221	4.369	1.017
Dolphin (15100)	51	1.761	4.47	4.568	10.799	0.7	4.564	7.025	4.31	6.071	0.751
Santa (10241)	90	1.07	3.89	2.628	7.588	1.04	2.768	4.878	2.529	3.599	0.598
Bear (10141)	45	1.1	2.31	2.76	6.17	0.61	2.803	4.513	2.68	3.78	0.34
Plane (7651)	86	0.751	262.1	1.999	264.85	0.973	2.039	3.763	1.51	2.262	0.529
Spider (11051)	107	1.176	1.34	2.733	5.249	1.158	2.664	4.998	2.536	3.712	0.843
Venus (10760)	43	1.11	3.02	3.023	7.154	0.597	2.973	4.681	2.659	3.77	0.343




Ablation


Resolution

Robustness to noise

Interactivity

Limitations

- Convergence / optimality?
- Topology preservation? → not the same genus
- Connectivity? → overlapping triangles / tetrahedra