Vantage Point Trees

Based on "Data Structures and Algorithms for Nearest Neighbor Search in General Metric Spaces", Peter N. Yianilos (1993) - http://algorithmics.Isi.upc.edu/docs/practicas/p311-yianilos.pdf
(Image from https://fribbels.github.io/vptree/writeup)

Problem

- Nearest Neighbor Search
- given X a dataset of N points and a query point q, find the point x_{i} minimizing the distance between itself and q.

Problem

- Nearest Neighbor Search
- given X a dataset of N points and a query point q , find the point x_{i} minimizing the distance between itself and q.
- Set of possible solutions
- Brute Force, $\mathrm{O}\left(\mathrm{N}^{2}\right)$

Problem

- Nearest Neighbor Search
- given X a dataset of N points and a query point q, find the point x_{i} minimizing the distance between itself and q.
- Set of possible solutions
- Brute Force, $\mathrm{O}\left(\mathrm{N}^{2}\right)$
- Metric Trees
- KD-trees

Problem

- Nearest Neighbor Search
- given X a dataset of N points and a query point q, find the point x_{i} minimizing the distance between itself and q.
- Set of possible solutions
- Brute Force, $\mathrm{O}\left(\mathrm{N}^{2}\right)$
- Metric Trees
- KD-trees
- Ball Trees

Problem

- Nearest Neighbor Search
- given X a dataset of N points and a query point q, find the point x_{i} minimizing the distance between itself and q.
- Set of possible solutions
- Brute Force, $\mathrm{O}\left(\mathrm{N}^{2}\right)$
- Metric Trees
- KD-trees
- Ball Trees
- Vantage Point Trees
- $\mathrm{O}(\mathrm{N} \log (\mathrm{N}))$ to build it

- $\mathrm{O}(\log (\mathrm{N}))$ for a NN Search
(Images from https://link.springer.com/content/pdf/10.1007/978-3-540-88688-4 27.pdf)

Vantage Point Tree: Construction

1. Select a vantage point v in X (eg. following a uniform distribution);

$$
\mathrm{V}
$$

Vantage Point Tree: Construction

1. Select a vantage point v in X (eg. following a uniform distribution);
2. Compute the distances $\mathrm{d}(\mathrm{v}, \mathrm{xi})$ between v and each point xi in X ;

Euclidean in this example but works with any metric respecting the triangle inequality!

Vantage Point Tree: Construction

1. Select a vantage point v in X (eg. following a uniform distribution);
2. Compute the distances $\mathrm{d}(\mathrm{v}, \mathrm{xi})$ between v and each point xi in X ;
3. Take the median μ of these distances;

V
μ

Vantage Point Tree: Construction

1. Select a vantage point v in X (eg. following a uniform distribution);
2. Compute the distances $\mathrm{d}(\mathrm{v}, \mathrm{xi})$ between v and each point xi in X ;
3. Take the median μ of these distances;
4. Divide X in 2 sets using μ as a threshold:
a. $\quad X_{\text {left }}$ the set of points closest to v is put at the left
b. $\quad X_{\text {right }}$ the set of points furthest from v is put at the right

Vantage Point Tree: Construction

1. Select a vantage point v in X (eg. following a uniform distribution);
2. Compute the distances $\mathrm{d}(\mathrm{v}, \mathrm{xi})$ between v and each point xi in X ;
3. Take the median μ of these distances;
4. Divide X in 2 sets using μ as a threshold:
a. $\quad X_{\text {left }}$ the set of points closest to v is put at the left
b. $\quad X_{\text {right }}$ the set of points furthest from v is put at the right
5. Recursively apply the same algorithm for $X_{\text {left }}$ and $X_{\text {right }}$

Vantage Point Tree: Construction

1. Select a vantage point v in X (eg. following a uniform distribution);
2. Compute the distances $d(v, x i)$ between v and each point $x i$ in X;
3. Take the median μ of these distances;
4. Divide X in 2 sets using μ as a threshold:
a. $\quad X_{\text {left }}$ the set of points closest to v is put at the left
b. $\quad X_{\text {right }}$ the set of points furthest from v is put at the right
5. Recursively apply the same algorithm for $X_{\text {left }}$ and $X_{\text {right }}$

Vantage Point Tree: Construction

1. Select a vantage point v in X (eg. following a uniform distribution);
2. Compute the distances $\mathrm{d}(\mathrm{v}, \mathrm{xi})$ between v and each point xi in X ;
3. Take the media
4. Divide X in 2 s
a. $X_{\text {left }}$ the set of

DEMO

b. $X_{\text {right }}$ the set o
5. Recursively appry the same algorinm ror $x_{\text {left }}$ and $x_{\text {right }}$

Vantage Point Tree: NN Search

- Given a query point q, we define $\boldsymbol{\tau}$ the radius of the sphere representing the search space in which we search the NN of q

Vantage Point Tree: NN Search

- Given a query point q, we define $\boldsymbol{\tau}$ the radius of the sphere representing the search space in which we search the NN of q
- Beginning at the root (v, μ) of the VP Tree:

1. Check whether $d(q, v)<\tau$: if true then current $N N=v$ and $\tau=d(q, v)$

Vantage Point Tree: NN Search

- Given a query point q, we define $\boldsymbol{\tau}$ the radius of the sphere representing the search space in which we search the NN of q
- Beginning at the root (v, μ) of the VP Tree:

1. Check whether $\mathrm{d}(\mathrm{q}, \mathrm{v})<\mathrm{T}$: if true then current $\mathrm{NN}=\mathrm{v}$ and $\mathrm{T}=\mathrm{d}(\mathrm{q}, \mathrm{v})$
2. Then 3 cases:
a. If the q-sphere is inside the v-sphere: explore left tree only

Vantage Point Tree: NN Search

- Given a query point q, we define $\boldsymbol{\tau}$ the radius of the sphere representing the search space in which we search the NN of q
- Beginning at the root (v, μ) of the VP Tree:

1. Check whether $d(q, v)<\tau$: if true then current $N N=v$ and $\tau=d(q, v)$
2. Then 3 cases:
a. If the q-sphere is inside the v-sphere: explore left tree only
b. If the q -sphere is not inside the v -sphere: explore right tree only

Vantage Point Tree: NN Search

- Given a query point q, we define $\boldsymbol{\tau}$ the radius of the sphere representing the search space in which we search the NN of q
- Beginning at the root (v, μ) of the VP Tree:

1. Check whether $d(q, v)<\tau$: if true then current $N N=v$ and $\tau=d(q, v)$
2. Then 3 cases:
a. If the q-sphere is inside the v-sphere: explore left tree only
b. If the q-sphere is not inside the v-sphere: explore right tree only

c. If the q -sphere is inside and outside the v -sphere: explore the left tree and the right tree

Vantage Point Tree: Extensions

- VPS-Tree
- Instead of retaining only the median, a node retains 2 values per ancestor corresponding to the boundaries of the corresponding subspace

Figure 5: Sample 32-bit machine data structure imple mentations for the most basic vp-tree, the vp^{s}-tree, anc the $\mathrm{vp}^{\mathrm{sb}}$-tree.

Vantage Point Tree: Extensions

- VPS-Tree
- Instead of retaining only the median, a node retains 2 values per ancestor corresponding to the boundaries of the corresponding subspace
- $V P^{S B}$-Tree
- A VP ${ }^{\text {S}}$-Tree in which each leaf contains B points resulting in a bucket structure
- Reduced memory consumption

Figure 5: Sample 32-bit machine data structure imple mentations for the most basic vp-tree, the vp^{s}-tree, anc the $\mathrm{vp}^{\mathrm{sb}}$-tree.

Vantage Point Tree: Extensions

- VPS-Tree
- Instead of retaining only the median, a node retains 2 values per ancestor corresponding to the boundaries of the corresponding subspace
- $V P^{S B}$-Tree
- A VP ${ }^{\text {s }}$-Tree in which each leaf contains B points resulting in a bucket structure
- Reduced memory consumption
- VP Tree in non-metric space
- With Bregman divergences:
"Bregman Vantage Point Trees for Efficient Nearest Neighbor Queries"
(Nielsen et al., 2009)

Figure 5: Sample 32-bit machine data structure imple mentations for the most basic vp-tree, the vp^{s}-tree, anc the $\mathrm{vp}^{\mathrm{sb}}$-tree.

Performance comparison with classical metric trees

Figure 6: Search Cost vs. Dimension Comparison For L_{2} Metric and Based on Nodes Visited

Figure 7: Search Cost vs. Database Size - Dimension 8

Performance comparison with classical metric trees

- "What Is a Good Nearest Neighbors Algorithm for Finding Similar Patches in Images?" (Neeraj et al., 2008)

Table 2. Summary of results. The $v p$-tree performs well in all respects.

Method	Construction Performance	ε-NN Search Performance	k-NN Search Performance
k d-Tree	Excellent	Poor	Poor
PCA Tree	Poor	Fair	Fair
Ball Tree	Fair	Excellent	Excellent
k-Means	Poor	Good	Good
$v p$-Tree	Excellent	Excellent	Excellent

Merci pour votre attention!

