
Vantage Point Trees
Based on “Data Structures and Algorithms for Nearest Neighbor Search in General Metric Spaces”,

Peter N. Yianilos (1993) - http://algorithmics.lsi.upc.edu/docs/practicas/p311-yianilos.pdf
 (Image from https://fribbels.github.io/vptree/writeup)

1

http://algorithmics.lsi.upc.edu/docs/practicas/p311-yianilos.pdf
https://fribbels.github.io/vptree/writeup

Problem

● Nearest Neighbor Search
○ given X a dataset of N points and a query point q, find the point xi minimizing the distance

between itself and q.

2

Problem

● Nearest Neighbor Search
○ given X a dataset of N points and a query point q, find the point xi minimizing the distance

between itself and q.

● Set of possible solutions
○ Brute Force, O(N2)

2

Problem

● Nearest Neighbor Search
○ given X a dataset of N points and a query point q, find the point xi minimizing the distance

between itself and q.

● Set of possible solutions
○ Brute Force, O(N2)
○ Metric Trees

■ KD-trees

2

Problem

● Nearest Neighbor Search
○ given X a dataset of N points and a query point q, find the point xi minimizing the distance

between itself and q.

● Set of possible solutions
○ Brute Force, O(N2)
○ Metric Trees

■ KD-trees
■ Ball Trees

2

Problem

● Nearest Neighbor Search
○ given X a dataset of N points and a query point q, find the point xi minimizing the distance

between itself and q.

● Set of possible solutions
○ Brute Force, O(N2)
○ Metric Trees

■ KD-trees
■ Ball Trees
■ Vantage Point Trees

● O(N log(N)) to build it
● O(log(N)) for a NN Search (Images from https://link.springer.com/content/pdf/10.1007/978-3-540-88688-4_27.pdf)

2

https://link.springer.com/content/pdf/10.1007/978-3-540-88688-4_27.pdf

Vantage Point Tree: Construction

1. Select a vantage point v in X (eg. following a uniform distribution);

V

3

Vantage Point Tree: Construction

1. Select a vantage point v in X (eg. following a uniform distribution);
2. Compute the distances d(v, xi) between v and each point xi in X;

V

3

Euclidean in this example but
works with any metric respecting
the triangle inequality!

Vantage Point Tree: Construction

1. Select a vantage point v in X (eg. following a uniform distribution);
2. Compute the distances d(v, xi) between v and each point xi in X;
3. Take the median μ of these distances;

V
μ

3

Vantage Point Tree: Construction

1. Select a vantage point v in X (eg. following a uniform distribution);
2. Compute the distances d(v, xi) between v and each point xi in X;
3. Take the median μ of these distances;
4. Divide X in 2 sets using μ as a threshold:

a. Xleft the set of points closest to v is put at the left
b. Xright the set of points furthest from v is put at the right

V
μ

Xleft Xright

3

Vantage Point Tree: Construction

1. Select a vantage point v in X (eg. following a uniform distribution);
2. Compute the distances d(v, xi) between v and each point xi in X;
3. Take the median μ of these distances;
4. Divide X in 2 sets using μ as a threshold:

a. Xleft the set of points closest to v is put at the left
b. Xright the set of points furthest from v is put at the right

5. Recursively apply the same algorithm for Xleft and Xright
V
μ

build_vpt(Xright)build_vpt(Xleft)

3

Vantage Point Tree: Construction

1. Select a vantage point v in X (eg. following a uniform distribution);
2. Compute the distances d(v, xi) between v and each point xi in X;
3. Take the median μ of these distances;
4. Divide X in 2 sets using μ as a threshold:

a. Xleft the set of points closest to v is put at the left
b. Xright the set of points furthest from v is put at the right

5. Recursively apply the same algorithm for Xleft and Xright
V
μ

build_vpt(Xright)build_vpt(Xleft)

3

Vantage Point Tree: Construction

1. Select a vantage point v in X (eg. following a uniform distribution);
2. Compute the distances d(v, xi) between v and each point xi in X;
3. Take the median μ of these distances;
4. Divide X in 2 sets using μ as a threshold:

a. Xleft the set of points closest to v is put at the left
b. Xright the set of points furthest from v is put at the right

5. Recursively apply the same algorithm for Xleft and Xright
V
μ

build_vpt(Xright)build_vpt(Xleft)

3

DEMO
https://fribbels.github.io/vptree/writeup

https://fribbels.github.io/vptree/writeup

Vantage Point Tree: NN Search

● Given a query point q, we define Τ the radius of the sphere representing the
search space in which we search the NN of q

4

Vantage Point Tree: NN Search

● Given a query point q, we define Τ the radius of the sphere representing the
search space in which we search the NN of q

● Beginning at the root (v,μ) of the VP Tree:
1. Check whether d(q,v) < Τ : if true then current NN = v and Τ = d(q,v)

vl
μl

vr
μr

v
μ

4

Vantage Point Tree: NN Search

● Given a query point q, we define Τ the radius of the sphere representing the
search space in which we search the NN of q

● Beginning at the root (v,μ) of the VP Tree:
1. Check whether d(q,v) < Τ : if true then current NN = v and Τ = d(q,v)
2. Then 3 cases:

a. If the q-sphere is inside the v-sphere: explore left tree only vl
μl

vr
μr

v
μ

4

Vantage Point Tree: NN Search

● Given a query point q, we define Τ the radius of the sphere representing the
search space in which we search the NN of q

● Beginning at the root (v,μ) of the VP Tree:
1. Check whether d(q,v) < Τ : if true then current NN = v and Τ = d(q,v)
2. Then 3 cases:

a. If the q-sphere is inside the v-sphere: explore left tree only
b. If the q-sphere is not inside the v-sphere: explore right tree only

vl
μl

vr
μr

v
μ

4

Vantage Point Tree: NN Search

● Given a query point q, we define Τ the radius of the sphere representing the
search space in which we search the NN of q

● Beginning at the root (v,μ) of the VP Tree:
1. Check whether d(q,v) < Τ : if true then current NN = v and Τ = d(q,v)
2. Then 3 cases:

a. If the q-sphere is inside the v-sphere: explore left tree only
b. If the q-sphere is not inside the v-sphere: explore right tree only
c. If the q-sphere is inside and outside the v-sphere: explore the left tree and the right tree

vl
μl

vr
μr

v
μ

4

Vantage Point Tree: Extensions

● VPS-Tree
○ Instead of retaining only the median,

a node retains 2 values per ancestor
corresponding to the boundaries of the
corresponding subspace

5

Vantage Point Tree: Extensions

● VPS-Tree
○ Instead of retaining only the median,

a node retains 2 values per ancestor
corresponding to the boundaries of the
corresponding subspace

● VPSB-Tree
○ A VPS-Tree in which each leaf contains

B points resulting in a bucket structure
○ Reduced memory consumption

5

Vantage Point Tree: Extensions

● VPS-Tree
○ Instead of retaining only the median,

a node retains 2 values per ancestor
corresponding to the boundaries of the
corresponding subspace

● VPSB-Tree
○ A VPS-Tree in which each leaf contains

B points resulting in a bucket structure
○ Reduced memory consumption

● VP Tree in non-metric space
○ With Bregman divergences:

“Bregman Vantage Point Trees for Efficient
Nearest Neighbor Queries”
(Nielsen et al., 2009)

5

Performance comparison with classical metric trees

6

Performance comparison with classical metric trees

● “What Is a Good Nearest Neighbors Algorithm for Finding Similar Patches in Images?” (Neeraj et al.,
2008)

7

Merci pour votre attention !

