Vantage Point Trees

Based on "Data Structures and Algorithms for Nearest Neighbor Search in General Metric Spaces", Peter N. Yianilos (1993) - <u>http://algorithmics.lsi.upc.edu/docs/practicas/p311-yianilos.pdf</u>

(Image from https://fribbels.github.io/vptree/writeup)

- Nearest Neighbor Search
 - given X a dataset of N points and a query point q, find the point x_i minimizing the distance between itself and q.

- Nearest Neighbor Search
 - given X a dataset of N points and a query point q, find the point x_i minimizing the distance between itself and q.

- Set of possible solutions
 - Brute Force, $O(N^2)$

- Nearest Neighbor Search
 - given X a dataset of N points and a query point q, find the point x_i minimizing the distance between itself and q.

- Set of possible solutions
 - \circ Brute Force, O(N²)
 - Metric Trees
 - KD-trees

- Nearest Neighbor Search
 - given X a dataset of N points and a query point q, find the point x_i minimizing the distance between itself and q.

- Set of possible solutions
 - \circ Brute Force, O(N²)
 - Metric Trees
 - KD-trees
 - Ball Trees

- Nearest Neighbor Search
 - given X a dataset of N points and a query point q, find the point x_i minimizing the distance between itself and q.

- Set of possible solutions
 - Brute Force, O(N²)
 - Metric Trees
 - KD-trees
 - Ball Trees
 - Vantage Point Trees
 - O(N log(N)) to build it
 - O(log(N)) for a NN Search

(Images from https://link.springer.com/content/pdf/10.1007/978-3-540-88688-4_27.pdf)

1. Select a vantage point v in X (eg. following a uniform distribution);

V

- 1. Select a vantage point v in X (eg. following a uniform distribution);
- 2. Compute the distances d(v, xi) between v and each point xi in X;

Euclidean in this example but works with any metric respecting the triangle inequality!

V

- 1. Select a vantage point v in X (eg. following a uniform distribution);
- 2. Compute the distances d(v, xi) between v and each point xi in X;
- 3. Take the median μ of these distances;

- 1. Select a vantage point v in X (eg. following a uniform distribution);
- 2. Compute the distances d(v, xi) between v and each point xi in X;
- 3. Take the median μ of these distances;
- 4. Divide X in 2 sets using μ as a threshold:
 - a. X_{left} the set of points closest to v is put at the left
 - b. X_{right} the set of points furthest from v is put at the right

- 1. Select a vantage point v in X (eg. following a uniform distribution);
- 2. Compute the distances d(v, xi) between v and each point xi in X;
- 3. Take the median μ of these distances;
- 4. Divide X in 2 sets using μ as a threshold:
 - a. X_{left} the set of points closest to v is put at the left
 - b. X_{right} the set of points furthest from v is put at the right
- 5. Recursively apply the same algorithm for X_{left} and X_{right}

- 1. Select a vantage point v in X (eg. following a uniform distribution);
- 2. Compute the distances d(v, xi) between v and each point xi in X;
- 3. Take the median μ of these distances;
- 4. Divide X in 2 sets using μ as a threshold:
 - a. X_{left} the set of points closest to v is put at the left
 - b. X_{right} the set of points furthest from v is put at the right
- 5. Recursively apply the same algorithm for X_{left} and X_{right}

- 1. Select a vantage point v in X (eg. following a uniform distribution);
- 2. Compute the distances d(v, xi) between v and each point xi in X;

Given a query point q, we define τ the radius of the sphere representing the search space in which we search the NN of q

- Given a query point q, we define τ the radius of the sphere representing the search space in which we search the NN of q
- Beginning at the root (v,µ) of the VP Tree:
 - 1. Check whether $d(q,v) < \tau$: if true then current NN = v and $\tau = d(q,v)$

- Given a query point q, we define τ the radius of the sphere representing the search space in which we search the NN of q
- Beginning at the root (v,µ) of the VP Tree:
 - 1. Check whether $d(q,v) < \tau$: if true then current NN = v and $\tau = d(q,v)$
 - 2. Then 3 cases:
 - a. If the q-sphere is inside the v-sphere: explore left tree only

- Given a query point q, we define τ the radius of the sphere representing the search space in which we search the NN of q
- Beginning at the root (v,μ) of the VP Tree:
 - 1. Check whether $d(q,v) < \tau$: if true then current NN = v and $\tau = d(q,v)$
 - 2. Then 3 cases:
 - a. If the q-sphere is inside the v-sphere: explore left tree only
 - b. If the q-sphere is not inside the v-sphere: explore right tree only

- Given a query point q, we define τ the radius of the sphere representing the search space in which we search the NN of q
- Beginning at the root (v,μ) of the VP Tree:
 - 1. Check whether $d(q,v) < \tau$: if true then current NN = v and $\tau = d(q,v)$
 - 2. Then 3 cases:
 - a. If the q-sphere is inside the v-sphere: explore left tree only
 - b. If the q-sphere is not inside the v-sphere: explore right tree only
 - c. If the q-sphere is inside and outside the v-sphere: explore the left tree and the right tree

Vantage Point Tree: Extensions

- VP^S-Tree
 - Instead of retaining only the median, a node retains 2 values per ancestor corresponding to the boundaries of the corresponding subspace

Figure 5: Sample 32-bit machine data structure implementations for the most basic vp-tree, the vp^{s} -tree, and the vp^{sb} -tree.

Vantage Point Tree: Extensions

• VP^S-Tree

- Instead of retaining only the median, a node retains 2 values per ancestor corresponding to the boundaries of the corresponding subspace
- VP^{SB}-Tree
 - A VP^S-Tree in which each leaf contains
 B points resulting in a bucket structure
 - Reduced memory consumption

Figure 5: Sample 32-bit machine data structure implementations for the most basic vp-tree, the vp^{s} -tree, and the vp^{sb} -tree.

Vantage Point Tree: Extensions

• VP^S-Tree

- Instead of retaining only the median, a node retains 2 values per ancestor corresponding to the boundaries of the corresponding subspace
- VP^{SB}-Tree
 - A VP^S-Tree in which each leaf contains
 B points resulting in a bucket structure
 - Reduced memory consumption
- VP Tree in non-metric space
 - With Bregman divergences:
 "Bregman Vantage Point Trees for Efficient Nearest Neighbor Queries"
 (Nielsen et al., 2009)

Figure 5: Sample 32-bit machine data structure implementations for the most basic vp-tree, the vp^{s} -tree, and the vp^{sb} -tree.

Performance comparison with classical metric trees

Figure 6: Search Cost vs. Dimension Comparison For L_2 Metric and Based on Nodes Visited

Figure 7: Search Cost vs. Database Size - Dimension 8

Performance comparison with classical metric trees

- "What Is a Good Nearest Neighbors Algorithm for Finding Similar Patches in Images?" (Neeraj et al., 2008)
- Table 2. Summary of results. The *vp*-tree performs well in all respects.

Method	Construction Performance	ε-NN Search Performance	<i>k</i> -NN Search Performance
kd-Tree	Excellent	Poor	Poor
PCA Tree	Poor	Fair	Fair
Ball Tree	Fair	Excellent	Excellent
k-Means	Poor	Good	Good
vp-Tree	Excellent	Excellent	Excellent

Merci pour votre attention !