Vantage Point Trees

Based on “Data Structures and Algorithms for Nearest Neighbor Search in General Metric Spaces”,

Peter N. Yianilos (1993) - http://algorithmics.Isi.upc.edu/docs/practicas/p311-yianilos.pdf
(Image from https://fribbels.qithub.io/vptree/writeup)
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http://algorithmics.lsi.upc.edu/docs/practicas/p311-yianilos.pdf
https://fribbels.github.io/vptree/writeup

Problem

e Nearest Neighbor Search

o given X a dataset of N points and a query point q, find the point x, minimizing the distance
between itself and q.
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Problem

e Nearest Neighbor Search

o given X a dataset of N points and a query point q, find the point x, minimizing the distance
between itself and q.

e Set of possible solutions

o Brute Force, O(N?) :
o Metric Trees .
m KD-trees J .
m Ball Trees a __J
m Vantage Point Trees -
e O(N log(N)) to build it

PY O(Iog(N)) for a NN Search (Images from https://link.springer.com/content/pdf/10.1007/978-3-540-88688-4_27.pdf)


https://link.springer.com/content/pdf/10.1007/978-3-540-88688-4_27.pdf
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Euclidean in this example but
works with any metric respecting
the triangle inequality!
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Vantage Point Tree: Construction

Select a vantage point v in X (eg. following a uniform distribution);
Compute the distances d(v, xi) between v and each point xi in X;
Take the median u of these distances;

Divide X in 2 sets using u as a threshold:
a. X, the set of points closest to v is put at the left

b. Xright the set of points furthest from v is put at the right
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Vantage Point Tree: Construction

Select a vantage point v in X (eg. following a uniform distribution);
Compute the distances d(v, xi) between v and each point xi in X;
Take the median u of these distances;

Divide X in 2 sets using u as a threshold:

a. X, the set of points closest to v is put at the left

b. Xright the set of points furthest from v is put at the right
5. Recursively apply the same algorithm for X _. and Xright
Xright V
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Vantage Point Tree: Construction

Select a vantage point v in X (eg. following a uniform distribution);
Compute the distances d(v, xi) between v and each point xi in X;
Take the median p of these distances;

Divide X in 2 sets using g as a threshold:
a. X, the set of points closest to v is put at the left

b. Xright the set of points furthest from v is put at the right
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Vantage Point Tree: Construction

1. Select a vantage point v in X (eg. following a uniform distribution);
2. Compute the distances d(v, xi) between v and each point xi in X;
3. Take the media
4. Divide X in 2 s€ DEMO

a. X, thesetof  https:/fribbels.github.io/vptree/writeup

b. Xright the set o
5. Recursiv o ANA X
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https://fribbels.github.io/vptree/writeup

Vantage Point Tree: NN Search

e Given a query point g, we define T the radius of the sphere representing the
search space in which we search the NN of q @
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e Given a query point g, we define T the radius of the sphere representing the

search space in which we search the NN of q @
e Beginning at the root (v,u) of the VP Tree:

1. Check whether d(q,v) < 1 : if true then current NN = v and = d(q,Vv)
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e Given a query point g, we define T the radius of the sphere representing the
search space in which we search the NN of q @

e Beginning at the root (v,u) of the VP Tree:
1. Check whether d(q,v) < 1 : if true then current NN = v and = d(q,Vv)
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e Given a query point g, we define T the radius of the sphere representing the
search space in which we search the NN of q @

e Beginning at the root (v,u) of the VP Tree:
1. Check whether d(q,v) < 1 : if true then current NN = v and = d(q,Vv)
2. Then 3 cases: PN

a. Ifthe g-sphere is inside the v-sphere: explore left tree only y
b. If the g-sphere is not inside the v-sphere: explore right tree only p'l
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Vantage Point Tree: NN Search

e Given a query point g, we define T the radius of the sphere representing the
search space in which we search the NN of q a
e Beginning at the root (v,u) of the VP Tree:

1. Check whether d(q,v) < 1 : if true then current NN = v and = d(q,Vv)

2. Then 3 cases: PN
a. Ifthe g-sphere is inside the v-sphere: explore left tree only V‘/ ‘V
b. If the g-sphere is not inside the v-sphere: explore right tree only p: p:

c. Ifthe g-sphere is inside and outside the v-sphere: explore the left tree andthe right tree
Xright

Xright Xright




Vantage Point Tree: Extensions

o VPS-Tree
o Instead of retaining only the median,
a node retains 2 values per ancestor
corresponding to the boundaries of the
corresponding subspace

Figure 5: Sample 32-bit machine data structure imple
mentations for the most basic vp-tree, the vps-tree,Sanc'

the vab-tree.
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Vantage Point Tree: Extensions

e VPS-Tree

o Instead of retaining only the median,
a node retains 2 values per ancestor
corresponding to the boundaries of the
corresponding subspace

e VPSB-Tree

o A VPS-Tree in which each leaf contains
B points resulting in a bucket structure
o Reduced memory consumption

e VP Tree in non-metric space
o  With Bregman divergences:
“Bregman Vantage Point Trees for Efficient

Nearest Neighbor Queries”
(Nielsen et al., 2009)

bucket structure

----------------------------------------------------------

Figure 5: Sample 32-bit machine data structure imple:
mentations for the most basic vp-tree, the vps-tree,5anc'

the vab-tree.



Performance comparison with classical metric trees
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Figure 6: Search Cost vs. Dimension Comparison For

: Figure 7: Search Cost vs. Database Size - Dimension 8
L, Metric and Based on Nodes Visited



Performance comparison with classical metric trees

e “What Is a Good Nearest Neighbors Algorithm for Finding Similar Patches in Images?” (Neeraj et al.,

2008)

Table 2. Summary of results. The vp-tree performs well in all respects.

Construction ¢-NN Search k-NN Search
Method
Performance Performance Performance
kd-Tree Excellent Poor Poor
PCA Tree Poor Fair Fair
Ball Tree Fair Excellent Excellent
k-Means Poor Good Good
vp-Tree Excellent Excellent Excellent




Merci pour votre attention !



