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Personalized 
Recommendations 

Personalized 
Search Adaptive Systems  

What we do: Science and Engineering 
for the Personal Web 

Social Web 

Analysis and  
User Modeling 

user/usage data 

Semantic Enrichment, 
Linkage and Alignment 

domains: news  social media  cultural heritage  public data  e-learning 

recommending 
points of interest 
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Kyle 

Hometown: South 
Park, Colorado 
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Kyle recently uploaded photos to Flickr 

During his trip to the Netherlands, 
he uploaded pictures to Flickr. 

tags: delft, vermeer 
geo: The Hague 

tags: girl with 
pearl earring 
geo: The Hague 
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Kyle tweets about his upcoming trip 

Looking forward to visit 
Paris next week! 
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Interests of Kyle? 

tags: delft, vermeer 
geo: The Hague 

tags: girl with 
pearl earring 
geo: The Hague 

Looking forward to visit 
Paris next week! 

• Given Kyle’s Flickr and Twitter 
activities, can we infer Kyle’s 
interests? 

• Knowing that Kyle will visit Paris, 
France, can we recommend him 
places that might be interesting 
for him? 
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Challenges 
• How to create a meaningful profile that supports the given 

application? 
 à how to bridge between the Social Web chatter of a user 
and the candidate items of a recommender system?  
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Challenge of Recommending Points of 
Interests (POIs) to Kyle 

Johannes Vermeer 

dbpedia:Louvre Looking forward to 
visit Paris next week! 

dbpedia:Paris 

The lacemaker 

The astronomer 
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c1	  
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c5	  

c6	  

LOD-based User Modeling 

weigh0ng	  strategies	  
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User Modeling Building Blocks 
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tags: girl with 
pearl earring 
geo: The Hague 

dbpedia:Girl_with_pearl_earring 

A	  

Artifact 

B	  

The  
lacemaker 

C	  

The 
astronomer 

…	  

rdf:type 

Johannes Vermeer 
foaf:maker 

foaf:maker 

Strategies for exploiting the RDF-based 
background knowledge graph 

Direct Mention Indirect Mention 
@RDF_statement 
Indirect Mention 

@RDF_graph 

dbpedia:Paris 

dbpedia:Louvre dbpprop:location locatedIn 
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Strategies for exploiting the RDF-based 
background knowledge graph 
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Weighting Scheme 

 Weighting scheme: count the   
 number of occurrences of a given  
 graph pattern. 
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Source of User Data 

• Twitter 
 
 
• Flickr 
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Mining the Geographic Origins of User Data 

• Tweets or Flickr images posted by a GPS-enabled device; 

• Images geo-tagged manually on Flickr world map 

• Otherwise : exploit the title and the tags the users assign 
to their images 
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Evaluation 
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Research Questions 

1.  How does the source of user data influence the quality in 
deducing user preferences for POIs? 

2.  How does the consideration of background knowledge from 
the Linked Open Data Cloud impact the quality of the user 
modeling? 

3.  What (combination of) user modeling strategies allows for 
the best quality? 
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Dataset 

users 394 

tweets 2,489,088  
location 11%  
pictures 833,441  
location 70.6%(within 10km) 

duration 11 months 
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Dataset Characteristics: Profile Sizes 
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Experimental Setup 
• Task: 

= Recommending POIs  
= Predicting POIs which a user will visit 

• Ground truth: 
•  split data into training data (= first nine months) and test data (= last 

two months)  
•  POIs that the user visited in the last two months are considered as 

relevant 

• Metrics: 
•  Precision@k, Recall@k and F-Measure@k: precision, recall and f-

measure within the top k of the ranking of recommended items 
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Results: Impact of User Data Source 
Selection 
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Results: Impact of Strategies for Exploiting 
RDF-based Background Knowledge 
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Results: Combining different Strategies 
Leveraging User Modeling on the Social Web with Linked Data 13

Table 2. Overview on the di�erent strategies for integrating background knowledge.
Twitter and Flickr are exploited as user data source.

strategy P@10 R@10 F@10 P@20 R@20 F@20

core strategies:

direct mentions 0.715 0.260 0.412 0.580 0.179 0.298

indirect mentions I 0.699 0.268 0.426 0.566 0.185 0.308

indirect mentions II 0.820 0.312 0.475 0.727 0.436 0.569

combined strategies:

direct & indirect mentions I 0.733 0.216 0.360 0.608 0.287 0.416

direct & indirect mentions II 0.836 0.333 0.4975 0.747 0.466 0.596

indirect mentions I + II 0.830 0.325 0.489 0.739 0.456 0.587

direct & indirect mentions I + II 0.839 0.337 0.502 0.751 0.473 0.603

which does not exploit RDF statements from the Linked Open Data Cloud,
the F@20 performance is more than doubled. The consideration of background
knowledge obtained from the Linked Open Data Cloud therefore clearly improves
the performance of user modeling on the Social Web which answers our main
research question.

Furthermore, we can answer the specific research questions raised at the
beginning of this section as follows. For the task of recommending points of
interests, it turns out that (1) the aggregation of Twitter and Flickr user data
allows for the best user modeling performance and that (2) the user modeling
quality increases the more background information we consider from the Linked
Open Data Cloud. Finally, (3) the best performance is achieved by combining
the di�erent graph patterns for acquiring background information and inferring
user preferences.

6 Conclusions
In this paper, we proposed a framework for leveraging user modeling on the So-
cial Web with information from the Linked Open Data Cloud. Our framework
monitors user activities on Social Web platforms such as Twitter and Flickr, in-
fers the semantic meaning of user activities and provides strategies for gathering
background information from the Web of Data to generate semantically mean-
ingful user profiles that support a given application. We showcase and evaluate
our framework in the context of a geospatial recommender system where the core
challenge relies in deducing user preferences for points of interests. Therefore, we
also present a method that allows for the semantic enrichment of Flickr pictures
by (i) estimating the geographical location where a picture was taken and (ii)
exploiting GeoNames in order to identify related DBpedia concepts.

Our evaluation proves the e�ectiveness of our user modeling framework.
Based on a large Twitter and Flickr dataset of more than 2.4 million tweets
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Combining all background 
exploitation strategies improves the 
user modeling performance clearly 
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Conclusions 

What we did:  
• LOD-based User Modeling on the Social Web 
• Different strategies for exploiting RDF-based background 

knowledge 
Findings: 
1.  Combination of different user data sources (Flickr & Twitter) is 

beneficial for the user modeling performance 
2.  User modeling quality increases the more background 

knowledge one considers 
3.  Combination of strategies achieves the best performance 

Future work:  
• Investigate weighting schemes that weight the different RDF 

graph patterns for acquiring background knowledge differently 
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Thank you! 
 

Slides : http://goo.gl/Zdg4K 
 
Email: K.Tao@tudelft.nl 
Twitter: @wisdelft @taubau 
http://persweb.org 


