Tutorial on Data Quality

Examples* of DQ problems for life sciences and medicine (MedClean Mastodons 2016)

*freely inspired/borrowed from scientific papers in top-most venues of the database community

Outline

Scenario 1: Missing Data (Angela)

Scenario 2: Uncertain Data (Laurent, presented by Radu)

Scenario 3: Inconsistent Data (Ioana)

Scenario 4: Data that cannot be repaired (Angela)

Scenario 5: Temporal Inconsistent Data (Marinette)

Scenario 1: Missing Data

The statistician's Viewpoint

Statisticians make a difference between 'missing at random' and 'not missing at random' data (the fact that the latter is missing is related to the actual missing data).

Possible options to deal with missing data:

- Imputing missing data with replacement values
- Imputing missing data with uncertainty
- Using statistical models to correlate missing values with the available data

Scenario 1: Missing Data

The database scientist's Viewpoint

In the relational model (relational tables), there is no distinction between the different semantics of missing data.

- Using a plain NULL value (distinct from the empty character string or a string of blank characters or any other number)
- Same NULL value for representing missing/inapplicable/not existing information (or undefined/empty set/not valid/not supplied etc.)
- Solutions:
 - replace null values with probability distributions or allowed intervals (when applicable)
 - replace null values with possible values as in probabilistic databases (example in the next

Scenario 1: Missing Data -->Probabilistic Databases

R. SSN R.NAME

{ 1 (p=.2) | 7 (p=.8) } John

{ 4 (p=.3) | 7 (p=.7) } Bill

Hypotheses:

- Assumption of independence of tuples (multiple worlds: probability of the world in which John has SSN 1 and Bill has SSN 7 is 0.2*0.7)

[KO08] Christoph Koch, <u>Dan Olteanu</u>: Conditioning probabilistic databases. <u>PVLDB 1(1)</u>: 313-325 (2008)

Scenario 1: Missing Data>Probabilistic Databases - Four possible worlds (constraint enforcement may reduce the nr. of possible worlds)							
SSN NAME R1 (P = .06)	SSN NAME R3 (P= .14)						
1 John	1 John						
4 Bill	7 Bill						
SSN NAME R2 (P = .24)	SSN NAME R4 (P= .56)						
7 John	7 John						
4 Bill	7 Bill						

Scenario 2: Uncertain Data

Table R:

R.SENSORID	R.TUPLEID	R.TEMP (°C)	R.PROBABILITY		
s1		tO		36	0.6
		t1		39	0.4
s2		t2		40	0.7
		t3		36	0.3
S3		t4		37	1

X-tuples: current temperature captured by a sensor for a patient

Example: S1 is 36°C with a probability 0.6

[Mo13] L. Mo et al.: Cleaning uncertain data for top-k queries. ICDE 2013: 134-145

Possible Worlds Semantics (PWS)

Four possible worlds

R1: 0.42

R.SENSORID	R.TUPLEID	R.TEMP (°C)	R.PROBABILITY		
s1		tO		36	0.6
s2		t2		40	0.7
S3		t4		37	1

Possible Worlds Semantics (PWS)

Four possible worlds

R2: 0.18

R.SENSORID	R.TUPLEID	R.TEMP (°C)	R.PROBABILITY		
s1		tO		36	0.6
s2		t3		36	0.3
S3		t4		37	1

Possible Worlds Semantics (PWS)

Four possible worlds

R3: 0.28

R.SENSORID	R.TUPLEID	R.TEMP (°C)	R.PROBABILITY		
s1		t1		39	0.4
s2		t2		40	0.7
S3		t4		37	1

Possible Worlds Semantics (PWS)

Four possible worlds

R4: 0.12

R.SENSORID	R.TUPLEID	R.TEMP (°C)	R.PROBABILITY		
s1		t1		39	0.4
s2		t3		36	0.3
S3		t4		37	1

Scenario 2: Uncertain Data -> cleaning

Probe the sensor to get the latest reading

R.SENSORID	R.TUPLEID	R.TEMP (°C)	R.PROBABILITY		
s1		tO		36	0.6
		t1		39	0.4
s2		t3		36	1
S3		t4		37	1

Scenario 2: Uncertain Data -> cleaning

Issues

Cost vs limited resources: battery power, bandwidth, etc.

Successfulness: operation may fail

Control x-tuples to be cleaned

Scenario 3: Inconsistent Data -> FD Violations

R. SSN R.NAME **R.PHONE** 1 John 80 Bill 1 40 4 Cindy 03 - "Common sense" constraint : SSN uniquely determines name, i.e. for the

same SSN the name should be exactly the same

Table R:

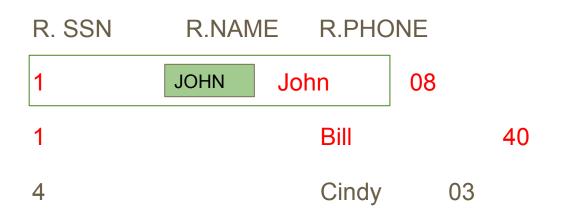
Scenario 3: Inconsistent Data -> Repairs

- Remove tuples:

R. SSN	R.NAM	E R.PHON	NE	R. SSN		R.NAME
	R.PHONE					
1	Bill	John	08 40		1	
4	Cindy	Cindy 03	03		4	

- Which should we prefer?
- What information do we lose? (i.e. John may have SSN 1 and two phone

Scenario 3: Inconsistent Data -> Repairs


- Replace values:

4

R.NAME	R.PHON	NE	R. SSN		R.NAME
HONE					
Jo	hn	08	1		Bill
	John	40		1	
	HONE	HONE John	John 08 John 40	HONE John 08 1 John 40	HONE John 08 1 John 40 1

Cindy 03 4 Cindy 03

Scenario 3: Inconsistent Data -> Curated data

- Value replacement: If we know that the value "John" is correct, we can replace "Bill" by "John"
- Tuple removal: If we know that the first entry (tuple) is correct, we can remove the second entry (i.e. Bill's entry)

Scenario 3: Inconsistent Data -> Minimum repairs

- R. SSN R.CITY R.COUNTRY
- 1 LONDON UK
- 4 NEW YORK US
 - Functional dependencies: SSN -> CITY and CITY-> COUNTRY
 - If we change in the second row NEW YORK into LONDON we obtain a correct table with 1 change

Scenario 3: Inconsistent Data -> Metric FDs

- R.SSN R.NAME R.PHONE
- John Jr08
- 1 John Jr. 40
- 4 Cindy 03
 - Functional dependency: SSN -> NAME: for the same SSN the names should be exactly the same!
 - Is this instance really inconsistent?
 - Metric functional dependency: SSN ~~> NAME: we only require that for the

Scenario 4: Data that cannot be repaired

- Numerical attributes: which value repairs does one choose? Type 0 (1, resp.) had maximal Flow equal to 1000 (1500, resp)

Traffic

Time Link Type Flow

- 1.1 a 0 1100
- 1.1 b 1 900
- 1.3 b 1 850

[Be08] L.E. Bertossi et al.: The complexity and approximation of fixing numerical attributes in databases under integrity constraints. Inf. Syst. 33(4-5): 407-434 (2008)

Scenario 4: Data that cannot be repaired

- Numerical attributes: possible choices (delete measurement, or update Type

Traffic

Time Link Type Flow

1.1 a 1 1100

1.1 b 1 900

1.3 b 1 850

or update Flow)

Traffic

Time Link TypeFlow1.1a010001.1b19001.3b1850

Sc4: Only numerical attributes are locally fixable

- New definition of repair, based on a quantitative distance function (overall variation of numerical values is small)
- A least squares repair (LS-repair) for D is a repair D0 that minimizes the square distance $\Delta_{\alpha}(D, D0)$ between D and D0 over all the instances D

Traffic

Time Link Type Flow

1.1 a 1 1100 $\Delta_{\alpha}(D, D1) = 100^2 \times 10^{-5} = 10^{-1}$

1.1 a 0 1000 $\Delta_{\alpha}(D, D2) = 1^2 \times 1$. D1 is the only LS-repair.

The challenge

- How facts across different sources are related to one another **over time** ?

- It is referred to as the temporal record linkage

[Li15] F. Li et al. Linking Temporal Records for Profiling Entities. SIGMOD Conference 2015: 593-605

What is the problem with time ?

- In traditional record linkage problem, two facts refer to the same entity if the degree of similarity between the two records is high.

- These techniques are typically inadequate for identifying whether or not two records refer to the same entity at different times.

This is because an entity may change several of its attribute values over time (age, location, job...)

The solution

- Using temporal record linkage models

Example : Online recruitment system where organizations advertise positions available for job seekers.

The system wants more complete profiles of its users.

Name	Organization	Title	Start	End
David Brown	S3	Engineer	2000	2001
	Xjek	Engineer	2000	2002
	Aelita	Manager	2003	2005
	Quest Software	Manager	2006	2009

Employment history of a job seeker

F. Li, M. L. Lee, W. Hsu and W-C. Tan : Linking Temporal Records for Profiling Entities - SIGMOD, 2015.

Employment history of a job seeker

Name	Organization	Title	Start	End
David Brown	S3	Engineer	2000	2001
	Xjek	Engineer	2000	2002
	Aelita	Manager	2003	2005
	Quest Software	Manager	2006	2009

Records obtained from various sources

	Name	Organization	Title	Location	Interests	Time	Source
r1 r2 r3 r4 r5 r6 r7 r8	David Brown David Brown David Brown David Brown David Brown David Brown David Brown	S3, Xjek S3, Xjek Quest Software Quest Software	Engineer Engineer Engineer Manager Director IT Contractor Engineer President	Chicago Chicago Chicago	Technology Sports, Politics	2001 2002 2004 2004 2011 2011 2012 2013	Google+ Google+ Facebook Twitter Google+ Google+ Facebook Twitter
r9	David Brown	WSO2	President		Technology	2013	Google+

Employment history of a job seeker

Name	Organization	Title	Start	End
David Brown	S3	Engineer	2000	2001
	Xjek	Engineer	2000	2002
	Aelita	Manager	2003	2005
	Quest Software	Manager	2006	2009

With traditional record linkage : r1-r4 match, r5-r6 do not refer D. Brown

Records obtained from various sources

o

		Name	Organization	Title	Location	Interests	Time	Source
, [r1	David Brown	S3, Xjek	Engineer			2001	Google+
	r2	David Brown		Engineer			2002	Google+
	r3	David Brown	S3, Xjek	Engineer			2004	Facebook
	r4	David Brown		Manager	Chicago		2004	Twitter
	r5	David Brown	Quest Software	Director		Technology	2011	Google+
	r6	David Brown	Quest Software	IT Contractor			2011	Google+
	r7				Chicago		2012	Facebook
	r8				Chicago		2013	Twitter
	r9		WSO2				2013	Google+

Employment history of a job seeker

Name	Organization	Title	Start	End
David Brown	S3	Engineer	2000	2001
	Xjek	Engineer	2000	2002
	Aelita	Manager	2003	2005
	Quest Software	Manager	2006	2009

With traditional record linkage : r1-r4 match, r5-r6 do not refer D. Brown

r5 and r6 fall outside the employment history. They could describe how his job titles evolved in 2011 !

Records obtained from various sources

		Name	Organization	Title	Location	Interests	Time	Source
, [r1	David Brown	S3, Xjek	Engineer			2001	Google+
	r2	David Brown		Engineer			2002	Google+
	r3	David Brown	S3, Xjek	Engineer			2004	Facebook
	r4	David Brown		Manager	Chicago		2004	Twitter
	r5	David Brown	Quest Software	Director		Technology	2011	Google+
	r6	David Brown	Quest Software	IT Contractor			2011	Google+
		David Brown		Engineer	Chicago	Sports, Politics	2012	Facebook
		David Brown		President	Chicago		2013	Twitter
		David Brown		President			2013	Google+

Employment history of a job seeker

Name	Organization	Title	Start	End
David Brown	S3	Engineer	2000	2001
	Xjek	Engineer	2000	2002
	Aelita	Manager	2003	2005
	Quest Software	Manager	2006	2009

Records obtained from variuos sources

- When the attribute values of an entity change, they do not change arbitrarily (previous value + duration)

- Quality of sources (information published by a source is reliable and up-to-date \Rightarrow the freshness of sources)

		Name	Organization	Title	Location	Interests	Time	Source
0	r1	David Brown	S3, Xjek	Engineer			2001	Google+
•	r2	David Brown		Engineer			2002	Google+
•	r3	David Brown	S3, Xjek	Engineer			2004	Facebook
•	r4	David Brown		Manager	Chicago		2004	Twitter
0	r5	David Brown	Quest Software	Director		Technology	2011	Google+
0	r6	David Brown	Quest Software	IT Contractor			2011	Google+
00	r7	David Brown		Engineer	Chicago	Sports, Politics	2012	Facebook
	r8			President	Chicago		2013	Iwitter
	r9		WSO2				2013	Google+

Example : Online recruitment system where organizations advertise positions available for job seekers.

The system wants more complete profiles of its users.

Name	Organization	Title	Start	End						
	S3	Engineer	2000	2001		Up	dated prot	file of David Brown		
	Xjek Aelita Quest Software	Engineer Manager Manager	2000 2003 2006	2002 2005 2009	Organization	Title	Location	Interests	Start	
					S3 Xjek Aelita Quest Software Quest Software	Engineer Engineer Manager Manager Director	Chicago Chicago Chicago		2000 2000 2003 2006 2011	

Employment history of a job seeker

- Patients visit multiple medical professionals/organisms over the course of their lifetime, and often even simultaneously.
- Is it interesting
 - To have access to an integrated profile derived from the histories kept by each institution. Through the integrated profile, one could understand when a drug was administered and taken by a patient and for how
- long?
- To determine whether drugs with adverse interactions have been unintentionally prescribed to a patient by different institutions at the same time ?

- *Discussion* : meet you this type of problem in your field ? B. Alexe, M. Roth and and W-C. Tan : Preference-aware Integration of Temporal Data -PVLDB, 2014.