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Figure 1: Shape deformation: Recent works emphasize the importance of bounded control, but simply adding constant bounds to
shape-aware smoothness energies of increasing order encourages more and more oscillation. Our framework efficiently optimizes
such high-order energies as

∫
M ‖∇

4 f‖2 while ensuring against spurious local extrema.

Abstract
Functions that optimize Laplacian-based energies have become popular in geometry processing, e.g. for shape
deformation, smoothing, multiscale kernel construction and interpolation. Minimizers of Dirichlet energies, or
solutions of Laplace equations, are harmonic functions that enjoy the maximum principle, ensuring no spurious local
extrema in the interior of the solved domain occur. However, these functions are only C0 at the constrained points,
which often causes smoothness problems. For this reason, many applications optimize higher-order Laplacian
energies such as biharmonic or triharmonic. Their minimizers exhibit increasing orders of continuity but lose the
maximum principle and show oscillations. In this work, we identify characteristic artifacts caused by spurious
local extrema, and provide a framework for minimizing quadratic energies on manifolds while constraining the
solution to obey the maximum principle in the solved region. Our framework allows the user to specify locations
and values of desired local maxima and minima, while preventing any other local extrema. We demonstrate our
method on the smoothness energies corresponding to popular polyharmonic functions and show its usefulness for
fast handle-based shape deformation, controllable color diffusion, and topologically-constrained data smoothing.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Smooth, shape-aware functions have become a cornerstone of
geometry processing. They are often obtained by minimizing
discrete differential energies, and are used in a wide range of
applications, e.g. detail-preserving shape deformation, data
interpolation on manifolds, multiscale shape analysis, mesh
segmentation and even image processing. Some applications
require functions with high-order smoothness or sophisticated

control of the boundary conditions, in which case energies
involving high-order differential quantities are used.

Energies associated with polyharmonic partial differen-
tial equations are particularly popular, since they are rela-
tively easy to discretize on meshes using discrete gradient
and Laplace operators [MDSB03], whose properties are well-
studied [WMKG07]. Solutions of polyharmonic equations ex-
hibit increasing smoothness at fixed values, but unfortunately
also show increasingly wild oscillations that are difficult or
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Figure 2: Various weight functions for the control point in the head of the cactus used in Figure 1, with highlighted local minima
(blue dots) and maxima (red dots). Our framework prohibits local extrema during optimization, wrangling the oscillations.

impossible to control with boundary values alone. Recent
work [JBPS11] investigated weight functions for propagating
handle transformations in real-time shape deformation; it was
shown that minimizing the Laplacian energy with constant
bounds produces functions that capture the good qualities
of biharmonic functions while avoiding negative values that
lead to unintuitive deformation results. The bounds effectively
dampen the natural oscillations of the biharmonic solution
while maintaining smoothness.

While bounds by definition prevent function values outside
the intuitive range, they do not prevent all unintuitive oscil-
lations. In Figure 1, the Cactus is deformed using bounded
biharmonic functions, but the top of his left arm unintuitively
stays put when the control point in the head is moved. This
is due to a local minimum in the associated weight function
(see Figure 2). Increasing the order of the smoothness energy
and keeping the constant bounds only makes the oscillations
worse to the detriment of the final deformation. We show
how the local extrema introduced by these oscillations occur
frequently even if constant bounds are in place.

In this work, we formally define the ideal problem we
would like to solve: minimize high-order, shape-aware
smoothness energies with guarantees on the locations and
values of local extrema. The resulting nonlinear optimiza-
tion problem turns out to be impractically difficult due to
nonlinear inequality constraints. Accordingly, we provide a
framework to simplify the constraints in a way that not only
ensures we find a feasible solution, but converts the problem
into a computationally tractable one.

Our robust optimization allows us to consider smoothness
energies associated with higher-order PDEs. We demonstrate
the usefulness of guarantees on the absence of new extrema
and enabling user control of the placement and values of
extrema in the context of weight-based shape deformation,
color diffusion and data smoothing.

2. Background
We survey a representative selection of works that utilize
smooth, shape-aware functions. Especially relevant to us are
works that comment on the oscillatory nature of polyhar-
monic functions and/or impose topological constraints.

Shape deformation. Smooth, shape-aware influence func-
tions are profusely used for shape deformation. The basic
way of deforming the geometry x of a 2D or 3D shapeM
is by combining the propagated influences of affine transfor-
mations Tj provided at user-controlled deformation handles:

x′i =
H

∑
j=1

f j(xi)Tj xi (1)

where xi are vertices of the meshM. An influence function
f j should attain the maximum value of 1 in the shape region
that is most affected by the handle j, and decay towards 0
away from that region (reaching exactly 0 on points fully
associated with other handles). If f j has negative values,
the deformed shape will unintuitively move in the “opposite
direction” to the prescribed Tj. Thus, f j should be bounded
within [0,1]. Moreover, as we illustrate in this work, if the
influence functions have additional local extrema (besides at
the constrained handle regions), the deformation behavior is
unintuitive as well, causing parts of the shape to “lag behind”
or move too fast relative to neighboring parts. We colloquially
refer to such behavior as non-monotonic.

The formulation in (1) is common in real-time skinning de-
formations [MTLT88,KCZO08], as the execution of (1) is par-
allel and extremely fast on the GPU. Several works proposed
automatic computation of skinning weights f j. [WSLG07]
uses harmonic functions that are provably monotonic and
bounded but have only C0 smoothness near constrained
boundary. [BP07] solves a Poisson equation whose right-
hand side is not guaranteed to be monotonic and thus might
produce non-monotonic weight functions. Bounded Bihar-
monic Weights [JBPS11] use biharmonic functions, which
are smooth at the handles, and constrain them to be bounded
within [0,1]. Although Jacobson et al. claim to observe a lack
of spurious maxima in their weights, we show a number of
examples where this is not the case: especially in shapes with
appendages (see, e.g. Figures 1, 3).

Linear variational surface-based deformation meth-
ods [BS08] can also be expressed in the above form (1),
as shown in the seminal work of Botsch and Kobbelt [BK04].
This is possible when all mesh vertices belonging to one
handle are assigned the same affine transformation. The influ-
ence functions f j are then the columns of the inverted system
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Figure 3: The Titanic (inset) is stretched with 3 control points.
Biharmonic and bounded biharmonic weights introduce ex-
trema in the chimneys and flagpole, causing unintuitive re-
sponse. Our solution (right) is smooth and intuitively deforms
the appendages as if rigidly attached to the shape. The weight
function for the middle control point is shown for each (left).

matrix stemming from the variational optimization (referred
to as “bases” in [BK04]). Specifically, Botsch and Kobbelt
defined families of influence functions that are the solutions
of polyharmonic PDEs ∆

k f = 0, providing Ck−1 continuity
at the constrained handles. Jacobson et al. [JTSZ10] refined
the approach to allow direct control over boundary derivatives
for the biharmonic and the triharmonic cases. Alternatively,
triharmonic radial basis functions can be used as weight func-
tions [BK05], replacing sparse large system solves by small
and dense ones. In all these cases, the functions are often not
monotonic nor even bounded, as discussed in [JBPS11].

Nonlinear deformation methods often employ model re-
duction based on skinning, such that the transformations Tj
become the degrees of freedom in the nonlinear optimization.
The weight functions play an important role in the design of
the reduced model and greatly affect the final deformation
quality. For example, [HSL∗06] uses generalized barycentric
coordinates and [AFTCO07] employs harmonic functions
(using their isolines as reduced-space handles).

When the control handles are vertices of a cage mesh en-
closing the shape to be deformed, and the transformations Tj
are just translations, the weight functions f j are called gen-
eralized barycentric coordinates (see e.g. [JSW05, JMD∗07,
HS08, MS10]). Significant attention has been devoted to the
boundedness and locality problems [LKCOL07, JMD∗07],
but we argue the same problems of unintuitive control arise
with local extrema. While simple filters may be used to in-
duce boundedness [LS08], such filters will at best downplay
spurious local extrema, but will not in general remove them.

A large class of weight functions are constructed to de-
cay with the (geodesic) distance from their handle [SMW06,
ZG07]. Deformations with such functions suffer from the
“fall-off” effect, characterized by extraneous minima away
from the handles [JS11]. These functions are unable to form

Biharmonic Ours

Figure 4: Colors (specified at the small circles) are diffused
using the biharmonic functions of [FSH11], but these are
unbounded and extrapolate colors not present in the con-
straints. Our interpolation explicitly prohibits local extrema
and implicitly imposes bounds.

large regions where one handle’s weight function is signifi-
cantly dominant. These effective plateaus in weight functions
are necessary for naturally-looking deformations. In constrast,
our method allows dominant regions and we demonstrate that
through our choice of smoothness energy we may encourage
such behavior, leading to intuitive deformation control.

Boundary value interpolation. Replacing deformed vertex
positions Tjx in Eq. (1) with general values, we obtain an
interpolation problem, which has numerous uses in graphics:

v(x) =
H

∑
j=1

f j(x)v j . (2)

Smoothness and monotonicity of the interpolation basis func-
tions f j remains important. For example, if v j’s are RGB
colors, one obtains color diffusion, useful in image coloriza-
tion [LLW04], seamless cloning [PGB03] and vector graphics
design [OBW∗08]. The mentioned approaches employ har-
monic functions f j; [Geo04] cites possible use of triharmonic
and quatraharmonic functions for seamless image cloning,
but settles on biharmonic functions. [FSH11] define bihar-
monic Diffusion Curves to enable diverse control of the color
gradients and in particular smoothness at the provided user
constraints. Their biharmonic functions can be negative and
have prevalent local extrema, leading to unexpected results
(see Figure 4). Their proposal to use hard clamping when
final color values exceed the displayable range hurts smooth-
ness and does not necessarily avoid local extrema, which are
present even when imposing explicit bounds (see Figure 11).

Data smoothing. Scalar data smoothing is often required
for subsequent processing, effective visualization and analy-
sis. Polyharmonic RBFs are employed as low-pass filters for
smoothing and reconstruction of scattered data, such as range
images [CBC∗01, CBM∗03]; however, no explicit control
over the resulting topology, e.g. guarantees of monotonic-
ity, locations and values of extrema, is provided. Carr et
al. [CSvdP04] work with the contour tree of the input data
set, which enables them to remove small topological features.
Gingold and Zorin [GZ06] prevent the formation of new
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topological features by controlling the data isocontours while
using common iterative filtering methods, such as Laplacian
smoothing or anisotropic diffusion.

The two most related approaches to our method in the data
smoothing context are [BEHP04] and [WGS10]. Bremer et
al. iteratively simplify the Morse-Smale complex of the data
and produce a corresponding scalar function after each can-
cellation step by Laplacian smoothing of the data within each
Morse-Smale cell, until no interior critical points are left.
Their iterative procedure is time-consuming and produces
only C0 continuity along separatrices. Weinkauf et al. first
perform persistence-based simplification of the input Morse-
Smale complex, and then fit a C1 function that adheres to the
complex by constrained minimization of a weighted sum of
the Laplacian energy and a data term. They optimize each cell
subject to nonlinear monotonicity constraints, extracted from
a harmonic function computed in the cell. Our use of the max-
imum principle of harmonic functions is conceptually similar,
but we devise a sparse set of linear inequality constraints
and convert our energy optimization to a conic programming
problem. As a result, our optimization is ≈ 1000× faster (see
Section 4). Both methods [BEHP04] and [WGS10] fully con-
strain the entire Morse-Smale complex, which may be ben-
eficial for visualization, but could be too restrictive in cases
where the precise locations or values of saddle points and
separatrices are not relevant for the application. Our method
constrains locations and values of the extrema, the locations
of the saddles, and the combinatorial connectivity between
these points in the Morse-Smale complex. The values of sad-
dles and the locations of separatrices may be enforced in our
framework but we find it useful to leave these free, allowing
for a wider range of feasible solutions.

Mesh and image processing. Smooth, shape-aware (and in
particular polyharmonic) functions find many additional uses,
such as mesh segmentation [ZT10], design of fair Morse
functions [NGH04] or multiscale kernels [Rus11]. Chen et
al. [CFL11] used topological constraints to control the num-
ber of connected component in an image segmentation. Our
framework is general and applicable in any such contexts.

3. Method
Let our domain be the triangle meshM and letN (i) denote
the 1-ring neighbors of vertex i. Our goal is to find a piecewise
linear function f :M→ R, which interpolates values at
specified minima locations pi , i∈Kmin and maxima locations
pi , i∈Kmax, with corresponding fixed values gi ∈R. We also
want f to be monotonic, i.e., no other extrema inM.

Many functions fulfill those conditions. As often done in
data interpolation, we introduce an energy functional E( f )
which measures the quality of f for a given application.
Laplacian-based energies are often employed as a smoothness
regularization term [BK04, JBPS11] and are of the form:

ELk ( f ) =
∫
M
‖∇k f‖2 for k = 2,3, . . . (3)

Details of discretization may be found in [JTSZ10].

For applications like data smoothing, we may also intro-
duce a data energy term ED. In the simplest form, ED mea-
sures in a least-squares sense the deviation from some data
function h :M→R:

ED( f ) = ∑
i∈M
‖ fi−hi‖2. (4)

In general, we consider any energy functional E, but typi-
cally we are concerned with combinations of a smoothness
term and possibly a data term:

E( f ) = γL EL( f )+ γD ED( f ) (5)

where γL and γD balance the influences of the energies.

3.1. Ideal optimization
We may formulate the ideal problem as an energy minimiza-
tion with nonlinear, non-differentiable inequality constraints:

arg min
f

E( f ) (6)

s.t. fi = gi ∀i ∈ Kmin∪Kmax (7)

f j > fi ∀ j ∈N (i), ∀i ∈ Kmin (8)

f j < fi ∀ j ∈N (i), ∀i ∈ Kmax (9)

fi > min
j∈N (i)

f j ∀i /∈ Kmin∪Kmax (10)

fi < max
j∈N (i)

f j ∀i /∈ Kmin∪Kmax (11)

The constant equality constraints (7) simply enforce that the
values of the known extrema are interpolated. The linear
inequality constraints (8) and (9) ensure that the prescribed
extremal points are local minima and maxima, respectively.
The nonlinear inequality constraints (10) and (11) enforce that
all unknown values are greater than their minimum neighbor
and smaller than their maximum neighbor.

We assume that the given set of extrema does not contradict
the Morse inequalities. For example, a non-constant function
on a topological disk must have at least one minimum. We
also assume that prescribed extrema are not immediate neigh-
bors and there exists one minimum smaller than all maxima
and vice-versa.

Given a quadratic energy E, this optimization problem
would be simple to solve if not for the nonlinear inequality
constraints. The other constraints are linear and at worst pro-
duce a quadratic programming problem. Trying to optimize
the ideal problem directly with commercial “black-box” non-
linear optimization software [MAT12] shows discouraging
convergence. Often feasible solutions are not found, and even
if the solver does converge, performance renders this option
useless for most applications. For example, on a 16-vertex
mesh, the optimization takes 3 seconds to converge, and only
does so when provided with a close and feasible initial guess.

Many nonlinear optimization methods allow a “constraint
violation tolerance” parameter. However, our topological con-
straints are highly sensitive. Even the slightest violation can
allow oscillations preferred by the unconstrained energy, pro-
ducing potentially unbounded spurious hills and valleys.
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Initial function h Harmonic representative function u and ∆
4 reconstruction Topology-aware representative function u and ∆

4 reconstruction

Figure 5: Two different representative functions are compared for the application of smoothing an initially given function.
The harmonic function (middle) is visualized together with its Morse-Smale complex, which is clearly different to the original
topology. The constraints derived from this fight against the data term during the reconstruction, which leads to a poor result.
The topology-aware representative function (right) leads to good reconstruction results, since it respects the original topology.

3.2. Constraint simplification
In light of our inability to solve the ideal optimization
problem in (6) in a reasonable amount of time, we pro-
pose a method for simplifying the nonlinear inequality con-
straints (10) and (11) into a larger set of linear inequal-
ity constraints. Suppose we have a representative function
u :M→R which satisfies constraints (8), (9), (10), and (11).
We replace the nonlinear inequality constraints (10) and (11)
with linear inequality constraints requiring the direction (but
not magnitude) of∇ f be aligned with∇u/‖∇u‖. In essence
we enforce the monotonicity or, loosely, the topology of u
onto our optimized solution f . As long as we choose u intel-
ligently and construct our linear constraints from∇u/‖∇u‖
carefully, the optimization in (6) becomes convex and thus
efficiently solvable, and finds an acceptable solution.

Given a monotonic representative function u as described
above, we reduce the optimization to:

arg min
f

E( f ) (12)

s.t. fi = gi ∀i ∈ Kmin∪Kmax (13)

( fi− f j)(ui−u j)> 0 ∀(i, j) ∈ E (14)

where E is a subset of the edges of the domainM. The con-
straints (14) require that the direction of decrease across every
edge of E in our optimal solution f should match that of the
known function u. If E contains all edges, this is enforced
everywhere and the choice of u greatly restricts the shape of
f . This is useful if we have high confidence in the representa-
tiveness of u (e.g., when it is derived from existing input data).
In other situations we only want to capture the monotonicity
of u, hence we would like the smallest possible edge set E .
To guarantee that our constraints prohibit local extrema, E
must include for each vertex i ∈M\ (Kmin∪Kmax) at least
one edge (i, j) where u j < ui and another where u j > ui. This
guarantees that each vertex value fi in our solution will have
one neighbor f j < fi and another f j > fi.

3.3. Choice of representative function
We provide two methods for constructing a valid represen-
tative function u satisfying (8), (9), (10), and (11). The first
method shows that such a function always exists, ensuring a
feasible final solution. The second method takes advantage
of situations when initial data is present.

No initial data. Consider a situation where no data is avail-
able besides the domainM and the locations and values of
extrema inKmax andKmin. This is useful, for example, in the
context of shape deformation and color interpolation. Taking
advantage of the strong maximum principle of harmonic func-
tions, we can always construct a valid representative function
u by solving the following Dirichlet problem:

arg min
u

∫
M

‖∇u‖2 (15)

s.t. u|Kmin
= 0 (16)

u|Kmax
= 1. (17)

Minimizers of the Dirichlet energy are harmonic functions.
Their maximum principle guarantees that, when choosing
the Dirichlet boundary conditions u|Kmin

= 0 and u|Kmax
= 1,

the locations in Kmin and Kmax become minima and maxima,
respectively. Thanks to the uniqueness of harmonic functions,
u contains no other extrema insideM. This fulfills the neces-
sary conditions for u to be a valid representative function.

Initial data. In other situations, e.g. scalar field smoothing,
our input will contain some initial data function h and the
objective is to remove some of its extrema while keeping oth-
ers. This is useful in the context of topologically-constrained
smoothing [WGS10], where the Morse-Smale complex of h is
simplified based on Forman’s discrete Morse theory [For98]
such that only the critical points above a user-defined per-
sistence [ELZ02] threshold remain. To reconstruct a smooth
function f based on the remaining topology and as close as
possible to the initial data function h, we set Kmin and Kmax
to contain the minima/maxima of the simplified Morse-Smale
complex and construct the representative function u in the
same fashion as [WGS10] builds its “preview” function: the
critical points are fixed to their original values u(pi) = h(pi),
and all vertices on each separatrix are fixed to a linearly in-
terpolated value between its end points, i.e., a saddle and
an extremum. All fixed vertices serve as Dirichlet boundary
conditions for solving ∆u = 0 on the domain. The solution u
is a harmonic function that has no interior critical points in
the domain: since the boundary conditions are monotonic, we
obtain a valid scalar field that obeys the prescribed topology.

Note that the solver of [WGS10] required that the values
along the separatrices remain fixed. This mandated smoothing
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Figure 6: The Hummingbird in her rest pose is deformed using the unconstrained, bounded and our triharmonic weights (top
row, left). For this handle configuration, the unconstrained and bounded weights of the nose introduce a local minimum in the
tail, whereas ours stay monotonic (top row, right). The bottom row shows the chaotic nature of the unconstrained and bounded
weights’ oscillations. Slightly larger wing handles reverse the oscillations, now producing a local maximum in the tail. We
constrain the solution to be monotonic and thus avoid such chaotic oscillations.

the locations and values of the separatrices before building
another harmonic function and finally optimizing the interiors
of the Morse cells. Our framework does not require fixing
separatrix values and may optimize the entire domain at once.

Figure 5 compares this topology-aware representative func-
tion to the harmonic function created by (15)–(17). The latter
places the central saddle point in the middle between the two
peaks, thereby disregarding the size and shape of the peaks
in the original function. In this example, this creates areas
where the gradients of the harmonic and the original function
are perpendicular to each other (visible in the isolines). This
leads to a poor reconstruction. The topology-aware represen-
tative function is built from the original topology, leading to
a favorable reconstruction.

Finally, with a valid representative function we may take
a minimally sufficient edge set E . For each vertex i inM,
we include the edges {i, j} and {i,k} where u j and uk are
the smallest and greatest of the neighbors of i. To ensure the
topological conditions of the user constraints are met, we add
all edges incident on any i in Kmin or Kmax.

3.4. Implementation
One could solve (12) with any sparse quadratic program-
ming solver, but we saw major performance improvements
(≈100×) when converting our problem to conic program-
ming and using MOSEK [AA00], a sparse, conic programming
solver. See Appendix for details of this conversion. For 2D im-
age deformation and color diffusion we use Triangle [She96]
to triangulate the interior of the shape outline.

When solving for shape-deformation or interpolation
weight functions in (1) and (2), we may append additional
linear equality constraints to ensure weights across handles
sum to one for every vertex in M. This would tether the
optimizations of the weight functions together into one larger
problem. However, we observe the same behavior of our
weight functions as in [JBPS11]: dropping the partition of
unity constraints and normalizing post-hoc has little effect on

|M| k Time/ f j Total Time
Cactus 2403 2 0.1246 0.2493
Cactus 2403 3 1.3135 2.6271
Cactus 2403 4 0.2324 0.4649
Colored J 8229 2 0.2306 0.9225
Hummingbird 14636 3 86.393 259.18
Dino 28136 2 2.4564 7.3693
Combustor 29021 2 5.1707 5.1707
Beetle 38656 2 6.0263 6.0263

Table 1: Statistics for various examples in the paper. |M| is
the number of triangles in the discretized domain, k is the
order of the corresponding polyharmonic operator, Time/ f j
is the average optimization time per function in seconds, and
Total Time is the total optimization time.

the final weights and thus also the deformation. Thus, in all
our experiments, we compute each weight function indepen-
dently and normalize post-hoc. We report the average times
for computing each function in Table 1.

It is worth noting that this normalization technically invali-
dates any guarantees of monotonicity in the final functions,
but we argue that the artifacts arising from non-monotonicity
are involved with low-frequency oscillations present in the
original functions before normalization. In any case, our con-
tribution is a general framework which easily incorporates
creating guaranteed monotonic functions with partition of
unity constraints if so desired, just at additional precompu-
tation costs. One would simply add the appropriate linear
equality constraints and compute all functions simultaneously
as also described in [JBPS11].

4. Experiments and Results
We experimented with quadratic energies corresponding to
biharmonic, triharmonic and quatraharmonic equations with
and without least-squares data energy terms. We tested our
method on an iMac Intel Core i7 3.4GHz computer with
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Figure 7: The Propeller Worm in its rest pose (left) is
deformed using bounded biharmonic weights (BBW) of
[JBPS11] (middle). A local maximum leaves its propeller
behind when its tail is bent, also causing the rod to unintu-
itively squish. Our solution (right) attaches the propeller to
the body, giving it near constant weights (visualized below).

16GB memory. The computation time measurements of our
code are reported in Table 1. The optimization time required
depends heavily on the order of the polyharmonic operator in
play. For the Laplacian energy, k = 2, we show timings on the
same order of magnitude as [JBPS11] who solve a simpler
quadratic programming problem with only constant bounds.
For k = 3, our conversion to conic programming results in
a rectangular coefficients matrix, which is in turn not as
efficiently optimized. Somewhat surprisingly, increasing the
order to the next even power, k = 4, returns to much faster
computation time: the square root of discrete quatraharmonic
operator is again square.

We use dual quaternion skinning [KCZO08] to deform the
Cactus in Figure 1. This avoids distracting shrinkage artifacts
present in linear blend skinning. This example demonstrates
that increasing the smoothness operator under our framework
does not result in wilder oscillations.

We have found that unconstrained and bounded polyhar-
monic solutions often struggle with long appendages, placing
extrema in the propeller in Figure 7 and the chimneys in Fig-
ure 3. During exploration of the deformation, local extrema
in these appendages are immediately apparent and distracting
during interaction. The tail of the Dino in Figure 9 feels as if
it is glued to the ground when the head is transformed. The
tail of the Mouse in Figure 8 wiggles when deforming the
hands and feet, rather than staying stiff as one might expect.
Applying scaling exaggerates the unintuitive nature of local
extrema in weight functions: the geodesically distant sousa-
phone bell is sheared when scaling the head in Figure 12.
Whether the additional local extrema are maxima or minima
seems largely unpredictable; the oscillations may flip due to
slight changes in the boundary definition, see Figure 6.

In contrast, the monotonic weight functions resulting from
our method allow intuitive deformations in all these cases.

Original BBW Ours

Figure 8: The Mouse in its rest pose (left) is deformed using
the biharmonic weights (BBW) of [JBPS11] (middle), which
each have an extrema in the tail causing it to wiggle when the
handles are deformed. Our weights have no spurious extrema
and keep the tail stiff.

Original Biharmonic Ours

Figure 9: The Dino in its rest pose (left) is deformed using
the biharmonic weights of [BK04] (middle). In this example
the weights are between [0,1] but a local minimum (blue dot)
leaves the tail connected to the feet, giving the impression
that it is glued to the ground when bending. Our solution
finds more intuitive, monotonic weights.

Please refer to the supplemental video to get a better impres-
sion of the deformation behavior.

Long features are also difficult for previous methods when
blending colors. Oscillations common to biharmonic func-
tions used by [FSH11] lead to interpolation weights outside
of [0,1] and may extrapolate colors not present in the user’s
constraints: red - grey = blue in Figure 4. Placing bounds
on these weight functions helps, but local extrema are still
present, having the effect that colors fade out and then sud-
denly reappear somewhere else in the domain (see Figure 11).

In Figure 10, we smooth exchange rate data which contains
a pronounced, sharp spike at the global maximum. To ensure
that the C0 nature of this spike is not smoothed away, we take
advantage of the fact that the parameterized blends of differ-
ent polyharmonic operators in [BK04] may be reexpressed as
discrete quadratic energies. We may then optimize using our
method, such that only specified extrema are present in the
result. In this example, we choose our blend parameters (λ in

c© 2012 The Author(s)
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Original

Direct extension of [Botsch & Kobbelt 2004]

[Botsch & Kobbelt 2004] + data term

Our method without data term

Our method with data term

Figure 10: Top to bottom: Currency exchange data with hun-
dreds of extrema including a sharp, global maximum (star).
Blended polyharmonic energies of [BK04] can reproduce the
spike, constraining only the values of the global minimum,
global maximum, and endpoint values. But this produces new
extrema, changing the global min (from yellow dot). Adding a
data term introduces even more extrema. Our formulation pro-
hibits new extrema, and with a data term provides a smooth,
monotonic representation of the data.

Section 3 of [BK04]) such that we create a C0 at the global
maximum and C1 elsewhere.

Smoothing geodesic distance fields is often a tricky balance
between achieving desired smoothness and loosing control
of the linear spacing of isolines and placement and values
of maxima (farthest points). Our framework reconstructs a
smoothed geodesic distance field which has the original max-
ima and no others (see Figure 13). Smoothing noisy data
similarly requires care, or original features may be lost while
new ones are introduced during smoothing. In Figure 14, we
reproduce the topology-based smoothing results of [WGS10]
(compare to Figure 10c in their paper) with an optimization
time that, for this example, is 1000× faster.

5. Limitations and Future Work
Due to the large number of linear inequality constraints, com-
putation can still be expensive, compared to solving a linear
system (e.g. [BK04, FSH11]), or to optimizing a quadratic
energy with constant bounds [JBPS11]. But it is important to
keep in mind that the ideal problem in Eq. (6) is far more diffi-
cult. We would like to investigate other optimization methods
that could take advantage of a warm start or other constraint
simplification possibilities.

We take advantage of the maximum principle of harmonic
functions, but it is well known that obtuse angles may cause
weights in a cotangent Laplacian to be negative, thus nulli-
fying the guarantee of the maximum principle [WMKG07].
We sometimes observe this problem locally in construction

Unconstrained Bounded Ours

Figure 11: Colors are diffused using the unconstrained bi-
harmonic functions of [FSH11], resulting in extrapolated
(purple) and clipped (black) regions. Placing constant bounds
helps, but oscillations with local extrema are still visible. Our
solution provides a smooth diffusion without wild oscillations.

Original BBW Ours

Figure 12: The Sousaphonist in his rest pose (left) is de-
formed using the bounded biharmonic weights (BBW) of
[JBPS11] (middle). Due to local extrema the horn’s bell gets
an uneven deformation, whereas our local-extrema-free de-
formation maintains its shape.

of our representative functions u. While this could potentially
lead to actually enforcing local extrema in our final solution,
we observe that globally u captures the correct gradient infor-
mation we need, and problems due to poor discretization can
often be safely ignored. Of course, another option is to use a
discrete Laplacian with positive weights, but this may come
at the cost of other convenient properties [WMKG07].

Finally, our per-edge, linear inequality constraints are in-
herently discretization dependent. For data smoothing this
means, an asymmetric meshing combined with a strong data
term may produce unintuitively asymmetric reconstructions.
Without a data term (e.g. for deformation or color interpola-
tion) this appears to be a non-issue: the constrained optimiza-
tion subspace is still quite large.

6. Conclusion

We have shown a framework for constructing smooth, shape-
aware functions on 2D and 3D surfaces with guarantees on
the placement and values of extrema. We also highlight the
typical problematic situations for which our method succeeds
over previous work. We believe our work will help promote
the continued study of topological constraints in connection
with geometry processing applications like deformation and
interpolation on manifolds.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

1584



A. Jacobson, T. Weinkauf & O. Sorkine / Smooth Shape-Aware Functions with Controlled Extrema

Exact geodesic Smoothed geodesic

Figure 13: Sharp cusps appear in exact geodesic distances
(left) computed for a point on the top of the Beetle (inset).
Our framework smooths this field while guaranteeing that all
maxima maintain their location and value (right). No new
extrema are created.

Original Smooth reconstruction

Figure 14: By adding a data energy term and using a
topology-aware representative function, we may use our
framework to smooth noisy data. Left: vorticity magnitude
derived from an optically measured flow at the outlet of a
combustion chamber, with thousands of local extrema. Us-
ing persistence-based simplification, we isolate the most im-
portant extrema: 9 minima, 4 maxima (blue and red dots).
We then smooth the data guaranteeing that these and only
these extrema occur in the solution (right). Data courtesy of
A. Lacarelle (TU Berlin) [LFG∗09].

Acknowledgement
We thank Kenshi Takayama for his valuable feedback. This
work was supported in part by an SNF award 200021_137879
and by a gift from Adobe Systems.

References
[AA00] ANDERSEN E. D., ANDERSEN K. D.: The MOSEK interior

point optimizer for linear programming: an implementation of the ho-
mogeneous algorithm. In High Performance Optimization. Kluwer Aca-
demic Publishers, 2000, pp. 197–232. 6, 10

[AFTCO07] AU O. K.-C., FU H., TAI C.-L., COHEN-OR D.: Handle-
aware isolines for scalable shape editing. ACM Trans. Graph. 26, 3
(2007), 83. 3

[BEHP04] BREMER P.-T., EDELSBRUNNER H., HAMANN B., PAS-
CUCCI V.: A topological hierarchy for functions on triangulated sur-
faces. IEEE TVCG 10, 4 (2004), 385 – 396. 4

[BK04] BOTSCH M., KOBBELT L.: An intuitive framework for real-
time freeform modeling. ACM Trans. Graph. 23, 3 (2004), 630–634. 2,
3, 4, 7, 8

[BK05] BOTSCH M., KOBBELT L.: Real-time shape editing using radial
basis functions. Comput. Graph. Forum 24, 3 (2005), 611–621. 3

[BKP∗10] BOTSCH M., KOBBELT L., PAULY M., ALLIEZ P., LÉVY
B.: Polygon Mesh Processing. AK Peters, 2010. 10
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Appendix

We use MOSEK [AA00] to efficiently solve sparse, quadratic
progamming problems. Its documentation strongly recom-
mends converting convex quadratic energy minimization with
linear inequality constraints, like Eq. (12), into linear energy
minimization with conic constraints. We found this to be espe-
cially advantageous for our problem. Without loss of general-
ity we assume our energy is of the form: E( f ) =

∫
M(∇k f )2,

which can be discretized as

E(f) = 1
2

fᵀ
(

LM−1
)k−1

Lf (18)

where L and M are the familiar cotangent Laplacian and nor-
malized, diagonalized mass matrix, respectively [MDSB03].
We may write L = GᵀAG where G is the per-element gra-
dient operator and A has triangle areas repeated along the
diagonal [BKP∗10]. For odd k, Eq. (18) becomes:

E(f) = 1
2
‖
√

AG
(

M−1L
) k−1

2 f‖2 (19)

and for even k:

E(f) = 1
2
‖
√

M
−1(

LM−1
) k

2−1
Lf‖2. (20)

This allows us to write E( f ) = 1
2‖Ff‖2 and Eq. (12) becomes:

minimize
f

1
2
‖Ff‖2 + cᵀf+ const

subject to Aᵀ
leqf≤ bleq,

f≤ u f , f≥ l f

(21)

where, for the sake of generality, we include linear terms cᵀf
and a constant term (e.g. arising from data energy terms). The
matrix Aleq contains the coefficients of the linear inequality
constraints, and bleq is a vector of zeros. The constant upper
and lower bounds u f and l f are set to the user-defined global
maximum and minimum values and aid the optimization.

To convert this to a conic problem, we first introduce a
vector of auxiliary variables t and rewrite as:

minimize
f,t

1
2
‖t‖2 + cᵀf+ const

subject to Ff− t = 0,

Aᵀ
leqf≤ bleq, f≤ u f , f≥ l f .

(22)

Using a scalar variable v we convert into conic form:

minimize
f,t,v

v+ cᵀf+ const

subject to Ff− t = 0, Aᵀ
leqf≤ bleq, f≤ u f , f≥ l f ,

2v≥∑
i

t2
i

where the inequality constraint on v forces its value to be
inside the cone described by the coordinates of t.

Putting all variables in a column vector, we can write this
in matrix form, as we supply it to the solver:

minimize[
fᵀ tᵀ v

] [
cᵀ 0 1

] f
t
v

+ const

subject to
[

F −I 0
Aᵀ

leq 0 0

] f
t
v

≥ [ 0
−∞

]
[

F −I 0
Aᵀ

leq 0 0

] f
t
v

≤ [ 0
bleq

]
 f

t
v

≤
 u f
∞
∞


 f

t
v

≥
 l f
−∞

0


2v≥∑

i
t2
i

Finally, we constrain known values in f by setting the corre-
sponding entries in both l f and u f to be equal to the known
values.
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