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Abstract
This paper introduces a general principle for constructing multiscale kernels on surface meshes, and presents a
construction of the multiscale pre-biharmonic and multiscale biharmonic kernels. Our construction is based on
an optimization problem that seeks to minimize a smoothness criterion, the Laplacian energy, subject to a sparsity
inducing constraint. Namely, we use the lasso constraint, which sets an upper bound on the l1-norm of the solution,
to obtain a family of solutions parametrized by this upper-bound parameter. The interplay between sparsity and
smoothness results in smooth kernels that vanish away from the diagonal. We prove that the resulting kernels
have gradually changing supports, consistent behavior over partial and complete meshes, and interesting limiting
behaviors (e.g. in the limit of large scales, the multiscale biharmonic kernel converges to the Green’s function
of the biharmonic equation); in addition, these kernels are based on intrinsic quantities and so are insensitive to
isometric deformations. We show empirically that our kernels are shape-aware, are robust to noise, tessellation,
and partial object, and are fast to compute. Finally, we demonstrate that the new kernels can be useful for function
interpolation and shape correspondence.

1. Introduction

Recently, there has been a renewed interest in multiscale
methods as it was realized that a multiscale kernel, namely
the heat kernel, allows extracting information about shapes
at multiple levels. This realization was immediately found
useful in applications such as distance measurement, seg-
mentation, shape matching and retrieval. To increase the
scope of applications and to provide a greater assortment
of choices, there is a need for new multiscale kernels. De-
sirable properties of such kernels include gradually chang-
ing local support, consistent behavior over partial and com-
plete meshes, non-trivial limiting behavior, being intrinsic,
and being fast to compute.

Devising multiscale constructions on non-trivial geome-
tries is challenging. Wavelet theory – the natural context for
such constructions – provides only a few approaches that can
be adapted to the surface setting: 1) based on the Laplace-
Beltrami eigenfunctions (also used in the heat kernel), but
eigenfunctions are global so the resulting functions have full
support; 2) lifting scheme, which is hard to make intrinsic
in general due to the non-trivial use of the underlying mesh;
3) diffusion wavelets, which are critically sampled so one
cannot obtain kernels centered at every point; 4) projection
methods, which in general do not provide constructions on
the entire surface.

In this work, we introduce a general principle for con-
structing multiscale kernels together with the construction of
two such kernels. We design the multiscale pre-biharmonic
kernel Pt(x,y) and the multiscale biharmonic kernel Bt(x,y)
that have supports varying from local (for small values of
the scale parameter t) to global (for large t), see Figure 1.
Our construction is based on a convex optimization problem
seeking to minimize a smoothness criterion, the Laplacian
energy, subject to a sparsity inducing constraint. Namely,
we use the lasso constraint, which sets an upper bound on
the l1-norm of the solution, to obtain a family of solutions
parametrized by this upper-bound parameter t. The interplay
between the smoothness objective and the sparsity constraint
results in smooth solutions with local supports that gradually
increase with the parameter t.

This approach was chosen for several reasons. First, since
the lasso constraint induces true sparsity, our kernels ex-
actly vanish away from the diagonal; this is in contrast to
the heat kernel which only decays away from the diagonal
but has full support on the surface. Second, the underlying
optimization problem makes it possible to argue that our ker-
nels computed on the partial object are exactly equal to the
kernels computed on the complete object (assuming the ker-
nel is fully supported within the partial object). Third, within
our construction we are able to prove that the multiscale bi-
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Figure 1: The multiscale biharmonic kernel Bt(x,y) is shown for different values of the scale parameter t. Point y is located on
the tip of cheetah’s nose. When t = tmax, our kernel coincides with the (scaled) global biharmonic kernel – Green’s function of
the biharmonic equation.

harmonic kernel Bt(x,y) converges to the global biharmonic
kernel (Green’s function of the biharmonic equation) which
has recently been used to construct a global distance measure
on meshes [LRF10] and seems to strike a balance in the nor-
malization of eigenfunctions. Fourth, our construction uses
only intrinsic quantities of the surface including the Laplace-
Beltrami operator, which renders the kernels shape-aware
and insensitive to near isometric deformations. Finally, our
approach leads to a convex quadratic optimization problem
with linear constraints, which can be solved using off-the-
shelf optimization software very efficiently.

The main contribution of this paper is the proposed prin-
ciple for constructing multiscale kernels together with the
construction of two such kernels (Section 3). In addition, we
investigate the theoretical properties of these kernels (Sec-
tion 4). After providing more detail about their computation
(Section 5), we present their empirical evaluation (Section
6) and applications (Section 7).

2. Previous work

Multiscale constructions, usually discussed in the context of
wavelets, are of great importance in many applied areas and
in theoretical mathematics. Among such constructions we
will analyze ones that can be adapted to the setting of sur-
faces or surface meshes; for a recent review with an empha-
sis on projection methods see [ARV10].

The first class of multiscale constructions is based on the
eigenvalues and eigenfunctions of the Laplace-Beltrami op-
erator. Let {λi,φi}∞i=0 be the Laplace-Beltrami eigenvalues
and orthonormal eigenfunctions; note that λ0 = 0 with the
corresponding eigenfunction φ0 = const. Consider the gen-
eral expression Kt(x,y) = ∑i g(tλi)φi(x)φi(y), where g is
some real function. To be multiscale, Kt(x,y) should local-
ize around the diagonal and the degree of localization should
depend on the scale parameter t.

Choosing g(s) = e−s results in the heat kernel Ht(x,y),
which is well-known to be multiscale and has already found

important applications in geometry processing, see for ex-
ample De Goes et al. [dGGV08], Sun et al. [SOG09], and
Ovsjanikov et al. [OMMG10]. Geller and Mayeli [GM09]
make the choice of g(s) = se−s to obtain the counterpart
of the Mexican hat wavelet on manifolds. By assuming that
g(s) is a band-pass filter with special behavior around s = 0,
Hammond et al. [HVG11] prove that the obtained kernels
(wavelets) Kt(x,y) are multiscale. While having provable de-
cay properties away from the diagonal, note that all of these
kernels/wavelets have full supports and depend on eigen-
functions which are global by their very nature. Thus, at ev-
ery scale these kernels are aware of the entire manifold, and,
for example, one cannot expect that a kernel computed on a
partial manifold (sub-manifold) will be exactly equal to the
kernel computed on the complete manifold.

The lifting scheme [SS95, Swe98] and diffusion wavelet
construction [CM06] revolutionized wavelet theory. Both of
these approaches are universal and can be applied to con-
struct wavelets on complicated geometries. However, the
lifting scheme makes a non-trivial use of the underlying
mesh and its multiresolution decomposition, which makes it
hard in general to obtain wavelets/kernels that are intrinsic.
Diffusion wavelet construction, on the other hand, results in
critically sampled wavelets; while this is a very desirable
property in wavelet theory, for our purposes it means that we
cannot obtain kernels centered at every point on the mesh.
Finally, another approach is the projection method [ARV10]
which transfers a wavelet construction from the plane to the
surface by using an appropriate projection map. In general,
this results in a wavelet construction within a single manifold
chart; gluing these charts together and obtaining an intrinsic
construction is difficult.

Our construction is based on the well established prin-
ciple in compressed sensing and statistics that the l1-norm
regularizers/constraints induce sparsity. Specifically we use
the Least Absolute Shrinkage and Selection Operator, lasso,
constraint introduced by Tibshirani [Tib96] for statistical
variable selection; it also has close relationship to the ba-
sis pursuit method [CDS98]. In computer graphics sparse
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a) Pre-biharmonic b) Biharmonic

Figure 2: Multiscale pre-biharmonic and multiscale bihar-
monic kernels for two different values of t in 1D case.

methods have been used in the construction of L1 splines
[Lav02] and for surface reconstruction [ASGCO10]. Note
that in both of these applications the l1-norm is applied to
the error term, which forces the error to concentrate at sparse
locations; we, on the other hand, apply the l1-norm to the so-
lution vector in order to make the solution locally supported.

3. Formulation

In this section we construct the multiscale pre-biharmonic
kernel Pt(x,y) and the multiscale biharmonic kernel Bt(x,y),
both of which depend on the scale parameter t. Our gen-
eral construction principle is to build these kernels as solu-
tions to optimization problems which require the kernels to
be smooth and have local supports. We first discuss the con-
tinuous version of our constructions and then discretize.

Continuous setting: Given a compact surface S, let ∆ be
its Laplace-Beltrami operator. Consider the following con-
strained (variational) least squares problem

min
f

ˆ
S
(∆ f )2 subject to

ˆ
S
| f | ≤ t and f (y) = 1,

where f : S→ R belongs to the set of real-valued functions
on the surface, and y is a fixed point on the surface. This
optimization problem has a unique solution (see Section 4)
which is a function gt,y : S→ R that depends on the point y
and parameter t. Thus, we can define the function Pt(x,y) =
gt,y(x). Since our optimization problem is a pre-cursor to the
multiscale biharmonic kernel optimization problem, we will
refer to Pt(x,y) as the multiscale pre-biharmonic kernel.

Now we modify the optimization problem by adding an-
other constraint: we require that the integral of the solu-
tion over the surface must vanish,

´
S f = 0. This require-

ment mimics the property of global poly-harmonic kernels
which do not contain the constant eigenfunction term and,
therefore, integrate to zero. Similarly to above, we obtain
another function Bt(x,y) which we will call the multiscale
biharmonic kernel. The name is justified by the fact that for
values of t large enough, Bt is the scaled Green’s function of
the biharmonic equation (see Section 4).

Figure 2 shows the one-dimensional versions of the mul-
tiscale pre-biharmonic and biharmonic kernels centered at
y = 0 for two different values of t. The kernels can be seen

to exhibit the following desirable properties. First, both of
the kernels are smooth because the objective functional, the
Laplacian energy, is well known to provide a measure of
smoothness for functions on manifolds. Second, both of the
kernels have local supports around the center; as we will see,
this is due to the constraint on the L1 norm of the solution
which forces the solution to be sparse. Finally, both kernels
are multiscale – their supports gradually grow with t. In this
one-dimensional case this growth is particularly simple: the
kernel for 2t is the twice horizontally scaled version of the
kernel for t, and so it has a twice larger support. We will fully
discuss these and further properties of our kernels in the next
section.

Discrete setting: Consider a discretization of a surface S
as a triangle mesh with vertices vi, i = 1, ...,n. Let W
be the n× n diagonal matrix with entry Wii equal to the
point/Voronoi area at vertex vi. We denote the conformal
(with no area weights) cotangent Laplacian matrix [PP93]
by L. The Laplace-Beltrami operator ∆ can be discretized
[MDSB03] as W−1L. We discretize the surface function f :
S→R as the column-vector ~f ∈Rn with i-th entry fi = f (vi).
Surface integrals are discretized as follows

´
S f ≈ ∑i Wii fi.

Now we will discretize all the terms appearing in our op-
timization problems. Assuming that y = vk, after some alge-
braic manipulation the pre-biharmonic kernel optimization
problem becomes

min
~f
‖W−1/2L~f‖2

2 subject to ‖W~f‖1 ≤ t and fk = 1,

where the one-half power arises as the integration weights
are pushed inside the squared 2-norm. The multiscale bihar-
monic kernel optimization problem is discretized similarly
and only has the additional constraint ∑i Wii fi = 0 which
captures vanishing of the integral

´
S f = 0.

4. Properties

Smoothness: The Laplacian energy
´

S(∆ f )2 is well-known
to provide a measure of smoothness for functions on man-
ifolds [BNS06, BS08]. As a result, our optimization prob-
lem is finding the smoothest function subject to given con-
straints. This results in smooth kernels whose support have
smooth boundaries and include the center point. In addition,
we have empirically observed that for both of the kernels
the (closure of) support regions are connected. For the pre-
biharmonic kernel this property is easy to prove: any island
not containing the center point can be eliminated by setting
the function equal to zero on that island, this will result in a
smaller objective functional value without violating the con-
straints.

Note that a variety of choices for the smoothness func-
tional exist, such as the Dirichlet energy or the energies
based on iterated Laplacians. Our specific choice is made
in order to force Bt(x,y) to converge to Green’s function
of the biharmonic equation, which has recently been used
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Figure 3: The sparsifying effect of the lasso constraint. El-
lipses depict the isocontours of ‖A~u−~b‖2

2 and shaded in
gray is the feasible region for lasso constraint ‖~u‖1 ≤ t. So-
lutions at corners have a vanishing coordinate.

to construct a global distance measure on meshes [LRF10]
and seems to strike a balance in the normalization of eigen-
functions. We avoid using the Dirichlet energy because this
would have resulted in convergence to Green’s function of
the harmonic equation, which has a logarithmic singularity
along the diagonal (cf. [LRF10]).

Local support: Both of the kernels have local supports
around the center point y. This is a consequence of the in-
terplay between the smoothness inducing property of the ob-
jective functional and the sparsifying effect of the constraint
on the l1 norm of the solution. We quickly review how this
constraint forces the solution to have vanishing entries.

As shown in Appendix A, the discrete pre-biharmonic op-
timization problem can be written as a standard least squares
problem with the lasso constraint [Tib96]:

min
~u
‖A~u−~b‖2

2 subject to ‖~u‖1 ≤ t. (1)

The multiscale biharmonic kernel problem can be written
similarly with an additional equality constraint correspond-
ing to the vanishing integral requirement.

The sparsifying effect of the lasso constraint ‖~u‖1 ≤ t
when ~u is two-dimensional is demonstrated in Figure 3 (re-
drawn from [Tib96]). The diamond shaded in gray shows the
feasible region for the lasso constraint; the ellipses depict the
isocontours of the least squares error function being mini-
mized. When the solution is at a corner of the feasible re-
gion, one of its coordinates will be zero. In high dimensions,
sparse solutions become much more likely not only because
the number of feasible region corners grows exponentially,
but also because additional sharp structures which force van-
ishing entries, such as edges and higher dimensional cells,
are present.

Note that the additional equality constraint in the multi-
scale biharmonic kernel will constrain the solution to lay on
a hyperplane, so the feasible region (the intersection of this
hyperplane with the lasso region) will retain sharp structures
enforcing vanishing entries – the sparsity inducing effect of
the lasso constraint will survive.

Gradual support: The number of vanishing entries for a

lasso constrained problem can be controlled by varying the
parameter t. For our kernels this results in supports that grad-
ually grow as the scale parameter t is increased. The case
of the pre-biharmonic kernel lends itself to a more detailed
analysis. In the discrete case, we claim that with increasing t
the support of the pre-biharmonic kernel gradually expands
by passing through the two-ring neighbors. To be more pre-
cise, assuming non-degeneracy, for all t and small enough ε,
we have supp(Pt+ε(·,y))⊆ N2(supp(Pt(·,y))); here for any
subset of mesh vertices V , we denote by N2(V ) its two-ring
neighborhood (V ⊆ N2(V )).

To obtain this result, we need the following fact: the so-
lutions to the standard least squares problem with the lasso
constraint, Eq. (1), can be obtained via a procedure called
LARS. Since we do not use LARS in our implementation to
compute the kernel, we will only quickly sketch the proce-
dure; for full details see [EHJT04]. Start with ~u = 0 and let
the active set be empty. Find the column of A, say i-th col-
umn Ai, most correlated with the initial residual~r =~b−A~u=
~b. The corresponding entry ui of the solution vector enters
the active set and we start changing ui so as to decrease the
correlation of Ai with the current residual. This continues
until another column of A, say A j, has as much correlation
with the current residual as Ai. Now the corresponding solu-
tion entry u j enters the active set, and both ui and u j are al-
lowed to change. The process is repeated until the active set
includes all the entries of the solution vector and eventually
yields the ordinary least squares solution. With an appropri-
ate provision for dropping variables from the active set, one
can prove that during this process ~u traverses all the lasso
constrained solutions for increasing values of t.

The pre-biharmonic optimization problem can be written
in the form of Eq. (1), and so this kernel can be computed us-
ing the sketched LARS procedure. The LARS active set cor-
responds to the support of our kernel, and it can only grow
by adding vertices that have non-zero correlation with the
current residual. One can see that the residual ~r =~b− A~u
is supported within the two-ring neighborhood of the active
set. Indeed, in our case, matrix A has the same sparsity pat-
tern as the Laplacian, and vector ~b is supported within the
one ring neighborhood of the vertex y = vk, see Appendix
A. This proves our assertion about the gradual growth of the
pre-biharmonic kernel support. While due to the vanishing
integral condition, the LARS procedure cannot be applied
to the multiscale biharmonic kernel problem directly, we be-
lieve that qualitatively a similar behavior can be expected.

Large t behavior: For large enough values of the parame-
ter t, the lasso constraint becomes inactive and the kernels
become independent of t. Indeed, let f ∗ be the solution of
either of our optimization problems with the lasso constraint
removed. When the scale parameter t = ‖ f ∗‖1, this solution
f ∗ is within the lasso feasible region, and so it will be the
solution of the lasso constrained problem as well. Clearly,
increasing t beyond this value will not change the solution
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– the lasso constraint will remain inactive — so one can de-
fine tmax = ‖ f ∗‖1. Therefore, to investigate the behavior of
our kernels for large values of t and to find tmax we will drop
the lasso constraint and find the solution of the remaining
problem.

For the pre-biharmonic kernel, it is easy to see that the
choice f ∗ ≡ 1 satisfies the constraint f (y) = 1 and makes
the objective functional equal to zero, which is its smallest
possible value. We conclude that tmax = ‖ f ∗‖1 =

´
S | f
∗| =

Area(S), and that the pre-biharmonic kernel Pt(x,y) = 1 for
all t ≥ Area(S) and all x,y ∈ S.

Dropping the lasso constraint from the multiscale bihar-
monic kernel problem leads to a more difficult problem. As
shown in Appendix B, the solution to this problem is given
by f ∗(x) = G(x,y)/G(y,y); here G(x,y) is the global bihar-
monic kernel. As a result, we find that tmax depends on the
point y, and is given by tmax =

´
S | f
∗|=
´

S |G(x,y)/G(y,y)|.
For t ≥ tmax,we have Bt(x,y) = G(x,y)/G(y,y) for all x ∈ S.

The relevance of the biharmonic kernel in this context can
be better seen after rewriting our smoothness objective using
integration by parts:

´
S(∆ f )2 =

´
S f ∆

2 f , assuming the ap-
propriate boundary conditions. It is true that if we wanted to
construct a kernel that converges to Green’s function of ∆

p,
we could have chosen the smoothness objective as

´
S f ∆

p f .
The discussion of these more general kernels is beyond the
scope of this paper.

Partial model behavior: A kernel computed on a partial
model coincides with the kernel on the complete model, as
long as the partial model is big enough to include the (com-
plete model) kernel’s support. The precise statement, say in
the case of the multiscale biharmonic kernel, is as follows.
Consider the kernel Bt(·,y) for some value of t and a point
y ∈ S. Let R be a subset (sub-manifold with boundary) of
surface S such that the support of Bt(·,y) is contained within
R, and let BR

t (·,y) be the multiscale biharmonic kernel com-
puted on R. Now we can easily see that Bt(·,y) and BR

t (·,y)
coincide. Indeed, the solution of the multiscale biharmonic
problem on S is supported within R and is feasible for the
optimization problem on R, and vice-versa, the solution of
problem for R is feasible for the problem for S. Noting that
the objective functional does not change when switching be-
tween R and S, we see that the solutions of these optimiza-
tion problems must coincide.

Isometry invariance: If the surface is isometrically de-
formed, then the kernels will stay the same. Indeed, all of
the ingredients used in our construction involve only intrin-
sic quantities on the surface, namely the Laplace-Beltrami
operator and surface integrals. As a result, the optimal func-
tion will stay the same, and the computed kernels will be the
same as before the deformation.

Unique solution: The optimization problems for both of the
kernels have unique solutions. This can be most clearly seen
in the discrete case. Indeed, both of the problems reduce to

convex problems in the standard form (see Section 5), and
the objective function ‖W−1/2L~f‖2

2 is strictly convex over
the feasible set, which implies the uniqueness of minimizer
(see [BV04] pp.136-137). Strict convexity of the objective
can be seen as follows. The Laplacian matrix L is posi-
tive definite except on the subspace spanned by the constant
eigenvector; shifts by constant vectors leave the objective the
same. However, since the constraints enforce a specific value
at one of the mesh vertices ( fk = 1), such shifts are not pos-
sible within the feasible region.

5. Computation

Due to widespread applications in compressed sensing and
statistics, there are numerous algorithms for solving the least
squares problems with l1 norm constraints/regularizers. Fol-
lowing practical needs, most of such approaches assume that
the involved matrices are dense and so they trade accuracy
for efficiency. In our case the Laplacian matrix is sparse and
this allows obtaining solutions efficiently without employ-
ing any approximations. Namely, we rewrite our optimiza-
tion problems as convex quadratic problems with linear con-
straints (see e.g. [KKL∗07]), and solve them using the inte-
rior point method [BV04].

To reformulate the multiscale biharmonic optimization
problem as a convex quadratic problem we introduce two
auxiliary vector variables~h and~r, and we let ~w = diag(W )
be the column vector containing the diagonal entries of the
area weight matrix W . The equivalent quadratic problem is
as follows:

min
~f ,~h,~r

~rTW−1~r

subject to ~wT ~f = 0 (a) ~f+~h≥ 0 (e)

~wT~h ≤ t (b) −~f+~h≥ 0 ( f )

fk = 1 (c) ~h≥ 0 (g)

L~f −~r =~0 (d)

Here the inequalities involving vectors apply element-wise,
and the T superscript refers to the vector transpose. First,
from the constraints (e, f ,g) notice that the auxiliary vari-
able ~h captures the absolute values of entries of ~f needed
in the lasso constraint; more precisely these constraints en-
force the inequalities | fi| ≤ hi. Second, constraints (a), (b),
and (c) capture the integral equals to zero, the lasso, and
f (y) = 1 constraints respectively. Finally, constraint (d) al-
lows rewriting the objective function in terms of the residual;
this presumably leads to a sparser Hessian [MOS11].

To obtain the corresponding formulation for the pre-
biharmonic kernel, one only needs to drop the constraint (a)
from the problem. After experimenting extensively with this
formulation, we found that the pre-biharmonic kernel never
attains noticeable negative values. As a result, for all prac-
tical purposes the following simple formulation can be used
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to compute the pre-biharmonic kernel:

min
~f ,~r

~rTW−1~r

subject to ~wT ~f ≤ t fk = 1 L~f −~r =~0 ~f ≥ 0

This is the formulation we used for the pre-biharmonic ker-
nel examples presented in this paper.

Both of the above formulations are convex quadratic prob-
lems with linear constraints; we solve them using the log-
barrier interior point method. Our implementation uses the
MOSEK [MOS11] interior point solver which takes advan-
tage of sparsity in our problems, can be conveniently called
from MATLAB, and is freely available for academic pur-
poses. Without any parameter tweaking, this approach pro-
duces high quality solutions efficiently as will be shown in
Section 6.

6. Results

In order to investigate the empirical properties of the multi-
scale kernels introduced in this paper, we ran a set of exper-
iments using a variety of 3D meshes. In these experiments,
our goals are to understand how the kernels behave on dif-
ferent surfaces, to test their robustness to noise and tessella-
tion, to confirm their theoretical properties empirically, and
to make qualitative comparisons to the heat kernel.

For the experiments, we compute the multiscale kernels
Pt(·,y) and Bt(·,y) for a surface point y at different time
scales t. The time scales are shown in terms of tmax which
is defined for each of the kernels in Section 4; in case of the
multiscale biharmonic kernel we set tmax somewhat larger
than the theoretical value so as to tolerate numerical errors.
For ease of visualization, unless specified otherwise, all ker-
nels are scaled to have the maximum value of 1 and the fol-
lowing color coding is used: dark red represents large posi-
tive values, neutral green corresponds to zero, and dark blue
represents large negative values, see the color legend in Fig-
ure 1; this same color legend applies to all of the figures.
To enhance the visual information content, we also include
the isocontours, shown as white curves, of kernel function
equally spaced within the function’s range; note that the
number of isocontours may vary from figure to figure in or-
der to avoid the aliasing when the support of the kernel is
small.

Figure 1 depicts the multiscale biharmonic kernel on the
cheetah model for six values of the parameter t. The kernel
displays multiscale behavior: its support gradually increases
from very local to global. In fact, at t ≥ tmax the kernel
converges to the scaled global biharmonic kernel. For this
model, the maximum absolute difference between our kernel
at t = tmax and the scaled global biharmonic kernel [LRF10]
is 4×10−7.

Figure 4 shows both of multiscale pre-biharmonic and

biharmonic kernels on different models. Note that the ker-
nels vary smoothly over the surface, are isotropic around
the point y for small t; they become increasingly “shape-
aware” for larger values of t, and they follow the natural
cross-sections of the shape away from y. We also point out
Figure 5 g-h which shows that the kernels are well-defined
on surfaces with boundaries.

Figure 5 demonstrates the various insensitivity properties
of the multiscale biharmonic kernel; due to limited space
similar figures for the pre-biharmonic kernel are not in-
cluded. The top two images (Figure 5 a-b) demonstrate the
insensitivity to noise. Here the addition of Gaussian noise to
the mesh (σ = 400% of the average edge length) leads to lit-
tle change in the kernel as evidenced by the coloring and the
isolines. The second row of two images (Figure 5 c-d) shows
insensitivity to tessellation – as the mesh is simplified from
50K vertices to 5K, the kernel remains almost unchanged.

The third row (Figure 5 e-f) confirms the theoretical isom-
etry invariance property of the kernel – the isolines and col-
oring are in correspondence between the David model and
its nearly isometric deformation. The last row (Figure 5 g-h)
demonstrates the behavior of the kernel on partial models.
Here, function values along the isolines match; we can see
that the kernel computed on the hand alone matches the ker-
nel computed on the human model for the same point y and
value of t; similarly for the Cat model. Here the partial mod-
els are obtained by cutting the complete model by a plane
and then remeshing.

Figure 6 provides a comparison between our kernels and
the heat kernel. Here we scale the model to have unit
area and then compute the heat kernel at values of t =
1/256, 1/64, 1/16. Next, in each case we found multiscale
pre-biharmonic and biharmonic kernels that have supports
similar to the heat kernel’s support. Upon visual inspection
we find that heat kernel and pre-biharmonic kernel behave
similarly. Interestingly, they also have the same limiting be-
havior: both of them start with support at a single vertex, and
as t →∞ (in fact, t ≥ tmax for pre-biharmonic kernel) both
of them become global and converge to a constant function.
One consequence of this limiting behavior is that even for
relatively small t the kernels have a smeared look near the
center-point y and “forget” its location – the isocontours do
not make circles around y. The multiscale biharmonic ker-
nel, on the other hand, has circular isocontours around the
point y even when the kernel’s support is large; such preser-
vation of center point location information can be useful in
shape matching.

Timing: Table 1 reports time in seconds to compute the mul-
tiscale kernels, including the heat kernel, at different values
of t for a variety of surface mesh sizes on a 3.06Ghz Intel
T9900 processor with 4G RAM, single threaded. The entire
implementation is done in MATLAB, except for optimiza-
tion we call MOSEK through its convenient MATLAB inter-
face. For heat kernel we scale the models to have unit area
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tmax/64 tmax/16 tmax/4 tmax/64 tmax/16 tmax/4

Multiscale pre-biharmonic kernel Multiscale biharmonic kernel

Figure 4: Examples of multiscale pre-biharmonic and multiscale biharmonic kernels at different scales on a variety of models.

Size Multiscale biharmonic Multiscale pre-biharmonic Heat – Matrix exponential Heat – Spectral
|V | t = 1/4 1/16 1/64 1/256 1/4 1/16 1/64 1/256 1/4 1/16 1/64 1/256 1/4 1/16 1/64 1/256
2K 0.47 0.42 0.41 0.36 0.31 0.31 0.31 0.27 3.01 0.91 0.33 0.12 0.07 0.11 0.40 9.29

4.3K 0.94 0.97 1.00 0.92 0.56 0.61 0.59 0.51 29.94 7.56 2.52 0.83 0.16 0.18 0.98 17.25
8K 2.08 2.01 1.65 1.92 1.09 1.33 1.23 1.06 151.81 49.42 15.66 4.83 0.33 0.41 3.32 38.67
16K 5.16 5.66 7.35 6.30 3.20 3.60 4.21 3.28 206.63 65.08 21.34 6.40 0.70 0.71 5.11 46.93

27.9K 8.74 14.52 9.75 8.86 5.12 5.72 6.33 6.45 >600 >600 >600 599.08 1.60 1.60 11.30 107.03
52.6K 28.91 26.41 25.10 22.78 12.84 14.10 17.58 15.83 >1200 >1200 >1200 >1200 0.17 0.17 0.74 14.78

Table 1: Time (in seconds) to compute multiscale kernels for different values of the scale parameter t.
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a) original b) 400% noise

c) 50K vertices d) 5K vertices

e) original f) deformed

g) David h) Cat

Figure 5: Insensitivity of the multiscale biharmonic kernel
to noise, tessellation, deformation, and partial object.

a) Heat b) Pt(x,y) c) Bt(x,y)

Figure 6: Comparison to heat kernel for different t.

and report timings for two different computation approaches.
First is the approach of Ovsjanikov et al. [OMMG10] who
compute the kernel as a matrix exponential using the Ex-
pokit [Sid98]. Second is the approach based on the spectral
expansion of the heat kernel and requires computing eigen-
values and eigenvectors of the Laplacian; for each t we com-
pute enough eigenvalues to attain e−tλmax < 10−6. All of the
kernels require the Laplace-Beltrami matrix so its assembly
time is not reported.

We empirically observe that the maximum computa-
tion time (over different scales t) for both multiscale pre-
biharmonic and biharmonic kernels is approximately linear
in the mesh size and is generally better than or is as good as
the matrix exponential heat kernel computation time at the
smallest t. The spectral approach to the heat kernel is rela-
tively fast, but it slows down for smaller values of t because
more and more eigenvalues are required.

For the last two models (Cat0 and Michael0 from TOSCA
[BBK08]) the heat kernel computation using matrix expo-
nential requires drastically more time than previously (this
effect is not due to swapping); on the contrary, the spec-
tral approach leads to smaller compute times for the largest
mesh. This means that the heat kernel computation time can
depend critically on subtle mesh properties, whereas our ker-
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Figure 7: Interpolation using multiscale pre-biharmonic
kernel as RBF. Grey spheres depict the anchor points, the
annotation shows the prescribed function values at anchors.
In the left model there is an invisible anchor point at the
fourth vertex in the base with the value of −1.

nel compute times are insensitive to such subtleties. Finally,
while a multiresolution approach to computing heat kernel
has recently been proposed [VBCG10], we observe that such
an approach can also be devised for our kernels due to their
insensitivity to tessellation (Figure 5 c-d).

7. Applications

Function interpolation: An application that can benefit
from kernels defined on surfaces is interpolation. For a set
of anchor points yi, i = 1, ..,m, where function values gi are
given, we would like to construct a function on the entire sur-
face which attains these values as prescribed. To this end, we
can use either of our kernels within the Radial Basis Func-
tion (RBF) interpolation framework [Wen05, Fas07]. The
RBF interpolant based on the multiscale pre-biharmonic ker-
nel has the form g(x) = ∑ j c jPt(x,y j), where x is any point
on the surface, t is a choice of the scale parameter, and c j are
some coefficients. These coefficients are found by solving a
linear system of equations that forces the interpolant to attain
the prescribed values at the anchors, g(yi) = gi. Namely, de-
fine the m×m matrix M by Mi j =Pt(yi,y j) and let~c and~g be
column-vectors of coefficients and the prescribed function
values; the system we solve is M~c =~g. The pre-biharmonic
kernel is more suitable for interpolation both because it is
“non-oscillatory” in the RBF terminology, and because it al-
lows a uniform and intuitive choice for the scale parameter,
t = tmax/m=Area/m. Examples of interpolants obtained via
this procedure are shown in Figure 7.

Correspondence propagation: In the pioneering work
[OMMG10], Ovsjanikov et al. observe that a multiscale ker-
nel, namely the heat kernel, can be used for extending a
sparse correspondence between two isometric surfaces into
a dense correspondence. They prove that theoretically a sin-
gle landmark correspondence is enough to reconstruct the
isometry map; to obtain good maps in practice, they use two
landmark correspondences together with a local shape de-
scriptor. In this context we will show that the multiscale bi-
harmonic kernel provides a practical alternative to the heat
kernel.

Figure 8: Distinguishing surface points by looking at the t
dependence of their kernels (multiscale biharmonic vs. heat)
with respect to a fixed point z.

Given a fixed point z on a surface, for every point x con-
sider the function hx(t) = Ht(x,z) of variable t; here Ht(·, ·)
is the heat kernel. Under mild genericity conditions, Ovs-
janikov et al. [OMMG10] show that hx(·)≡ hy(·) if and only
if x = y. In other words, to distinguish any two surface points
it is enough to look at the t dependence of their heat ker-
nels with respect to a fixed point. This result crucially de-
pends on the multiscale nature of the heat kernel, which nat-
urally leads us to defining a similar function bx(t) = Bt(x,z)
in terms of the multiscale biharmonic kernel Bt(·, ·). While
proving a theoretical result as above for our kernel can be
difficult and is beyond the scope of this paper, we were able
to observe practically that bx(t) can provide a better degree
of distinction than hx(t).

In Figure 8, the fixed point z is shown as a black sphere;
for each of the remaining points, shown as a sphere of
some color, we plot the corresponding graphs of functions
bx(t) (left) and hx(t) (right) using the same color. Follow-
ing [OMMG10] we scale the surface to have unit area, and
compute the heat kernel based function hx(t) for twenty val-
ues of t logarithmically sampled from [0.001,1]. The multi-
scale biharmonic kernel based function bx(t) is computed for
twenty values of t/tmax linearly sampled from the same in-
terval. While both of the functions distinguish all the points,
note that the heat kernel has difficulty in distinguishing the
orange (nose) and the cyan (back foot) points. One of the
reasons for this seems to be the limiting behavior of the ker-
nels: since the heat kernel converges to a constant function
with increasing t, in a sense it has a smaller “window of
opportunity” for detecting the differences between points.
On the other hand, our kernel converges to the global bi-
harmonic kernel as t/tmax → 1 which readily results in a
better distinction. Note also that our multiscale kernel cap-
tures more information than the global biharmonic kernel:
the darkest blue (back knee) and the red (ear) points are not
distinguished by the global kernel as seen by the coincid-
ing function values at t/tmax = 1, whereas for t/tmax < 1 the
graphs are distinct.

To obtain a dense correspondence map between two sur-
faces S and S̃ we use the following setup. Given pairs
(zi, z̃i) ∈ S × S̃, i = 1, ...,m, of corresponding landmark
points, consider the functions bi

x(t) = Bt(x,zi) for x ∈ S and
similarly the functions b̃i

y(t)= B̃t(y, z̃i) for y∈ S̃. These func-
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Figure 9: Given two landmark correspondences shown in
red, we obtain a dense correspondence shown in blue.

tions are computed at values {t j} as in the above exper-
iment. For each point x ∈ S we define the corresponding
point x̃ ∈ S̃ via x̃ = argminy ∑i, j(b̃

i
y(t j)− bi

x(t j))
2. Figure 9

depicts dense correspondences obtained from two landmark
correspondences (shown in red) using this approach. Note
that all of the points are placed in the correct relative lo-
cations. We believe that the precision of placements can be
further improved by incorporating local shape descriptors as
in [OMMG10].

8. Discussion and future work

This work presents a novel construction of two kernels that
share common properties of being multiscale, insensitive to
isometric deformations, stable on partial models, robust to
noise and tessellation, and fast to compute. The multiscale
pre-biharmonic kernel is more amenable to theoretical inves-
tigation, has smaller supports that are easier to control via a
uniform setting of the scale parameter, and is faster to com-
pute. The multiscale biharmonic kernel has a non-trivial lim-
iting behavior, has a better memory of the center-point, and
exhibits wavelet properties. These differences may make one
kernel more suitable than the other in a given context, which
provides a greater assortment of choices and may eventually
lead to an increase in the scope of applications that can ben-
efit from multiscale kernels.

This work provides a small, first step and therefore has
limitations that suggest topics for future work. A first topic
suitable for further investigation is to more formally charac-
terize the theoretical properties of these multiscale kernels.

The vanishing integral property of the multiscale biharmonic
kernel hints to its wavelet nature; thus, studying its wavelet
properties is an attractive topic. In addition, investigating the
locally supported RBFs obtained from our kernels both on
the plane (more generally in Rn) and the sphere can be in-
teresting. A second topic for future research is developing
multiresolution approaches to kernel computation. Indeed,
since tessellation has little effect on the kernels, one can
compute an initial approximation on a coarse mesh, and then
use this approximate solution to “warm” start the optimizer
on the finer mesh – allowing to obtain a fast and high qual-
ity solution that incorporates the second order features of the
mesh. Finally, an interesting avenue for future work would
be to investigate applications of multiscale kernels in com-
puter graphics and geometric modeling. Furthermore, graph
Laplacians can be used instead of the Laplace-Beltrami op-
erator in our construction in order to generalize the kernels to
the graph setting. As a result, we expect these kernels to have
applications in areas such as high dimensional data analysis.
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Appendices

Appendix A: The pre-biharmonic kernel optimization problem can
be transformed into the lasso formulation of Eq. (1) as follows. To

get rid of the weighting within the l1 norm, we make the substitution
~g =W~f . Let M =W−1/2LW−1, and note that M~g =W−1/2L~f . The
constraint fk = 1 becomes gk = Wkk . To drop this constraint, let
~b = WkkMk , where Mk is the k-th column of matrix M, and define
the n× (n−1) matrix A as equal to M with the k-th column deleted.
It is easy to check that the problem

min
~u
‖A~u−~b‖2

2 subject to ‖~u‖1 ≤ t′,

is equivalent to our pre-biharmonic kernel problem. Note that ~u ∈
Rn−1 contains all the entries of ~g ∈ Rn except the entry gk which is
constrained to be equal to Wkk . Thus, the new parameter t′ = t−Wkk .
Note that ~b is essentially a scaled k-th column of the cotangent
Laplacian, and so~b has vanishing entries except for the entries cor-
responding to mesh vertex vk and its one-ring neighbors.

Appendix B: Here we show that the solution to the multiscale
biharmonic optimization problem when the lasso constraint be-
comes inactive is given by f ∗(x) = G(x,y)/G(y,y) for all x ∈ S,
where G(x,y) is the global biharmonic kernel. Let {λi,φi}∞i=0 the
Laplace-Beltrami eigenvalues and eigenfunctions; the eigenfunc-
tions are orthonormal, and λ0 = 0 with corresponding eigenfunc-
tion φ0 = const. The global biharmonic kernel can be written as
G(x,y) = ∑i>0 φi(x)φi(y)/λ2

i .

Writing f ∗ in term of the eigenfunction basis we obtain

f ∗ = c1φ1 + c2φ2 + c3φ3 + · · · , (2)

where we do not have the term c0φ0 because c0 =
´

S f ∗φ0 = const×´
S f ∗ = 0 by the vanishing integral constraint in the optimization

problem. Since all eigenfunctions φi for i 6= 0 are orthogonal to φ0,
we obtain that

´
S φk = 0. This discussion implies that requiring the

expansion of Eq. (2) is equivalent to the vanishing integral condition´
S f ∗ = 0.

Now we rewrite the objective functional and the remaining con-
straint f ∗(y) = 1 in terms of {ci}∞i=1 to obtain the following prob-
lem:

min
{ck}

∑
i>0

c2
i λ

2
i subject to ∑

i>0
ciφi(y) = 1.

Here we used the facts that ∆φi = λiφi and that the eigenfunctions
are orthonormal,

´
S φiφ j = δi j . To solve the problem, make a substi-

tution zi = ciλi, which gives the problem,

min
{zi}

∑
i>0

z2
i subject to ∑

i>0
ziφi(y)/λi = 1

which is equivalent to finding the point {zi}∞i=1 on the hyperplane
∑ ziφi(y)/λi = 1 closest to the origin. It is easy to see that this point
must have the coordinates zi = αφi(y)/λi, where α is some constant.
We find that ci = αφi(y)/λ2

i and using the expansion Eq. (2) we
obtain

f ∗(x) = α ∑
i>0

φi(x)φi(y)
λ2

i
= αG(x,y).

From the constraint f ∗(y) = 1, we find the value of α = 1/G(y,y) ,
which establishes that f ∗(x) = G(x,y)/G(y,y).
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