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Abstract
We present a dense correspondence method for isometric shapes, which is accurate yet computationally efficient.
We minimize the isometric distortion directly in the 3D Euclidean space, i.e., in the domain where isometry is
originally defined, by using a coarse-to-fine sampling and combinatorial matching algorithm. Our method does
not require any initialization and aims to find an accurate solution in the minimum-distortion sense for perfectly
isometric shapes. We demonstrate the performance of our method on various isometric (or nearly isometric) pairs
of shapes.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: 3D Shape
Correspondence—Coarse-to-fine sampling, combinatorial matching, isometric dense shape correspondence

1. Introduction

Finding correspondences between shapes is a fundamental
problem in both computer vision and graphics with numer-
ous applications such as mesh morphing, mesh parametriza-
tion, deformation transfer, shape registration, shape match-
ing, analysis of sequential meshes and statistical shape mod-
eling [vKZHCO11]. In this paper we address the problem
of establishing dense correspondence between isometric (or
nearly isometric) shapes. Isometric shape correspondence is
an important problem; not only since most real world defor-
mations are isometric, but also because semantically similar
shapes have similar metric structures, such as different poses
of an articulated object, models of a mesh sequence repre-
senting the motion of a human actor, or two shapes repre-
senting different but semantically similar objects (e.g., two
different humans or animals).

If two shapes are perfectly isometric, then there exists
an isometry, i.e., a distance-preserving mapping, between
these shapes such that the geodesic distance between any
two points on one shape is exactly the same as the geodesic
distance between their correspondences on the other. How-
ever, two digital shapes are hardly ever perfectly isometric,
even for different poses of a rigid object, due to imperfec-
tions of the modeling process and/or geometry discretization
errors. Hence the goal of isometric correspondence methods
existing in the literature is rather to find a mapping that min-
imizes the amount of deviation from isometry.

When the shapes to be matched are given in the form of
triangle meshes, the correspondence problem can be formu-
lated as combinatorial optimization over all possible map-
pings from one vertex set to the other. There exist vari-
ous ways of solving this optimization problem in the liter-
ature. One way is to minimize the deviation from isometry,
indirectly in some embedding space, where Euclidean dis-
tances approximate geodesic distances. Euclidean embed-
ding, in the context of shape analysis, can be achieved by
using different techniques such as classical MDS (Multi-
Dimensional Scaling) [JZ06], least-squares MDS [EK03],
and spectral analysis of the graph Laplacian [MHK∗08]
or of the Laplace-Beltrami operator [OSG07]. Some re-
cent methods propose to use embeddings such as the heat
kernel [OMMG10] and the canonical diffusion embedding
[SH10], which are invariant under isometric deformations,
but which are not Euclidean in the multidimensional scaling
sense. Other two recent examples are based on the Möbius
transformation which is used for conformal embedding of
the given shapes into a canonical coordinate frame on the
complex plane where deviations from isometry are approxi-
mated based on mutually closest points [LF09], [ZWW∗10].
A problem common to these embedding-based techniques is
that they all produce approximate and/or ambiguous solu-
tions since they can measure deviations from isometry only
approximately in the embedding space. In order to decrease
the approximation error, Bronstein et al. [BBK06b] propose
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to embed one of the shapes to be matched into the surface
of the other via the generalized MDS, which however re-
quires minimization of a non-convex stress function that is
difficult and expensive to optimize. Similarly, in [SY10],
the isometric distortion is minimized via greedy optimiza-
tion, which hence needs a good initialization and may oth-
erwise get stuck with local maxima, yielding suboptimal
solutions. Bronstein et al. propose a coarse-to-fine method
in [BBK06a], to remedy the local convergence problem in-
volved in optimization of the stress function, whereas Mé-
moli and and Sapiro [MS04] present a technique to com-
pute a discrete approximation to Gromov-Hausdorff distance
for comparing isometric point clouds, both methods coupled
with a farthest point sampling procedure.

Isometric shape correspondence methods may also exploit
local shape similarity in addition to isometric clues, such as
curvature information as in [OMMG10], [ZWW∗10]. Some
methods may even solely rely on local shape similarity in-
formation, using descriptors such as spherical harmonics as
in [FS06], histogram of oriented gradients as in [ZBVH09],
and mean curvature as in [TBW∗09]. Local shape similar-
ity is an important clue for shape correspondence, especially
in the case of non-isometric deformations, but otherwise it
is considered as less reliable than global shape information
such as isometry.

An important distinction between shape correspondence
methods is whether they target sparse or dense correspon-
dence. Most embedding-based methods naturally support
dense correspondence but the computational load is usually
a limiting factor. There also exist methods which primar-
ily aim to find a small number of feature correspondences
[ZSCO∗08], [HAWG08], [SH10], [ACOT∗10], [LF09],
[KLF11]. These methods regard the sparse correspondence
problem as the main challenge since, based on a suffi-
cient number of reliable landmarks, cross-parametrization or
some other form of interpolation technique can always be
applied to obtain a dense correspondence [Ale02]. However,
to decide on the degree of sparsity, that would lead to a ro-
bust dense correspondence, is always a problematic issue. A
particular example to sparse correspondence methods is the
deformation-driven approach of [ZSCO∗08]. In this method,
an optimal correspondence is sought between shape extrem-
ities via combinatorial tree traversal by pruning the search
space according to some criteria based on local shape sim-
ilarity and geodesic consistency. For each candidate corre-
spondence set, the source shape is deformed to the target
based on these small number of landmarks (anchor points),
and the correspondence with the smallest distortion gives the
best matching. Another similar deformation-driven method
is presented also in [HAWG08]. Both methods can handle
large deformations but their computational cost is extremely
high due to the repeated deformation process that they in-
volve.

There are two main contributions of this paper:

• We propose a dense shape correspondence method which
is computationally efficient. We minimize the isomet-
ric distortion directly in the 3D Euclidean space, i.e., in
the domain where isometry is originally defined, by us-
ing a coarse-to-fine combinatorial search algorithm. Our
method does not require any initialization and aims to find
an accurate solution in the minimum-distortion sense for
perfectly isometric shapes.

• Our shape correspondence method is based upon a coarse-
to-fine joint sampling technique that incrementally sam-
ples evenly-distributed salient vertices from a given mesh
at increasing levels of detail.

We note that the source code and the executables for the
method that we present in this paper are publicly available
in http://home.ku.edu.tr/∼yyemez/c2f.

2. Problem Statement and Overview

Our goal is to establish a dense correspondence between
two given isometric (or nearly isometric) shapes. We assume
that each shape is represented by a manifold surface mesh
of sufficiently high resolution, on which geodesic distances
can easily be computed. We designate one of the shapes as
source and the other as target. Let S and T denote the ver-
tex sets of the source and the target meshes, respectively.
Let also that a mapping § : S → T (or a relation in the most
general setting) is given. We then measure the isometric dis-
tortion Diso as follows:

Diso(§) =
1
|§| ∑

(si,t j)∈§
diso(si, t j) (1)

where diso(si, t j) is the contribution of the individual corre-
spondence (si, t j) to the overall isometric distortion:

diso(si, t j) =
1
|§′ | ∑

(sl ,tm)∈§′
|g(si, sl)− g(t j, tm)| (2)

where g(., .) is the geodesic distance between two vertices
on a given surface and §′ = §−{(si, t j)} in the most general
setting. Both diso and Diso take values in the interval [0,1]
since the function g is normalized with respect to the max-
imum geodesic distance over the surface. Note that (1) can
be seen as a variant of the generalized stress function de-
fined in [BBK06b]. The problem can then be formulated as
a combinatorial search over all possible mappings so as to
minimize the isometric distortion function given in (1):

§∗ = argmin
§

Diso(§) (3)

Since S and T consist of vertices sampled on isometric (or
nearly isometric) shapes, we require the optimal mapping
§∗ to establish a full correspondence between S and T so
that every si ∈ S is related to some t j ∈ T , and likewise
every t j ∈ T is related to some si ∈ S. If we further as-
sume that the shapes are perfectly isometric and represented
by uniform triangle meshes, then §∗ is constrained to be a
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one-to-one correspondence with |S| = |T |, and can be found
by evaluating (1) for N! different possible mappings, where
N = |S| = |T |. This combinatorial solution however has fac-
torial complexity and hence computationally intractable for
typical values of N.

Motivated by the simplicity of this optimal but expensive
solution, we provide a coarse-to-fine shape matching algo-
rithm based on combinatorial search. The idea is to reduce
the search space by exploiting the fact that the optimal map-
ping §∗ maps nearby vertices on the source shape to nearby
vertices on the target. This suggests that shape matching
can be performed on a patch-by-patch basis in a coarse-to-
fine fashion. To this effect, we incrementally sample evenly-
distributed vertices from the surfaces of both shapes at in-
creasing levels of detail (Section 3). In parallel to this sam-
pling process, at each level of detail, we match the sampled
vertices by combinatorial search on a patch-by-patch basis
(Section 4), using Equations 1 and 3. Our algorithm is built
upon the basic assumption that the shapes to be matched
are perfectly isometric. However two digital shapes (or their
mesh representations) are hardly ever so in practice. More-
over |S| is not usually equal to |T |, hence the correspondence
§∗, which is optimal in the minimum-distortion sense, is a
many-to-many mapping. We note that the final output of our
correspondence algorithm is also a many-to-many mapping.

3. Coarse-to-fine Sampling

In this section, we describe our coarse-to-fine algorithm that
we use to sample base vertices from the mesh representa-
tions of the given shapes. We sample S and T separately,
at increasing levels of detail, by using a sequence of de-
creasing sampling radii {r(k)} such that r(k) > r(k+1) for
k = 0,1, ...,K. Let S(k) denote the set of base vertices sam-
pled from S at level k. We require the sets {S(k)}: i) to be
incremental such that S(k) ⊂ S(k+1) ⊆ S, and ii) to consist of
samples as evenly distributed as possible on the shape sur-
face. Note that the same notation applies also to T .

In order to obtain a consistent joint sampling between two
shapes, we use an importance sampling strategy which pri-
oritizes salient vertices (shape extremities and/or high cur-
vature points) during selection of the samples. We initially
sort the vertices of S into a list in descending order with re-
spect to their saliency values and mark them all as base ver-
tex candidates. The sampling algorithm starts, at the coars-
est level k = 0, by selecting the top vertex of the list as the
first base vertex. We launch the Dijkstra’s shortest paths al-
gorithm from this vertex and unmark all the vertices lying
within a distance r(0). Then, the next base vertex is picked
as the first marked vertex of the list. When this is repeated
until no marked vertex is left, we obtain a sampling of the
surface, where the base vertices are at least r(0) apart from
each other. The same sampling procedure is applied to each
level k by initializing the sampling with S(k) = S(k−1), where

S(−1) = ∅. At the beginning of each level k, we mark all the
vertices but the ones which are within a distance r(k) from
the base vertices inherited from the previous level. We then
pick the first marked vertex in the list and unmark all the
vertices within a distance r(k). When this is repeated until no
marked vertex is left, we obtain the base vertex set S(k) such
that the samples are at least r(k) apart from each other. The
maximum level of sampling is obtained when all the vertices
in S are picked as base vertices.

Each base vertex si ∈ S(k), sampled as described above,
defines a surface patch around itself at level k. This patch,

that we denote by S(k)
i , includes all the vertices within a

distance r(k) from the base si, as illustrated in Fig.1. The al-
gorithm also ensures that each vertex is covered by the patch
of at least one base vertex. Hence, the resulting patches
partition the shape surface at each level into overlapping

regions of approximately equal size such that S(k) =
�

i S
(k)
i .

The sampling algorithm is given in pseudocode below.

Sampling algorithm:

Input: Vertex set S
Input: Sampling radii {r(k)} s.t. r(0) > r(1) > ... > r(K)

Output: Base vertex sets {S(k)} s.t. S(0) ⊂ S(1) ⊂ ... ⊂ S(K)

S(−1) = ∅; k = −1;
Sort S in descending order w.r.t. saliency;
Iterate on level k

Mark all vertices in S as base vertex candidates;
S(k) = S(k−1);
For each base si ∈ S(k−1)

Unmark all the vertices within patch S(k)
i ;

Repeat
Let s j be the first marked vertex in S;
S(k) = S(k) ∪{s j};

Unmark all the vertices within patch S(k)
j ;

Until no marked vertex is left
Until all vertices in S are sampled (or maximum level K is achieved)

Our sampling algorithm is built on a sampling technique
used in [HSKK01]. As described above, we extend this tech-
nique, which is uniresolution and which selects the base
vertices evenly but in an arbitrary manner, so as to have a
multiresolution sampling algorithm which prioritizes the se-
lection of salient vertices. We measure saliency by the inte-
gral of geodesic distance function of [HSKK01] at the initial
coarsest level, and by the Gauss curvature at all other lev-
els. Hence the base vertices are placed on local maxima of
Gauss curvature at every level except that they are selected
from the shape extremities at the initial level.

4. Correspondence Algorithm

We establish the vertex correspondence between the source
shape S and the target T , at increasing levels of detail, in
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Figure 1: Coarse-to-fine sampling. Small blue dots represent the
original vertex set S. (Left) Green points are the base vertices sam-

pled at level k− 1, where the base si defines the patch S(k−1)
i with

radius r(k−1). (Right) The newly sampled base vertices at level k
(in black), along with the ones inherited from the previous level (in
green), constitute the base vertex set S(k) at level k, where each s j

defines a patch S(k)
j around itself with radius r(k). The patch S(k−1)

i
is the parent of the base vertices that it covers at level k.

parallel to our coarse-to-fine sampling algorithm described
in the previous section. Hence our shape correspondence
algorithm produces a sequence of correspondences, {§(k)},
which is refined as the level k increases, and at the maximum
level possible, we expect to get the optimal dense correspon-
dence: §∗ = §(K). In the sequel, we explain how we obtain
each §(k), i.e., the correspondence at each level k.

4.1. Patch-based Combinatorial Matching

Recall from Section 3 that each base vertex set S(k−1), or
equivalently T (k−1), partitions the surface of the shape S
(or T ) into overlapping patches of approximately equal size

{S(k−1)
i } (or {T (k−1)

i }). Suppose that each such patch at

level k− 1, say S(k−1)
i , contains a fixed number M of base

vertices from the next level k, i.e., from S(k). If we desig-

nate S(k−1)
i as the parent of these kth level base vertices,

then our coarse-to-fine sampling procedure can be thought
of as a process in which the surface of the shape S is recur-
sively subdivided into M smaller patches as levels proceed.
Note that, while a newly sampled base at level k (or its patch)
may have multiple parents, a base vertex inherited from level
k− 1 has only one parent patch.

Given §(k−1), the correspondence §(k) can be obtained
on a patch-by-patch basis, i.e., for every (si, t j) ∈ §(k−1),
by matching the kth level base vertices inside the patches

S(k−1)
i and T (k−1)

j , respectively, as illustrated in Fig. 2. The

M base vertices of two corresponding patches, say S(k−1)
i

and T (k−1)
j , can be matched by combinatorial search pro-

vided that M is sufficiently small. To this effect, we evaluate
each time the isometric distortions of M! possible one-to-one

mappings § from the base vertices in S(k−1)
i to the base ver-

tices in T (k−1)
j via Eq. 1 and pick the one with the least dis-

tortion. We denote this minimum-distortion patch-to-patch

matching by §(k)
m . Recall that, to be able to compute Diso(§)

in Eq. 1, we need to set a correspondence list §′ to be used
in Eq. 2. The list §′, which includes § by default, should be
global enough to avoid mismatches due to local symmetries,
yet local enough to perform well on details, hence we aug-
ment it with the matchings of the parent patches, whenever

available: §′ = §∪�n §(k−1)
n , where each §(k−1)

n denotes the
correspondence at level k− 1 between the parent patches of
si and t j (note that a base vertex may have multiple parents).

Figure 2: Coarse-to-fine patch-based combinatorial matching. At

level k, the base vertices inside the (grey) patches S(k−1)
i and T (k−1)

j
are matched by combinatorial search. At level k− 1, the matching

§(k−1)
n is one-to-many since the (green) patches S(k−2)

i and T (k−2)
j

have different number of bases. Note that §(k−1)
n is included in §′

while matching the patches S(k−1)
i and T (k−1)

j at level k.

At each level k, we set the value of the sampling ra-
dius r(k) based on the area of the largest patch at level
k−1, denoted by A(k−1). We use the ad-hoc formula, r(k) =

0.6
√

A(k−1)/π, which ensures that the number M of bases
sampled within a parent patch is about 5 (or more generally,
M ≤ 6), and that in turn allows us to match the resulting
patches via combinatorial search.

Since two shapes are never perfectly isometric, two
patches to be matched may indeed have different number of
base vertices sampled, say M and M′ and M′ > M, as it is

also the case in in Fig. 2. In such cases we have
(M′

M

)
M! dif-

ferent possible one-to-one mappings to evaluate for combi-
natorial matching. Once the minimum-distortion one-to-one
mapping is found via combinatorial search, there remain un-
matched vertices in one of the patches, to which we assign
residual matches in order to assure that the whole surface
is covered by the correspondence algorithm as depicted in
Fig. 2. To achieve this, each unmatched vertex in one patch
is paired with all the vertices in the other one by one, and
the pair that minimizes the isometric distortion is picked as
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the residual match. Hence each patch-to-patch matching at

level k results in a mapping §(k)
m , which can be one-to-one,

many-to-one or one-to-many, depending on the number of
base vertices sampled in each patch.

4.2. Correspondence Merging

At the end of each level k, we merge the patch-to-patch cor-

respondences {§(k)
m }, obtained via combinatorial search as

explained in Section 4.1, into one global correspondence §(k)

that covers the whole surface. Since patches partition the
shape surface into overlapping regions, the union of these

matchings, §(k,0) =
�

m §(k)
m , gives an initial correspondence

that needs to be simplified. The merging process at level k
is carried out in the following three steps, that involve elim-
ination of redundant multiple matches and trimming of the
outliers (as illustrated in Fig. 3):

• Step 1: For every base vertex si ∈ S(k), we keep only one
correspondence pair, the one with the minimum distortion
among all (si, t j) ∈ §(k,0), which gives us §(k,1), the out-
put of the first step of the merging algorithm. We compute
each isometric distortion diso(si, t j) via Eq.2 with the set-

ting §′ = §(k,0). Note that §(k,1) is many-to-one.
• Step 2: To every isolated base vertex t j ∈ T (k) with no

correspondence si ∈ S(k) s.t. (si, t j) ∈ §(k,1), we assign the

base sn ∈ S(k) that yields the minimum distortion among
all (sn, t j) ∈ §(k,0), which gives us §(k,2), the output of the
second step. We compute each isometric distortion with
the setting §′ = §(k,1).

• Step 3: We replace every outlier (si, t j) ∈ §(k,2) for which

diso(si, t j) > 2 · Diso(§(k,2)), with (si, tn) that yields the

minimum distortion among all tn ∈ T (k). We compute
each isometric distortion with the setting §′ = §(k,2). If
the removal of an outlier creates an isolated target base,
then step (2) is repeated. The output of this last step gives
us the final correspondence §(k), which is a many-to-many
mapping.

4.3. Overall Algorithm

The overall correspondence algorithm is composed of three
basic tasks at each level of detail: sampling, combinatorial
matching and merging. A critical parameter of the algorithm
is the sampling radius r(k), which determines at each level k
the number M of bases sampled within each parent patch.
Recall that we set r(k) based on the area of the largest
patch at level k − 1, A(k−1), by using the ad-hoc formula
given in Section 4.1, which ensures a sufficiently small
value of M for combinatorial matching, M ≤ 6. Hence
in practice, we have two sampling radii at each level,

r(k)
S and r(k)

T , one for the source shape S and one for the
target T , which have close but different values (since S
and T are assumed to be nearly isometric). We initialize

Figure 3: Merging of patch-based correspondences, §(k)
1 , §(k)

2 and

§(k)
3 , into one global mapping §(k) at level k. The illustration con-

siders only three patches for demonstration purposes. Points from
different patches with the same color correspond to the same base
vertex. Note that some redundant matches are eliminated and the
outlier (s2,t3) is replaced with (s1,t3) and (s2,t4). The resulting §(k)

covers every base vertex on the source shape as well as on the target.

the area parameters, as A(−1)
S = AS and A(−1)

T = AT ,
where AS and AT denote the surface areas of the source
and the target, respectively. The overall correspondence
algorithm can then be written in pseudocode as below:

Correspondence Algorithm:

Input: Vertex sets S and T
Output: Dense Correspondence §(K) : S → T

Iterate on level k (initially k = 0)
Set the sampling radii r(k)

S and r(k)
T based on the largest patch

areas at the previous level, A(k−1)
S and A(k−1)

T ;
Compute the base sets S(k) and T (k) by the sampling

algorithm (Section 3);
For each (si,ti) ∈ §(k−1)

Match kth level base vertices in patch S(k−1)
i and patch T (k−1)

i

via combinatorial search, that gives §(k)
m (Section 4.1);

Merge patch-to-patch correspondences {§(k)
m }

into §(k) (Section 4.2);
Until all vertices in S and T are matched;

5. An Insight to Why the Algorithm Works

We now show that, under certain conditions, a coarse-to-fine
matching algorithm, such as ours, can be used to gradually
localize an accurate dense correspondence as the level of de-
tail increases, based on the following "inclusion assertion":

Inclusion Assertion: Suppose S and T are sampled at suf-
ficiently high resolution from two perfectly isometric sur-
faces. Let (si, ti) ∈ §∗, where §∗ is the optimal correspon-
dence that minimizes Diso(§), i.e., Diso(§∗) = 0. Suppose

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

1465
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also that §(k) is the optimal correspondence at some level k,
and that the optimal solution is unique, which exempts us
from ambiguities due to symmetries. Then,

∀i, j (si, t j) ∈ §(k) → ti ∈ T (k)
j

where T (k)
j is the patch with radius r(k) centered around t j at

level k.

We will not formally prove this assertion, but rather give
an outline of its justification, that will provide us with an in-
sight into why and under what conditions our coarse-to-fine
correspondence algorithm works. First note that Diso(§) is
locally a slowly changing convex function around its opti-
mal point. Hence the mapping §(k), which is optimal at level
k, will assign each base vertex si to some base t j as nearest to

the optimal ti as possible. Moreover S(k) and T (k) consist of
evenly-spaced base vertices sampled from perfectly isomet-
ric shapes, such that each vertex in S and T is included by
the patch of at least one base vertex with radius r(k). Based
on these, we can state the following: ∀i, j (si, t j) ∈ §(k) →
g(ti, t j)≤ r(k), where g(., .) is the geodesic distance function,
which directly implies the assertion. The inclusion assertion
is illustrated in Fig. 4 and demonstrated on a pair of isomet-
ric shapes in Fig.5.

In the case of perfect isometry, the inclusion assertion ba-
sically suggests that, based on the optimal correspondence
§(k−1) at level k−1, a patch-based matching algorithm, such
as ours, can be used to find the optimal correspondence §(k)

at level k. Starting from the coarsest level k = 0, our al-
gorithm aims to maintain the optimality at each level k by
patched-based combinatorial matching and merging, assum-
ing the optimality of the correspondence found at the previ-
ous level. The algorithm is expected to eventually converge
to the optimal correspondence §∗ as levels proceed, since at
the last level there will be only one vertex left in each patch.

The inclusion assertion, hence our algorithm, discards
the symmetry problem which is however inherent to all
isometry-based correspondence methods. We note that, since
our algorithm is coarse-to-fine, even though the shapes to be
matched are not symmetric as a whole, symmetric flips may
occasionally arise at the initial level due to coarse sampling,
which can then effect further levels of matching. Moreover,
since real shapes are usually only nearly isometric, the initial
sampling based on extremities or Gaussian curvature with
particular choices of the sampling radius can lead to failure
cases. That means, the optimal correspondence §∗ ideally
given by Eq. 3 may not always match the dense correspon-
dence §(K) that our algorithm produces.

6. Computational Complexity

Sorting the vertices of the original mesh w.r.t. saliency prior
to the sampling process takes O(N logN) time where N =

Figure 4: Illustration of the inclusion assertion at level k. The op-
timal correspondence ti of si is included in the patch defined by t j ,

whenever (si,t j) ∈ §(k)
m .

Figure 5: Demonstration of the inclusion assertion. Note how the
correspondence between the right ears of two horses is refined as
levels proceed. At levels k = 0 and k = 1, the correspondence is far
from the optimal, yet the optimal target vertex is included at each
level by the patch of the matched base, as required by the inclusion
assertion. At level k = 2, the left ears are correctly matched. The
corresponding patches are painted in red at each level.

max(|S|, |T |). Our correspondence algorithm then proceeds
with the following computations:.

• Coarse-to-fine sampling. We sample about M = 5 base
vertices within each parent patch. Restricted to the
patch to be sampled, Dijkstra’s shortest paths algorithm,
when applied to all active patches, takes O(∑K

k=1 Mk ·
N
Mk logM

N
Mk ) time, where Mk and N

Mk can be interpreted
as the number and the size of current patches, respec-
tively, and K = logM N is the maximum level of detail
that can be achieved. The summation can be expanded as
N logM 1 + N logM M + .. + N logM N, yielding a total of
O(N logN) time complexity.

• Patch-based combinatorial matching. Each patch pair is
matched in constant time O(M!) since there are M! map-
pings to be evaluated via Diso that can be computed also
in constant time. Hence all patch pairs at all levels are
matched in O(∑K

k=1 Mk ·M!) time, which unfolds to a to-
tal of O(N logN) complexity since MK = N.

• Merging. Given a global initial mapping §(k,0) of size Mk

at the end of each level k, its evenly-spaced subset that
contains E matches (E � N) is used as the list §′ to be
traversed in the computation of diso (see step 1 in Sec-
tion 4.2). Hence, the total time complexity can first be
written as O(∑K

k=1 3 ·MkE), where the term MkE is due
to diso computations in the three-step merging algorithm.
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As before, the total complexity then reduces to O(N logN)
with a proper choice of E such as 100.

The complexity analysis above reveals O(N logN) overall
time complexity which scales well to large meshes, espe-
cially when compared to other isometric shape correspon-
dence algorithms in the literature, such as O(N2 logN) com-
plexity of [JZ06] and [BBK06b], and O(N4 logN) complex-
ity of [LF09].

7. Experimental Results

We have tested our algorithm on several shape datasets:
1) on various mesh sequences and 2) on Nonrigid World
database [BBK06a]. The mesh sequences are namely Bal-
lerina [CGF09], Jumping Man [SMP03] and Horse Gal-
lop [SP04], each containing different poses of an articulated
object. While Jumping Man and Horse Gallop are given
as fixed-connectivity mesh sequences sampled uniformly at
high-resolution with 16K and 9K vertices, respectively, the
Ballerina sequence exhibits severe non-uniformity as well
as different number of vertices and connectivity among its
5 available different poses with around 6K vertices. On the
other hand, the part of the Nonrigid World database that we
use contains mesh models of 9 cats, 11 dogs, 3 wolves, 17
horses, 24 female figures, and two different male figures,
containing 15 and 20 poses, where each object has approxi-
mately 3K vertices with arbitrary connectivity.

We measure the performance of our shape correspondence
algorithm in terms of deviation from the ground-truth as well
as isometric distortion. To quantify isometric distortion, we
use the average distortion measure Diso defined in (1), and
also a maximum distortion measure that we denote by d†iso:

d†iso = max
(si,t j)∈§

diso(si, t j), (4)

where diso is the isometric distortion function given in
(2). Similarly we compute average and maximum ground-
truth correspondence errors respectively by (whenever the
ground-truth correspondence is available),

Dgrd(§) =
1
|§| ∑

(si,t j)∈§
g(ti, t j), (5)

and

d†grd = max
(si,t j)∈§

g(ti, t j), (6)

where each (si, ti) stands for a ground-truth correspondence
pair. Note that in computation of the performance measures,
we use normalized geodesic distances so that the maximum
geodesic distance on a shape surface is taken as 1.0.

In the figures where shape correspondences are displayed,
the worst matchings, with respect to isometric distortion d†iso
and the ground-truth correspondence error d†grd (whenever
available), are highlighted with bold red and green lines, re-
spectively. In Fig. 6, we display the dense correspondence

obtained on a shape pair from the Ballerina sequence, and
zoom on the fingers to show the accuracy and smoothness of
the mapping obtained.

Figure 6: Dense correspondence for a Ballerina pair (§(K) with
K = 11), zooming on the fingers of the left hands. The worst match

w.r.t isometric distortion, as measured by d†
iso , is indicated with a

bold red line.

In Fig. 7, we display the correspondences obtained at in-
creasing levels of detail for a Ballerina pair and a Dog-Wolf
pair from the Nonrigid World. We observe that the corre-
spondences are improved and refined as levels proceed, and
eventually we obtain a very accurate correspondence, even
on the Dog-Wolf pair which contains severe non-isometries
as compared to the articulated Ballerina pair. As a general
rule, the mapping becomes denser and hence the isometric
distortion is expected to decrease as levels proceed. This is
verified by the plot given in Fig. 8, except that there is a con-
sistent small increase in distortion from level k = 0 to k = 1,
which is due to accurate joint sampling of shape extremities
at the initial level. In Fig. 8, we plot the isometric distor-
tion for varying k, computed by averaging the results over 6
sample pairs (whenever available).

Figure 8: The isometric distortion (Diso) of the correspondence
obtained at each level k for different shape datasets.

The isometric quality of the input is an important factor
for the performance of our algorithm. To measure isometric
quality, we assign each dataset an isometric distortion value,
denoted by ξ, which is computed as the value of Diso for the
manual one-to-one matching of 10 shape extremities: (from
the most isometric to the least) 0.034 for Ballerina, 0.039
for Horse Gallop, 0.047 for the Jumping Man-Ballerina pair,
0.060 for the Dog-Wolf pair, and 0.064 for the Wolf-Horse
pair. Although any pair can be regarded as only nearly iso-
metric from a rigorous point of view, the Ballerina and Horse
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Figure 7: Correspondences obtained at increasing levels of detail for a Ballerina pair (top) and for the Dog-Wolf pair (bottom).

Gallop sequences, having higher input quality, provide bet-
ter outputs when compared to the other hybrid pairs, as ob-
served in Table 1 as well as in Fig. 8. Nevertheless, the hy-
brid pairs still yield high-quality results despite significant
non-isometries that they contain, e.g., due to the fingers of
the Ballerina matched with the hand of the Jumping Man
(with no fingers) as shown in Fig. 9, or due to the scale dif-
ferences between the corresponding parts of the Wolf and
Dog shapes such as tails, legs, and faces (Fig. 7).

Figure 9: Correspondence results on a Jumping Man - Ballerina
hybrid pair. At level k = 4, the fingers of the Ballerina are mapped
to a single vertex on the hand of the Jumping Man as desired (top).
Clustered matchings are observed on the Jumping Man at the last
level, which is as expected since its mesh representation is signifi-
cantly denser than the Ballerina mesh (bottom).

We compare our isometric shape correspondence method
with two state-of-the-art techniques: the spectral method
of [JZ06] and the generalized multidimensional scaling
(GMDS) method of [BBK06a]. We have obtained the re-
sults of these two methods by using the Matlab codes made
publicly available by the authors. Since neither the spectral
method nor the GMDS scales well to large meshes, in the
comparison experiments we have stopped our coarse-to-fine

algorithm at an intermediate level (k = 4, ∼ 200 base ver-
tices for the spectral method and k = 5, ∼ 300 base vertices
for GMDS). For comparisons with the spectral method, we
have run their code on the same set of base vertices that we
have used for our algorithm. The GMDS method however
has its own sampling procedure, and the publicly available
code can be set so as to generate the same number of ver-
tices that our method produces. Hence in the latter case, the
sampled vertices are different but the same in number.

All the performance measures provided in Table 1 for
comparison with the spectral method are each computed and
averaged over 10 different runs of the algorithm on 10 dif-
ferent pairs, except one pair for the Dog-Wolf and 5 pairs for
Ballerina, where each run matches two spatially-apart poses
of the articulated object in the corresponding sequence. In
Table 2, we provide the results of the comparison of our
method with GMDS on the Nonrigid World database. In this
case, we evaluate the average performance in three differ-
ent categories: 1) within human models, 2) within animal
models, and 3) across human models. In the first and sec-
ond categories, all possible shape pairs are tested such that
a human or animal model is paired up only with models
from the same class, e.g., a dog to another dog, whereas in
the third category, a human object is matched to a model if
and only if it represents a different human. We note that all
three methods can result in symmetric flips since they are all
isometry-based. Hence when comparing two methods, we
have included only the pairs that can be matched as free of
symmetry problems by both methods in consideration. Note
also that, in our case, if the value of M0, i.e., the number
of extremities at the coarsest level, is increased in the range
5 ≤ M0 ≤ 9, the number of symmetric flips tend to decrease.

The spectral method, as well as the GMDS method, gen-
erates as output a many-to-one mapping from the source
shape to the target while our method produces a many-to-
many correspondence. Hence to make our result compat-
ible, for comparison we have used the many-to-one map-
ping, §(k,1), that the first step of our merging algorithm gen-
erates (see Section 4.2). In Table 1, we observe that our
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many-to-one mapping, §(k,1), outperforms the results of the
spectral method for all datasets, and that the improvement is
more significant on more isometric Ballerina and Horse Gal-
lop pairs. In the table, we also provide the performance re-
sults for the dense mapping, §(K), obtained with our method,
which are significantly better than the results obtained at
intermediate levels. Note that, on all datasets, the isomet-
ric distortion of our final many-to-many dense mapping is
lower than the corresponding input distortion ξ. We have
the ground-truth correspondences only for the Horse Gallop
sequence, hence we compare the two methods in this case
also w.r.t their ground-truth error performances. Our method
outperforms the spectral method with Dgrd = 0.039 and

d†grd = 0.102 against Dgrd = 0.062 and d†grd = 0.195, when
the results are averaged over 10 different runs of the algo-
rithm on 10 different pairs. In Fig. 10, we visually compare
the performance of our algorithm with the spectral method
on a Horse Gallop pair. We observe that our method out-
performs the spectral method significantly in this case, the
worst matching being significantly better with our method as
well as the correspondences being generally more accurate.
While our method correctly matches all the shape extrem-
ities, the tips of the ears on the Horse are not for example
correctly matched with the spectral method.

When compared with the GMDS method, we observe in
Table 2 that our method is performance-wise on a par in
terms of isometric distortion, even slightly better in some
cases (recall that the complexity of GMDS is O(N2 logN)
against our O(N logN) complexity). This is visually demon-
strated on two examples in Fig. 11. In the figure, we see that
the matched vertices with GMDS are not as evenly distrib-
uted as they are in our case. This is mainly due to the fact
that the GMDS algorithm is an iterative optimization process
that produces sub-vertex matchings which do not necessarily
coincide with the initial sampling. Hence while computing
the resulting isometric distortion value for a GMDS output,
we round sub-vertex coordinates to their nearest vertices on
the surface mesh. The effect of this rounding process to the
computed distortion values is however negligible since the
mesh models in the Nonrigid World database are almost uni-
form and at relatively high resolution. We also observe from
the visual comparison that our method can match the salient
points of a shape more successfully than GMDS (e.g., ear
tips of the cats), thanks to our saliency-based sampling.

Finally we note that, on a 6GB 2.53GHz 64-bit work-
station, the overall execution time of our implementation,
needed to match all the vertices so as to obtain a dense
correspondence, is 38, 103, 110, 281 and 337 seconds for
Dog-Wolf, Ballerina, Wolf - Horse Gallop, Horse Gallop and
Jumping Man-Ballerina pairs, respectively.

Many-to-one
[JZ06]

Many-to-one
(our method)

Many-to-many
(our method)

Pair Diso,d
†
iso Diso,d

†
iso Diso,d

†
iso

Ballerina .023, .054 .016, .038 .014, .024

Horse Gallop .021, .040 .013, .026 .008, .015

Jumping-Baller. .041, .069 .035, .058 .028, .051

Dog-Wolf .050, .105 .044, .075 .036, .055

Wolf-Horse Gal. .055, .087 .048, .079 .037, .066

Table 1: Quantitative performance of our method in comparison
with the spectral method of [JZ06].

Figure 10: Many-to-one mappings obtained with the spectral
method [JZ06] (left) and with our method at level k = 4 (right) for a
Horse Gallop pair. Green and red lines indicate the worst matches
w.r.t. ground-truth and isometric distortion, respectively.

8. Conclusion

We have proposed a dense isometric shape correspondence
method based on coarse-to-fine sampling and combinatorial
matching. Our findings can be summarized as follows:

• Our method is computationally very efficient with
O(N logN) complexity, and hence scales well to large
meshes.

• The dense correspondences that we obtain are very ac-
curate since the isometric distortion is minimized in the
original 3D Euclidean space, as free of approximation er-
rors that embedding-based methods usually suffer from.

• Our method performs well not only on isometric shapes,
but also on pairs of shapes which are nearly isometric,
such as mesh representations of two different humans or
animals, i.e., for shapes of the objects which are different
but semantically and/or structurally similar.

• Our method produces accurate correspondences at differ-

GMDS Our method

Pair Diso,d
†
iso Diso,d

†
iso

Within animals .022, .087 .021, .096

Within humans .018, .076 .020, .079

Across humans .026, .068 .038, .082

Table 2: Quantitative performance of our method in comparison
with the GMDS method of [BBK06a] on Nonrigid World database.
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Figure 11: Many-to-one mappings obtained with the GMDS
method [BBK06a] (left) and with our method at level k = 5 (right)
for a within-animal pair (top) and for a across-human pair (bottom).

ent levels of detail thanks to our coarse-to-fine joint sam-
pling algorithm.

A shortcoming of our method is due to the symmetry
problem, which is inherent to all isometry-based correspon-
dence algorithms. Moreover, since our algorithm is coarse-
to-fine, even though the shapes to be matched are not sym-
metric as a whole, symmetric flips may occasionally arise at
the initial level due to coarse sampling. This also relates to
the difficult problem of finding a reliable initial correspon-
dence as discussed in Section 1, which we plan to address as
future work. We also plan to evaluate the performance of our
method with larger-scale comparisons to more recent meth-
ods, using benchmark datasets such as in [KLF11].
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