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Abstract
Many processing operations are nowadays applied on 3D meshes like compression, watermarking, remeshing and
so forth; these processes are mostly driven and/or evaluated using simple distortion measures like the Hausdorff
distance and the root mean square error, however these measures do not correlate with the human visual percep-
tion while the visual quality of the processed meshes is a crucial issue. In that context we introduce a full-reference
3D mesh quality metric; this metric can compare two meshes with arbitrary connectivity or sampling density and
produces a score that predicts the distortion visibility between them; a visual distortion map is also created. Our
metric outperforms its counterparts from the state of the art, in term of correlation with mean opinion scores com-
ing from subjective experiments on three existing databases. Additionally, we present an application of this new
metric to the improvement of rate-distortion evaluation of recent progressive compression algorithms.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computer Graphics—
Computational Geometry and Object Modeling I.3.m [Computer Graphics]: Computer Graphics—Perception

1. Introduction

Significant advances in the fields of computer graphics,
telecommunications and hardware design over the last
decade have boosted the use of 3D digital data. This 3D
content, mostly represented by polygonal meshes, is subject
to a wide variety of distortions during common operations
such as compression, filtering, simplification, watermarking
and so forth. These distortions may alter the visual quality
of the 3D content which is critical since these processing
operations are generally targeted at human centered appli-
cations. A main problem is that most of existing processing
algorithms (e.g. simplification, watermarking, compression)
are driven and/or evaluated by simple metrics like Hausdorff
distance and root mean square error (RMS), which are not
correlated with the human vision. For instance all distorted
models presented in figure 1 are all associated with the same
RMS with respect to the original model however their vi-
sual qualities vary from very good (top row) to very poor
(bottom row). Hence, some objective quality metrics have
been introduced, their goal is to produce a score that pre-
dicts the subjective visual quality (or the visual impact of
the distortion) of a distorted 3D model with respect to a ref-
erence (distortion-free) model; these objective scores should
be statistically consistent with those of human observers.
Such metrics can play critical roles in computer graphics

by replacing standard geometric distances for (1) evaluat-
ing/benchmarking and (2) driving 3D mesh processing sys-
tems and algorithms. However objective quality assessment
research for 3D objects is still in its very early stages; only a
few metrics have been proposed and they have some heavy
constraints (e.g. objects to compare have to share the same
connectivity or the same sampling density), moreover they
still do not correctly correlate with the human judgment as
raised by a recent evaluation [LC10].
In that context we propose a multiscale metric for objec-
tive quality assessment of 3D mesh. This metric has no con-
straint on the meshes being compared, and demonstrates a
very high correlation with the human judgment. Our ap-
proach first computes a fast asymmetric matching between
the distorted objectMd and the original oneMr, then for
each vertex, Gaussian-weighted curvature statistics are com-
puted at multiple scales over local windows to produce a
local distortion map; local values are then pooled into a
single Global Multiscale Distortion score (GMD). Our fi-
nal metric is obtained by averaging forward (Md →Mr)
and backward (Mr → Md) global distortion scores; we
will refer to this new metric as MSDM2 as it shares the
origins and the principles of structural degradation with
the original MSDM (Mesh Structural Distortion Measure)
from Lavoué et al. [LDD∗06]. The source code of both
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metrics is available within the MEsh Processing Platform
(http://gforge.liris.cnrs.fr/projects/mepp).
The following section details the existing works on percep-
tion for computer graphics, including existing quality assess-
ment metrics. Section 3 provides an overview of our method,
while section 4 details the processing pipeline. Finally ex-
periments and comparisons on several subjective databases
are provided in section 5 while an application is presented in
the last section.

2. Related work

2.1. 2D Image Quality Assessment

In the field of 2D image processing, the research on objec-
tive image quality assessment metrics is highly developed
[WB06]. Existing algorithms can be classified according to
the availability of a reference image: full reference (FR), no-
reference (NR) and reduced-reference (RR). The following
discussion only focuses on FR methods, where the origi-
nal distortion free image is known as the reference image.
Since the pioneer visual difference predictor (VDP) of Daly
[Dal93], a lot of metrics have been introduced which aim
at replacing the classical peak-signal-to-noise ratio (PSNR)
which does not correlate with the human vision. Many tech-
niques have tried to mimic the low-level mechanisms of the
human visual system (e.g. the contrast sensitivity and the vi-
sual masking which defines the fact that one visual pattern
can hide the visibility of another) like the visual signal-to-
noise ratio (VSNR) [CH07]. Recently, a different class of
techniques has appeared, which does not rely directly on
these low level psychophysical properties, but instead pro-
poses some signal fidelity criteria expected to correlate well
with perceptual quality. Among them the structural similar-
ity index (SSIM) from Wang et al. [WBSS04] focuses on
the structural information of the image, considering that the
structure of a good-quality image has to closely match that of
the original. Their metric computes various spatial correla-
tions between local windows from the original and distorted
images, resulting in a local quality value for each pixel; a
pooling algorithm then combines these local values into a
single overall quality score. This approach has proven to of-
fer very good performance in predicting image fidelity and
was later improved and extended by many authors, e.g. a
multiscale extension was proposed in [WSB03] and a better
pooling strategy was introduced in [ZMZ11].

2.2. Perceptual issues in computer graphics and Visual
Mesh Quality Assessment

In the field of computer graphics, the perception and human
vision mechanisms have been studied for several applica-
tions [MMBC10], particularly rendering and simplification,
however these works are mostly based on existing 2D im-
age metrics. For instance Lindstrom and Turk [LT00] and
more recently Qu and Meyer [QM08] drive their simplifica-
tion algorithms using 2D perceptual models. For rendering,

2D perceptual metrics are used to determine, according to
the location of the observer, the amount of accuracy to use,
e.g. the best level of details [Red01] or the best ray sam-
pling density [BM98]. Some interesting related works have
been recently proposed: Zhu et al. [ZZDZ10] study the rela-
tionship between the viewing distance and the perceptibility
of model details using 2D metrics (VDP and SSIM), Ra-
manarayanan et al. [RFWB07] propose a model that eval-
uates how object geometry, material and illumination influ-
ence the appearance or the rendered image and finally Aydin
et al. [AvMS10] and Váša and Skala [VS11] introduce qual-
ity assessment metrics respectively designed for computer
graphics video and dynamic meshes.
All the previously mentioned works are based on 2D im-
age metrics. However, as observed in the subjective exper-
iments of Rogowitz and Rushmeier [RR01], the perceived
quality of a 3D model may not be correctly predicted by the
quality of its 2D projections. Hence some authors have re-
cently introduced perceptually-motivated algorithms operat-
ing directly on the mesh geometry. Lee et al. [LVJ05] intro-
duce the notion of saliency for 3D meshes, it is computed
by applying a difference of Gaussian operator at multiple
scales on the curvature map; the Gaussian filters are applied
on local spherical windows around each vertex. Similarly,
Lavoué [Lav09] proposes a roughness estimator also based
on curvature statistics over local windows. Our approach is
quite related to these last works since it is based on differ-
ences of Gaussian-weighted curvature statistics, computed
for all vertices over local spherical windows.
At present only a few works exist for 3D object visual qual-
ity assessment, they all follow the full-reference principle.
Karni and Gotsman [KG00], in order to evaluate the qual-
ity of a compressed 3D mesh with respect to the original
one, propose a metric which combines the RMS geomet-
ric distance between corresponding vertices with the RMS
distance of their Laplacian coordinates. Also in the con-
text of the evaluation of compressed objects, Sorkine et al.
[SCOT03] use this metric however they increase the weight
associated to the Laplacian coordinates (which represent a
kind of smoothness measure) guessing that the visual per-
ception is more sensitive to smoothness/roughness varia-
tions than to pure geometric displacements. Drelie Gelasca
et al. [GECB05] and Corsini et al. [CGEB07] propose per-
ceptual metrics based on global roughness variation to mea-
sure the quality of watermarked meshes. They provide two
methods for the computation of roughness: the variance of
the difference between a 3D model and its smoothed ver-
sion, and the variance of the dihedral angles between adja-
cent faces evaluated in a multi-resolution fashion. Lavoué
et al. [LDD∗06] propose a metric called Mesh Structural
Distortion Measure (MSDM), it basically follows the frame-
work of the SSIM index proposed for image quality assess-
ment: differences of curvature statistics are computed over
local windows from both meshes being compared. Lastly,
Bian et al. [BHM09] introduce another perceptual metric
based on the computation of the strain energy (i.e. the en-
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Figure 1: Distorted versions of the Horse model, all associated with the same maximum root mean square error (MRMS =
1.05×10−3). (a) Original model. Results after (b) watermarking from Wang et al. [WLDB11] (MSDM2=0.14), (c) Laplacian
smoothing [Tau00] (MSDM2=0.40), (d) watermarking from Cho et al. [CPJ06] (MSDM2=0.51), (e) simplification [LT99] from
113K vertices to 800 vertices (MSDM2=0.62), (f) Gaussian noise addition (MSDM2=0.84).

ergy which causes the deformation) of each triangle. A very
recent study done by Lavoué and Corsini [LC10] has pro-
vided a quantitative evaluation of these visual quality met-
rics, by computing their statistical consistency with mean
opinion scores from human observers coming from two sub-
jective experiments. Their conclusions is that whereas some
metrics [CGEB07,LDD∗06] provide correct results, there is
still large room for improvement in performance; moreover
most of these metrics are not able to compare meshes that
do not share the same connectivity [LDD∗06] or the same
sampling density [CGEB07], that constitutes a heavy draw-
back since they cannot be used in a remeshing or simpli-
fication evaluation scenario for instance. The MSDM met-
ric [LDD∗06] can be seen as the ancestor of the proposed
metric MSDM2, indeed they are both inspired by the SSIM
index and share the principles of computation of local cur-
vature statistics over spherical windows; however each step
of the pipeline is quite different. Additionally our method is

multiscale and has no constraint on the meshes being com-
pared.

3. Overview of our approach

Our approach is largely inspired by the 2D image SSIM met-
ric of Wang et al. [WBSS04], who consider that the human
visual system is highly adapted for extracting structural in-
formation. Hence our measure relies on differences of struc-
ture (captured via curvature statistics) computed on local
corresponding neighborhoods from the meshes being com-
pared. Moreover we believe that a measure of visual distor-
tion has to depend on a scale parameter, indeed as confirmed
by Zhu et al. [ZZDZ10], the perceptability of a distortion
on a 3D object depends on its level of details and its view-
ing conditions (e.g. display resolution and viewing distance).
Accordingly a single-scale method may be appropriate only
for specific settings, this constitutes a clear limitation of
all existing 3D metrics. Therefore, similarly to what Lee et
al. [LVJ05] did for their saliency model, we define a multi-
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scale distortion measure aimed at capturing the distortions at
all perceptually meaningful scales, hence increasing its effi-
ciency and robustness. Additionally, in the 2D image field,
the multiscale extension of SSIM proposed in [WSB03], has
proven to produce better results than its single-scale coun-
terpart.
In our work, each scale hi defines the radius of the local
neighborhoods and is also used for the curvature computa-
tion. Given a distorted meshMd and the corresponding ref-
erence (i.e. original) oneMr, our visual distortion measure
is computed as follows:

1. A scale-dependent curvature is computed on vertices
from both meshes (see section 4.1).

2. Each vertex of the distorted mesh Md is matched with
its corresponding 3D point and curvature value from the
reference meshMr, using fast projection and barycentric
interpolation (see section 4.2).

3. For each vertex of Md a local distortion measure is
computed as a difference of Gaussian-weighted statistics
computed over a local spherical neighborhood of radius
hi (see figure 2 and section 4.3).

4. Steps (1-3) are repeated for multiple scales hi, leading to
several distortion maps.

5. The final distortion map is constructed by adding the lo-
cal distortion maps at all scales (see section 4.4).

6. The global multiscale distortion score is then obtained by
combining the local values using a Minkowski pooling
(see figure 3 and section 4.4).

Our metric MSDM2 is finally computed as the average of
forward (Md →Mr) and backward (Mr →Md) global
distortion scores, and is therefore symmetric. For all the
results in this paper, and as a compromise between per-
formance and processing time, we have used three scales.
hi ∈ {2ε,3ε,4ε}, with ε = 0.5% of the max length of the
bounding box of the model.
Here are the main differences between the proposed
MSDM2 and its predecessor MSDM [LDD∗06]:

• The curvature is scale-dependent (improving robustness).
• MSDM needs an implicit correspondence between ver-

tices, while MSDM2 computes a fast projection and cur-
vature interpolation. It implies no connectivity constraint
and improves the matching quality.

• Curvature statistics have been slightly modified; moreover
they are normalized by Gaussian weighting functions and
their combination is different.

• The proposed approach is multiscale and symmetric.
• The correlation with the human judgement is greatly im-

proved (see tables 1 and 2).

4. The visual distortion metric

4.1. Multiscale robust curvature

To capture the local structural information of the 3D ob-
jects our algorithm relies on curvature, more precisely the

Figure 2: Distortion map computation at one scale, for the
distorted model (d) from figure 1.

Figure 3: Distortion maps at different scales, their com-
bination into one multiscale map and the distortion score
calculation.

mean curvature, indeed this scalar field describes the vi-
sual characteristics of a 3D model well. Additionaly it was
successfully used in several perceptually-motivated works
[LVJ05, Lav09]. There exist plenty of methods to compute
curvature (e.g the Normal Cycle algorithm [CSM03]), how-
ever many may produce unstable results in case of irregu-
lar tessellation and their range of values may depend on the
sampling density. The main reason of these drawbacks is that
the curvature tensors are usually computed on the one-ring
neighborhoods of the vertices. This sensitivity to connectiv-
ity is critical in our application since our objective is to com-
pare local curvature statistics (mean, variance, covariance)
between two meshes that do not share the same connectivity
nor the same level of details. To resolve this robustness issue,
we adopt the solution proposed by Alliez et al. [ACSD∗03]
i.e. we evaluate the tensor on a larger neighborhood around
each vertex: a geodesic disk approximated by the intersec-
tion of the surface with a sphere centered at the vertex. A
very interesting side effect is that by varying the radius of
the sphere we can compute the curvature at multiple scales.
With a small radius r, tiny details are captured whereas a
larger r leads to a kind of smoothing of the field, this behav-
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ior seems directly linked to the scale h that drives our distor-
tion measure calculation, hence we decided to directly link
them by fixing for each scale h: r = h/5. Figure 4 illustrates
two mean curvature maps for the Horse model, computed
using two different radii, a small one (left) and a larger one
(right). With this strategy, the range of values of the mean
curvature field does not depend on the sampling of the model
but rather on the scale used, this has been shown to result in
significantly improve the performance; for instance the Pear-
son correlation between metric values and subjective scores
drops from 79.6% to 36.6% on the Simplification database
(see Table 3) when using a simple 1-ring curvature. Note that
the curvature is also normalized by the size of the model to
produce values invariant to this size.

Figure 4: Curvature map using different radius. Left: r =
0.2%, Right: r = 0.5% of the the bounding box length.

4.2. Fast matching

Once we have computed the curvature at a given radius
r = h/5, the objective is now to establish a correspondence
between the distorted meshMd and its corresponding orig-
inal versionMr. The general problem of shape correspon-
dence is difficult and remain open for articulated meshes;
however our task is much easier, indeed (1) we just look
for an asymmetric correspondence Md →Mr and (2) the
meshes to match are aligned and they are very close to each
other in term of shape. Hence, taking into account the fact
that the computation time is also critical in our application,
we simply perform a fast projection of the vertices from
Md , onto the surface ofMr.
For each vertex v of the distorted meshMd , we compute its
nearest 3D point v̂ on the surface of the reference modelMr
using the efficient AABB tree structure [ATW09] from the
CGAL library:

v̂ = arg min
pi∈Mr

‖pi− v‖ (1)

Then, for each 3D point v̂, its curvature C(v̂) is interpolated
using barycentric coordinates. More precisely, considering
that v̂ belongs to the triangle {vr

1,v
r
2,v

r
3} ofMr, then its cur-

vature is defined as follows:

C(v̂) =
3

∑
j=1

b j(v̂).C(vr
j) (2)

with
{

b j(v̂)
}

j=1..3 the barycentric coordinates of v̂ in the
triangle {vr

1,v
r
2,v

r
3}, i.e. b j(v̂) is the ratio of the area of the

triangle formed by v̂ and the opposite edge to vertex vr
j over

the area of the whole triangle. Hence we now have for all
vertices {vi} fromMd , their corresponding 3D points {v̂i}
on the surface ofMr associated with curvature values.
Note that this matching using the AABB tree is obviously
not done for each scale but only once at the beginning of the
algorithm: for each vertex vi ofMd , we record its projection
v̂i and the associated triangle. Then for each scale h, once the
curvature is computed for vertices of both meshes (see step
1 in section 3) we update the curvature values {C(v̂i)}.

4.3. Local distortion measurement

As discussed above our metric is mostly inspired by the
work from Wang et al. [WBSS04] who define a quality mea-
sure between two images, based on the visual degradation of
the structural information. Their structural similarity index
SSIM(x,y) between two image signals x and y is defined as
follows: SSIM(x,y) = L(x,y) ·C(x,y) · S(x,y), where L is
a luminance comparison function (means of luminance are
compared), C is a contrast comparison function (variances
of luminance are compared) and S is a structure comparison
function (which studies the covariance of the signals). These
statistics are not computed globally on the entire images but
locally on 11×11 circular neighborhoods around each pixel.
In our case, we apply the same strategy: we consider a spher-
ical neighborhood around each vertex v ofMd and we com-
pute differences of curvature statistics between the set of
vertices from the neighborhood and their corresponding 3D
points onMr. For a given scale h, we define the neighbor-
hoodN (v,h) at each vertex v as the connected set of vertices
belonging to the sphere with center v and radius h; we also
compute and add to N (v,h), the intersections between this
sphere and edges of the mesh, as in [Lav09] (their curvature
values are interpolated).
Functions L, C and S have already been adapted for 3D mesh
quality assessment in the MSDM metric [LDD∗06]; we have
slightly modified them by optimizing the weights and adding
a Gaussian normalization; furthermore the matching mecha-
nism between vertices of the meshes being compared is com-
pletely different. In our case, we have already computed the
correspondence between the distorted meshMd and the ref-
erence oneMr; for each vertex v ofMd , we introduce the
following functions, defined for each scale h:

Lh(v) =

∥∥∥µh
v −µh

v̂

∥∥∥
max(µh

v ,µh
v̂)+K

(3)

Ch(v) =

∥∥∥σ
h
v −σ

h
v̂

∥∥∥
max(σh

v ,σ
h
v̂)+K

(4)

Sh(v) =

∥∥∥σ
h
vσ

h
v̂ −σ

h
vv̂

∥∥∥
σh

vσh
v̂ +K

(5)
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where K is a constant to avoid instability when denominators
are close to zero. µh

v , µh
v̂ are respectively Gaussian-weighted

averages of curvature over the vertices of the h-scale neigh-
borhood of v and over their projections ontoMr. Similarly
σ

h
v , σ

h
v̂ and σ

h
vv̂ are Gaussian-weighted standard deviations

and covariance values:

µh
v = ∑

vi∈N(v,h)
wh

v(vi)C(vi) (6)

µh
v̂ = ∑

vi∈N(v,h)
wh

v̂(v̂i)C(v̂i) (7)

σ
h
v =

√
∑

vi∈N(v,h)
wh

v(vi)(C(vi)−µh
v)2 (8)

σ
h
v̂ =

√
∑

vi∈N(v,h)
wh

v̂(v̂i)(C(v̂i)−µh
v̂)

2 (9)

σ
h
vv̂ = ∑

vi∈N(v,h)
wh

v(vi)(C(vi)−µh
v)(C(v̂i)−µh

v̂) (10)

wh
v() is a Gaussian weighting function centered on v with

standard deviation of h/2 (i.e. the size h of the neighborhood
is twice the standard deviation of the Gaussian filter, similar
to what Lee et al. [LVJ05] did for their saliency estimator).
It is defined as follows:

wh
v(vi) =

e−2‖vi−v‖2/h2

∑v j∈N(v,h) e−2‖v j−v‖2/h2
(11)

Our local distortion measure is then defined, at a given scale
h, for each vertex v fromMd as follows:

LDh(v) =
α Lh(v)+β Ch(v)+ γ Sh(v)

α+β+ γ
(12)

α, β and γ were set respectively to 1, 1 and 0.5. We argue
that γ must be smaller since Sh(v) has a larger disparity than
both other functions.
The multiscale local distortion measure MLD is finally ob-
tained simply by averaging single-scale values. The normal-
ization is very simple since the LDh are all in [0,1]:

MLD(v) = ∑
n
i=1 LDhi(v)

n
(13)

where n is the number of scales used (3 in our experiments).
Figures 5 and 6 illustrate forward MLD maps for distorted
versions of the Lion and Horse models, Hausdorff distance
maps are also given for comparison (in this latter case, each
vertex of the distorted mesh is associated with its Hausdorff
distance to the reference surface). In figure 5 the Lion model
is distorted using a random noise addition on every vertex,
however when looking at the distorted mesh the distortion is
much more visible when applying on smooth parts (i.e. the
face) than on rough parts (i.e. the mane); this observation is
related to the visual masking effect, indeed this perceptual
concept tells us that a textured (i.e. rough) region is able

to hide geometric distortions much better than a smooth
one; we can observe that this phenomenon is captured by
our metric which provides higher distortion values when
the noise is applied on the smooth parts. In figure 6, the

Figure 5: Top: The Lion model and a distorted version after
random noise addition, Bottom: distortion maps computed
using the Hausdorff distance and our metric. Warmer colors
represent higher values.

Horse model has been watermarked using the algorithm
from Wang et al. [WLDB11]; this algorithm creates some
smooth bumps on the surface, as can be observed on the
Hausdorff distance map. However, when looking at the
model, all these bumps are not equally visible; once again
the distortion visibility is very efficiently estimated by our
metric, indeed higher values are on the most visible bump
on the top left of the chest (others are quite invisible) and on
the high frequency noise on the throat.

4.4. Global distortion score

Once we have created the multiscale distortion map, the ob-
jective is then to compute a single score assessing the global
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Figure 6: Top: The Horse model and a distorted version af-
ter watermarking (algorithm from Wang et al. [WLDB11]),
Bottom: distortion maps computed using the Hausdorff dis-
tance and our metric. Warmer colors represent higher val-
ues.

visual distortion. In the original 2D metric from Wang et
al. [WBSS04], a simple sum over the pixels is calculated. In
our case, we follow one of the most popular solutions used
in many perceptual metrics: a Minkowski pooling defined as
follows:

GMDMd→Mr = (
1
|Md | ∑

v∈Md

MLD(v)p)
1
p (14)

As p increases, more emphasis is given to the high distor-
tion regions, typical values are between 2 and 4. This is in-
tuitively closer to the human judgment than a simple averag-
ing, indeed humans tend to pay more attention to high dis-
tortion regions when they establish their visual judgment; in
our metric, we consider p = 3.
GMDMd→Mr evaluates the structural distortion of the
distorted model regarding the reference one. In order to
strengthen the robustness of our method and to obtain a sym-
metric measure we also compute GMDMr→Md and we re-
tain the average as our final distortion measure MSDM2.

This metric is within the range [0,1], a value of 0 means that
the two objects are identical while values near 1 mean that
they are visually very different. Some examples of MSDM2
values are given in figure 1. Distortions of different types
are applied on the Horse model (they are all associated with
the same maximum root mean square distance). We can ob-
serve that our distortion metric provides a low value when
the object seem nearly identical to the original (see fig. 1.b)
and high values when distortions are very visible (see figure
1.d to 1.f). Hence this metric seems a good predictor of the
human opinion, these results are confirmed quantitatively in
the next section.

5. Experiments and comparisons

The classical method to measure the performance of a qual-
ity assessment metric is to evaluate its correlation with the
human judgment; practically and whatever the type of me-
dia (image, video or 3D models), this evaluation is usually
done as follows:

1. A database is constructed containing different objects
(reference objects and distorted versions).

2. A subjective experiment is conducted where human ob-
servers directly give their opinion or some ratings about
the perceived distortions of the database objects. A mean
opinion score (MOS) is then computed for each distorted
object of the corpus: MOSi =

1
n ∑

n
j=1 mi j where MOSi is

the mean opinion score of the ith object, n is the number
of test subjects, and mi j is the score (in a given range)
given by the jth subject to the ith object.

3. A normalization of the MOS values and a filtering of pos-
sible outlier subjects is performed according to recom-
mendation of the I.T.U. (International Telecommunica-
tion Union) [I.T00]

4. The correlation is computed between the mean opinion
scores of the objects and their associated metric’s val-
ues; usually two correlation coefficients are considered:
the Spearman Rank Order Correlation which measures
the monotonic association between the MOS and the met-
ric values and the Pearson Linear Correlation Coefficient,
which measures the prediction accuracy. The Pearson
correlation is computed after performing a non-linear re-
gression on the metric values, usually using a logistic or
a cumulative Gaussian function. This serves to optimize
the matching between the values given by the objective
metric and the subjective opinion scores provided by the
subjects. This step allows the evaluation to take into ac-
count the saturation effects typical of human senses.

To the best of our knowledge, there are currently three
publicly-available subject-rated 3D model databases, we
consider all of them in our experiments and comparisons:

† http://liris.cnrs.fr/guillaume.lavoue/data/datasets.html
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The LIRIS/EPFL General-Purpose Database† [LDD∗06]
was created at the EPFL, Switzerland. It contains 88 models
between 40K and 50K vertices generated from 4 reference
objects (Armadillo, Dyno, Venus and RockerArm). Two
types of distortion (noise addition and smoothing) are
applied with different strengths and at four locations:
uniformly (on the whole object), on smooth areas, on rough
areas and on intermediate areas. 12 observers participated to
the subjective evaluation.
The LIRIS Masking Database† [Lav09] was created
at the Université of Lyon, France. It contains 26 models
between 9K and 40K vertices generated from 4 reference
objects (Armadillo, Bimba, Dyno and Lion) specifically
chosen because they contain significantly smooth and rough
areas. The only distortion is noise addition applied with
three strengths however it is applied either on smooth or
rough regions. The specific objective of this database was
to evaluate the behavior of the metrics regarding the visual
masking effect. Indeed the noise is far less visible on rough
regions hence the metrics should follow this perceptual
mechanism. 11 observers participated to the subjective
evaluation.
The IEETA Simplification Database‡ [SSFM09] was
created at the University of Aveiro, Portugal. It contains 30
models generated from 5 reference objects (Bunny, Foot,
Head, Lung and Strange) from 2K to 25K vertices. The
reference models have been simplified using three different
methods and two levels (20% and 50% of the original
number of faces). 65 observers participated to the subjective
evaluation.

For each of these databases, we compare the performance
of our metric in term of correlation with the MOS, against
the following existing algorithms:

• Simple geometric distances: Hausdorff and root mean
square error. Note that for the first two databases, dis-
torted models have the same connectivity than the refer-
ence ones, hence in that case we use the RMS between
corresponding vertices. In contrast, for the simplification
database, we consider the MRMS error which is the max-
imum of the two asymmetric RMS errors computed using
METRO [CRS98].

• The combinations, GL1 and GL2, of the RMS with Lapla-
cian coordinates introduced respectively by Karni and
Gotsman [KG00] and Sorkine et al. [SCOT03].

• The roughness-based measures, 3DWPM1 and 3DWPM2,
from Drelie Gelasca et al. [GECB05] and Corsini et al.
[CGEB07].

• The Mesh Structural Distortion Measure, MSDM, from
Lavoué et al. [LDD∗06].

Note that for the simplification database, we consider only
Hausdorff and MRMS since others cannot apply on meshes

‡ http://www.ieeta.pt/~sss/repository/

with different connectivity and/or sampling densities. Tables
1, 2 and 3 present the Spearman and Pearson correlations of
these metrics and our algorithm. Values of state-of-the-art
metrics from tables 1, 2 have been taken from [LC10].

For the general-purpose and masking databases, we have
several major observations:
Firstly, simple metrics (Hausdorff, RMS, GL) provide quite
poor results; the main reason is that it is very difficult for
these metrics to correctly merge the visual effects coming
from different types of distortion (noise and smoothing in the
case of the general-purpose corpus) or to take into account
some difficult psychophysical mechanisms like the masking
effect.
Secondly, when considering distorted versions from each
reference object separately, most recent metrics like
3DWPM and MSDM provide correct results, however our
method MSDM2 shows a significant improvement, particu-
larly in term of Pearson correlation (which characterizes the
strength of the relationship).
Thirdly, when we consider the correlation over the whole
set of models of the databases, our method clearly outper-
forms the others: respectively 66% and 76% Pearson cor-
relation against 56% and 48% for the second best (MSDM),
for general-purpose and masking databases respectively. The
fact is that even simple metrics are able to behave consis-
tently with human judgment when applied to distorted mod-
els originating from the same reference one with a single
type of distortion, however when applied to a set of models
generated from different reference objects and including dif-
ferent types of distortions then the task becomes much more
difficult, however our metric still provides very good results
in that case.
For the simplification database (see table 3), when consid-
ering the correlation for each reference model separately
MRMS provides correct results, while unstable (for the Head
model, results are very poor); these good results are due
to the fact that this corpus is easier than the others be-
cause it considers only one type of distortion (simplification)
which is applied uniformly. However our method demon-
strates a significant improvement in term of Pearson correla-
tion and a very good stability of the results over the models.
When considering the whole corpus, once again our method
clearly outperforms its counterparts (80% Pearson correla-
tion against 34% for MRMS).
Table 4 provides the processing time for our algorithm (for-
ward and backward distance processing) and the Metro tool
[CRS98] for comparison. The Horse is compared with itself
at different resolutions. The overall time remains reasonable
with the most time consuming part being the computation of
spherical neighborhoods at highest scale (h = 4ε). In case of
high timing constraints the user can choose to compute only
the forward distance and only at the finest scale (h = 2ε),
a lot of computation time will be saved, for instance the
whole comparison with respectively 50K and 113K vertices
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Table 1: Spearman (rS) and Pearson (rP) correlation values (%) between Mean Opinion Scores and values from the metrics
for the General-purpose corpus.

Armadillo Dyno Venus Rocker Whole Corpus
rS rP rS rP rS rP rS rP rS rP

Hausdor f f 69.5 30.2 30.9 22.6 1.6 0.8 18.1 5.5 13.8 1.3
RMS 62.7 32.2 0.3 0.0 90.1 77.3 7.3 3.0 26.8 7.9

GL1 [KG00] 70.2 43.7 15.5 3.2 92.0 80.2 14.2 8.4 33.1 12.6
GL2 [SCOT03] 77.8 55.5 30.6 12.5 91.0 77.6 29.0 17.1 39.3 18.0

3DWPM1 [CGEB07] 65.8 35.7 62.7 35.7 71.6 46.6 87.5 53.2 69.3 38.3
3DWPM2 [CGEB07] 74.1 43.1 52.4 19.9 34.8 16.4 37.8 29.9 49.0 24.6

MSDM [LDD∗06] 84.8 70.0 73.0 56.8 87.6 72.3 89.8 75.0 73.9 56.4
MSDM2 (Our metric) 81.6 72.8 85.9 73.5 89.3 76.5 89.6 76.1 80.4 66.2

Table 2: Spearman (rS) and Pearson (rP) correlation values (%) between Mean Opinion Scores and values from the metrics
for the Masking corpus.

Armadillo Lion Bimba Dyno Whole Corpus
rS rP rS rP rS rP rS rP rS rP

Hausdor f f 48.6 37.7 71.4 25.1 25.7 7.5 48.6 31.1 26.6 4.1
RMS 65.7 44.6 71.4 23.8 71.4 21.8 71.4 50.3 48.8 17.0

GL1 [KG00] 65.7 44.4 37.1 22.4 20.0 19.8 71.4 50.0 42.0 15.7
GL2 [SCOT03] 65.7 44.2 20.0 21.6 20.0 18.0 60.0 49.8 40.1 14.7

3DWPM1 [CGEB07] 58.0 41.8 20.0 9.7 20.0 8.4 66.7 45.3 29.4 10.2
3DWPM2 [CGEB07] 48.6 37.9 38.3 22.0 37.1 14.4 71.4 50.1 37.4 18.2

MSDM [LDD∗06] 88.6 72.2 94.3 78.0 42.9 33.9 100 91.7 65.2 47.9
MSDM2 (Our metric) 88.6 65.8 94.3 87.5 100 93.7 100 91.5 89.6 76.2

forMd andMr takes only 9.3 seconds (less than METRO),
furthermore this fast configuration still provides correct re-
sults: respectively 70.7%, 71.7% and 68.5% Pearson corre-
lations over the whole corpus respectively for the general-
purpose, masking and simplification databases; nevertheless,
results are less stable among the models compared with the
standard configuration (i.e. multiscale and symmetric).

Table 4: Processing times (in seconds, for a 2GHz laptop)
of our metric and METRO for objects of different sizes.

Md /Mr GMDMd→Mr GMDMr→Md METRO

113K/113K 50.0 50.0 11.5
50K/113K 14.7 44.9 10.1
1K/113K 4.7 42.6 10.5
50K/50K 11.5 11.5 4.6
1K/50K 1.7 9.7 4.1

6. Application to the evaluation of progressive
compression algorithms

In previous sections we have presented and compared a new
algorithm for visual distortion assessment of a 3D model
with respect to a reference one, without any constraint on

the connectivity. This new metric provides an alternative,
closer to the human visual perception, to traditional dis-
tortion metrics like RMS or Hausdorff distance for evalu-
ating or driving any kind of processing operations. In the
following section we demonstrate that our MSDM2 metric
is more accurate than the widely used MRMS for assessing
the rate-distortion performance of progressive compression
algorithms. The main idea of progressive compression is to
transmit a simple coarse mesh (low-resolution), and a refine-
ment sequence allowing the viewer to update incrementally
the level of details of the mesh during the transmission; most
of existing techniques are evaluated with the rate-distortion
curve, the distortion being computed usually by the MRMS
error. Figure 7 illustrates these performance curves for three
of the most recent and efficient algorithms: the Wavemesh
method from Valette and Prost [VP04], the Octree method
from Peng and Kuo [PK05] and the Iterative Parametric Re-
finement (IPR) approach from Valette et al. [VCP09]. In the
left figure, where the distortion is computed using MRMS
error, the three methods seem close in performance; more
precisely at 6 bits per vertex the Wavemesh method seems to
deliver a better level of details than the IPR method. How-
ever when actually visualizing these levels of details on fig-
ure 8, we see that the best visual quality is reached by the
IPR, moreover it appears also that the 8 bpv Octree version
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Table 3: Spearman (rS) and Pearson (rP) correlation values (%) between Mean Opinion Scores and values from the metrics
for the Simplification corpus.

Bunny Foot Head Lung Strange Whole Corpus
rS rP rS rP rS rP rS rP rS rP rS rP

Hausdor f f 39.5 14.3 94.3 84.8 88.6 53.0 88.6 64.9 37.1 27.4 49.4 25.5
MRMS 77.1 79.2 94.3 71.1 42.9 23.1 94.3 71.3 94.3 92.4 64.3 34.4

MSDM2 (Our metric) 94.3 96.3 77.1 96.7 88.6 79.0 65.7 85.3 100 98.1 86.7 79.6

is of worst quality; all these observations are in contradic-
tion with the rate-MRMS distortion curves. However when
computing the distortion using our MSDM2 metric (see fig-
ure 8 on the right) then all these visual observations appear
on the curves: the 6 bpv version of the IPR is better than
its Wavemesh counterpart and both are better than the 8 bpv
version of the Octree.

Figure 8: Different levels of details of the Horse model (20K
vertices), created using different progressive compression al-
gorithms.

6.1. Conclusions

We have presented a new multiscale metric for visual dis-
tortion assessment of 3D meshes; this metric has proven to
outperform its counterparts in term of correlation with the
human judgment, on three subjective databases. This met-
ric has been applied for rate-distortion performance evalua-
tion of recent progressive compression algorithms and has
shown to deliver more relevant results than classical root
mean square distance regarding the visual quality of the lev-
els of details. More generally such visual distortion/quality
assessment metrics provide a new paradigm for the evalua-
tion, control and optimization of many kinds of processing
operations.

Our future works will focus on integrating photometric data
which may be associated with vertices and which participate
to a large extent in the visual perception of the 3D models.
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