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ABSTRACT

Solution of the pre-image problem is key to efficient non-
linear de-noising using kernel Principal Component Analysis.
Pre-image estimation is inherently ill-posed for typical ker-
nels used in applications and consequently the most widely
used estimation schemes lack stability. For de-noising appli-
cations we propose input space distance regularization as a
stabilizer for pre-image estimation. We perform extensive ex-
periments on the USPS digit modeling problem to evaluate
the stability of three widely used pre-image estimators. We
show that the previous methods lack stability when the fea-
ture mapping is non-linear, however, by applying a simple in-
put space distance regularizer we can reduce variability with
very limited sacrifice in terms of de-noising efficiency.

Index Terms— Kernel PCA, Pre-image, De-noising

1. INTRODUCTION

We are interested in unsupervised learning methods for de-
noising, i.e., in the projection of noisy or distorted observa-
tional data onto a ’clean’ signal manifold and, if necessary, we
will use non-linear maps to implement the projection. Kernel
PCA and similar methods are widely used candidates for such
projection beyond conventional linear unsupervised learning
schemes like PCA principal component analysis, ICA inde-
pendent component analysis, and NMF non-negative matrix
factorization. The basic idea is to implement the projection
in three steps, in the first step we map the original data re-
ferred to as in input space, into a feature space and then in
the second step we use a conventional linear algorithm, like
PCA, to identify the signal manifold by linear projection in
feature space. Finally, in the third step we estimate the input
space - de-noised - points that best correspond to the projected
feature space points. The latter step is referred to as thepre-
image problem. Unfortunately, finding a reliable pre-image
is entirely non-trivial and has given rise to several algorithms
[1, 2, 3, 4]. In this work we analyze the stability of the es-
timated pre-images from the most used of these algorithms,
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we suggest a new regularizer appropriate for de-noising ap-
plications, and we show that the new pre-image algorithm
improves the stability relative to the existing approaches.

To understand the pre-image problem, let us recapitulate
some basic aspects of de-noising with kernel PCA. LetF
be the Reproducing Kernel Hilbert Space (RKHS) associated
with the kernel functionk(x,x′) = ϕ(x)T ϕ(x′), whereϕ :
X 7→ F is a possibly nonlinear map from theD-dimensional
input spaceX to the high dimensional (possibly infinite) fea-
ture spaceF (see notation1). In de-noising and a number of
other applications it is of interest to reconstruct a data point
in input space from a point in feature space, i.e. applying the
inverse map ofϕ. As mentioned, in de-noising by kernel PCA
we map a noisy input pointx into feature space,ϕ(x) ∈ F ,
project it ontoq principal components in feature space giv-
ing Pqϕ(x). By mapping the projection back into input space
a new and hopefully less noisy pointz = ϕ−1(Pqϕ(x)) is
obtained. Given a point in feature spaceΨ, the pre-image
problem thus consists of finding a pointz ∈ X in the input
space such thatϕ(z) = Ψ. z is then called the pre-image of
Ψ. For many non-linear kernels dim(F) � dim(X ) andϕ
is not surjective. Furthermore, whetherϕ is injective depends
on the choice of kernel function. As a functionf : X 7→ Y
has an inverse iff it is bijective, we do not expectϕ to have
an inverse. Whenϕ is not surjective, it follows that not all
points inF or even the span of{ϕ(X )} is the image of some
x ∈ X . Finally, whenϕ is not injective, any recovered pre-
image might not be unique. Thus the pre-image problem is
ill-posed [1, 2, 3, 4, 5, 6, 7]. As we can not expect an exact
pre-image, we follow [1] and relax the quest to find anap-
proximate pre-image, i.e., a point in input space which maps
into a point in feature space ‘as close as possible’ toΨ .

2. KERNEL PCA

Kernel Principal Component Analysis is a nonlinear general-
ization of linear PCA, in which PCA is carried out in the fea-

1Bold uppercase letters denote matrices, bold lowercase letters represent
column vectors, and non-bold letters denote scalars.aj denotes thej’th col-
umn ofA, while aij denotes the scalar in thei’th row andj’th column ofA.
Finally 1NN is aN × N matrix of ones
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Fig. 1. The pre-image problem in kernel PCA de-noising concerns estimatingz from x0, through the projection of the image
onto the principal subspace. Presently available methods for pre-image estimation lead to unstable pre-images because the
inverse is ill-posed. We show that simple input space regularization, with a penalty based on the distance||z − x0|| leads to a
stable pre-image.

ture spaceF mapped data [8]. However, asF can be infinite
dimensional we can not work directly with the feature space
covariance matrix. Fortunately, the so-called kernel trick al-
lows us to formulate nonlinear extensions of linear algorithms
when these are expressed in terms of inner-products.

Let {x1, . . . ,xN} be N training data points inX and
{ϕ(x1), . . . , ϕ(xN )} be the corresponding images inF .
The mean of theϕ-mapped data points is denoted̄ϕ =
1
N

∑N
n=1 ϕ(xn) and the ‘centered’ images are given by

ϕ̃(x) = ϕ(x) − ϕ̄. Now kernel PCA is performed by solving
the eigenvalue problem

K̃αi = λiαi (1)

whereK̃ is the centered kernel matrix defined asK̃ = K −
1
N 1NNK− 1

N K1NN + 1
N2 1NNK1NN .

The projection of aϕ-mapped test point onto thei’th com-
ponent is

βi = ϕ̃(x)T vi =
N∑

n=1

αinϕ̃(x)T ϕ̃(xn) =
N∑

n=1

αink̃(x,xn)

(2)
wherevi is the i’th eigenvector of the feature space covari-
ance matrix and theαi’s have been normalized. The cen-
tered kernel function can be found ask̃(x,x′) = k(x,x′) −
1
N 11Nkx− 1

N 11Nkx′+ 1
N2 11NK1N1, wherekx = [k(x,x1),

. . . , k(x,xN )]T . The projection ofϕ(x) onto the subspace
spanned by the firstq eigenvectors will be denotedPqϕ(x)
and can be found as

Pqϕ(x) =
q∑

i=1

βivi + ϕ̄ =
q∑

i=1

βi

N∑
n=1

αinϕ̃(xn) + ϕ̄

=
N∑

n=1

γ̃nϕ̃(xn) + ϕ̄ (3)

whereγ̃n =
∑q

i=1 βiαin. Kernel PCA satisfies properties
similar to those for linear PCA, namely that the squared re-

construction error is minimal and the retained variance is
maximal. However, these properties holds inF notX .

3. APPROXIMATE PRE-IMAGES

Several optimality criteria can be used for the pre-image ap-
proximation, see e.g., [5],

Distance: z = argmin
z∈X

||ϕ(z) − Ψ||2 (4)

Co-linearity: z = argmax
z∈X

〈
ϕ(z)

||ϕ(z)|| ,
Ψ

||Ψ||
〉

(5)

For RBF kernels of the formk(xi,xj) = κ(||xi − xj ||2) the
co-linearity criteria and the distance criteria coincide

||ϕ(z) − Ψ||2 = 〈ϕ(z), ϕ(z)〉 + 〈Ψ, Ψ〉 − 2 〈ϕ(z), Ψ〉
= k(z, z) + ||Ψ||2 − 2 〈ϕ(z), Ψ〉 (6)

As k(z, z) is constant for RBF kernels and||Ψ||2 is indepen-
dent ofz, minimizing||ϕ(z)−Ψ||2 is equivalent to maximiz-
ing the co-linearity. AsF is a RKHS, the distance will be
the same before and after centering. However, the expression
gets a bit more tedious when using explicit centering as will
be shown later, even though the result is the same: Minimiz-
ing the distance is identical to maximizing the inner-product.

Thus we seek to minimize the distance betweenϕ(z) and
Ψ w.r.t z. When it is assumed thatΨ lies in (or close to)
the span of{ϕ(xi)}, Ψ can be represented as a linear com-
bination of the training images, i.e.Pqϕ(x), without loss of
generality. Whenq = N this will translate to projectingΨ
onto the span of{ϕ(xi)}. We are interested in an expression
for

||ϕ(z) − Pqϕ(x)||2 = ||ϕ(z)||2 + ||Pqϕ(x)||2
− 2ϕ(z)T Pqϕ(x). (7)
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Fig. 2. Experiment to illustrate the stability of pre-image based de-noising of USPS digits. A training set of 400 digits
(100@0, 2, 4, 9) is used to define the signal manifold. We show the confidence intervals (5th and the 95th percentile) for
the mean square error (MSE) in different combinations of kPCA subspace dimension and non-linearity. MSE computed for
400 de-noised test samples for (a) Kwok-Tsang, (b) Mika et al., (c) Dambreville et al., and (d) the new input space distance
regularization approach. The previous schemes are seen to deteriorate in the non-linear regime (smallc).

The terms will in the following be expanded separately, start-
ing with the first term

||ϕ(z)||2 = ϕ(z)T ϕ(z) = k(z, z) (8)

From (3) and the definition of centering and mean in feature
space, we have

||Pqϕ(x)||2 =

(
q∑

i=1

βivi + ϕ̄

)T ( q∑
i=1

βivi + ϕ̄

)

=
q∑

i=1

β2
i + ϕ̄T ϕ̄ + 2ϕ̄T

N∑
n=1

γ̃nϕ̃(xn)

=
q∑

i=1

(
N∑

n=1

αink̃(x,xn)

)2

+
1

N2

N∑
n,m=1

k(xn,xm)

+
2
N

N∑
n=1

γ̃n

N∑
m=1

k(xm,xn) − γ̃n

N

N∑
m,l=1

k(xm,xl)


(9)

Finally the last term can be expanded using the same proper-
ties as above

ϕ(z)T Pqϕ(x) = ϕ(z)T

(
N∑

n=1

γ̃n(ϕ(xn) − ϕ̄) + ϕ̄

)

=
N∑

n=1

γnk(z,xn) (10)

Where the last equality follows from lettingγn = γ̃n+ 1
N (1−∑N

j=1 γ̃j), whereγ̃n =
∑q

i=1 βiαin as defined in equation
(3). Now combining the expressions gives

||ϕ(z) − Pqϕ(x)||2

= k(z, z) − 2
N∑

n=1

γnk(z,xn) + Ω (11)

where all thez-independent terms originating from||Pqϕ(x)||2
have been collected inΩ.

3.1. Overview of existing algorithms

The non-linear optimization problem associated with finding
the pre-image has been approached in a variety of ways. In
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Fig. 3. The mean pairwise distances (mean, 5th and the 95th percentiles) for Mika et al. (red) and the new input space reg-
ularization approach (blue). We use 300 principal components in this study. The previous approach fails to provide a stable
pre-image in the non-linear regime (smallc). The right panel shows the box in the left panel, whereas arrow ’B’ indicates the
scale used in Figure 4.

the original work [1] and [2] proposed a fixed-point iteration
method. It is a noted drawback of this method that it can
be numerically unstable, sensitive to the initial starting point,
and converge to a local extremum. To overcome this problem
a more ‘direct’ approach was taken in [3], where the relation-
ship between distance measures in feature space and input
space as well as the idea of multidimensional scaling (MDS)
were combined to produce a non-iterative constructive solu-
tion. These are the two approaches most widely used in ap-
plications. However, several modifications have already been
proposed. In order to overcome possible numerical instabil-
ities of the fixed-point approach, various ways of initializing
the fixed-point iteration scheme have been suggested. The al-
gorithm can be started in a ‘random’ input space point, but
this can lead to slow convergence in real-life problems, since
the cost-function can be very flat in regions away from data.
Alternatively, for de-noising applications, it can be initialized
in the point in input space, which we seek to de-noise. How-
ever, according to [9] this strategy will only work if the signal-
to-noise ratio (SNR) is high. Instead [10] suggested to initial-
ize the fixed-point iteration scheme in the solution found by
the distance method in [3]. Later it was claimed that a more
efficient starting point would be the mean of a certain number
of neighbors of the point to be de-noised [11]. In [4] a modifi-
cation of the method developed in [1], utilizing feature space
distances was proposed. This method also minimizes the dis-
tance constraint in (4), but does so in a non-iterative approx-
imation thereby avoiding numerical instabilities. In [12] ker-
nel ridge regression was used to learn some inverse mapping
of ϕ. While the formulation in [12] is in very general terms,
the actual implementation is similar to [3]. The main issue
is that we typically only have indirect access to feature space
points, thus a learned pre-image needs to be formulated in
terms of distances as in [3], rather than explicit input-output
examples. It should be noted that with the relative general

formulation the method of [12] in some cases can be applied
beyond [3], e.g., to non-Euclidean input spaces. In lieu of the
recognized ill-posed nature of the inverse problem attempts of
more robust estimators have been pursued, in [13] a regular-
ization was introduced that penalized the projection in feature
space, while in [14] a ridge regression regularizer was used
for the weights of a learned pre-image estimator as originally
proposed in [12].

Returning to the iterative scheme of Mika et al., we work,
as in most applications, with RBF kernels for whichk(z, z) is
constant for allz, hence minimizing the squared distance in
(11) is identical to

max
z

2
N∑

n=1

γnk(z,xn) (12)

Now in extrema of (12) the derivative with respect toz is
zero, which leads to the following fixed-point iteration for a
Gaussian kernel of the formk(x,x′) = exp

(− 1
c ||x − x′||2)

[1]

zt+1 =
∑N

n=1 γn exp(−||zt − xn||2/c)xn∑N
n=1 γn exp(−||zt − xn||2/c)

(13)

As mentioned maximizing equation (12) is a non-linear op-
timization problem, and hence suffers from convergence to
local minima and strong sensitivity to the initial pointz. As
we shall see, this implies that the solutions are at times highly
unstable.

3.2. The input space regularization approach

In-order to provide a more stable estimate of the pre-image
we propose to augment the cost function with an input space



distance penalty term (see Figure 1)

ρ1(z) = ||ϕ(z) − Pqϕ(x)||2 + λ||z − x0||2

= k(z, z) − 2
N∑

n=1

γnk(z,xn) + Ω

+ λ(zT z + xT
0 x0 − 2zx0) (14)

λ is a non-negative regularization parameter andx0 is the
noisy observation inX . The main rationale is that among
the solutions to the non-linear optimization problem we want
the pre-image which is closest to the noisy input point, hence,
hopefully reduce possible distortions of the signal. Thus we
seek to minimize

ρ2(z) = k(z, z)− 2
N∑

n=1

γnk(z,xn) + λ(zT z− 2zx0) (15)

ignoring all z-independent terms. This expression can be
minimized for any kernel using a non-linear optimizer.

For RBF kernels the fixed-point iteration scheme can be
regularized similarly, this typically leads to a faster evalua-
tion than using an optimizer. Introducing regularization in the
maximization problem given in (12) leads to the following
objective function

ρ3(z) = 2
N∑

n=1

γnk(z,xn) − λ||z − x0||2 (16)

which we seek to maximize w.r.t.z. With straightforward
algebra we get the regularized fixed-point iteration

zt+1 =
2
c

∑N
n=1 γn exp

(− 1
c ||zt − xn||2

)
xn + λx0

2
c

∑N
n=1 γn exp

(− 1
c ||zt − xn||2

)
+ λ

(17)

In this expression the denominator is given by2
c 〈ϕ(zt), Ψ〉+

λ. As λ is a non-negative parameter, the denominator will al-
ways be non-zero in the neighborhood of a maximum because
the inner-product will be positive in that same neighborhood.

4. EXPERIMENTS

In this section we compare the new regularized fixed-point
iteration algorithm with the approaches proposed by: (a)
Kwok-Tsang [3], (b) Mika et al. [1], and (c) Dambreville et
al. [4]. The experiments are done on a subset of the USPS
data consisting of16 × 16 pixels handwritten digits2. For
each of the digits0, 2, 4, and9 we chose 100 examples for
training and another 100 examples for testing. We added
Gaussian noiseN (0, 0.25) and set the regularization param-
eterλ = 0.001.

2The USPS data set is described in [15] and can be downloaded from
www.kernel-machines.org
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Fig. 4. Top: Example of de-noised digits using a very non-
linear kernel (c = 50) and 100 principal components. (b)
Mika et al and (d) our approach, note the visual improvement
of the recovered pre-images in the red box. The colormap has
been adjusted for better visualization. Bottom: The image in-
tensity along the red line indicated above. Note the improved
SNR in the result of the new method.

In-order to illustrate the stability and performance of the
methods we vary both the number of principal components
used to define the signal manifold and the scale parameterc
of the Gaussian kernel. For each combination and pre-image
estimator, the mean squared error (MSE) of the de-noised
result for the 400test examples is calculated. The iterative
approaches are initialized in the noisy test point and for the
Kwok-Tsang approach 10 neighbors were used for the ap-
proximation.

The results are summarized in Figure 2 where we show
the lower 5th and upper 95th percentile confidence intervals
for the MSE. As seen the confidence intervals blow up for the
previous methods - panels (a-c) - in the non-linear regime in
which the kernel has a relative small scale parameter, while
the confidence interval points to a more stable de-noised so-
lution for the new regularization based approach - as seen in
panel (d).

To better understand the nature of the instability of the
previous algorithms we have investigated the diversity of the
solutions obtained when starting the iterative algorithms in
different initial points. Specifically we compare the standard
iterative solution of Mika et al. and the new regularized ver-
sion. For each of the 400 test examples the two algorithms
are initialized in 40 randomly chosen training examples. This
leads to 40 (potentially different) pre-image solution for each
test sample. We measure the stability of these solution sets
as the mean pairwise distance between them 40 pre-images,
and report the mean across the 400 test examples This mean
and its confidence intervals are presented in Figure 3 as func-
tion of the non-linearity scale parameterc. As seen, the new
method produces a stable pre-image even for very non-linear
models (smallc), where the un-regularized iterative scheme



fails to reproduce.
Finally Figure 4 shows examples of the de-noised images

obtained with Mika et al.’s and the new input space regu-
larization approach, respectively. For the images which are
successfully de-noised by Mika et al.’s method, e.g., ’zeros’
and ’nines’, the input distance regularization has very little
effect, while a clear improvement can be seen for the images
for which Mika et al.’s algorithm fails to recover good vi-
sual solution, see, e.g., the red box with the blurred ’twos’
and ’fours’. For these digits the input space regularization
method do reconstruct the correct digit, albeit with a price
paid in terms of a slightly less de-noised result. However, the
image intensity, as shown in the lower part of Figure 4, clearly
illustrates the increased SNR achieved by the input space reg-
ularization.

5. CONCLUSION

In this contribution we addressed the problem of pre-image
instability for kernel PCA de-noising. The recognized con-
cerns of current methods, e.g., the sensitivity to local min-
ima and large variability was demonstrated found for the most
widely used methods including Mika et al.’s iterative scheme,
the Kwok-Tsang local linear approximation and the method
of Dambreville et al. By introducing simple input space dis-
tance regularization in the existing pre-image approximation
cost functions, we achieved a more stable pre-image, with
very little sacrifice of the de-noising ability. Experimental
results on the USPS data illustrated how our method provides
a more stable pre-image; both in the sense of variability be-
tween test points and by reducing the sensitivity to starting
conditions, hence convergence to local minima.

We thus recommend the use of input space distance con-
straints as it provides a reliable pre-image in cases where cur-
rent methods fail to recover a meaningful result.

In future work we aim to further improve pre-image esti-
mation by introducing other types of regularization appropri-
ate for specific de-noising tasks, this can, e.g., be in the form
of sparsity of the sought pre-image, which would be very rel-
evant for, e.g., digit de-noising.
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