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Abstract—The gesture recognition has raised attention in
computer vision owing to its many applications. However, video-
based large-scale gesture recognition still faces many challenges,
since many factors like background may disturb the accuracy. To
achieve gesture recognition with large-scale videos, we propose
a method based on RGB-D data. To learn gesture details better,
the inputs are expanded into 32-frame videos first, and then
the RGB and depth videos are sent to the C3D model to
extract spatiotemporal features respectively. Next these features
are combined to boost the performance, which can also avoid
unreasonable synthetic data due to the uniform dimension of
C3D features. Our approach achieves 49.2% accuracy on the
validation subset of the Chalearn LAP IsoGD Database just with
a linear SVM classifier. It also outperforms the baseline and other
methods in the challenge and wins the first place at 56.9% on
testing set.

I. INTRODUCTION

The gesture recognition, of which the intention is interpret-
ing human gestures to machines via some algorithms, is of
great importance in computer vision since many applications,
such as video surveillance, sign language comprehension,
virtual reality and most commonly, the human computer in-
teraction (HCI) are on the basis of it.

Although gesture recognition seems just recognizing and
understanding the physical movements of human body, there
are many challenges still associated with the accuracy and
practicability of it. First, gestures are ambiguous since a
gesture may map to different meaning along with the variation
of situation, and vice versa. For example, the gesture of
stretching two fingers means “victory” , but it can also mean
the number ‘“2” in some conditions. Meanwhile, the concept
of “stop” , may match a palm facing forward in the traffic
gesture in China, while it can also map to a finger vertically
touching another palm. Second, the environment, such as
background, performers’ clothes and skin color may disturb the
recognition since these variants are uncorrelated with gestures.
Compared with general gesture recognition via images, video-
based recognition may face more challenges. As it detects ges-
tures in video, the motion instead of simply posture recognition
is necessary. Then the reaction time, amplitude of movement
and video quality may affect the accuracy as well.

In this paper, we propose a video gesture recognition
method based on RGB-D data, i.e. RGB and depth data
that captured simultaneously via a Kinect sensor. The goal
of ChalLearn LAP Large-scale Isolated Gesture Recognition
Challenge [1] is to solve large-scale gesture learning and
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recognizing with user independent RGB-D videos. As similar
gestures are integrated with the unique label [2], the challenges
we encounter are all aforementioned except for the gesture
ambiguity. To learn the details of gesture better, we first
conduct a pre-processing on the input videos and convert
them to 32-frame videos. Then the features of RGB and
depth videos are extracted respectively by the C3D model,
a 3D convolutional network model that learns spatiotemporal
features. Next these features are blended to boost the per-
formance. The final classification is implemented by a linear
SVM classifier. Our approach achieves the accuracy of 49.2%
on validation subset and 56.9% on the testing subset of the
Chalearn LAP IsoGD Database respectively, and takes the
first place of Chalearn LAP Large-scale Isolated Gesture
Recognition Challenge ultimately. It benefits mainly from two
contributions as summarized below:

e  The expansion to 32-frame videos. The 16-frame input
required by the original the C3D model seems to
remove too much information contained in the original
videos. Therefore some similar gestures may be mis-
understood and put into one category. This expansion
helps with increasing the information of inputs and
makes it easier to track the path of gestures.

e  The fusion scheme of features. Since the RGB and
depth videos are not matched well (objects in RGB
video are a little bigger), the fusion is employed in
the later stage with the extracted features. The fusion
is processed by either averaging the two features or
integrating them to generate a feature with higher
dimension. The experiments prove that both of our
fusion schemes are beneficial for boosting the final
performance to a large extent.

The remainder of this paper is organized as follows. In
Section II, the development of video gesture recognition is
briefly reviewed and the Chalearn LAP IsoGD Database is
also introduced. Subsequently, our proposed video gesture
recognition method with RGB-D data based on the C3D
model is described in Section III. Following in Section IV,
the experiments that prove the effectiveness of our approach
and the comparisons among our approach, baseline method
and other available methods are given. Finally our approach is
concluded and the future work is given in the last section.
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The flowchart of our approach. First the input videos are converted into 32-frame ones. The two kinds of videos are sent to the C3D model respectively

and features of each one are extracted. The features are blended to improve the performance and the integrated feature are used for classification via linear SVM

classifier.

II. RELATED WORK

A. Development of gesture recognition

Gesture recognition has been studied for decades. There
are various approaches to handle gesture recognition problem.
In the early stage, the hand-crafted features like histogram of
oriented gradients (HOG) and histogram of optical flow (HOF)
are extracted [3] [4] [5], and the finite-state machine (FSM)
[6], [7], hidden Markov model (HMM) [5] [8], and dynamic
time warping (DTW) [9] are commonly applied in modeling
human gestures. Then the traditional features are extended into
sptiotemporal domain to generate more effective features for
video data. For example, Klaser ef al. [10] propose a 3D HOG
feature for action recognition. Wan et al. extend the scale
invariant feature transform (SIFT) and propose 3D enhanced
motion SIFT (3D EMoSIFT) [11] and 3D Sparse Motion SIFT
(3D SMoSIFT) [12] to extract features with the fusion of RGB-
D data. Then they propose the mixed features around sparse
keypoints (MFSK) [13] specifically for one shot learning of
gesture recognition.

With rapid development of deep learning and powerful
hardware like GPU, the Convolutional Neural Network has
made a great breakthrough on visual recognition, including
gesture recognition. Le et al.[14] use stacked ISA to learn
spatiotemporal features in videos. Karpathy et al.[15] propose
a CNN-based model to classify videos on large-scale datasets.
Ji et al.[16] employ a hardwired layer to extract some hand-
crafted features like optical flow and gradient first and then
send them all into a 3D CNN to extract features. Simonyan and
Zisserman [17] increase the amount of training data by multi-
task learning and extract the spatial concurrent with temporal
features by two-stream convolutional networks. Tran et al.[18]
propose a C3D model, a 3D CNN as well which is a modified
version of BVLC caffe [19] and processes directly on video
clips. This method achieves a promising accuracy even on
large-scale datasets, and recently many a method are on the
basis of it like [20] and [21].

B. The Chalearn LAP IsoGD Database

The Chalearn LAP IsoGD Database is built by Wan et al.
[2]. which is derived from the CGD dataset [22]. The goal
of this dataset is to complete the task of user independent
recognition - the person performs in training data will not
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appear in validation or testing data. There are 47933 gestures
solely exist in the same amount of videos in this dataset, which
are provided with both RGB and depth video and can be
divided into training (35878 videos), validation (5784 videos)
and testing (6271 videos). The gestures are labeled ranging
from 1 to 249.

III. THE VIDEO GESTURE RECOGNITION WITH RGB-D

DATA BASED ON THE C3D MODEL

As mentioned by Wan et al.[2], gesture recognition experi-
ences many difficulties in feature extraction. When the input is
video rather than still image, this task needs more endeavors
since the temporal features also need to be learned. Thanks
to the bloom of deep learning, the features can be learned
automatically from the temporal and spatial domains simulta-
neously. The flowchart of our approach is depicted in Fig.1.
We first convert the input RGB-D data into 32-frame videos.
Then the features of these videos are extracted respectively
by a 3D Convolutional Neural Network - the C3D model, and
blended together later. The integrated feature is sent to a linear
SVM classifier for the finally result. The details of our C3D
model implementation, the 32-frame unification strategy, and
the fusion schemes will be introduced in following subsections.

A. Feature extraction model

Since gestures are presented in videos, the gesture recog-
nition is essentially to recognize motions. Thus the features
among frame sequences are also required. To this end, we
employ the C3D model [18] to extract such spatiotemporal
features. The C3D model is a kind of 3D Convolutional Neural
Network. Compared with the traditional 2D CNN, the C3D
model is able to model temporal information with the scheme
of 3D convolution and 3D pooling. Hence it achieves better
result when the inputs are video clips.

The ensemble architecture of the C3D model is illustrated
in Fig.2. This model consists of 8 convolution, 5 pooling, 2
fully connected layers to learn features and a softmax layer to
provide predicted label. All of convolution layers are with the
same kernel size of 3 x 3 x 3 with stride 1, whereas the kernel
size of pooling layers is 2 x 2 x 2 except for the pooling 1
layer, of which the kernel size is 1 x 2 x 2 to keep the temporal
information in the early stage of the network. After times of
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Fig. 2. The architecture of the C3D model (from Tran et al.’s paper [18]). It consists of 8 convolution layers, 5 pooling layers, 2 fully-connected layers and a
softmax loss layer. The feature we extract is from fc6 layer, i.e., the first fully-connected layer.

convolution and pooling, the input video is converted into a
4096-dim vector in the first fully connected layer - fc6, and
mapped to the predicted label after another fully connected
layer. The input of the C3D model is required to be split into
16-frame clips and randomly cropped into 112 x 112 to match
the structure of network according to Tran et al.[18].

However, training a deep network is very time-consuming
since there are millions of parameters waiting for adjustment.
It seems more arduous for the large-scale datasets like the
ChalLearn LAP IsoGD Database, which has 249 categories of
gestures. As the C3D model that pre-trained on Sports-1M
dataset (which is the largest video classification benchmark
with 1.1 million sports videos in 487 categories) is accessible,
we can directly finetune with videos from the ChalLearn LAP
IsoGD Database. The effectiveness of such a pre-trained model
has been verified by Tran er al.[18]. As both RGB and
depth video are available, we finetune that model with them
respectively. The features of fc6 are extracted after 28 epochs.
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Fig. 3. The similar gestures. (a) the video 03138 that wrongly classified into
category 10 by the original C3D model. (b) the video 01006 which exactly
belongs to category 10. These two videos are similar in the ultimate posture.

B. Frame unification of input videos

After an analysis of the wrongly classified videos given
by the original C3D model, we find one factor hampering the
accuracy is that the frames of input videos are clipped to meet
the demand of C3D input so that some of the motion details are
lost. As shown in Fig.3, the video 03138 is given the same label
with video 01006, which belongs to the category 10. These
two videos are really similar in the final posture (four fingers
stretched without occlusion), so the motion path is important
for distinguishing.

After analyzing the frame numbers of all 35878 training
videos, we find they distribute like Fig.4. The frame numbers
range from 1 to 405, in which most videos are with 29-
39 frames and the peak is 33-frame - 1202 videos have 33
frames. For easier processing, we choose 32 as a benchmark
frame number and unify all the videos with it. Videos that
have frames more than 32 are sampled with the dynamic ratio
according to their numbers of frames, while videos with frames
less than 32 are extended by interpolation. Then over 98%
videos are sampled at least per 3 frames, which guarantees
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most information of motion path is available for the extraction
and thus distinguishing gestures like 03138 and 01006 in Fig.3
becomes easier.
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Fig. 4. The distribution of frame numbers of training videos. The peak value
is 1202 of 33-frame video, and there are very few videos containing frames
less than 10 or more than 100.

C. Fusion scheme

Fig. 5. The video-level fusion result. Since the object size in RGB and
depth video is not the same, the fusion video of RGB and depth may result
in unreasonable input.

Tran et al. [18] use 3 different nets and combine the
features extracted by them to boost the accuracy. That inspires
us to employ a fusion scheme for better performance. As
RGB and depth videos are both available, we try to blend
them together to benefit from both of them. Although RGB
and depth video are obtained concurrently, the objects in
them are with different sizes. As can be seen in Fig.5, the
fusion in video-level may result in videos that make no sense.
Meanwhile, the cost of frame-by-frame registration for these
two kinds of videos is high. Therefore we process the fusion
scheme in the later stage in feature-level, i.e., blend the features
rather than videos of RGB and depth data. The features are
abstracts of videos, which are the best illustrations of the
character of gestures. Furthermore, all the features are with the
same dimension, thus the fusion at this stage is reasonable. We



have two strategies for fusion: One is averaging the features,
the other is integrating them to obtain a feature with higher
dimension. The final classification is conducted by a linear
SVM classifier with the blended feature, which is implemented
by libsvm, a toolkit developed by Chang and Lin [23]. The
results of these strategies will be given in the next section.

IV. EXPERIMENT RESULTS

In this section, we demonstrate how our strategies work
by groups of experiments. First, we discuss the parameter
setting in our finetuning stage in Section IV-A, and then the
experiments that show the effect of the unification of 32-frame
strategy, different fusion schemes, and the comparisons among
the baseline method, original C3D method and our method
are given in Section IV-B to IV-D. The runtime analysis
is illustrated in the last subsection. As the testing label is
unavailable, all the experiments are conducted on the validation
subset of the Chalearn LAP IsoGD database.

A. Parameter setting

As the model we use for feature extraction is C3D, the
common network settings are the same as [18]. However,
for a better finetuning result and adapting to our experiment
environment, we use mini-batches of 10 clips, with the initial
learning rate of 0.0001. The learning rate is reduced to the 0.9
times of antecedent after about 1.5 epochs (5000 batches). The
finetuning process stops after about 28 epochs (10000 batches).
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Fig. 6. Result comparison between the C3D model with 16-frame and 32-
frame input. The 32-frame input is superior to the other one with both RGB
and depth data on the validation subset of the Chalearn LAP IsoGD database.

B. The effect of 32-frame strategy

In this subsection, we verify the effectiveness of our 32-
frame strategy. We compare the accuracy of classification with
either 16-frame or 32-frame input. Both inputs are finetuned
with 28 epochs, and the results are shown in Fig.6.

Fig.6 reports that compared with the original 16-frame
strategy, our 32-frame strategy is more reasonable and achieves
a great promotion on both RGB and depth data at about 4%.
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Fig. 7. Result comparison between different fusion schemes on the validation
subset of the Chalearn LAP IsoGD database. The integration is better since the
advantages of both of single features can be combined in the fusion feature.

C. Feature fusion result

We have two schemes for fusion as aforementioned: av-
eraging the two features and integrating them to obtain a
feature with higher dimension. In this subsection, we denote
them as average and integration for simplicity. To make a fair
comparison, all the other factors, such as the frame numbers of
input videos and feature extraction parameters are all the same.
The results of those schemes on 32-frame data are shown in
Fig.7.
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Fig. 8. Result comparison between different fusion schemes. All the results
are given with data of the validation subset of the Chalearn LAP IsoGD
database. It is apparent that our method far outperforms the others.

There is no doubt that the improvements on performance
of both of fusion schemes are significant compared with any
single feature as indicated in Table I. Although the differences
among those schemes are slight, the integration scheme has
the best performance as the advantages of all input features
can be taken, while the other is more like striking a balance
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among those features, which may weak the benefits of fusion.

D. The final comparison

We illustrate the final comparison with the baseline method
and original C3D result in Fig.8.

The results shows that compared with hand-crafted fea-
tures, the deep learning is more promising to extract features
and our approach can learn the details of gestures more clearly,
and correspondingly yields better result to win in the challenge.
The final score of top 7 results, including [24] and [25] (which
wins the second and third place) and the baseline method [2]
on testing data are shown in Fig.9.

We then analyze the result of each category of gestures
as well. we take the result of integration scheme on valida-
tion dataset as an example, and as shown in Fig.10, almost
each category evidences a great improvement on the baseline
method, and some categories like 34, 57 and 61 are even
fully recognized. We also reduce the number of unrecognized
categories from 70 as reported in [2] to 14. These gestures
are really hard to recognize, for example the gesture 13 with
the performer stretching the single little finger, is always
confused with the gesture 97, in which the performer stretches
single index finger. Therefore more elaborate features may be
required to deal with such a subtle difference.
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Fig. 10.  The comparison between recognition rate of our method and
baseline method for each category. The horizonal axis indicates the category
numbers ranging from 1 to 249, while the vertical axis indicates the rate of
correctly recognized gestures of each category. (a) Our recognition rate. (b)
The recognition rate of baseline method (from Wan et al’s paper [2]). It is
obvious our approach outperforms the baseline method in many categories.
However, like the baseline one, ours is also failed for some hard-to-recognize
categories.

E. Runtime analysis

Our experiments are processed on a PC with Intel Core
i7-6700 CPU @ 3.40GHz x 8, 16 GB RAM and Nvidia
Geforce GTX TITAN X GPU. The experiments of the C3D
model training and feature extracting are processed under caffe
framework on Linux Ubuntu 14.04 LTS, others including 32-
frame video generation, feature fusion and SVM classification
are implemented by matlab R2012b on 64-bit Windows 7.

Thanks to the quickness of C3D implementation, the pro-
cessing of feature extraction can reach 656 fps. For the SVM
classification, since it runs only with CPU, it reaches about 3 -
5 seconds to finish the whole training and classifying process



for each video, which depends on the amount of training data
and the rate that CPU is occupied.

V. CONCLUSION

In this paper, we propose a gesture recognition method
with both RGB and depth data on a 3D convolutional network.
We first convert the input data into 32-frame videos to learn
the details of motion better, then the features of RGB and
depth videos are extracted from the C3D model respectively
and blended together to boost the performance. The final
classification is implemented with a linear SVM classifier. The
experiments verify the effectiveness of our strategy.

However, there are still many factors that affect the ac-
curacy of recognition. The skin color, clothes of performers
may disturb the gesture recognition. Therefore how to weak
the influence of those gesture-irrelevant factors is what we
intend to study in the future. Meanwhile, the other deep
learning architectures, like the deep belief networks, also show
great promising for object recognition. The extension of these
architectures to video based gesture recognition may be also
worthy to be studied.
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