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Abstract— An unsolved problem in medical image analysis is 
validation of methods. In this paper we will focus on image 
registration and in particular on nonlinear image registration, 
which is one of the hardest analysis problems to validate. The 
paper covers currently used methods of validation, comparative 
challenges and public datasets, as well as some of our own work 
in this area. 
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I.  INTRODUCTION 
Since some of the very early works in the 1970s (e.g. [1], 

[2]), the field of medical image registration has progressed 
tremendously. A plethora of new developments has been 
proposed for similarity metrics, deformation models, 
optimization and regularization. One aspect that has not quite 
developed at the same pace is the validation of registration 
methods. This became obvious when we recently looked back 
at a review of image registration methods from 20 years ago 
[3]. Clearly, defining a proper ground truth or even a gold 
standard is a challenging task, especially for nonlinear 
registration.  

In this paper we will give an overview of validation 
approaches for medical image registration, followed by a 
number of public challenges on the topic and freely accessible 
datasets for validation. We will also describe some of our own 
contributions to this field.  

II. VALIDATION OF MEDICAL IMAGE REGISTRATION 

A. Proposed methods 
Validation methods can be divided into those that qualify 

and those that quantify registration error. Visual inspection is 
an example of the former category, using, for instance, side-
by-side viewing, overlays of structures or checkerboard 
displays [4], [5]. Besides the disadvantage that the evaluation 
is qualitative and often subjective, these methods cannot be 
used for large quantities of data. In the remainder we will 
focus on quantitative approaches, which are preferred. 

A second subdivision of validation methods is into those 
that employ a ground truth and those that use a gold standard. 
The former contain an exact definition of the correct 

transformation whereas the latter employ an approximation of 
it. 

There are few methods that can truly provide a ground truth 
for validation. One is the application of artificial 
transformations to images [6]. When an image is deformed 
with a known transformation and the result is registered to the 
original, the exact error can be computed at every position in 
the image. Unfortunately, it is extremely hard to define a 
realistically deformed image, including proper noise and 
imaging variations. Generally, artificially deformed images are 
a simplified representation of the true registration problem and 
they do not yield a reliable evaluation. This was, for instance, 
demonstrated in an evaluation study of registration methods we 
conducted [7], in which the difference in performance of the 
various methods was almost indistinguishable on artificially 
deformed images (though not on other data). 

The other type of validation approach that can potentially 
define a ground truth is that based on simulated images [8] and 
phantoms [9]. Physical models of known proportions and 
known deformations can quantitatively evaluate true 
registration error, except for possible small deviations as a 
result of acquisition error. Simulations and phantoms, however, 
also suffer from lack of realism, making them unsuitable 
methods of validation for clinical performance of registration 
methods.  

Obviously, the truth is hard to make. All other methods of 
validation rely on a gold standard rather than a ground truth.  

One of the most frequently used gold standard approaches 
to measuring registration accuracy is the alignment of 
corresponding anatomical structures after registration. This can 
be defined by their overlap, by the distance of surfaces or by 
similar quantitative measures [10]. The quality of such 
validation depends on the feasibility of defining structures and 
on the accuracy of the segmentations.  If these conditions are 
met, the overlap measure can be a useful method of validation. 
However, Rohlfing warns against possible traps in such 
approaches [11]. He convincingly shows that overlap only 
takes into account whether corresponding structures are 
aligned, not how this alignment is achieved. Both in between 
and within structures large misregistrations are possible, even 
when the overlap is considered high.  Only with relatively 
small, local structures, can overlap be considered a reliable 
measure of registration quality.  
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Sometimes other similarity metrics than the one used in the 
registration method are computed to evaluate the results, e.g. 
the quality of a registration based on mutual information is 
evaluated by computation of the sum of squared differences 
after registration. Such approaches are doomed to fail. If the 
evaluation metric can accurately measure registration error, the 
metric in the registration method is not an optimal choice. If on 
the other hand the registration metric is the superior one, the 
evaluation by another metric is not valid. 

An interesting approach is one based on consistency of 
transformations. Inverse consistency measures whether the 
concatenation of the transformations from image A to B and 
back from B to A is equal to the identity transformation [12], 
[13]. This is a measure of consistency and not of accuracy, 
because errors in the two individual transformations may 
cancel out to some degree. Datteri and colleagues showed that 
when consistency between all possible triplets of a large 
number of images is calculated, the errors of the separate 
transformations between the image pairs can be found [14]. 
The transformation between an image pair is included in 
several triplets and consequently a sufficient number of 
equations are defined to solve for all separate transformation 
errors. This is possible for both rigid and nonlinear 
transformations [15]. 

In general, the preferred measure of validation is the 
distance between corresponding points in the two images. 
These can be anatomical landmarks or tailor-made markers. 
Accurate annotation of these points is required, which depends 
on many factors, such as how the points are indicated, how 
well they can be imaged (size and contrast) and how they are 
attached to the patient (in case of markers) [16] [17]. Indicating 
landmarks for evaluation is generally feasible for rigid 
transformations, which require only a few points. For nonlinear 
transformations, on the other hand, the number necessary for a 
proper evaluation makes this option close to impossible [18]. 

In recent years, the attention for the topic of uncertainty 
evaluation has grown. Such approaches attempt to provide a 
local measure of the reliability of the registration result, for 
instance, by quantifying the shape of the search space locally 
[19], by bootstrapping [20] or by a probabilistic approach [21]. 
Although these methods do not truly measure registration 
accuracy, they do provide a related evaluation that deserves a 
mention. 

B. Public challenges 
In the past ten years, so-called challenges have become 

increasingly popular in the field of medical image analysis. 
The core idea of a challenge is that researchers apply their 
methods to the same data (made available by the organizers), 
but that they are blinded to the gold standard. Results are to be 
submitted to the challenge organizers who evaluate them and 
return the outcomes. This is an excellent way to compare 
methods on the same data using the same measures, in a fair 
and blinded manner.  

Many of the challenges are collected on the Grand 
Challenges site: http://grand-challenge.org/. The number of 
challenges per year shows how fast this concept has caught on. 
It is also striking how few of the challenges are on image 

registration, most likely because of the difficulty in creating a 
gold standard for this type of problem. Interestingly, the very 
first challenge in medical imaging, dating back as far as 1996, 
was one on image registration. The Retrospective Registration 
Evaluation Project by Vanderbilt University challenged 
researchers to rigidly register multimodal brain images [22]. It 
ran until very recently, but the data is now freely available (via 
http://www.insight-journal.org/rire/). Since then, two projects 
on nonlinear registration were initiated. The first is the Non-
rigid Image Registration Evaluation Project (NIREP) by the 
University of Iowa, to be found at http://www.nirep.org/ [23]. 
It is not truly a challenge, but it provides a platform for 
sharing databases and metrics for evaluation. The most recent 
one is the Evaluation of Methods for Pulmonary Image 
Registration (EMPIRE10) challenge by the University 
Medical Center Utrecht: http://empire10.isi.uu.nl/ [7]. 

C. Available datasets 
Besides the challenges that offer data and an evaluation 

mechanism for the registration results, there are also a number 
of public datasets with gold standard available. The ones 
below are created for image registration: 

• Popi-model (Université Lyon 1) [24]: 4D lung CT, with 
manually identified landmarks, 
https://www.creatis.insa-lyon.fr/rio/popi-model 

• Dir-lab (the University of Texas Medical Branch) [18]: 
lung CT, both 4D and inspiration-expiration, with 
manually identified landmarks, http://www.dir-
lab.com/ 

• Vienna registration phantom (Medical University 
Vienna) [25]: CT, MRI and x-rays of a porcine head, 
with marker-based gold standard, 
http://midas3.kitware.com/midas/community/3  

• In addition, datasets with segmented structures exist. 
Though these were usually created for evaluation of 
segmentation rather than registration, some can 
nonetheless be employed for the latter (bearing in mind 
the work of Rohlfing), see for example the evaluation 
study by Klein et al. and the datasets therein [26]. 

 

III. CONTRIBUTIONS TO VALIDATION OF IMAGE 
REGISTRATION ACCURACY 

Next we treat a few examples of our own work in the area 
of validation of image registration accuracy. 

 

A. Semi-automatic construction of reference standards for 
evaluation 
Corresponding pairs of landmarks are considered one of the 

most reliable ways of quantifying registration accuracy. 
Obtaining a sufficiently large number of them to evaluate 
nonlinear registration of 3D medical data is a daunting task. 
We proposed a framework that involves the human in a limited 
way, making the creation of large sets feasible [27], [28].  

The basic principle of the framework consists of three 
phases: 
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1. Landmarks are automatically defined in one of the two 
images to be registered, 

2. A human observer starts annotations of the 
corresponding landmarks in the other image, while the 
computer simultaneously makes estimates, 

3. The computer estimates are of sufficient quality for the 
computer to complete the annotations autonomously. 
 

In the first phase, points p are selected that would be suitable 
for annotation. This selection is based on the points' 
distinctiveness value D(p), which combines a number of image 
characteristics. First of all, good landmarks are assumed to lie 
on edges of structures and the gradient magnitude of the image 
at a landmark should therefore be high. Secondly, landmarks 
are expected to stand out from their surroundings. This is 
measured by the difference between the intensities in a region 
of interest (ROI) around point p and a set of neighbouring 
points qi: 

Diff (ROI(p),ROI(qi )) =
1
N

ROI(p)k − ROI(qi )k
k=1

N

∑  

with N the number of voxels in the ROI and qi a neighbouring 
point on a circle around p with user-defined radius, see Figure 1. 
The distinctiveness value of a point p, D(p), is defined 

D(p) = G(p)
maxG

1
m

Diff (ROI(p),ROI(qi ))
i=1

m

∑  

with G(p) the gradient magnitude at p, normalized by maxG, 
the maximum gradient magnitude of all points considered. 
Subsequently, n landmarks are selected, based on their 
distinctiveness value and given some restrictions to have a 
reasonable spread of landmarks across the image volume.  

 
Figure 1 Definition of a region of interest (grey areas) around a 
point p and its neighbouring points qi 

In the second phase, an observer is shown individual 
landmarks in one image and asked to indicate the 
corresponding point in the other image. Examples of landmarks 
are shown in Figure 2. A bespoke user interface for this process 
was created. Alongside the user, the computer estimates 
corresponding points in the following manner: a thin-plate 
spline deformation through the current human-defined 
landmark pairs is computed, the position of the corresponding 
point is extracted and subsequently refined by finding the 
optimal position in a small neighbourhood using block-
matching. Every computer estimate is compared with the point 
selected by the observer. Once x out of the previous y estimates 
are within a distance d of the observer-selected point (with x, y 
and d user-defined variables), the computer system is deemed 

capable of performing the annotations for the remaining 
landmarks (phase 3). When in doubt, e.g. the block matching 
fails, the system can pass a landmark back to the observer to 
indicate the corresponding point.  

 
Figure 2 Examples of automatically selected landmarks in lung 
CT. 

The system for reference standard creation was 
demonstrated on low-dose lung CT data (baseline and follow-
up) of 47 subjects, with the aid of three observers (one expert, 
two medical students). We set the system to select 300 
landmarks per image. The first estimates of corresponding 
points by the computer were poor, as is to be expected. 
However, the distance of the automatically estimated 
corresponding points to the observer annotations fell rapidly 
and generally was smaller than 1 mm after about 15 landmarks 
(see Figure 3). Moreover, the study showed that for evaluation 
of registration methods, manually and automatically defined 
landmark pairs are equally suitable. Furthermore, we 
demonstrated that the annotations of non-expert observers with 
this system do not differ significantly from those of an expert. 
All in all, the system produces a large number of high-quality 
landmark pairs for evaluation of image registration with 
minimal user effort. The system is freely available from 
http://isimatch.isi.uu.nl/.  

 
Figure 3 Box-and-whisker plots of the distances between 
automatic and manual annotations for all image pairs against the 
number of manual annotations performed thus far. The top and 
bottom plot show the result for two different observers. 

B. Automatic quality assessment of image registration 
Ultimately, evaluation of registration accuracy results in 

a map indicating the quality of the registration locally 
throughout the image volume. We have developed an 
approach that learns local registration error from prior data in 
a supervised manner [29]. To learn local registration quality, a 
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reference set of alignment patterns was created. Using the 
previously described landmark method, sets of 30 
corresponding point pairs were defined on lung CT images of 
51 subjects. For each subject a baseline and follow-up scan 
were available, acquired 3-15 months apart. The image pairs 
were registered using a number of different transformation 
models, from rigid to fully deformable. Using the known 
correspondences of landmark pairs, we could compute for 
each landmark and each registration result the error of that 
registration at that position. We deliberately included 
transformation models that would not be able to register the 
images perfectly, to obtain training examples of both good and 
poor alignment.  

The classification problem was initially trained to 
distinguish three categories of registration error: Correct 
Alignment (CA, a registration error at that point of less than 
2mm), Poor Alignment (PA, 2-5mm) and Wrong Alignment 
(WA, > 5mm). In order for the classifier to learn the 
characteristics of registration results of different quality, 
features were computed on subvolumes around the registered 
landmarks. These features included intensity-based features, 
such as intensity differences, correlation and entropy, as well 
as features on the deformation field (e.g. Jacobian 
determinant). Features were computed at various scales, 
leading to a total of 66 features. Classification was performed 
in a two-stage manner: first a distinction between correct and 
incorrect alignment (CA vs. ¬CA) was made, followed by a 
further subdivision of the latter class into poor and wrong 
alignment (PA vs. WA). The system was trained using cross-
validation.  Feature selection and various classifiers were 
included to find an optimal approach.  

Evaluation of the system was performed on a separate set 
of corresponding landmarks, not used for training. Accuracy 
of classification is given in Table 1. The results are good for 
the extreme classes, but poorer for the middle class. Many of 
the misclassifications occur at the boundaries between classes.  

 
Table 1 Confusion matrix of estimated versus true registration 
error class 

 
 
Once the quality of a registration result can be determined, 

it cannot only be used to inform the user, but also to improve 
that result. We developed approaches for boosting registration 
algorithms based on the theory of hypothesis boosting. We 
consider the displacement field un of registration n the 
hypothesis hn. In order to boost a registration algorithm 
similarly to classifier boosting, we require an estimate of local 
registration accuracy. Accordingly, each hypothesis un is 
weighted by a weight based on the local error estimate. One 
approach to boosting is to iteratively employ a registration 
method and adaptively focus the registration on remaining 

errors [30]. In this manner we aim to reduce non-systematic 
registration errors, thereby obtaining more robust registrations 
and overall improved registration results. We validated the 
approach on three different deformable registration algorithms 
(ANTS gSyN, NiftyReg, and DROP) on three independent 
reference datasets of pulmonary intra-subject images. It 
consistently and significantly reduced registration errors 
yielding an improvement of the registration accuracy by about 
5%–30% depending on the dataset and the registration 
algorithm employed. 

A second boosting approach combined deformation fields 
from a number of different registration methods based on 
estimated local error [31]. After registration of an image pair 
with a number of registration methods, the results were 
classified per small regions using the automatic error 
estimation scheme and the boosted deformation field consisted 
of the combination of the best result per region.  

The classification was later replaced by a regression 
scheme, which produces a scalar value of local registration 
error [32]. These values were used as weights in the boosting 
framework. The various registration results were combined 
locally by weighing them with the inverse of their estimated 
registration error. A number of state-of-the-art registration 
methods for lung CT data were employed (ANTS, NiftyReg 
and Elastix). Table 2 shows that the boosting results based on 
the automatic quality assessment outperform each of the 
separate methods, as demonstrated on the data of the 
EMPIRE10 challenge.  

 
Table 2 Results of the boosting approach and the separate 
registration methods on the EMPIRE10 challenge data  

 

 

C. Supervised local error estimation using convolutional 
neural networks 
Training systems to estimate registration error locally can 

be based on classifiers (as above) or on convolutional neural 
networks. We describe here a proof of principle and first 
results of registration validation using CNNs.  

To estimate the error at any position in the images, a patch 
of 32 by 32 pixels around that position is defined in the 
registered images. These two patches are fed to the CNN, 
which returns the norm of the local deformation. The network 
is a rather standard setup of two convolutional layers with 3x3 
kernels followed by a 2x2 pooling layer. This combination is 
repeated one time and completed by three fully connected 
layers, see Figure 4.  

The method is applied to 2D Digital Subtraction 
Angiography images of the head and neck. Training data were 
created by randomly deforming images. The original images 
and their deformed versions were used as input pairs with 
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known deformations to train the CNN to estimate local 
deformation. Data augmentation was included to achieve a 
feasible number of input pairs.  

 
 

Input
2 x 32 x 32

Conv.
3 x 3

Error
estimate

Conv.
3 x 3

Pool
2 x 2

Conv.
3 x 3

Fully
connected

Fully
connected

Fully
connected

32 32 512 512 1

Conv.
3 x 3

Pool
2 x 2

64 6432 64

 
Figure 4 Schematic overview of convolutional neural network 

 
Validation was on another set of DSA image pairs, of 11 

patients. These consisted of genuine pre- and post-contrast 
images, for which the true deformation is unknown. To create 
a gold standard, image pairs were nonlinearly registered in a 
multiresolution approach of four levels, which we assumed 
would yield a good alignment. To validate the neural network, 
we used 'misregistered' pairs. These were formed by the 
registered images after three levels, i.e. excluding the finest 
resolution. For evaluation, the error maps produced by the 
neural network were compared with the deformation field of 
the four-resolution registration (our gold standard). Figure 5 
contains an example of the estimated and gold standard error.  

 

 
Figure 5 Example of, from left to right, registered DSA image, 
gold standard error map, estimated error map 
 

Figure 6 shows the correlation of the estimated and gold 
standard errors for all pixels in the 11 image pairs. Good 
correlation between true and estimated errors is found, up to 
roughly eight pixels. Larger errors are underestimated, 
because errors of that size are not included in the training set.  

 

 
Figure 6 Estimated error (vertical axis) versus gold standard 
error (horizontal axis) 
 

The current system is being expanded to 3D images and 
evaluated more extensively.  

IV. FUTURE 
Validation of nonlinear image registration is a complicated 

problem. Techniques for validation do exist, but they all have 
their shortcomings. Overall, it should be considered an 
unsolved problem, yet proper validation is essential for 
translation of automatic registration methods into clinical 
practice.  

Further progress is sorely needed, on the one hand, in the 
area of validation measures and frameworks for automatic 
quantification of error. Future developments in pattern 
recognition, classification and deep learning may play a vital 
role. 

On the other hand, feasible solutions for obtaining 
reference standards (whether ground truth or gold standard) 
are lacking. A potential approach that has been gaining 
attention for medical image applications, is crowd-sourcing. 
The idea originated as far back as 1907, when sir Francis 
Galton published some remarkable findings in Nature [33]. He 
had witnessed a competition to guess the weight of an ox at a 
local market, a quite famous anecdote by now. Nearly 800 
visitors, from complete laymen to farmers and butchers, made 
an estimate of the weight. Not a single person predicted the 
correct amount, yet the median of all their estimates was 
extremely close to the truth: 1207 vs. 1198 lb. (note: the mean 
turned out to be even closer to the truth 1197 lb., but Galton 
firmly believed the median to be the correct measure to use, as 
he explained in a letter to the editor three weeks later [34]). 
Would it be possible to use large numbers of non-experts to 
produce reliable gold standards for medical imaging 
problems? Some first studies into this question indicate that it 
may very well be a potential solution, although it is currently 
not clear what the requirements for such approaches are and 
what type of clinical problems they would be suitable for. 
Nguyen et al. employed the general public to classify potential 
polyps in CT images as actual or false polyps. With minimal 
training, laymen achieved a performance similar to an 
automatic CAD system [35]. Maier-Hein and colleagues [36] 
enlisted the crowd to segment instruments in endoscopy 
images and found the quality of the results to be similar to 
those of experts. Games are now being developed to entice the 
public to contribute to our field in a fun, yet valuable way 
(see, for instance, http://biogames.ee.ucla.edu/ [37], [38]).  

Still, such approaches do not solve one dilemma: whether 
or not the human should be the standard. Is it not the aim of 
many of the automatic solutions to improve upon human 
performance .... ? 
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